
Redbooks

In partnership with
IBM Academy of Technology

Front cover

Implementation Guide for
IBM Blockchain
Platform for Multicloud

Austin Grice

Eric Everson Mendes Marins

Garrett Lee Woodworth

Juliana Medeiros Destro

Rahul Gupta

Vasfi Gucer

IBM Redbooks

Implementation Guide for IBM Blockchain Platform for
Multicloud

October 2019

SG24-8458-00

© Copyright International Business Machines Corporation 2019. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (October 2019)

This edition applies to IBM Blockchain Platform for Multicloud Version 2.0.

Note: Before using this information and the product it supports, read the information in “Notices” on
page xv.

Contents

Figures . vii

Examples . ix

Tables . xiii

Notices .xv
Trademarks . xvi

Preface . xvii
Authors. xvii
Now you can become a published author, too! . xix
Comments welcome. xix
Stay connected to IBM Redbooks . xix

Chapter 1. Introduction. 1
1.1 Introduction . 2

1.1.1 What does blockchain do for a business network?. 2
1.1.2 Why blockchain?. 3
1.1.3 IBM Blockchain Platform introduction . 3
1.1.4 Benefits and differentiators of deploying and using a blockchain environment on

LinuxONE . 4
1.2 Typical use cases . 7
1.3 Solution components. 8

1.3.1 LinuxONE . 8
1.3.2 Kubernetes (K8s) . 9
1.3.3 IBM Cloud Private . 10
1.3.4 GlusterFS . 10
1.3.5 IBM Secure Service Container . 10
1.3.6 IBM Blockchain Platform. 12

1.4 Our lab environment . 12
1.4.1 Secure Service Container partition . 13
1.4.2 IBM Cloud Private cluster . 14

Chapter 2. Planning for installation. 19
2.1 Why Secure Service Container? . 20
2.2 Persistent Storage providers. 23
2.3 Setting up file storage . 24

2.3.1 Network File System (NFS). 25
2.3.2 Gluster File System (GlusterFS) . 42

2.4 Sizing . 56
2.4.1 IBM Blockchain Platform console . 57
2.4.2 Minimum network . 58
2.4.3 Pilot network . 59
2.4.4 Production network . 61
2.4.5 Component containers . 64
2.4.6 Resource reallocation . 65

2.5 Considerations for specific use cases. 68

Chapter 3. Secure Service Container installation and configuration. 69
© Copyright IBM Corp. 2019. All rights reserved. iii

3.1 Secure Service Container architecture . 70
3.2 An overview of SSC configuration and installation . 70

3.2.1 SSC bootloader overview . 70
3.2.2 Download the image . 71

3.3 Hardware and software requirements . 72
3.3.1 Hardware requirements for the 64-bit x86 server or Linux on Z server. 72
3.3.2 Hardware requirements for Secure Service Container partition 72
3.3.3 Networking . 73
3.3.4 Supported operating systems and platforms. 73
3.3.5 Software requirements . 74
3.3.6 Supported Docker versions. 74
3.3.7 Supported IBM Cloud Private versions . 74
3.3.8 Required ports . 75
3.3.9 Defining the lab environment . 75

3.4 Deploying and configuring SSC for ICP in our lab environment 75
3.4.1 Creating Secure Service Container partitions . 75
3.4.2 Installing the Secure Service Container for IBM Cloud Private appliance 78
3.4.3 Installing the Secure Service Container for IBM Cloud Private CLI tool 80

3.5 Installing IBM Cloud Private cluster . 81
3.5.1 Configuring Secure Service Container storage. 81
3.5.2 Configuring the appliance network . 82
3.5.3 Configuring the cluster resources . 86
3.5.4 Creating the cluster nodes . 89
3.5.5 Configuring the network on the master node . 93

3.6 Deploying IBM Cloud Private . 98
3.6.1 Deploying containerized applications . 103

3.7 Deploying GlusterFS on SSC ICP nodes . 104
3.7.1 Preparing for deployment . 105
Deploying ICP with GlusterFS. 114

3.8 Uninstalling ICP and SSC . 123
3.8.1 Uninstalling SSC for IBM Cloud Private . 123
3.8.2 Uninstalling the Secure Service Container for IBM Cloud Private CLI tool 123
3.8.3 Uninstalling Secure Service Container partitions . 124

3.9 Updating the cluster resources dynamically . 125

Chapter 4. IBM Blockchain Platform installation and configuration 127
4.1 Console installation . 128

4.1.1 Loading Helm chart . 128
4.1.2 Setting up role-based access control (RBAC) roles

for blockchain [1x per cluster only] . 131
4.1.3 Scripted console installation . 136
4.1.4 Manual console installation. 143

4.2 Verifying console installation and initializing console with users. 152
4.2.1 Verifying installation of the blockchain console. 152
4.2.2 Initializing blockchain console for other users. 167

4.3 IBM Blockchain Platform installation . 173
4.3.1 Creating peer organizations . 175
4.3.2 Creating a peer . 179
4.3.3 Creating the ordering service . 180
4.3.4 Join the consortium. 185
4.3.5 Creating a channel . 186
4.3.6 Joining peers to channel . 188
4.3.7 Deploying smart contracts. 189
iv Implementation Guide for IBM Blockchain Platform for Multicloud

4.3.8 Verifying blockchain components installation . 193
4.4 OpenShift support: Statement of direction . 194
4.5 Troubleshooting the installation . 194

4.5.1 Troubleshooting console installation . 194
4.5.2 Troubleshooting blockchain component installation . 195

Chapter 5. Specific scenarios . 197
5.1 Behind firewalls (isolated blockchain environment). 198
5.2 Using proxies . 198

5.2.1 Manual installation of Docker . 198
5.2.2 Automatic installation of Docker by using IBM Cloud Private 199
5.2.3 Post-installation proxy configuration . 200

5.3 High availability and disaster recovery . 201
5.3.1 High availability . 201
5.3.2 Disaster recovery . 202

Chapter 6. Performance considerations . 203
6.1 Blockchain performance considerations . 204

6.1.1 Application client . 204
6.1.2 Smart contract programming language. 204
6.1.3 Endorsement policy . 204
6.1.4 Orderer Block Configuration . 204
6.1.5 Peer container resource allocation . 205

6.2 Blockchain Input/Output (I/O) accelerated: IBM HiperSockets 205
6.2.1 Where does blockchain use I/O? Everywhere . 205
6.2.2 What are HiperSockets . 206
6.2.3 HiperSockets benefits . 207

6.3 Meet CPACF - Speeding up your blockchain . 208
6.3.1 Cryptography’s importance in blockchain . 208
6.3.2 CPACF’s role in acceleration and protection . 210

Appendix A. Additional material . 211
Locating the GitHub material . 211
Cloning the GitHub material . 211

Related publications . 213
IBM Redbooks . 213
Online resources . 213
Help from IBM . 213
 Contents v

vi Implementation Guide for IBM Blockchain Platform for Multicloud

Figures

1-1 Lab environment that was used for blockchain performance tests on LinuxONE. 6
1-2 More use cases based on various industries . 8
1-3 Our environment . 13
2-1 Security Service Container components . 21
2-2 SSC security protection . 22
2-3 IBM Secure Service Container for IBM Cloud Private - Full-stack solution. 23
2-4 NFS architecture . 25
2-5 Setting up NFS server primer -1 . 30
2-6 Setting up NFS server primer -2 . 31
2-7 Setting up NFS server primer -3 . 32
2-8 Setting up NFS server primer -4 . 33
2-9 Setting up NFS server primer -5 . 34
2-10 Setting up NFS server primer -6 . 37
2-11 Setting up NFS server primer -7 . 38
2-12 Setting up NFS server primer -8 . 39
2-13 Setting up NFS server primer -9 . 40
2-14 Setting up NFS server primer -10 . 41
2-15 GlusterFS architecture . 43
2-16 GlusterFS Helm chart . 48
2-17 Configuring the ibm-glusterfs Helm chart -1 . 48
2-18 Configuring the ibm-glusterfs Helm chart -2 . 49
2-19 Configuring the ibm-glusterfs Helm chart -3 . 50
2-20 Configuring the ibm-glusterfs Helm chart -4 . 50
2-21 Configuring the ibm-glusterfs Helm chart -5 . 51
2-22 Configuring the ibm-glusterfs Helm chart -6 . 52
2-23 Configuring the ibm-glusterfs Helm chart -7 . 52
2-24 Configuring the ibm-glusterfs Helm chart -8 . 53
2-25 Verification of Gluster Storage . 53
2-26 The minimum network. 58
2-27 The pilot network. 60
2-28 The production network . 62
2-29 sample default resource allocation for a CA: . 65
2-30 Reallocating resources for a CA -1 . 66
2-31 Reallocating resources for a CA -2 . 66
2-32 Reallocating resources for a CA -3 . 67
2-33 Editing the configuration of the requests and limits of your deployed components - 1 68
2-34 Editing the configuration of the requests and limits of your deployed components - 2 68
3-1 Secure Service Container architecture for ICP . 70
3-2 SSC bootloader overview diagram . 71
3-3 Customize/delete Image Profiles window . 76
3-4 General SSC profile information . 77
3-5 SSC profile login information . 77
3-6 SSC profile network information . 78
3-7 Uploading the software appliance image . 79
3-8 Confirmation dialog page . 80
3-9 Uploading the image . 80
3-10 Storage allocation using SSC . 82
3-11 Connecting to SSC partition . 83
© Copyright IBM Corp. 2019. All rights reserved. vii

3-12 SSC network connections. 84
3-13 Adding the B53 OSA card. 84
3-14 Listing all network connections . 85
3-15 Sample for the VM user ID directory for the Linux on Z master node. 96
3-16 Sample of the Post Deploy message . 102
3-17 ICP dashboard . 103
3-18 Output of the ICP uninstaller . 108
3-19 Output of the SSC uninstaller . 109
3-20 Output of a successful ICP installation . 122
4-1 Installing console -1 . 145
4-2 Installing console -2 . 146
4-3 Installing console -3 . 147
4-4 Installing console -4 . 148
4-5 Installing console -5 . 150
4-6 Installing console -6 . 151
4-7 Verify the console installation using the UI -1 . 159
4-8 Verify the console installation using the UI -2 . 159
4-9 Verify the console installation using the UI -3 . 160
4-10 Verify the console installation using the UI -4 . 161
4-11 Verify the console installation using the UI -5 . 162
4-12 Verify the console installation using the UI -6 . 163
4-13 Verify the console installation using the UI -7 . 164
4-14 Verify the console installation using the UI -8 . 165
4-15 Verify the console installation using the UI -9 . 165
4-16 Verify the console installation using the UI -10 . 166
4-17 Verify the console installation using the UI -11 . 166
4-18 initializing blockchain console with users -1 . 167
4-19 initializing blockchain console with users -2 . 167
4-20 initializing blockchain console with users -3 . 168
4-21 initializing blockchain console with users -4 . 169
4-22 Managing console -1. 170
4-23 Managing console -2. 171
4-24 Managing console -3. 172
4-25 Managing console -4. 172
4-26 Managing console -5. 173
4-27 Example of business network and components . 174
4-28 Steps to build a fresh blockchain network in IBM Blockchain Platform. 175
4-29 CAs created successfully for Org 1 and Org 2 . 176
4-30 Registered users in Org1 CA . 177
4-31 MSP definition for Org1 and Org2. 178
4-32 Wallet with two identities. 179
4-33 Peers created and running . 180
4-34 Ordering Service users created . 182
4-35 Ordering Service MSP created . 183
4-36 Ordering service deployed . 185
4-37 Consortium members added. 186
4-38 Created channel will remain in status pending until one or more peers are added . 188
4-39 Peers joined the channel and it now shows block height . 188
4-40 Workflow for smart contracts. 189
4-41 Contract name, version and peers where the smart contract is installed 190
6-1 HiperSockets enables quick transfer of information between LPARs. 207
viii Implementation Guide for IBM Blockchain Platform for Multicloud

Examples

2-1 Downloading the package. 28
2-2 Output of the command . 29
2-3 Downloading the package. 36
2-4 Output of the command . 36
2-5 Install GlusterFS client . 44
2-6 identify storage devices to use . 45
2-7 Get the symlink . 46
2-8 kubectl get pods . 54
2-9 Topology verification has passed . 55
2-10 kubectl get sc . 55
2-11 Everything is up and running . 56
3-1 Installing jq and network-manager utilities . 81
3-2 Entered into installation directory and installing the docker image 81
3-3 Downloading the configuration templates file for the Linux on Z server 81
3-4 Sample of /opt/blockchain/config/hosts file . 86
3-5 Sample of ssc4icp-config.yaml file for our lab environment . 87
3-6 Output of /opt/blockchain/config/DemoCluster/cluster-configuration.yaml file 90
3-7 Sample of get_containers.sh script . 91
3-8 Getting information about the containers . 93
3-9 Compiling and installing strongswan package on Redhat . 94
3-10 Copying the ipsec files to /etc/ . 94
3-11 Verifying if IPs are reachable from master node. 95
3-12 Checking ipsec status . 95
3-13 Linux configuration files . 96
3-14 Listing Active network devices on the Master Node . 97
3-15 Loading Docker container images . 98
3-16 Extracting the configuration files from the installer image. 99
3-17 Authorizing the use of SSH_keys on Linux Master node . 99
3-18 Checking if communication with SSC containers are OK . 100
3-19 Getting worker and proxy hostnames . 100
3-20 Sample of /etc/hosts entries . 100
3-21 Updating /etc/hosts files on the worker and proxy nodes . 100
3-22 Sample of /opt/icp320/cluster/hosts file . 101
3-23 config.yaml modifications . 101
3-24 Output of kubectl get nodes command . 103
3-25 Sample of ss4icp-config.yaml file for GlusterFS . 105
3-26 /opt/icp320/cluster/ folder . 107
3-27 Uninstall ICP command . 107
3-28 /opt/blockchain/ folder . 108
3-29 Uninstall command for the SSC containers . 108
3-30 Installing the SSC containers . 109
3-31 Sample of cluster-configuration.yaml file . 109
3-32 Sample of quotagroup-symlink.yaml file . 111
3-33 Sample of get_containers.sh script . 111
3-34 Getting information about the containers . 113
3-35 Compiling and installing strongswan package on Redhat . 114
3-36 Loading Docker container images . 114
3-37 Copying the ipsec files to /etc/ . 115
© Copyright IBM Corp. 2019. All rights reserved. ix

3-38 Verifying if IPs are reachable from master node. 116
3-39 Checking ipsec status . 117
3-40 Sample of new sections for config.yaml . 117
3-41 config.yaml modifications . 119
3-42 Sample of hostgroup-glusterfs section . 119
3-43 Sample of /etc/hosts file . 120
3-44 Uploading /etc/hosts files from master to storage, worker and proxy nodes. 120
3-45 Authorizing the use of SSH_keys on Linux Master node . 121
3-46 Sample of /opt/icp320/cluster/hosts file . 121
3-47 Getting information about the gluster resources . 122
3-48 Getting storageclass resources . 123
3-49 Getting cluster nodes information . 123
4-1 Command successful . 129
4-2 Loading Helm chart to cluster . 129
4-3 Apply all cluster roles and pod security policy to your cluster 132
4-4 ibm-blockchain-platform-psp.yaml . 133
4-5 ibm-blockchain-platform-psp-clusterrole.yaml. 134
4-6 ibm-blockchain-platform-clusterrole.yaml . 134
4-7 crd-clusterrole.yaml. 135
4-8 Script example run with setup. 138
4-9 Blockchain setup script . 140
4-10 Example of namespace setup. 144
4-11 Output of a successful completion . 152
4-12 Sample cloudctl login . 153
4-13 Setting the namespace for kubectl . 154
4-14 The deployment is available . 154
4-15 The deployment is not available . 154
4-16 There is a pod . 154
4-17 kubectl get events . 155
4-18 watch command . 155
4-19 The warnings from our failed (and later fixed) deployment . 156
4-20 See all resources . 157
4-21 Secret name and password . 168
4-22 Blockchain component deployments showing ordering service, CA and Peer

deployments . 193
4-23 Blockchain component replicaset showing ordering service, CA and Peer replicaset193
4-24 Blockchain component pods showing ordering service, CA and Peer pods. 193
4-25 Blockchain component services . 194
4-26 Command to grep for errors for console . 194
4-27 .Out of cpu error. 194
4-28 Incorrect permissions (permissions errors for rbac) . 195
4-29 Command to grep for errors in blockchain components . 195
4-30 PodSecurity policy error . 195
4-31 DinD container memory allocation error . 195
4-32 RAFT node unable to connect to system channel . 196
5-1 Creating necessary docker service folder . 198
5-2 Sample of /etc/sytemd/system/docker.service.d/http-proxy.conf file. 198
5-3 Sample of /<installation_directory>/cluster/config.yaml file. 199
5-4 Sample of config.yaml file . 199
5-5 Sample of /<installation_directory>/cluster/config.yaml file. 199
5-6 ICP proxy configuration -1 . 200
5-7 ICP proxy configuration -2 . 200
6-1 Batch size configuration on channel . 205
x Implementation Guide for IBM Blockchain Platform for Multicloud

6-2 Batch timeout configuration on channel . 205
 Examples xi

xii Implementation Guide for IBM Blockchain Platform for Multicloud

Tables

1-1 Benefits of blockchain . 2
1-2 Secure Service Container worksheet . 13
1-3 ICP Cluster nodes. 14
1-4 ICP resources . 15
2-1 Values for callout letters a to c . 30
2-2 The next values, for callout letters d to f . 31
2-3 The final values, for callout letters g to k. 32
2-4 Values, for callout letters a to c . 38
2-5 Values, for callout letters d to f . 39
2-6 Final values, for callout letters g to j . 40
2-7 First 3 values, for callout numbers 1 to 3 . 48
2-8 Values for callout numbers 4 and 5 . 49
2-9 Values for callout numbers 6 to 8 . 49
2-10 Values for callout numbers 9 to 12 . 51
2-11 Default resource allocations . 56
2-12 Resources required to deploy the IBM Blockchain Platform for Multicloud console . . 57
2-13 Container breakdown of the IBM Blockchain Platform for Multicloud console 57
2-14 Resources for minimum network components . 58
2-15 : Container breakdown . 58
2-16 Container breakdown of the ordering service . 59
2-17 Container breakdown of the peer. 59
2-18 .Components and their resources for a pilot network . 60
2-19 : Container breakdown of the CA . 61
2-20 Container breakdown of the ordering service . 61
2-21 Container breakdown for the peers. 61
2-22 Recommended sizing and allocation per component for a production blockchain

network. 62
2-23 container breakdown of the CA. 63
2-24 Container breakdown of the ordering service . 63
2-25 Container breakdown for the peers. 63
2-26 Component breakdown of the CA’s container . 64
2-27 Component breakdown of the ordering service’s containers 64
2-28 Component breakdown of the peer’s containers . 65
3-1 Supported network interfaces on the Secure Service Container partitions. 73
3-2 Parameters description for ssc4icp-conf.yaml file. 88
3-3 List of directories and files created by the ssc4icp installer . 89
3-4 Additional parameter description for the ssc4icp-config.yaml file 107
4-1 Values for callout numbers 1 to 3 . 146
4-2 Values for callout numbers 4 to 6 . 147
4-3 Values for callout numbers 7 to 11 . 148
4-4 Values for callout numbers 12 to 19 . 149
4-5 Pod status messages . 156
5-1 Considerations for a highly available blockchain solution. 201
6-1 Benefits of IBM HiperSockets . 207
© Copyright IBM Corp. 2019. All rights reserved. xiii

xiv Implementation Guide for IBM Blockchain Platform for Multicloud

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.
© Copyright IBM Corp. 2019. All rights reserved. xv

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

Db2®
developerWorks®
FICON®
IBM®
IBM Cloud™
IBM Spectrum®
IBM Z®

IBM z13®
IBM z13s®
IBM z14®
IBM z15™
Passport Advantage®
Redbooks®
Redbooks (logo) ®

UrbanCode®
WebSphere®
z/OS®
z/VM®
z13®
z13s®
z15™

The following terms are trademarks of other companies:

ITIL is a Registered Trade Mark of AXELOS Limited.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Ceph, Gluster, OpenShift, Red Hat, are trademarks or registered trademarks of Red Hat, Inc. or its
subsidiaries in the United States and other countries.

VMware, and the VMware logo are registered trademarks or trademarks of VMware, Inc. or its subsidiaries in
the United States and/or other jurisdictions.

Other company, product, or service names may be trademarks or service marks of others.
xvi Implementation Guide for IBM Blockchain Platform for Multicloud

http://www.ibm.com/legal/copytrade.shtml

Preface

IBM® Blockchain Platform for Multicloud enables users to deploy the blockchain across
public and private clouds, such as the IBM Cloud™, their own data center, and third-party
public clouds, such as AWS and Microsoft Azure. It provides a blockchain console user
interface that you can use to deploy and manage blockchain components on an IBM Cloud
Private cluster.

This IBM Redbooks® publication discusses the major features, use case scenarios,
deployment options, configuration details, performance, and scalability considerations of IBM
Blockchain Platform for Multicloud. It also covers step-by-step implementation details for both
Secure Service Container and non-Secure Service Container environments. You also learn
about the benefits of deploying and using a blockchain environment on LinuxONE.

The target audience for this book is blockchain deployment specialists, developers, and
solution architects.

Authors

This book was produced by a team of specialists from around the world who worked together
at the at IBM Redbooks Austin Center.

Austin Grice is a Blockchain Technical Leader for IBM out of the
Washington Systems Center and Federal market. Since joining IBM in
2016, Austin has focused on blockchain running on the IBM Z®
platform. He helps North American clients, IBMers, and everyone
in-between with blockchain. He specializes on creating innovative
hands-on lab material that focuses on Hyperledger Fabric and the IBM
Blockchain Platform. He firmly believes that blockchain is a
revolutionary technology that will impact businesses from various
industries, not only transforming their daily processes, but also
transforming their customers' experience.

Eric Everson Mendes Marins is a Senior IT Architect for IBM Global
Technology and Services in Brazil, focused on hybrid cloud solutions,
Infrastructure and Platform solutions and competencies, including High
Availability, Disaster Recovery, networking, Linux, and Cloud. Eric
works with IGA (IBM Global Account), designing and implementing
complex hybrid cloud solutions that involve Infrastructure-as-a-Service
(IaaS) and Platform-as-a-Service (PaaS) capabilities. He has more
than 17 years of experience in designing and implementing Linux on
IBM Z solutions. He is IBM L3 IT Specialist certified and an IBM L3 IT
Architect certified. Also, he holds a degree in Computer Science from
Faculdade Ruy Barbosa and a post-graduate degree in Computer
Information Systems (Database Management). His areas of expertise
include Linux, IBM z/VM®, Docker, Kubernetes, high availability, IP
networking, and server management. Eric has co-authored several
IBM Redbooks publications, including Advanced Networking Concepts
Applied Using Linux on IBM System z, SG24-7995, Security for Linux
on System z, SG24-7728, Scale up for Linux on IBM Z, REDP-5461
and Getting Started with Docker Enterprise Edition on IBM Z,
SG24-8429.
© Copyright IBM Corp. 2019. All rights reserved. xvii

Garrett Lee Woodworth is a blockchain and Kubernetes Specialist for
IBM covering North America for the Washington Systems Center. Since
joining IBM in 2017, Garrett has been traveling across North America
enabling everyone from developers to executives on combining
emerging technologies such as blockchain and Kubernetes with the
security and reliability of the IBM LinuxONE and IBM Z family of
systems. He leverages his education and degree in Computer
Engineering from the University of California, Davis to engage with
both the business and technical considerations around these
innovative technologies. Working with open source technology, he
believes in publicly sharing his work with the world whenever possible
through GitHub (siler23) [such as the blockchain workshop available at
ibm.biz/bc-immersion] and various other sites such as IBM
developerWorks®. Garrett insists that people must constantly evaluate
their practices:
� How they do business.
� What they accept as "normal."
In this way, they can develop the most effective solutions by
incorporating innovative technologies like blockchain (which can instill
trust in transactions) and Kubernetes (which can eliminate the
boundary from one machine to another).

Juliana Medeiros Destro is a Developer in IBM Brazil, and joined IBM
in 2003. She has a strong background in security and accumulated
extensive expertise in infrastructure, operating systems, and several
programming languages. She has been a technical speaker in internal
and external events, and has delivered several security solutions to key
external customers in Finance Industry. Currently, she is working in
CIO on business transformation and blockchain deployment. She
recently obtained her PhD degree in Computer Science from
UNICAMP.

Rahul Gupta is a Cloud Native Solutions Architect in IBM Cloud
Solutioning Centre in the US. Rahul is an IBM Certified Cloud Architect
with 14 years of professional experience in IBM Cloud technologies,
such as Internet of Things, blockchain, and Container Orchestration
Platforms. Rahul has been a technical speaker in various conferences
worldwide. Rahul has authored several IBM Redbooks publications
about messaging, mobile, and cloud computing. Rahul is an IBM
Master Inventor and also works on MQTT protocol in the OASIS board
for open source specifications.

Vasfi Gucer is an IBM Redbooks Project Leader with the IBM
International Technical Support Organization. He has more than 20
years of experience in the areas of systems management, networking
hardware, and software. He writes extensively and teaches IBM
classes worldwide about IBM products. His focus has been on cloud
computing for the last 5 years. Vasfi is also an IBM Certified Senior IT
Specialist, Project Management Professional (PMP), IT Infrastructure
Library (ITIL) V2 Manager, and ITIL V3 Expert.
xviii Implementation Guide for IBM Blockchain Platform for Multicloud

Thanks to the following people for their contributions to this project:

Rebecca Gott, Shalawn King, Matt Lesher, Ann Lund, Fehmina Merchant, Seongwook Park,
Lukas A. Staniszewski, Jin VanStee, Paul Tippett, Henry Welborn
IBM USA

Claudio Boscaino, Joao Eduardo Proenca Pascoa, Diego Jose Basso Pigossi, Leandro
Raphael Pinto, Gustavo Henrique Da Silva Sommaggio, Carlos Roberto Visconde
IBM Brazil

Ming Zhe Jiang
IBM China

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an IBM Redbooks residency project and help write a book
in your area of expertise, while honing your experience using leading-edge technologies. Your
efforts will help to increase product acceptance and customer satisfaction, as you expand
your network of technical contacts and relationships. Residencies run from two to six weeks
in length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, IBM Redbooks
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xix

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xx Implementation Guide for IBM Blockchain Platform for Multicloud

http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Chapter 1. Introduction

This chapter introduces IBM Blockchain Platform for IBM Cloud Private on a Secure Service
Container and non-Secure Service Container technologies. It also covers blockchain basics,
benefits, and differentiators for deploying and using a blockchain environment on LinuxONE.

This chapter has the following sections:

� 1.1, “Introduction” on page 2
� 1.2, “Typical use cases” on page 7
� 1.3, “Solution components” on page 8
� 1.4, “Our lab environment” on page 12

– 1.4.1, “Secure Service Container partition” on page 13
– 1.4.2, “IBM Cloud Private cluster” on page 14

1

© Copyright IBM Corp. 2019. All rights reserved. 1

1.1 Introduction

Blockchain is a technology for a new generation of transactional applications that
fundamentally changes the way businesses create and capture value.

This section provides an overview of blockchain technology and how developers can build
solutions and use IBM Blockchain Platform to launch, test, and move applications into
production.

We describe the benefits of running blockchain applications on a powerful platform,
LinuxONE.

1.1.1 What does blockchain do for a business network?

Blockchain is a shared, distributed ledger that facilitates the recording of transactions and
tracking of assets in a business network. Virtually anything of value can be tracked and traded
on a blockchain network, thereby reducing risks and costs for everyone involved.

A business network describes any group of organizations or individuals that connect with a
desire to transfer or share assets. Those assets can be tangible, such as food or
manufactured goods, or digital, such as music or data. Items are tracked in a common,
shared ledger that is distributed across the business network. As a result, assets can be
transferred between members. Each member has a record of the transaction and access to
the latest version of the ledger.

Blockchains establish trust across a business network through the combination of a
distributed ledger, smart contracts, and consensus. The ledger contains the current state of
assets and the history of all transactions. Transactions can only be added to the ledger, not
removed. Past transactions are protected with cryptography so that they cannot be
successfully tampered with. This way, changes to the ledger are final and immutable, allowing
the ledger to be the source of truth within the network.

Table 1-1describes the set of benefits that blockchain brings to the use cases for business
networks. In essence, blockchain adds several types of trust to asset transfers.

Table 1-1 Benefits of blockchain

A smart contract is an application that contains business logic. Smart contracts define all
access to the ledger and are invoked by participants to query or update values of assets.

Benefit Meaning

Immutability The historical record of transactions cannot be altered.

Provenance The origin of any assets that are contained in the ledger is known.

Consensus Changes to the ledger require approval by participants according to an
agreed upon endorsement policy. This goal is achieved through
consensus, in which participants of the network endorse that the
transaction is valid and come to agreement on the updated state of the
ledger.

Finality Each participant is assured that their copy of the ledger matches all
other copies, and that transactions that are contained in the blockchain
are committed faithfully.
2 Implementation Guide for IBM Blockchain Platform for Multicloud

1.1.2 Why blockchain?

Ledgers are at the core of every business. Ledgers store the flow of assets, such as
payments to suppliers, taxes owed, and goods delivered. They also store the firm's current
balances. A firm's revenue, relationships, and assets are all recorded in a core system of
ledgers. For millennia, such records were stone, clay, or paper-based. However, these
records were among the first systems to be automated and moved to computing systems.

Even with the digitization of ledgers, many transaction-related tasks remain manual and
outdated. Each shipping container that is moved by freight requires a stack of paperwork that
adds significant processing time. Each time that you open a new bank account or visit a new
doctor, you must share personal information using redundant and insecure forms. The
transfer of financial assets between parties often takes days to settle.

If ledgers, financial records, personal records, and inventory are now digitized, why do these
inefficiencies remain? The reason is that the move to digitization has generally only occurred
within an organization, rather than between organizations. In addition, the systems that were
created often cannot communicate with each other. The result is that modern
business-to-business processes perpetuate inefficiencies that date from when ledgers were
on paper. Blockchain is here to change how business-to-business processes work.

1.1.3 IBM Blockchain Platform introduction

IBM Blockchain Platform (IBP) is an IBM Cloud offering that is built on Fabric, a blockchain
infrastructure that is provided by the open source Hyperledger project. IBP simplifies
development and management of a blockchain network. Often, you can accomplish the
following tasks with just a few clicks in the easy-to-use interface:

� Automated deployment of Fabric

� Creation of custom governance policies

� Initial development

� Deployment of the application into production, including creation of channels and
deployment of chaincode

� Inviting new members into the network, and managing identity credentials over time.

Additional IBM Blockchain Platform references:

� Zero to Blockchain IBM Redbooks workshop
https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/crse0401.html?Open

� Developing a Blockchain Business Network with Hyperledger Composer using the IBM
Blockchain Platform Starter Plan, REDP-5492

http://www.redbooks.ibm.com/abstracts/redp5492.html?Open
Chapter 1. Introduction 3

https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/crse0401.html?Open
http://www.redbooks.ibm.com/abstracts/redp5492.html?Open

1.1.4 Benefits and differentiators of deploying and using a blockchain
environment on LinuxONE

The LinuxONE platform combines the essential features for operation, deployment, and
governance of blockchain workloads:

� Unique functionality and an ability to handle the most sensitive data and critical
applications.

� Optimization for dealing with massive transactions and memory operations.

� Ability to scale for new work.

� Option to base security on the new cryptocard.

Indeed, blockchain can use special hardware in the LinuxONE to deploy at scale, with
performance, availability, and security built in. Additionally, this platform can deliver the
following benefits:

� Blockchain peer-to-peer nodes realize optimized communication with IBM z/OS®,
speeding up access to colocated business data

� Isolated partitions in memory keep ledgers separate and secure

� Availability and scalability of the LinuxONE servers as an environment for both blockchain
development/test and production

� Vertical (scale up) scalability offers unmatched processing power

� Reduced data center footprint, simplified management, and energy savings

� Hardware encryption with built-in accelerators for blockchain hashing, signing, and
security

� Faster responses with IBM HiperSockets

� Global Security Standards compliant

� Tamper-proof crypto keys in firmware/crypto cards

� Unlimited random keys to encode transactions

� More efficient: Can scale up or scale out

� Fewer points of failure: Greater availability

Indeed, LinuxONE unique capabilities can vastly improve efficiency and performance of
blockchain applications, without requiring hundreds of distributed servers to handle the
application workload. LinuxONE users in large-scale operations naturally save on energy,
cooling, and space when they consolidate x86 workloads onto a single LinuxONE machine.

Furthermore, users in the financial services industry require redundant processor execution
steps and integrity checking. In fact, LinuxONE platform typically enables hot-swapping of
hardware, such as processors and memory. This swapping is typically transparent to the
operating system, enabling routine repairs to be performed without shutting down the system.

Cloud computing platforms and mobile applications grow more common in organizations
around the world. Their success depends on the ability of the infrastructure that supports
them to respond faster to demands for intelligent user experiences, high availability, and
highly securable environments.

Note: The LinuxONE platform can deliver all the strength of the architecture in a single
server or multiple servers, depending on the business requirements.
4 Implementation Guide for IBM Blockchain Platform for Multicloud

LinuxONE platform runs open source software with flexibility, security, and scalability. Your
system thus gets the cost and availability benefits of new software applications like the
cloud-based MongoDB, blockchain, and Docker. Imagine combining the best of both scaling
worlds with the effective costs and availability advantages.

This platform architecture is flexible enough to allow applications that run on cloud services to
easily scale up in any increments that you require. At the same time, processing power is
available for high-performance applications. Also, it addresses application scale-out by
adding new virtual servers within minutes and making them part of the cluster.

Scale out or scale up alone do not adequately serve today’s applications. These applications
must be responsive, always available, and handling many user types, including cloud, mobile,
analytics, and big data.

These factors make LinuxONE the best platform to meet different demands, from small to
complex. In summary, the platform remains the powerhouse for tasks that computers have
performed for decades and technologically redesigned to attend emerging demands.

Performance
This section summarizes blockchain-related performance metrics for LinuxONE servers.

Scale out performance
The following scale-out information refers to performance tests that IBM performed on a
LinuxONE server.

� Run 1344 concurrent databases that execute a total of 377 billion database transactions
per day on a single LinuxONE Emperor II server.

� Run 25% more MongoDB guests with the same throughput under z/VM 6.4 on the
LinuxONE Emperor II server compared to the LinuxONE Emperor server.

� Use up to 170 cores on the LinuxONE Emperor II server to scale out MongoDB databases
under z/VM 6.4, each with a constant throughput and not more than 10 µs latency
increase per additional MongoDB instance.

� Scale out to 2 million Docker containers in a single LinuxONE Emperor II system, no
application server farms necessary.

� Run 41.8 billion web transactions per day on a single Emperor II server.

Scale up performance
The following scale-up information refers to performance tests that IBM performed on a
LinuxONE server.

� Scale up a single MongoDB instance to 17 TB in a single system without database
sharding and get 2.4 times more throughput and 2.3 times lower latency on a LinuxONE
Emperor II server that leverages the additional memory that is available, compared to a
LinuxONE Emperor server.

� Run MongoDB under z/VM 6.4 on a LinuxONE Emperor II server and get 4.8 times better
performance leveraging additional memory available per z/VM instance compared to a
LinuxONE Emperor server.
Chapter 1. Introduction 5

Blockchain performance
Benchmark tests put four 64-byte values in a set of blockchain transactions, with these results
on a LinuxONE Emperor II server:

� 2.3 times more throughput per core than an x86 Skylake server.

� 82% lower latency than an x86 Skylake server. Figure 1-1 shows the lab environment that
was used for the blockchain performance tests on LinuxONE.

Figure 1-1 Lab environment that was used for blockchain performance tests on LinuxONE

The latest LinuxONE systems have a tried-and-true architecture to support digital
transformation, create a strong cloud infrastructure, and make back-end services available
through secure APIs. They can also streamline your ability to integrate disparate data center
systems and create a single, cohesive IT shop.

Deployment of blockchain workloads on LinuxONE platform enhances security and allows
quick scaling of the environment. A blockchain network must be protected and safe against
insider attacks, data leaks, and hardware tampering through the use of encryption. So, if your
organization is thinking about exploring blockchain technology, consider how the LinuxONE
platform securely supports blockchain initiatives.

Finally, this platform offers a differential infrastructure and open standards for running
blockchain platform to take advantage of the latest technology advancements and benefits of
LinuxONE.
6 Implementation Guide for IBM Blockchain Platform for Multicloud

1.2 Typical use cases

Blockchain has limitless applicability across many, if not all, industries. The following three
rules unlock the power of blockchain.

1. Have a business problem to solve. One question to ask yourself about business
problems is, What manual processes are increasing the time that it takes to react?

2. Identify a network that solves the business problem. Blockchain must exist within a
network. This network includes 3 or more organizations, or the network can consist of
departments within a single organization.

3. Have an element of trust within your network. Blockchain inspires mutual trust between
organizations, especially if there is a lack of trust in the existing network.

The following chart suggests use cases for specific industries:

Industry Use case

Supply Chain Current supply chains do what they are supposed to do, but there are vast areas in which the
process can be improved upon. For example, many manual processes must be fulfilled to transfer
a product from one organization to another. Also, this manual process lacks transparency across
the broader network and the network organizations.

Blockchain allows for a product to be tracked, in real time, from the origin all the way to final step
in the supply chain. Due to the process being digital, there is now adequate transparency regarding
where the product is in the journey. Additionally, regulatory compliance accelerates because
customs and border agencies quickly identify what is coming into their respective countries.

Healthcare Currently, healthcare data is siloed across various medical practices and large organizations,
largely due to regulations and compliance requirements. For example, a patient fills out a form that
summarizes their medical history at one medical office. Later, the patient fills out a form withthe
same information at a different medical office.

When blockchain can be deployed across the healthcare industry, the patient fills out the history
form once. Then, that information can be shared with the various medical practices and
organizations with the consent of the patient. This means that the patient has more control of their
data and can provide a single source of truth regarding their medical history.

Digital Identity A driver’s license is a form of digital identity that permits an individual to operate a motorized vehicle
on public roads. The license is granted to persons as proof of their ability to drive. Beyond that
purpose, the license might serve as personal ID for security checkpoints in domestic air travel. In
contrast, a passport is required for international air travel.

Consider the changes that blockchain could bring to an individual’s management of their personal
identity. For example, the full digitization that blockchain provides might enable new degrees of
privacy. You might be able to give only a small amount of personal information to successfully pass
a security checkpoint. Researchers are investigating zero knowledge proof (ZKP), through which
your identity is verified without revealing any of your personal data.

Finance Sending money from one country to another takes 3 to 7 business days as the transaction passes
through multiple intermediaries such as clearing houses. Such delays can be detrimental to citizens
who depend on funds from relatives or friends who are located in a different country. Financial
institutions transfer billions of dollars daily and experience similar delays.

Blockchain permits money transfers in times frames that can be much closer to real time. All parties
can enjoy more flexibility in money management. Furthermore, unbanked individuals might have
more options to participate in the global economy thanks to the simpilfications and efficiencies that
blockchain brings to digital identity and financial transactions.
Chapter 1. Introduction 7

Additionally, Figure 1-2 shows more use cases based on various industries:

Figure 1-2 More use cases based on various industries

As the preceding use cases show, blockchain can affect multiple industries in multiple ways.
Also, each example illustrates the rules for blockchain:

� Have a business problem to solve.
� Identify a network that solves the business problem.
� Have an element of trust within your network.

To see more sample use cases and videos that showcase actual use cases in production, go
to http://www.ibm.com/blockchain/use-cases.

1.3 Solution components

This section presents the components that are required for the IBM Blockchain Platform on
LinuxONE, including an overview and key features of each component.

1.3.1 LinuxONE

LinuxONE is the premier Linux server hardware for highly secure data and cloud services.
The option to have dedicated cryptographic processors means encryption for data at rest and
for data in transit. These cryptographic processors supplement the standard processing units
that process the applications. Partitions with Secure Service Container (SSC) technology
help to protect data and applications from internal and external threats.

Highly engineered for high performance, large-scale data, and cloud services, a single
LinuxONE platform consolidates hundreds of x86 cores. The platform’s dedicated I/O
processors allow you to move massive amounts of data while maintaining data integrity.

Music Today, music streaming is the typical medium for artists to sell their work. The fees that are
associated with streaming services restrict the profit potential for these artists.

With blockchairn, musicians could sell directly to their fans and enjoy greater revenue for the music
that they write or produce. Doubtless, other benefits can emerge as musicians increase their direct
business and artistic relationship with their fans.

Industry Use case
8 Implementation Guide for IBM Blockchain Platform for Multicloud

http://www.ibm.com/blockchain/use-cases

The first two LinuxONE products were named Emperor and Rockhopper. The second
generation of LinuxONE, Emperor II and Rockhopper II, launched in 2017 and early 2018,
features the following newest machines:

� IBM LinuxONE Emperor II

This machine features up to 170 processor cores, running at 5.2 GHz, up to 32 TB of
RAM, and 640 dedicated I/O processors, all housed in a dual-frame. It supports tens of
thousands of sessions and millions of containers. It can run 8,000 virtual servers and over
30 billion RESTful web interactions per day. This server is dedicated to meeting the needs
of Enterprise environments.

� IBM LinuxONE Rockhopper II

The same technology as Emperor II, but at a lower price. It is housed in an
industry-standard, 19-inch rack. Rockhopper II is available with up to 8 TB of memory and
30 processor cores, running at 4.5 GHz. It supports hundreds of production and
development virtual machines (VMs) in a single footprint.

For more information, see this website: https://www.ibm.com/it-infrastructure/linuxone.

1.3.2 Kubernetes (K8s)

Kubernetes is an open source system for the automation of deployment, scaling, and
management of containerized applications. It eliminates many of the manual processes
involved in these tasks.

The Kubernetes framework runs distributed systems resiliently. It takes care of your scaling
requirements, failover, deployment patterns, and more.

The key aspects of Kubernetes are as follows:

� Service discovery and load balancing

Expose a container that uses the DNS name or that uses its own IP address. If traffic to a
container is high, Kubernetes is able to load-balance and distribute the network traffic so
that the deployment is stable.

� Storage orchestration

Allows you to automatically mount a storage system of your choice, such as local
storages, public cloud providers, and more.

� Automated rollouts and rollbacks

Just describe the desired state for a deployed container. The actual state changes to the
desired state at a controlled rate. For example, you can automate Kubernetes to create
new containers for your deployment, remove existing containers, and adopt all their
resources to the new container.

� Automatic bin packing

Allows to specify how much CPU and memory (RAM) that each container requires.

� Self-healing

Kubernetes restarts containers that fail, replaces containers, kills containers that don’t
respond to your user-defined health check, and doesn’t advertise them to be used until
they are ready to serve.
Chapter 1. Introduction 9

https://www.ibm.com/it-infrastructure/linuxone
https://www.ibm.com/it-infrastructure/linuxone.

� Secret and configuration management

Safely store and manage sensitive information, such as passwords, OAuth tokens, and
ssh keys. You can deploy and update secrets and application configuration without
rebuilding container images, and without exposing secrets in stack configuration.

Main Kubernetes components are as follows:

� Master: Controls Kubernetes nodes. All task assignments originate in a master.

� Node: Perform the requested, assigned tasks. Controlled by masters.

� Pod: Group of one or more containers that are deployed to a single node. All containers in
a pod share an IP address, IPC, hostname, and other resources. Pods abstract the
network and storage away from the underlying container.

� Replication controller: Controls how many identical copies of a pod can be running
somewhere on the cluster.

� Service: Decouples work definitions from the pods. Proxies for the Kubernetes service
automatically get service requests to the right pod.

� Kubelet: A service that runs on nodes, reads the container manifests, and ensures that
the defined containers are started and running.

� kubectl: The command line configuration tool for Kubernetes.

1.3.3 IBM Cloud Private

IBM Cloud Private (ICP) is a private cloud platform for enterprises to develop and run their
workloads locally. It consistes of Platform-as-a-Service (PaaS) and developer services that
are needed to create, run, and manage cloud applications.

A platform that embraces open source, ICP delivers modernized IBM middleware and data
services to enterprise customers.

As the only private cloud offering that can support LinuxONE, ICP offers the highest levels of
security that are available through LinuxONE.

1.3.4 GlusterFS

A scalable network file system that is suitable for data-intensive tasks such as cloud storage
and media streaming. GlusterFS aggregates various storage servers into one large parallel
network file system.

GlusterFS exports an existing directory as-is, leaving it up to client-side translators to
structure the store. The clients themselves are stateless, do not communicate with each
other, and are expected to have translator configurations that are consistent with each other.

GlusterFS relies on an elastic hashing algorithm, rather than using either a centralized or
distributed metadata model. The user can add, delete, or migrate volumes dynamically, which
helps to avoid configuration coherency problems. This approach allows GlusterFS to scale up
to several petabytes on commodity hardware by avoiding bottlenecks that normally affect
distributed file systems that are more tightly coupled.

1.3.5 IBM Secure Service Container

IBM Secure Service Container (SSC) provides the base infrastructure on LinuxONE for
container-based applications, either for hybrid or private cloud environments. This secure
10 Implementation Guide for IBM Blockchain Platform for Multicloud

computing environment delivers tamper-resistant installation and runtime operations.
Consider these key management features of SSC:

� You can deploy the security capabilities of this environment for microservices-based
applications without application code changes.

� SSC restricts administrator access to help prevent the misuse of privileged user
credentials for cloud and on premises environments.

� Automatic application of pervasive encryption of data that is in transit and at rest to ensure
protection to all application and database data without application changes.

� Additional security capabilities for Docker and other container environments.

Also, Linux provides a comprehensive set of security technologies, including firewalls, VPNs,
auditing tools to support regulatory compliance, and SELinux, which is a kernel-based
security system.

SSC technology builds on the workload isolation of the firmware that is based LPARs and is
unique to IBM LinuxONE.

SSC for IBM Cloud Private consists of the following components:

� A software appliance that is based on the IBM Secure Service Container framework,
which can host containerized workloads with a focus on superior data security in the cloud
and on-premises.

� An isolated VM image that is used to host IBM Cloud Private proxy and worker nodes, and
delivers VM-level isolation to containerized applications.

� A command line tool that is used to automate the base infrastructure of the IBM Cloud
Private worker and proxy nodes by using the isolated VM image.

The following requirements apply for all supported appliances:

� Only one appliance can be installed and run in a Secure Service Container partition at any
time. This type of partition does not support the simultaneous running of multiple
appliances.

� You can define more than one Secure Service Container partition on the same system,
and run instances of the same appliance in each one. In this case, each partition must use
separate storage devices.

� You can reuse an existing Secure Service Container partition for a different appliance.
After you stop the installed appliance and the partition, reboot the Secure Service
Container installer and select a different appliance to install. Before you do so, we
recommend that you check the storage and network connections for the partition to make
sure that they are appropriate for the appliance that you are installing.

You can configure Secure Service Container partitions on the following IBM Z and LinuxONE
systems by using HMC:

� IBM z14® TM (z14) (machine type 3906 or 3907)

� IBM z13® (z13) or IBM z13s® (z13s)

� IBM LinuxONE Emperor II TM (Emperor II), or IBM LinuxONE Rockhopper II (Rockhopper
II)

� IBM LinuxONE Emperor TM (Emperor), or IBM LinuxONE Rockhopper TM (Rockhopper)
machine type 2965
Chapter 1. Introduction 11

This list shows the SSC component versions for IBM Cloud Private:

� Software appliance 3.4.3

� Isolated VM 1.1.0.3

� Command line tool 1.1.0.3

1.3.6 IBM Blockchain Platform

With blockchain, you can build a decentralized business network. The network is built on
business concepts such as assets, contracts, transactions, and so on. The IBM Blockchain
Platform (IBP) is the IBM solution for blockchain in business. IBP is designed for hybrid and
multi-cloud deployment capabilities, which are enabled by Kubernetes. IBP helps you to build,
operate, and grow blockchain networks in heterogeneous environments.

The multicloud deployment is possible through IBM Cloud Private, IBM's Kubernetes-based
container orchestration platform. This release provides a console user interface for
blockchain, which you can use to deploy and manage blockchain components on an IBM
Cloud Private cluster.

IBP is based around Hyperledger Fabric and provides an integrated developer experience
with smart contracts that can be easily coded in Node.js, Golang, or Java. You can use the
new IBM blockchain VS Code extension to write client applications, based on the IBP
console’s integration of the Fabric SDK. IBP offers the possibility of deploying only the
necessary components to connect to multiple channels and networks, while you maintain
control of identities in your environment. Flexible and scalable, IBP can be run in any
environment that IBM Cloud Private supports, including LinuxONE.

IBM Blockchain Platform for IBM Cloud Private is delivered as a Helm chart that can be
downloaded from IBM Passport Advantage® (PPA). For information on downloading the
software, see the “Installing the IBM Blockchain Platform Helm chart” section in IBM
Knowledge Center here:
https://cloud.ibm.com/docs/services/blockchain/howto?topic=blockchain-console-helm
-install#helm-console-install.

1.4 Our lab environment

LinuxONE has been strong for decades in the areas of High Availability and Disaster
Recovery. By design, storage and operating systems are implemented in a way to support
enhanced availability requirements. The platform architecture allows you to define any type of
blockchain infrastructure to accommodate any blockchain demand.

Sizing large-scale blockchain environments is complex. So, we recommend that customers
seek assistance from IBM Blockchain specialists to help plan and size blockchain
environments that have several characteristics and dependencies.

To show the easy integration into blockchain and LinuxONE platform, we built our lab
environment so that IBM Cloud Private (ICP) can manage worker and proxy nodes that run
on the SSC partition.

Our environment simulates a typical blockchain setup (Figure 1-3). We built two Z LPARs,
each with its own resources. One LPAR is configured to load the SSC, and the second LPAR
runs a z/VM that hosts the Redhat Linux server, which acts as the master node.
12 Implementation Guide for IBM Blockchain Platform for Multicloud

https://cloud.ibm.com/docs/services/blockchain/howto?topic=blockchain-console-helm-install#helm-console-install.

Having z/VM managing and controlling HW resources makes it easier to scale up or scale
down resources. It brings flexibility, security, and manageability to Linux on Z servers.

Figure 1-3 Our environment

Our physical lab environment is composed of the following components as shown in
Figure 1-3:

� 1 LinuxONE server
– 1 SSC partition
– 1 z/VM partition (We built 1 Redhat Linux server on top of z/VM to be the master node)

� 2 network subnets
– 192.168.0.0/24 (Internal network communication)
– 9.16.27.0/24 (External network communication)

Before you start with the Secure Service Container for IBM Cloud Private, you can use a
worksheet in Table 1-2. This exercise gives you an overall understanding on what information
you need to run the Secure Service Container for IBM Cloud Private and where to get such
information.

The example values in the worksheet reflect our environment topology, which was built to
deploy the Secure Service Container for IBM Cloud Private. You can use different values in
the checklist according to your actual network configuration or topology.

1.4.1 Secure Service Container partition

Table 1-2 shows the resources that we used to configure our Secure Service Container
storage environment.

Table 1-2 Secure Service Container worksheet

Resource Example

Partition IP address 9.16.17.18

Master ID admin

Master password sscpassword
Chapter 1. Introduction 13

1.4.2 IBM Cloud Private cluster

An IBM Cloud Private cluster must have at least three types of cluster node: master, worker,
and proxy. The master node can be hosted on the x86 or Linux on Z server, and the worker
and proxy nodes are on the Secure Service Container partitions. In our lab environment, we
preferred to install the master node on a Linux on Z server.

The cluster nodes communicate with each other by using internal IP addresses. Table 1-3
shows information about the ICP nodes in our environment.

Table 1-3 ICP Cluster nodes

Additional information
The following list shows additional information about our environment:

� All ICP functions (boot, master, management, proxy, and worker) running on LinuxONE.
� All management functions performed on the Linux on Z server.
� The Linux on Z master node is running under z/VM, which provides excellent resource

management.

Storage disks for data
pool resizing

IBM FICON® DASD (all model 54):
0.0.313F
0.0.3140
0.0.3141
0.0.3142
0.0.3143
0.0.3144
0.0.3145
0.0.3146
0.0.3147
0.0.3148
0.0.3149
0.0.3150
0.0.3151
0.0.3152

Notes:
1. You can also use SCSI SAN disks as storage devices for SSC appliances.
2. We used 0.0.313F to install the SSC image.

Resource Example

Function LPAR IP addresses OS version

Master Node zVM partition 192.168.0.251 (Internal)
9.16.27.19 (External)

Redhat Linux 7.7

Worker Node SSC partition 192.168.0.253 (Internal) Ubuntu 18.04 Container

Proxy Node SSC partition 192.168.0.253 (Internal)
9.16.27.25 (External)

Ubuntu 18.04 Container

Storage Node SSC partition 192.168.0.245 (Internal) Ubuntu 18.04 Container

Storage Node SSC partition 192.168.0.246 (Internal) Ubuntu 18.04 Container

Storage Node SSC partition 192.168.0.247 (Internal) Ubuntu 18.04 Container
14 Implementation Guide for IBM Blockchain Platform for Multicloud

� Two 10 GB OSA cards.

– 0B90 (chpid 00) - This interface is for external cluster communication. (9.16.27.0/24
network)

– 0B50 (chpid E2) - This interface is for system control functions and internal cluster
communication (192.168.0/24 network).

– Both OSA devices above are shared between SSC and z/VM partition. Therefore, we
do not need to assign four devices; only two.

– Worker and Proxy nodes have direct connection to master node through the internal
network by using the internal interface.

The following table shows information for the ICP nodes. This information is used in the
ssc4icp-config.yaml file to define the SSC containers.

Table 1-4 ICP resources

We assume that the reader is familiar with networking and network configuration for
Linux on Z. In this document, we do not discuss basic network concepts or how to set up
network devices. These topics are discussed in the IBM documentation at the following
website:
https://www.ibm.com/support/knowledgecenter/en/linuxonibm/com.ibm.linux.z.lgdd/lgd
d_r_pt_dd_net.html

Important: In our setup, the OSA cards are shared by both SSC and ZVM partitions
(LPARs). For internal cluster communication, we recommend the use of an OSA
card because hipersocket interfaces are currently not supported by SSC.

Name ICP function Internal IP address External IP address Mem (GB) Storage

ssc4icp-master Master Node 192.168.0.251 9.16.27.19 32 root_storage: 40G
icp_storage: 90G

worker1-15001 Worker Node 192.168.0.253 9.16.27.25a

a. Only Proxy node requires external IP address

4 root_storage: 40G
icp_storage: 90G

proxy1-16001 Proxy Node 192.168.0.254 4 root_storage: 40G
icp_storage: 90G
glusterfs: 40G

storage-17001 Storage Node 1 192.168.0.245 4 root_storage: 40G
icp_storage: 90G
glusterfs: 40G

storage-18001 Storage Node 2 192.168.0.246 4 root_storage: 40G
icp_storage: 90G
glusterfs: 80G

storage-18002 Storage Node 3 192.168.0.247 4 root_storage: 40G
icp_storage: 90G
glusterfs: 80G

mycluster.icp Cluster address 192.168.0.251b

b. Same IP address as the master node

\

Chapter 1. Introduction 15

https://www.ibm.com/support/knowledgecenter/en/linuxonibm/com.ibm.linux.z.lgdd/lgdd_r_pt_dd_net.html

16 Implementation Guide for IBM Blockchain Platform for Multicloud

Chapter 2. Planning for installation

This chapter describes how to plan for the implementation of IBM Blockchain Platform for IBM
Cloud Private on a Secure Service Container (SSC) and a non-SSC environment. It also
presents design considerations for your blockchain environment when ICP is used for
provisioning and managing the cloud resources. In addition, the chapter provides typical
blockchain use cases for your reference.

This chapter includes the following sections:

� 2.1, “Why Secure Service Container?” on page 20
� 2.2, “Persistent Storage providers” on page 23
� 2.3, “Setting up file storage” on page 24
� 2.4, “Sizing” on page 56
� 2.5, “Considerations for specific use cases” on page 68

2

© Copyright IBM Corp. 2019. All rights reserved. 19

2.1 Why Secure Service Container?

Data breaches are being reported at an increased frequency by large and small
organizations, which leads to lack of trust for the organization. Auditors and government
regulators increasingly require that customer data is secured, especially sensitive customer
data that might be used for fraud or identify theft. As result, security is a major requirement for
applications today.

More and more organizations use containerization of workloads to simplify deploy, test, and
migration of application workloads from one platform to another, without requiring code
updates. Such organizations are required to provide a higher level of security for
mission-critical and highly sensitive data.

When you build your container environment into LinuxONE servers, you can take advantage
of the benefits from this hardware platform. Benefits of the platform include specialized
processors, cryptographic cards, availability, flexibility, and scalability. These systems are not
only prepared to handle blockchain applications, but also applications for cloud, mobile, big
data, and analytics contexts.

LinuxONE servers deliver the highest standards of security and reliability, with millisecond
response times, hybrid cloud deployment, and performance at scale. The world’s top
organizations rely on this platform to protect their data with impeccable security to run
blockchain applications.

Although you can deploy your blockchain network in any server, IBM Secure Service
Containers (SSC) brings more security to blockchain applications. SSC is a special logical
partition that does not allow access through outside interfaces, such as SSH. The only access
to an application that is running in SSC mode is through remote APIs in the application.

SSC is an appliance that provides the base infrastructure for an integration of operating
system, middleware, and software components. It works anonymously and provides core
services and infrastructure with a focus on security. The blockchain application that is
deployed under this appliance is certified, encrypted, and very secure because it does not
allow you to install malware. In fact, the SSC blockchain appliance adds a layer of security to
your blockchain environment and protects your data against both internal and external
threats.

This technology also delivers the best firmware protection to ensure the integrity of a
blockchain environment. Even privileged system administrators cannot access the blockchain
data, software, and applications. The inherent features for data security, including SSC,
clearly differentiate LinuxONE servers from other servers.

SSC contains its own embedded operating system, security mechanisms, and other features
to prevent unauthorized access. The result is a highly secure infrastructure to run blockchain
workloads with these benefits:

� Simplified, fast deployment and management of packaged solutions

� Tamper protection during appliance installation and runtime

� Confidentiality of data and code that runs in an appliance for data in transit and data at rest

� Management through Remote APIs (RESTful) and web interfaces

Figure 2-1 provides a high-level view of the Secure Service Container components.
20 Implementation Guide for IBM Blockchain Platform for Multicloud

Figure 2-1 Security Service Container components

The premise for running IBM Blockchain Platform on SSC is security. Here is a summary of
the main advantages of this appliance:

1. Protection from misuse of privileged user credentials.

2. Leveraging of security features without code changes.

3. SSC boots only untampered appliances, which protects your application from malware or
malicious code.

4. Data and code are encrypted in transit and at rest.

5. System administrators cannot access the memory or processor state.

6. There is no direct interaction at the host or OS levels. Only well-defined interfaces give
access into and out of the appliance.

7. Peer isolation that is based on LinuxONE’s EAL5+ certified LPAR isolation for near
‘air-gap’ separation of appliance environments, on a single footprint. This feature blocks
malware from getting on, or even detecting the appliance.

8. Debug Data (memory dumps) are encrypted.

SSC is designed for isolation. Isolation is helpful for security and it helps to protect workloads
from adverse effects of other workloads. For example, another workload might fail or compete
for resources during heavy-load periods. LinuxONE partitions provide EAL5+ isolation and
ensure that the blockchain applications you deploy to different partitions do not interfere with
each other. Additionally, SSC protects your environment from being injected by a malware or
a malicious code. The Figure 2-2 illustrates the level of protection your application can have if
it runs with an SSC container on LinuxONE server.
Chapter 2. Planning for installation 21

Figure 2-2 SSC security protection

Depending on your workload security needs, SSC containers can be the best choice.

In the past, the manual way of installing applications and its dependencies individually might
satisfy the system administrators and application developers’ needs. However, the new
business model (mobile, social, big data, and cloud) requires an agile development
environment, speed to build, and consistency to quickly deploy complex applications. So,
SSC comes with a preinstalled and certified operating system and application codes to
provide a secure environment for deployment of your blockchain workloads.

So, you can run IBM Cloud Private and IBM Secure Service Container for IBM Cloud Private
workloads on a secure platform on LinuxONE.

Secure Service Container for IBM Cloud Private provides an encrypted environment (data at
rest, data in transit), with peer-to-peer and peer-to-host isolation. This approach protects
container applications from access through hardware and operating system admin
credentials, whether access is accidental or malicious, internal or external to an organization.

Secure Service Container for IBM Cloud Private provides these protections while it integrates
with IBM Cloud Private. IBM Cloud Private is a Platform as a Service (PaaS) management
stack that delivers rapid innovation and application modernization, investment leverage,
enterprise integration. It also brings management and compliance features to containerized
applications. Figure 2-3 shows different types of clouds that ICP and SSC are part of.
22 Implementation Guide for IBM Blockchain Platform for Multicloud

Figure 2-3 IBM Secure Service Container for IBM Cloud Private - Full-stack solution

To repeat, SSC improves on the traditional method of deploying applications. Most
importantly, it prevents tampering with the appliance image and prevents load of the
appliance at arbitrary times. Furthermore, the appliance code and data is
protected/confidential while in transit and while at rest.

In addition, memory access is disabled and disk access is encrypted by default and these
configurations cannot be disabled. The debugging data that system memory dumps provide
is also encrypted. So, support groups can view only the application instructions in the dump,
not any data that is included in the dump.

Finally, SSC makes your cloud infrastructure more secure and efficient for your blockchain
deployments. This publication will consider use cases and implementations in the next
sections.

2.2 Persistent Storage providers

For deployment of IBM Blockchain Platform (IBP), you must have mechanisms to persistently
store data. This requirement applies to both an IBM Secure Service Container (SSC) and a
non-SSC environment.

IBM Cloud Private offers many options for managing persistent storage within the cluster. IBM
Cloud Private includes the following features:

� GlusterFS enterprise grade of storage to Kubernetes (K8s) pods. They offer ease of
configuration, scaling, encryption support, replication, striping, and dynamic provisioning.
Chapter 2. Planning for installation 23

� vSphere Cloud Provider (vSphereVolume Plug-in) gives access to enterprise grade
storage (vSAN, VMFS, vVol) that is native to and already supported by the VMware
infrastructure.

� IBM Spectrum® Scale for solutions that are not hosted in VMware provides direct access
to IBM block storage through dynamic provisioning.

� NFS provides a versatile and easy to use method of getting persistent storage to pods that
is already available in most customer environments.

� HostPath is ideal for testing persistence in non-production environments. It isn't typically
considered for shared or production environments.

� Ceph (Rook) is an industry proven option that can provide several storage options along
with persistent volumes for Kubernetes.

� Minio is a lightweight, Amazon S3-compatible object storage server. Minio is best suited
for storing unstructured data such as photos, videos, log files, backups, VMs, and
container images.

IBM Cloud Private cluster needs to be prepared for data persistence. In the next sections, we
discuss NFS and GlusterFS options that are available for running containerized blockchain
applications.

2.3 Setting up file storage

The IBM Blockchain Platform for Multicloud blockchain console saves information such as
logins and blockchain network management information that requires persistency. In contrast,
a container's file system is ephemeral, meaning that after a container dies all of its memory
goes with it.

To keep the information that they require, the applications need to write to persistent storage.
This requires mounting part of the container file system to some volume. In Kubernetes, the
construct for this is a persistent volume claim, which the developer defines as a volume
mount for the pod, which the container uses to bind files or directories.

� This persistent volume claim binds to a persistent volume in a 1:1 mapping. For more
information, see
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolum
eclaims

� This volume maps directly to a storage path. For more information, see
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

� A cluster administrator can create these persistent volumes directly in Kubernetes, but
that is manual and time-consuming.

� Thus, the preferred method is a dynamic provisioner. For more information, see
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/

� A dynamic provisioner creates persistent volumes dynamically to satisfy incoming
persistent volume claims that come by using its storage class. This provisioner essentially
carves out space on the file system for the requested persistent volume claim. For more
information, see
https://kubernetes.io/docs/concepts/storage/storage-classes/

� There are 2 main options available for IBM Z on LinuxONE. These are Network File
System (NFS) and Gluster File System (GlusterFS). In this document, we look at setting
up dynamic provisioning for each of these options. For more information, see
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/
24 Implementation Guide for IBM Blockchain Platform for Multicloud

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/

2.3.1 Network File System (NFS)

NFS is an open-standard persistent file storage solution that is built into Linux (with RFCs for
each different version of NFS). NFS allows client computers to access files from a remote
server over a network. For more information, see
https://developer.ibm.com/tutorials/l-network-filesystems/

NFS uses a server that has the nfs server package that is installed with a volume that client
computers can access over the network that uses an nfs client package. This approach
allows remote clients to mount remote volumes as local volumes, enabling easy access of
files across multiple computers. In a clustered system like Kubernetes, this allows all nodes to
keep up to date with the same storage. Thus, a pod can start on any node in the cluster and
read its data. The NFS server must allow mount access from that node in its /etc/exports
file. Figure 2-4 shows the NFS architecture.

Figure 2-4 NFS architecture

Using a central server, NFS can be easy to manage and requires less resources than
clustered file system alternatives. Additionally, NFS can grant users access to specific data
with the granularity of splitting out different data at different mount points with different access
policies for each mount point.

There are multiple versions of NFS with versions 3 and 4 being the predominant versions in
use today. NFS, Version 4, includes a number of enhancements over version 3 including
these options:

� Use Kerberos.
� Use only one IP port (2049).

The biggest limitation with NFS in Kubernetes is that it can stand as a single point of failure
(SPOF). If the NFS server goes down, your Kubernetes cluster might stop. This scenario
even negates some of the benefit of the replication that is done in the Kubernetes cluster to
prevent a SPOF.

Note: You can avoid this limitation, for example, by deploying a clustered NFS solution.
Chapter 2. Planning for installation 25

https://developer.ibm.com/tutorials/l-network-filesystems/

Other notable limitations include the following points:

� Performance degradation during times of high network traffic.

� The use of RPCs (Remote Procedure Calls) for communication do not have the security
that is needed to operate over the internet (in other words, they need to be behind a
firewall).

Setting up NFS Dynamic Provisioners in Kubernetes
Kubernetes has 2 “out-of-tree” (not located in the core Kubernetes code) provisioners, which
are available in the external storage folder of the Kubernetes Incubator GitHub at this URL:
https://github.com/kubernetes-incubator/external-storage

One solution works with an existing nfs-server, and provides the client component for
mounting volumes from this server when Kubernetes creates persistent volume claims. The
other solution is an all-in-one solution that provides an nfs-server and client within
Kubernetes. This exposes an nfs-server and mount volumes from this server when
Kubernetes schedules a pod that uses this volume onto a node.

Choose the dynamic provisioner option that you prefer:

� Manage an external nfs-server. OR
� Allow Kubernetes to run it as a pod.

Then, complete the appropriate setup steps from one of the following sections:

Setting up Cluster Nodes with nfs-client package
Both NFS provisioners require the nfs-client package to be installed on each Kubernetes
Worker node that will use NFS provisioning. This configuration is necessary to make mounts
to the nfs directory so that pods that run on the worker nodes can read and write storage as
clients to the nfs server.

On RHEL, run this command:

sudo yum install nfs-utils

On Ubuntu, run these commands:

sudo apt-get update
sudo apt-get install nfs-common

On SLES:

The nfs-client package is installed by default. There is no need to run any commands.

Note: Remember to install the nfs-client package on each worker node. Technically you
need the package only on worker nodes that will use the storage. However, typically all
worker nodes need the package.
26 Implementation Guide for IBM Blockchain Platform for Multicloud

https://github.com/kubernetes-incubator/external-storage

Setting up NFS server primer
If an NFS server is not set up already, you can have an NFS server that runs separately from
the Kubernetes cluster nodes. Set up the server by following the instructions for your Linux
distribution.

� For RHEL instructions, see this web page:
https://www.thegeekdiary.com/centos-rhel-7-configuring-an-nfs-server-and-nfs-cl
ient/

� For Ubuntu instructions, see this web page:
https://help.ubuntu.com/lts/serverguide/network-file-system.html

� For SLES instructions, see this web page:
https://www.suse.com/documentation/sles-12/book_sle_admin/data/sec_nfs_configur
ing-nfs-server.html

Here is a simplified version of how to do the setup steps:

1. Install the nfs-server package for your Linux distribution.

On RHEL, run this command:

sudo yum install nfs-utils rpcbind

On Ubuntu, run this command:

sudo apt update && sudo apt install nfs-kernel-server

On SLES, run this command:

zypper -n install nfs-kernel-server

2. Export a directory of the nfs-server (backed by file storage) to the worker nodes of the
cluster by adding them to the /etc/exports file on the nfs-server linux instance. Then,
load the directory.

echo "<export_directory>
<client_node_hostname_or_ip>(rw,fsid=0,insecure,no_subtree_check,async)" | sudo
tee -a /etc/exports

Add the client hostname or IP for each of the worker nodes. You can use a wildcard with
hostnames such as kubernetes-worker* (if that was the hostname of each of your
workers within your network) or an IP subnet mask (for example, 192.168.10/24).

3. Start the NFS server:

On RHEL, run these commands:

sudo systemctl enable rpcbind
sudo systemctl enable nfs-server
sudo systemctl enable rpcbind
sudo systemctl start nfs-server

On Ubuntu, run this command:

sudo systemctl start nfs-kernel-server.service

On SLES, run these commands:

sudo systemctl enable nfsserver
sudo systemctl start nfsserver

NFS client provisioner (for use with an existing NFS server)
This solution works with an existing (external) nfs-server. It provides the client component for mounting
volumes from this server when Kubernetes schedules a pod to a node using the created StorageClass.
Chapter 2. Planning for installation 27

https://help.ubuntu.com/lts/serverguide/network-file-system.html
https://www.thegeekdiary.com/centos-rhel-7-configuring-an-nfs-server-and-nfs-client/
https://www.thegeekdiary.com/centos-rhel-7-configuring-an-nfs-server-and-nfs-client/
https://www.thegeekdiary.com/centos-rhel-7-configuring-an-nfs-server-and-nfs-client/
https://www.thegeekdiary.com/centos-rhel-7-configuring-an-nfs-server-and-nfs-client/
https://www.suse.com/documentation/sles-12/book_sle_admin/data/sec_nfs_configuring-nfs-server.html
https://www.suse.com/documentation/sles-12/book_sle_admin/data/sec_nfs_configuring-nfs-server.html

For the home page of the NFS Client provisioner, visit this web page:
https://github.com/kubernetes-incubator/external-storage/tree/master/nfs-client

We will be working with an IBM Cloud Private package that includes a Helm chart and docker
images.

This package is available on the GitHub site for this book as a release at this web page:
https://github.com/IBMRedbooks/SG248458-Implementation-Guide-for-IBM-Blockchain-Pl
atform-for-Multicloud

Here are the steps to configure and run the nfs-client dynamic provisioner

1. Download the package from the book GitHub site by running this command:

curl -LO
https://github.com/IBMRedbooks/SG248458-Implementation-Guide-for-IBM-Blockchain
-Platform-for-Multicloud/releases/download/v2.0.0/nfs-client-provisioner-bundle
.tgz

Typical output is shown in Example 2-1.

Example 2-1 Downloading the package

curl -LO
https://github.com/IBMRedbooks/SG248458-Implementation-Guide-for-IBM-Blockchain
-Platform-for-Multicloud/releases/download/v2.0.0/nfs-client-provisioner-bundle
.tgz
% Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 624 0 624 0 0 2091 0 --:--:-- --:--:-- --:--:-- 2093
100 31.7M 100 31.7M 0 0 11.3M 0 0:00:02 0:00:02 --:--:-- 16.6M

2. Load the nfs-client package into IBM Cloud Private as follows:

a. Log in to your IBM Cloud Private cluster to the kube-system namespace.

cloudctl login -a https://<cluster_CA_domain>:8443 -n kube-system
--skip-ssl-validation

cloudctl login -a https://mycluster.icp:8443 -n kube-system
--skip-ssl-validation

b. Ensure that the Docker CLI is configured. After you configure the Docker CLI, access
the image registry on your cluster by running the following command:

docker login <cluster_CA_domain>:8500

docker login mycluster.icp:8500

c. Import the Helm chart by using the command line. Go to the directory where you stored
the downloaded Helm chart package from the curl command earlier. Run the following
command in the IBM Cloud Private CLI to import the Helm chart into your IBM Cloud
Private cluster.

Note: If you get an x509 error, see the Configuring authentication for Docker CLI
IBM Cloud Private page to resolve:
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/manage_images
/configuring_docker_cli.html
28 Implementation Guide for IBM Blockchain Platform for Multicloud

https://github.com/kubernetes-incubator/external-storage/tree/master/nfs-client
https://github.com/IBMRedbooks/SG248458-Implementation-Guide-for-IBM-Blockchain-Platform-for-Multicloud
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/manage_images/configuring_docker_cli.html

cloudctl catalog load-archive --archive nfs-client-provisioner-bundle.tgz
--registry <cluster_CA_domain>:8500/kube-system --repo mgmt-charts

cloudctl catalog load-archive --archive nfs-client-provisioner-bundle.tgz
--registry mycluster.icp:8500/kube-system --repo mgmt-charts --username
admin --password super_secure_password

Example 2-2 shows typical output for this command.

Example 2-2 Output of the command

Expanding archive
OK

Importing docker image(s)
 Processing image: nfs-client-provisioner-s390x:latest
 Loading Image
 Tagging Image
 Pushing image as:
mycluster.icp:8500/kube-system/nfs-client-provisioner-s390x:latest
...
Uploading helm chart(s)
 Processing chart: charts/nfs-client-provisioner-multiarch-2.tgz
 Updating chart values.yaml
 Uploading chart
Loaded helm chart
OK

Synch charts
Synch started
OK

d. Click Catalog in the IBM Cloud Private console, and then search for nfs-client. If the
import was successful, the nfs-client tile is visible on the IBM Cloud Private Catalog
page as in Figure 2-5.

Note: If you are using macOS, add --username value and --password value, or set
these values in the environment as DOCKER_USER and DOCKER_PASSWORD.
Chapter 2. Planning for installation 29

Figure 2-5 Setting up NFS server primer -1

3. Install the Helm chart through IBM Cloud Private. Click the nfs-client tile as in Figure 2-5,
and configure the Helm chart with the following values for your cluster. We documented
the figures as follows:

– You see callout letters beside each field where you enter a value.
– Each callout letter maps to a description in these steps.
– At the end of each description, the default value is displayed in parentheses ().
– Bolded values are variables that you might have to change.
– You can apply the unbolded values in your environment if you follow the configuration

that is described here.

Values for callout letters a to c apply to Figure 2-6 on page 31.

Table 2-1 Values for callout letters a to c

a. Helm release name is the name for the helm release. Make sure that each helm release in the cluster
has a unique name. Otherwise, you get an error, and you must redeploy the release to a different
name. (nfsc)

b. Target Namespace is the namespace where the helm release resources will be deployed. This chart
requires the kube-system namespace if callout letter j, Run as system-cluster-critical is selected.
[This is the recommended option. It gives the provisioner priority over the pods that rely on it.]
(kube-system)

c. Target Cluster is the cluster that you are targeting with the deployment. (local-cluster).
30 Implementation Guide for IBM Blockchain Platform for Multicloud

Figure 2-6 Setting up NFS server primer -2

The next values for callout letters d to f apply to Figure 2-7 on page 32.

Table 2-2 The next values, for callout letters d to f

d. replicaCount is the number of client provisioner pods that are created by the deployment. You can
use this number to scale your provisioner as desired. But one pod works fine in most cases. (1)

e. NFS Server Hostname or IP is the Hostname or IP of the NFS Server that is exporting one of its
directories. (9.16.8.23)

f. NFS Server Mount Path is the path to mount the directory that the NFS Server is exporting to use for
Kubernetes pods. This value must be the path that you exported (in /etc/exports) on the NFS Server
to all of your Kubernetes worker nodes. (/export/blockchain)
Chapter 2. Planning for installation 31

Figure 2-7 Setting up NFS server primer -3

The final values for callout letters g to k apply to Figure 2-8 on page 33.

Table 2-3 The final values, for callout letters g to k

g. storageClassName is the name of the StorageClass to create in Kubernetes by using the
nfs.io/nfs-client-provisioner. (managed-nfs-storage)

h. Make new Storage Class the default makes the StorageClass that was created by the Helm chart
into the default StorageClass in Kubernetes. This means that if a developer asks for a
PersistentVolumeClaim and does not provide a StorageClass, the one created with
storageClassName from callout letter g is used. It is good to have a default StorageClass to make
PersistentVolume provisioning as easy as possible. However, if you have a different StorageClass
that you want as default instead, uncheck this box. (checked)

i. archiveOnDelete signifies whether you want to archive PersistentVolumeClaims when they are
deleted. (unchecked)

j. Run as system-cluster-critical is the recommended option that gives the provisioner priority over
pods that rely on it. This prevents the problematic situation where the provisioner is evicted before
the workloads that require it, which can lead to storage issues. (checked)
Note: If you select this option, remember to use kube-system as the Target Namespace value —
shown by callout letter b in Figure 2-8 on page 33 — unless the deployment will not run.

k. Resources are set to recommended defaults that should work for most environments. If you need to
change these values, remember that the limits cannot be lower than the requests.
Note: Limits and requests occur on a per container basis. This means that making multiple pods
through changing the replicaCount of the helm release requires fulfilling the storage quota for each
of those pods separately.
32 Implementation Guide for IBM Blockchain Platform for Multicloud

Figure 2-8 Setting up NFS server primer -4

After you select the values that your environment requires, install the chart.

4. Verify the installation by checking in the output for your helm release that the deployment
is available and the test-pod has completed through either a) the UI or b) kubectl.

Note: A test-pod is deployed by this release whose name begins with test-pod-. This
pod uses a PersistentVolumeClaim that uses the newly created StorageClass to
dynamically provision its PersistentVolume. The pod runs the busybox container and
writes SUCCESS to the Persistent Volume. When this pod shows Completed as its
status, it verifies that the dynamic provisioner is active for a basic use case.
Chapter 2. Planning for installation 33

a. Verify with the UI by following the example in Figure 2-9.

Figure 2-9 Setting up NFS server primer -5

b. Verify with kubectl by following the guidance in this step:

Note: It might take a minute or two for your environment to reach the statuses shown in
Figure 2-9.

Note: If you deviate from the recommended path and install the helm release for nfs-client in
a namespace other than kube-system, follow these conventions:
� Assign a name for the namespace is a value other than kube-system.

use -n <namespace_name>
where <namespace_name> is a value other than kube-system, as in this example
statement:
use -n default

� Double check that Run as system-cluster-critical was unchecked when you deployed
the helm release. In the current version of IBM Cloud Private, that setting works with the
kube-system namespace only.
34 Implementation Guide for IBM Blockchain Platform for Multicloud

i. Run the following command to check the pods and deployment of the
nfs-client-provisioner. Typical output for the command is also shown:

kubectl get deploy,pods -n kube-system -l app=nfs-client
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.extensions/nfsc-nfs-client 1/1 1 1
3m51s

NAME READY STATUS RESTARTS AGE
pod/nfsc-nfs-client-7c6657d486-8fg5j 1/1 Running 0 3m50s

ii. Run the following command to check that the test pod has “Completed”
successfully. Typical output for the command is also shown:

kubectl get pods -n kube-system -l app=test-nfs-client
NAME READY STATUS RESTARTS AGE
test-pod-nfsc-nfs-client 0/1 Completed 0 3m24s

iii. Run the following command to view the newly created StorageClass and confirm
that it has been made the default. Typical output for the command is also shown:

kubectl get sc
NAME PROVISIONER AGE
fully-managed-nfs-storage full-nfs-provisioner 4d11h
glusterfs kubernetes.io/glusterfs 33h
image-manager-storage kubernetes.io/no-provisioner 64d
logging-storage-datanode kubernetes.io/no-provisioner 64d
managed-nfs-storage (default) nfs.io/nfs-client-provisioner 3m34s
mongodb-storage kubernetes.io/no-provisioner 64d

NFS server and client provisioner
This section describes the process for the all-in-one solution. It provides an nfs-server and
client. This configuration exposes an nfs-server and mount volumes from this server when
Kubernetes schedules a pod to a node by using this volume.

For the home page of the NFS provisioner visit this web page:
https://github.com/kubernetes-incubator/external-storage/tree/master/nfs

Set provisioner git clone.

In this document, we work with an IBM Cloud Private package that includes a Helm chart and
docker images. This package is available on the GitHub site for this book as a release at this
web page:
https://github.com/IBMRedbooks/SG248458-Implementation-Guide-for-IBM-Blockchain-Pl
atform-for-Multicloud

Here are the steps to configure and run the nfs-client dynamic provisioner:

1. Download the package from the book GitHub site by running this command:

curl -LO
https://github.com/IBMRedbooks/SG248458-Implementation-Guide-for-IBM-Blockchain-Pl
atform-for-Multicloud/releases/download/v2.0.0/nfs-full-provisioner-bundle.tgz

Typical output is shown in Example 2-1.
Chapter 2. Planning for installation 35

https://github.com/kubernetes-incubator/external-storage/tree/master/nfs
https://github.com/IBMRedbooks/SG248458-Implementation-Guide-for-IBM-Blockchain-Platform-for-Multicloud

Example 2-3 Downloading the package

curl -LO
https://github.com/IBMRedbooks/SG248458-Implementation-Guide-for-IBM-Blockchain-Pl
atform-for-Multicloud/releases/download/v2.0.0/nfs-full-provisioner-bundle.tgz
% Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 622 0 622 0 0 1817 0 --:--:-- --:--:-- --:--:-- 1813
100 229M 100 229M 0 0 19.1M 0 0:00:11 0:00:11 --:--:-- 21.3M

2. Load the nfs-client package into IBM Cloud Private as follows:

a. Log in to your IBM Cloud Private cluster to the kube-system namespace.

cloudctl login -a https://<cluster_CA_domain>:8443 -n kube-system
--skip-ssl-validation

cloudctl login -a https://mycluster.icp:8443 -n kube-system
--skip-ssl-validation

b. Ensure that the Docker CLI is configured. After you configure the Docker CLI, access
the image registry on your cluster by running the following command:

docker login <cluster_CA_domain>:8500

docker login mycluster.icp:8500

c. Import the Helm chart by using the command line. Navigate to the directory where you
stored the downloaded Helm chart package from the curl command in step 1. Then,
run the following command in the IBM Cloud Private CLI to import the Helm chart into
your IBM Cloud Private cluster.

cloudctl catalog load-archive --archive nfs-full-provisioner-bundle.tgz
--registry <cluster_CA_domain>:8500/kube-system --repo mgmt-charts

cloudctl catalog load-archive --archive nfs-full-provisioner-bundle.tgz
--registry mycluster.icp:8500/kube-system --repo mgmt-charts --username
admin --password super_secure_password.

Example 2-4 shows typical output for this command:

Example 2-4 Output of the command

Expanding archive
OK

Importing docker image(s)
 Processing image: nfs-provisioner-s390x:latest
 Loading Image
 Tagging Image

Note: If you get an x509 error, see the Configuring authentication for Docker CLI
IBM Cloud Private page to resolve the error.
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/manage_images
/configuring_docker_cli.html

Note: If you are using macOS, add --username value and --password value, or set
these values in the environment as DOCKER_USER and DOCKER_PASSWORD.
36 Implementation Guide for IBM Blockchain Platform for Multicloud

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/manage_images/configuring_docker_cli.html

 Pushing image as: mycluster.icp:8500/kube-system/nfs-provisioner-s390x:latest
 Processing image: nfs-provisioner-amd64:latest
 Loading Image
 Tagging Image
 Pushing image as: mycluster.icp:8500/kube-system/nfs-provisioner-amd64:latest
 Creating manifest list as:
...
Uploading helm chart(s)
 Processing chart: charts/nfs-full-2.0.0.tgz
 Updating chart values.yaml
 Uploading chart
Loaded helm chart
OK

Synch charts
Synch started
OK

Archive finished processing

d. Click Catalog in the IBM Cloud Private console. Then, search for nfs-full. If the
import was successful, the nfs-full tile is visible on the IBM Cloud Private Catalog
page as shown in Figure 2-10 on page 37.

Figure 2-10 Setting up NFS server primer -6

3. Install the Helm chart through IBM Cloud Private. Click the nfs-full tile as in Figure 2-10.
Configure the Helm chart with the values for your cluster that are listed in this step. We
documented the figures as follows:
Chapter 2. Planning for installation 37

– You see callout letters beside each field where you enter a value.
– Each callout letter maps to a description in these steps.
– At the end of each description, the default value is displayed in parentheses ().
– Bolded values are variables that you might have to change.
– You can apply the unbolded values in your environment if you follow the configuration

that is described here.

Values for callout letters a to c apply to Figure 2-11.

Figure 2-11 Setting up NFS server primer -7

Table 2-4 Values, for callout letters a to c

a. Helm release name is the name for the helm release. Make sure that each helm release in the cluster
has a unique name. Otherwise, you get an error and you must redeploy the release to a different
name. (nfsf)

b. Target Namespace is the namespace where the helm release resources will be deployed. This chart
requires the kube-system namespace in callout letter i. “Run as system-cluster-critical” [This is
the recommended option, which gives the provisioner priority over pods that rely on it] is selected.
(kube-system)

c. Target Cluster is the cluster that you are targeting with the deployment. (local-cluster)
38 Implementation Guide for IBM Blockchain Platform for Multicloud

Values for callout letters d to f apply to Figure 2-12 on page 39.

Figure 2-12 Setting up NFS server primer -8

Table 2-5 Values, for callout letters d to f

The final values for callout letters g to j apply to Figure 2-13 on page 40.

d. NFS Worker Node Hostname or IP is the Hostname or IP of Worker Node that will host the NFS
Server pod that is exporting one of its directories. (9.16.8.23)

e. NFS Server Worker Node HostPath is the path to the local storage the NFS server will use as the
basis of its nfs export. Make sure that you have a storage device that is attached to the cluster
worker node with the hostname or IP in callout letter d. This is the directory NFS Server pod is
exporting to use as storage for Kubernetes pods. (/mnt/blockchain)

f. NFS Mount Options are NFS mount options that you want for your nfs mounts that the provisioner
makes to the NFS Server provided in callout letter d, “NFS Server Hostname or IP” above. The
defaults are vers=4.1 and noatime. You should keep the defaults, unless you have specific options
that you want to use. (vers=4.1, noatime)
Chapter 2. Planning for installation 39

Figure 2-13 Setting up NFS server primer -9

Table 2-6 Final values, for callout letters g to j

After you select the values for your system, install the chart.

g. storageClassName is the name of the StorageClass to create in Kubernetes by using the
nfs.io/nfs-full-provisioner. (fully-managed-nfs-storage)

h. Make new Storage Class the default makes the StorageClass that was created by the Helm chart
the default StorageClass in Kubernetes. This means that if a developer asks for a
PersistentVolumeClaim and does not provide a StorageClass, the one created with
storageClassName from callout letter g is used. It is good to have a default StorageClass to make
PersistentVolume provisioning as easy as possible. (checked)
(However, if you have a different StorageClass that you want as default instead, uncheck this box.)

i. Run as system-cluster-critical is the recommended option that gives the provisioner priority over
pods that rely on it. This prevents the problematic situation where the provisioner is evicted before
the workloads that require it, which can lead to storage issues. (checked)
Note: If you select this option, remember to use kube-system as the Target Namespace value —
shown by callout letter b in Figure 2-11 on page 38 — unless the deployment does not run.

j. Resources are set to recommended defaults that should work for most environments. If you need to
change these values, remember that the limits cannot be lower than the requests.
40 Implementation Guide for IBM Blockchain Platform for Multicloud

4. Verify the installation by checking in the output for your helm release that the deployment
is available and the test-pod has completed through either a) the UI or b) kubectl.

a. Verify with the UI by following the example in Figure 2-14.

Figure 2-14 Setting up NFS server primer -10

b. Verify with kubectl by following the guidance in this step:

Note: There is a test-pod that is deployed by this release whose name begins with
test-pod-. This pod uses a PersistentVolumeClaim using the newly created
StorageClass to dynamically provision its PersistentVolume. The pod runs the busybox
container and writes SUCCESS to the Persistent Volume. This pod that shows
Completed as its status verifies that the dynamic provisioner is in business for a basic
use case.

Note: It might take a minute or two for your environment to reach the statuses shown in
Figure 2-14
Chapter 2. Planning for installation 41

i. Run the following command to check the pods and deployment of the
nfs-full-provisioner. Typical output for the command is also shown:

kubectl get pod,deploy -l app=nfs-full
NAME READY STATUS RESTARTS AGE
pod/nfsf-nfs-full-7bdff6d5f6-w9ld9 1/1 Running 0 2m43s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.extensions/nfsf-nfs-full 1/1 1 1 2m44s

ii. Run the following command to check that the test pod has “Completed”
successfully. Typical output for the command is also shown:

kubectl get pod,deploy -l app=test-nfs-full
NAME READY STATUS RESTARTS AGE
pod/test-pod-nfsf-nfs-full 0/1 Completed 0 3m18s

iii. Run the following command to view the newly created StorageClass and confirm
that it has been made the default. Typical output for the command is also shown:

kubectl get sc
NAME PROVISIONER AGE
fully-managed-nfs-storage (default) nfs.io/nfs-full-provisioner 3m25s
glusterfs kubernetes.io/glusterfs 2d6h
image-manager-storage kubernetes.io/no-provisioner 65d
logging-storage-datanode kubernetes.io/no-provisioner 65d
mongodb-storage kubernetes.io/no-provisioner 65d

2.3.2 Gluster File System (GlusterFS)

GlusterFS is an open source clustered file storage solution (scale-out network attached
storage file system) designed by Gluster, Inc. now formerly RedHat (since its acquisition in
2011). Instead of having code directly in the kernel like NFS, GlusterFS is a File System in
User Space (FUSE). In FUSE, the file system code runs in user space and makes calls to the
FUSE module, which connects it to the kernel interfaces.

GlusterFS uses Heketi, which is the RESTful management interface that manages your
GlusterFS volumes. Heketi enables the administrator to check the state of its gluster file
system with a number of commands. The commands can show everything from the overall
topology of the scale-out network to the state of the current cluster, nodes, and devices.

Kubernetes has a GlusterFS provisioner plug-in that is built in that creates GlusterFS
persistent volumes in response to persistent VolumeClaims for storage. There are many

Note: If you deviate from the recommended path and install the helm release for nfs-client in
a namespace other than kube-system, follow these conventions:
� Assign a name for the namespace is a value other than kube-system.

use -n <namespace_name>
where <namespace_name> is a value other than kube-system, as in this example
statement:
use -n default

� Double check that Run as system-cluster-critical was unchecked when you deployed
the helm release. In the current version of IBM Cloud Private, that setting works with the
kube-system namespace only.
42 Implementation Guide for IBM Blockchain Platform for Multicloud

types of storage types for GlusterFS, but the suggested one for Kubernetes out of the box is
replication mode. When replication mode is set, each node in the cluster replication set
creates a replicated brick (which is an exported directory on storage device in the pool) for
this volume, for redundancy and high availability. Figure 2-15 shows the GlusterFS
architecture with each GlusterFS node, including backing storage devices to which bricks
write.

Figure 2-15 GlusterFS architecture

GlusterFS linearly scales well and provides replication to prevent a single point of failure. This
feature provides a good solution for high availability as part of a clustered node system. Keep
in mind that multiple nodes also mean that nodes need to agree on state. This requirement
can lead to split-brain scenarios that lead to performance degradation, especially when
multiple small writes occur on the same sets of data in short periods of time. Also, multiple
nodes mean that you have multiple nodes to manage in terms of backup and other
management tasks.

Setting up GlusterFS Nodes
To use GlusterFS for dynamic provisioning later, you must first prepare all of your worker
nodes to use GlusterFS.

GlusterFS Client Installation

Note: The GlusterFS storage nodes can either be set up on their own storage node cluster
with a storage host group or located on various worker nodes. The example architecture
here shows the GlusterFS nodes on their own dedicated storage cluster host group. The
following example deploys these on regular worker nodes for the Redbooks development
environment. To deploy on a separate host group follow instructions in labeling nodes for
that approach.
Chapter 2. Planning for installation 43

For each node to properly use GlusterFS storage, each GlusterFS storage node needs to
have dm_thin_pool configured, and each worker node needs to have the GlusterFS Client
installed. In the following example, the worker node hosts the GlusterFS storage so both
dm_think_pool and the GlusterFS client are configured on the same node. The following
steps describe how to do this.

1. Configure the dm_thin_pool kernel module.

echo dm_thin_pool | sudo tee -a /etc/modules-load.d/dm_thin_pool.conf
dm_thin_pool

2. Install GlusterFS Client as in Example 2-5.

Example 2-5 Install GlusterFS client

rpm --import
https://oplab9.parqtec.unicamp.br/pub/key/openpower-gpgkey-public.asc

rpm -q gpg-pubkey --qf '%{NAME}-%{VERSION}-%{RELEASE}\t%{SUMMARY}\n'
gpg-pubkey-fd431d51-4ae0493bgpg(Red Hat, Inc. (release key 2)
<security@redhat.com>)
gpg-pubkey-2fa658e0-45700c69gpg(Red Hat, Inc. (auxiliary key)
<security@redhat.com>)
gpg-pubkey-75b92fa7-5ccf44cbgpg(OpenPower Unicamp Lab (OpenPower)
<openpower@ic.unicamp.br>)

sudo yum install yum-utils && sudo yum-config-manager --add-repo
https://oplab9.parqtec.unicamp.br/pub/s390x/glusterfs/rhel/7.6/
Loaded plugins: langpacks, product-id, search-disabled-repos, subscription-
 : manager
rhel-7-for-system-z-extras-rpms | 2.1 kB 00:00
rhel-7-for-system-z-optional-rpms | 2.0 kB 00:00
rhel-7-for-system-z-rpms | 2.0 kB 00:00
rhel-7-for-system-z-supplementary-rpms | 2.0 kB 00:00
...

sudo yum update && sudo yum install glusterfs-client gluster-cli
Loaded plugins: langpacks, product-id, search-disabled-repos, subscription-
 : manager

rhel-7-for-system-z-extras-rpms | 2.1 kB 00:00
rhel-7-for-system-z-optional-rpms | 2.0 kB 00:00
rhel-7-for-system-z-rpms | 2.0 kB 00:00
rhel-7-for-system-z-supplementary-rpms | 2.0 kB 00:00
Resolving Dependencies
--> Running transaction check
---> Package atomic-registries.s390x 1:1.22.1-26.gitb507039.el7 will be updated
---> Package atomic-registries.s390x 1:1.22.1-28.gitb507039.el7 will be an
update

Note: The examples in this book use RedHat Linux on s390x. The instructions for other
Linux distributions and architectures follow the same patterns, but the commands are
slightly different. For the commands for other Linux distributions and other computer
architectures, see the IBM Knowledge Center:
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/manage_cluster/prepare
_nodes.html.
44 Implementation Guide for IBM Blockchain Platform for Multicloud

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/manage_cluster/prepare_nodes.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/manage_cluster/prepare_nodes.html

--> Finished Dependency Resolution

Dependencies Resolved

===
=
 Package Arch Version Repository Size
===
=
Updating:
 atomic-registries
 s390x 1:1.22.1-28.gitb507039.el7 rhel-7-for-system-z-extras-rpms 35 k

Transaction Summary
===
=
Upgrade 1 Package

Total download size: 35 k
Is this ok [y/d/N]: y
Downloading packages:
Delta RPMs disabled because /usr/bin/applydeltarpm not installed.
atomic-registries-1.22.1-28.gitb507039.el7.s390x.rpm | 35 kB 00:00
....

GlusterFS disk preparation
After the node is ready for GlusterFS, you must attach disks for the backing storage to be
used by the solution. For each storage node, we prepare these disks for installation of
GlusterFS with the following steps:

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/manage_cluster/prepare
_disks.html#symlink

1. Identify storage devices to use (must have at least 25 GB capacity) in Example 2-6.

Example 2-6 identify storage devices to use

sudo fdisk -l

Disk /dev/dasdb: 7 MB, 7372800 bytes, 1800 sectors
Units = sectors of 1 * 4096 = 4096 bytes
Sector size (logical/physical): 4096 bytes / 4096 bytes
I/O size (minimum/optimal): 4096 bytes / 4096 bytes
...
Disk /dev/dasdo: 44.3 GB, 44311265280 bytes, 10818180 sectors
Units = sectors of 1 * 4096 = 4096 bytes
Sector size (logical/physical): 4096 bytes / 4096 bytes
I/O size (minimum/optimal): 4096 bytes / 4096 bytes

Note: The following instructions work when symlinks are automatically generated for
devices such as in RHEL or Ubuntu. For SLES, you must create the symlinks manually by
following the instructions at:
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/manage_cluster/prep
are_disks.html#manual
Chapter 2. Planning for installation 45

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/manage_cluster/prepare_disks.html#symlink
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/manage_cluster/prepare_disks.html#manual

Disk /dev/dasdp: 44.3 GB, 44311265280 bytes, 10818180 sectors
Units = sectors of 1 * 4096 = 4096 bytes
Sector size (logical/physical): 4096 bytes / 4096 bytes
I/O size (minimum/optimal): 4096 bytes / 4096 bytes

The continued example uses devices /dev/dasdo and /dev/dasdp from Example 2-6.

2. Wipe the selected device(s) of all file-system, RAID, and partition-table signatures.

sudo wipefs --all --force /dev/dasdo
sudo wipefs --all --force /dev/dasdp

3. Get the symlink of the device as shown in Example 2-7.

Example 2-7 Get the symlink

ls -altr /dev/disk/*
/dev/disk/by-uuid:
total 0
drwxr-xr-x. 5 root root 100 Aug 12 17:24 ..
lrwxrwxrwx. 1 root root 12 Aug 12 17:24 a5bf998c-7272-49f9-afe2-928a81ee2014 -> ../../dasda2
lrwxrwxrwx. 1 root root 12 Aug 12 17:24 54be6c22-c5d3-4702-a55d-a0dda944566d -> ../../dasda1
lrwxrwxrwx. 1 root root 10 Aug 12 17:24 5be05cbe-6c75-4bee-ab70-89352cf7112f -> ../../dm-0
lrwxrwxrwx. 1 root root 10 Aug 12 17:24 ce0d209a-0746-4be5-8ce1-8fa7870da765 -> ../../dm-1
drwxr-xr-x. 2 root root 120 Aug 14 13:37 .

/dev/disk/by-path:
total 0
drwxr-xr-x. 5 root root 100 Aug 12 17:24 ..
lrwxrwxrwx. 1 root root 11 Aug 12 17:24 ccw-0.0.0202 -> ../../dasdc
lrwxrwxrwx. 1 root root 11 Aug 12 17:24 ccw-0.0.0100 -> ../../dasda
lrwxrwxrwx. 1 root root 11 Aug 12 17:24 ccw-0.0.0203 -> ../../dasdh
lrwxrwxrwx. 1 root root 12 Aug 12 17:24 ccw-0.0.0203-part1 -> ../../dasdh1
...
lrwxrwxrwx. 1 root root 11 Aug 14 14:46 ccw-0.0.0501 -> ../../dasdp
lrwxrwxrwx. 1 root root 12 Aug 14 16:35 ccw-0.0.0501-part1 -> ../../dasdp1
lrwxrwxrwx. 1 root root 11 Aug 15 17:06 ccw-0.0.0500 -> ../../dasdo
drwxr-xr-x. 2 root root 700 Aug 15 17:06 .
lrwxrwxrwx. 1 root root 12 Aug 15 20:56 ccw-0.0.0500-part1 -> ../../dasdo1

4. Save the full path (link path and symlink) to use when you provision GlusterFS.

The full path above for the partition of dasdo from part 2) is
/dev/disk/by-path/ccw-0.0.0500-part1

The full path above for the partition dasdp from part 2) is
/dev/disk/by-path/ccw-0.0.0501-part1

Note: Any of the following link paths are acceptable:
/dev/disk/by-path, /dev/disk/by-id, /dev/disk/by-uuid, or /dev/disk/by-label.
46 Implementation Guide for IBM Blockchain Platform for Multicloud

Label GlusterFS node and create the Heketi secret
If you use existing Worker Nodes for GlusterFS, label these nodes with GlusterFS:

kubectl label nodes <node1_ipaddr node2_ipaddr node3_ipaddr...>
storagenode=glusterfs

For the example node in this document, this amounts to the following command:

kubectl label nodes 9.56.28.25 storagenode=glusterfs

Next, create a heketi-secret with an admin password with this command:

kubectl create secret generic heketi-secret -n kube-system
--type='kubernetes.io/glusterfs' --from-literal=admin_password='<my-password>' &&
kubectl label secret heketi-secret -n kube-system glusterfs="heketi-secret"

Here is a literal example of this command:

kubectl create secret generic heketi-secret -n kube-system
--type='kubernetes.io/glusterfs' --from-literal=admin_password='super_secure' &&
kubectl label secret heketi-secret -n kube-system glusterfs="heketi-secret"

Setting up GlusterFS Dynamic Provisioner in Kubernetes
GlusterFS is an in-tree dynamic provisioner (internal provisioner) in Kubernetes. This means
that there is a plug-in that enables dynamic provisioning after the cluster administrator
creates a proper storage class to connect to backing glusterfs storage. In IBM Cloud Private,
to deploy glusterfs and set up this storage class easily, you can either run an add-on
command or use the Helm chart, which does the setup for you.

GlusterFS Helm release
The GlusterFS Helm chart deploys one management Heketi server and a daemonset of
GlusterFS servers, with one server on each worker node. The Heketi server sets up a
GlusterFS topology with the backing devices that are prepared in the “GlusterFS disk
preparation” on page 45 section. It also sets up the GlusterFS storage class to take
advantage of this newly deployed GlusterFS storage system. The GlusterFS Helm chart is
here: https://github.com/IBM/charts/tree/master/stable/ibm-glusterfs

The IBM Cloud Private installer automatically loads the glusterfs Helm chart to the local
mgmt-charts repository of the IBM Cloud Private cluster as part of the IBM Cloud Private
installation. You can find this chart in the catalog by searching for glusterfs as shown in
Figure 2-16.

Note: If you use more than one node (default is 3), find storage devices on each node
by following the same process for the other nodes in the storage group. This process is
shown above and is detailed further at this web page:
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/manage_cluster/p
repare_disks.html#manual.
Chapter 2. Planning for installation 47

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/manage_cluster/prepare_disks.html#manual
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/manage_cluster/prepare_disks.html#manual
https://github.com/IBM/charts/tree/master/stable/ibm-glusterfs

Figure 2-16 GlusterFS Helm chart

Configure the chart with the following values for your cluster. We have labeled the pictures
with callout numbers that map to each labeled value. The default value is shown entered in
parentheses (). Values that have no callout number can be safely left at their defaults.

The first three values apply to Figure 2-17 on page 48.

Table 2-7 First 3 values, for callout numbers 1 to 3

Figure 2-17 Configuring the ibm-glusterfs Helm chart -1

Values 4 and 5 apply to Figure 2-18.

1. Helm release name is the name for the helm release. Make sure that each helm release in the cluster
has a unique name. Otherwise, you get an error, and you must redeploy the release to a different name.
(glusterfs-storage).

2. Target namespace is the namespace where the helm release resources will be deployed. This chart
requires the kube-system namespace. (kube-system).

3. License is a mandatory box to check, indicating your consent to the License agreement. (checked).
48 Implementation Guide for IBM Blockchain Platform for Multicloud

Table 2-8 Values for callout numbers 4 and 5

Figure 2-18 Configuring the ibm-glusterfs Helm chart -2

Values 6-8 specify which architecture nodes to schedule on. Choose the architectures of the
nodes you want to use for storage as [3-Most preferred] as in Figure 2-19 on page 50.

Table 2-9 Values for callout numbers 6 to 8

4. The All Parameters drop-down menu gives access to all of the parameters for the Helm chart. We
need to click it. [All parameters Drop-down open].

5. Heketi Topology is the layout of the backing devices that are used to provision glusterfs volumes per
node. In this case, there are two volumes (with paths that were found through the ls -altr /dev/disk/*
command earlier.) If there were more nodes, each node would have its own devices for storage. A
typical setup is three nodes, each with at least one device each for replication. (The topology that is
shown in the Figure is edited from sample topology of a 3-node cluster in the Helm chart).

6. amd64 scheduling preference (used to schedule on x86 nodes) [0 - Do not use].

7. ppc64le scheduling preference (used to schedule on power nodes) [0 - Do not use].

8. s390x scheduling preference (used to schedule on IBM LinuxONE/ lBM Z nodes) [3 -Most preferred].
Chapter 2. Planning for installation 49

Figure 2-19 Configuring the ibm-glusterfs Helm chart -3

The next set of values are left at their defaults, so there are no values for the user to enter
(and thus no callout numbers) in Figure 2-20.

Figure 2-20 Configuring the ibm-glusterfs Helm chart -4
50 Implementation Guide for IBM Blockchain Platform for Multicloud

Table 2-10 Values for callout numbers 9 to 12

Figure 2-21 Configuring the ibm-glusterfs Helm chart -5

9. See Figure 2-21.
Authentication Secret is the name of the secret that holds the admin_password for heketi
(heketi-secret).
Note: If you do not remember the name of the secret that you created, run this command to find it:
kubectl get secret --field-selector=type='kubernetes.io/glusterfs' -n kube-system

10.See Figure 2-22 on page 52.
TLS Secret Name is the name of the TLS secret that the Helm chart will create with the IBM Cloud
Private CA. [glusterfs-tls-secret].

11.See Figure 2-23 on page 52.
Volume Type refers to the Volume Type that was used to create GlusterFS volumes. This value is set in
the GlusterFS storage class that was created by this chart. The recommended configuration is to use
Replicate:3 with 3 different nodes above. The testing configuration here just uses one node, and so
replication is set to none. (none).
Note: Failure occurs if you set replication with only one node, even if there are multiple devices on this
node such as the two devices set to the one node in the example.

12.See Figure 2-24 on page 53.
Key is the key that is used for the NodeSelector, which identifies the nodes that make up the GlusterFS
storage cluster. This should match the label that is on all the nodes that will host the actual GlusterFS
storage volumes for use by Kubernetes applications. (storagenode).
Chapter 2. Planning for installation 51

Figure 2-22 Configuring the ibm-glusterfs Helm chart -6

Figure 2-23 Configuring the ibm-glusterfs Helm chart -7

Key is the key that is used for the NodeSelector, which identifies the nodes that make up the
GlusterFS storage cluster. This should match the label that is on all the nodes that will host
the actual GlusterFS storage volumes for use by Kubernetes applications. (storagenode).
Note: You can check the labels on your nodes with this command:
kubectl get nodes --show-labels
52 Implementation Guide for IBM Blockchain Platform for Multicloud

Figure 2-24 Configuring the ibm-glusterfs Helm chart -8

Verification of Gluster storage
You can check the helm release and components in the UI by selecting the helm release from
the helm releases section in the UI. (Navigate there through Workloads → Helm Releases
by using the navigation bar in the UI). You can click the different components to inspect how
the release is progressing. The output of the helm release should be similar to Figure 2-25.

Figure 2-25 Verification of Gluster Storage
Chapter 2. Planning for installation 53

To check the glusterfs storage after deploying it, run the following command to check your
pods to make sure that they are proceeding:

kubectl get pods -n kube-system -l app=glusterfs

Then follow the logs of the heketi pod by running this command:

kubectl logs $(kubectl get pods -n kube-system -l app=glusterfs,glusterfs=heketi-pod -o
jsonpath='{.items[0].metadata.name}') -n kube-system --all-containers -f | grep -v "200" | grep
-v "GET" | grep -v "TLS handshake"

Sample output of these commands is shown in Example 2-8. The figure shows the GlusterFS
nodes and volumes that were added and also the topology verification. If you see errors in the
logs (after filtering out TLS and the initial failed-to-connect error that occurs as the system
wait for readiness of components), refer to the chart README
(https://github.com/IBM/charts/tree/master/stable/ibm-glusterfs) for more
information.

Example 2-8 kubectl get pods

kubectl get pods -n kube-system -l app=glusterfs
NAME READY STATUS RESTARTS AGE
glusterfs-storage-glusterfs-daemonset-rs5dl 1/1 Running 0 18h
glusterfs-storage-glusterfs-heketi-deployment-66595f6749-9m6x9 1/1 Running 0 18h
glusterfs-storage-glusterfs-heketicert-job-qnv4k 0/1 Completed 0 18h

kubectl logs $(kubectl get pods -n kube-system -l app=glusterfs,glusterfs=heketi-pod -o
jsonpath='{.items[0].metadata.name}') -n kube-system --all-containers -f | grep -v "200" | grep -v "GET" |
grep -v "TLS handshake"
is_gluster_daemon_up: Checking GlusterFS Daemonset's Readiness
is_gluster_daemon_up: GlusterFS Daemonset is not ready yet!
...
heketi-topology-load: Before loading topology. Topology Info: START | | END
heketi-topology-load: Loading heketi topology
[negroni] Started POST /clusters
[heketi] INFO 2019/08/27 01:46:58 Backup successful
[negroni] Completed 201 Created in 58.898981ms
[negroni] Started POST /nodes
...
[heketi] INFO 2019/08/27 01:46:58 Added node f2bcd11ff21a3627bfaba35893b29159
...
[heketi] INFO 2019/08/27 01:46:58 Adding device /dev/disk/by-path/ccw-0.0.0500-part1 to node
f2bcd11ff21a3627bfaba35893b29159
...
[heketi] INFO 2019/08/27 02:23:24 Added device /dev/disk/by-path/ccw-0.0.0500-part1
...
heketi-topology-load: After loading topology. Topology Info: START | | END
heketi-topology-load: Successfully loaded heketi topology
heketi-topology-verify: Start topology verification check
....
Hello from Heketi
...
heketi-topology-verify: Topology Info: START |
Cluster Id: 1ae80246445709692cec30bfc53a287c

Note: If you redeploy GlusterFS with the same storage nodes, do not fail to clean up the
old storage. First, follow the instructions here:
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/manage_cluster/glus
ter_cleanup.html.
54 Implementation Guide for IBM Blockchain Platform for Multicloud

https://github.com/IBM/charts/tree/master/stable/ibm-glusterfs
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/manage_cluster/gluster_cleanup.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/manage_cluster/gluster_cleanup.html

 File: true
 Block: true

 Volumes:

 Nodes:

Node Id: f2bcd11ff21a3627bfaba35893b29159
State: online
Cluster Id: 1ae80246445709692cec30bfc53a287c
Zone: 1
Management Hostnames: 9.56.28.25
Storage Hostnames: 9.56.28.25
Devices:

Id:6bc01ff90225b1d14d950adcfecb13bb Name:/dev/disk/by-path/ccw-0.0.0501-part1State:online Size
(GiB):41 Used (GiB):0 Free (GiB):41

Bricks:
Id:b9f0154a610a0ff54e06a084e1301b7f Name:/dev/disk/by-path/ccw-0.0.0500-part1State:online Size

(GiB):41 Used (GiB):0 Free (GiB):41
Bricks: | END

heketi-topology-verify: Storage node count: start | 1 | End
heketi-topology-verify: topology verification complete
..
--log-level $LOG_LEVEL $GLUSTERD_OPTIONS (code=exited, status=0/SUCCESS)

After the heketi deployment is available, as shown in bold in Example 2-9, you know that the
topology verification has passed, and everything you specified has been set up correctly.

Example 2-9 Topology verification has passed

kubectl -n kube-system get deployment -l app=glusterfs
NAME READY UP-TO-DATE AVAILABLE AGE
glusterfs-storage-glusterfs-heketi-deployment 1/1 1 1 19h

You can use this storage in Kubernetes for PersistentVolumeClaims by providing the
StorageClass glusterfs. This storage class should now be in your storage classes for the
cluster as shown in Example 2-10:

Example 2-10 kubectl get sc

kubectl get sc
NAME PROVISIONER AGE
glusterfs kubernetes.io/glusterfs 18h
image-manager-storage kubernetes.io/no-provisioner 63d
logging-storage-datanode kubernetes.io/no-provisioner 63d
mongodb-storage kubernetes.io/no-provisioner 63d

Note: While your pods are in the “Running” state, allow time for GlusterFS. The
deployment of GlusterFS can take up to 2 hours after the helm Chart release. You must
allow time for the storage devices to be set up.
Chapter 2. Planning for installation 55

Example 2-11 shows the typical output that you see when everything is up and running.

Example 2-11 Everything is up and running

kubectl get all -l app=glusterfs -n kube-system
NAME READY STATUS RESTARTS AGE
pod/glusterfs-storage-glusterfs-daemonset-rs5dl 1/1 Running 0 78m
pod/glusterfs-storage-glusterfs-heketi-deployment-66595f6749-9m6x9 1/1 Running 0 78m
pod/glusterfs-storage-glusterfs-heketicert-job-qnv4k 0/1 Completed 0 78m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/glusterfs-storage-glusterfs-heketi-service ClusterIP 10.0.22.69 <none> 8080/TCP 78m

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE
NODE SELECTOR AGE
daemonset.apps/glusterfs-storage-glusterfs-daemonset 1 1 1 1 1
storagenode=glusterfs 78m

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/glusterfs-storage-glusterfs-heketi-deployment 1/1 1 1 78m

NAME DESIRED CURRENT READY AGE
replicaset.apps/glusterfs-storage-glusterfs-heketi-deployment-66595f6749 1 1 1 78m
replicaset.apps/glusterfs-storage-glusterfs-heketi-deployment-9578984c4 0 0 0 78m

NAME COMPLETIONS DURATION AGE
job.batch/glusterfs-storage-glusterfs-heketicert-job 1/1 39s 78m

2.4 Sizing

Sizing is important when you plan for an installation of the IBM Blockchain Platform for
Multicloud on IBM Cloud Private (ICP). Each component (certificate authority, orderer, and
peer) of the IBM Blockchain Platform for Multicloud needs a virtual core processor unit
(vCPU), memory (RAM), and storage to work. Each of these components requires various
resource allocations, depending on their purpose within a blockchain network.

The default resource allocations for each node are shown in Table 2-11 on page 56.

Table 2-11 Default resource allocations

In this case, a vCPU unit is 1 vCPU as seen by Kubernetes. There are generally 4 vCPUs for
each Integrated Facility for Linux (IFL). You can also have 2 vCPUs to 1 IFL. The amount of
virtualization you apply to an IFL is depends on the environment you are trying to create
(minimal, pilot, or production), use case, and target for transactions per second. The Memory
in Table 2-11 on page 56 indicates the amount of RAM that is used by the component on the
worker node where the developer deploys it. The Storage indicates the amount of backing
disk space to reserve for the instance in production. As a blockchain grows over time, it

Component (all
containers)

vCPU Memory (GB) Storage (GB)

Peer 1.7 3.0 200

CA 0.1 0.2 20

Ordering Service 0.45 0.9 100

Total 2.25 4.1 320
56 Implementation Guide for IBM Blockchain Platform for Multicloud

expands. That is why the default is 100GB for both the peer database and the state database
(couchdb).

2.4.1 IBM Blockchain Platform console

The IBM Blockchain for Multicloud solution offers a nice user interface (UI), known as a
console, for all administrators to deploy and create their blockchain network. To deploy a
blockchain console, small amounts of resources are needed. Throughout all the network
environments, there is a requirement for a console for each one, as explained in the following
sections. Table 2-12 shows the resources that are required for deployment the IBM
Blockchain Platform for Multicloud console:

Table 2-12 Resources required to deploy the IBM Blockchain Platform for Multicloud console

Table 2-13 on page 57 shows the container breakdown of the IBM Blockchain Platform for
Multicloud console:

Table 2-13 Container breakdown of the IBM Blockchain Platform for Multicloud console

Note: You might see Virtual Processing Core (VPC) and vCPU used interchangeably. VPC
is the metric that is used for pricing.

� If a software hypervisor is used (such as KVM, z/VM, and so on), a VPC is a virtual core that is
assigned to a virtual machine (VM) in which ICP can run.

� If no software hypervisor is used (in other words, no z/VM and no KVM), then a VPC is a physical
core (IFL). You must license each VPC that is made available to ICP. Additionally, whereas a VPC
is a licensing term, a vCPU is the technical implementation. The number of vCPUs defines the
capacity that is made available for use by ICP.

Note: Though this UI is for the IBM Blockchain Platform for Multicloud, it is the same UI
across all of the deployment options. The UI has the same look, feel, and functionality in
the IBM Cloud, on-premises, and various cloud vendors that are supported.

vCPU Memory

Console 1.225 2.45

vCPU Memory

Optools 0.5 1.0

Configtxlator 0.025 0.05

CouchDB 0.5 1.0

Operator 0.1 0.2

Deployer 0.1 0.2

Total 1.225 2.45

Note: The numbers that are calculated above are the requests. The limits can be the same
for the requests that are shown above. You have the option to make the limits twice as
much as the requests, but that isn’t necessarily required. For more information on requests
and limits, refer to 2.4.6, “Resource reallocation” on page 65.
Chapter 2. Planning for installation 57

2.4.2 Minimum network

A minimum network to test out the offering would consist of 1 peer, 1 ordering service node,
and 2 Certificate Authorities (CAs). That means 1 for the peer organization and 1 for the
ordering service. Such a network enables a developer to deploy chaincode, run it, and see
the blockchain operations for administration of the blockchain that are available in the
console. Figure 2-26 shows the topology of such a network.

Figure 2-26 The minimum network

Table 2-14 shows the resources for minimum network components.

Table 2-14 Resources for minimum network components

To break it down a little further, here are the exact resource allocation by each component
and the container within each component.

Table 2-15 shows the container breakdown of the CA:

Table 2-15 : Container breakdown

Number of
Component

Component (all
containers)

Total vCPU Total Memory
(GB)

Storage (GB)

1 Peer (1) x (1.7) = 1.7 (1) x (3.0) = 3.0 (1) x(200) = 200

2 CA (2) x (0.1) = 0.2 (2) x (0.2) = 0.4 (2) x (20) = 40

1 Ordering node (1) x (0.45) = 0.45 (1) x (0.9) = 0.9 (1) x (100) = 100

4 Total 2.35 4.3 340

Container Total vCPU Total Memory
(GB)

Storage (GB)

CA (2) x (0.1) = 0.2 (2) x (0.2) = 0.4 (2) x(20) = 40

Total 0.2 0.4 40
58 Implementation Guide for IBM Blockchain Platform for Multicloud

Table 2-16 shows the container breakdown of the ordering service:

Table 2-16 Container breakdown of the ordering service

Table 2-17 shows the container breakdown of the peer:

Table 2-17 Container breakdown of the peer

2.4.3 Pilot network

In the pilot network, you experiment with a blockchain network that simulates a production
environment. To achieve this goal, the sizing metrics for the pilot network are made to closely
match the sizings for the production network. Also, the pilot network might connect to existing
systems of record, such as existing transaction systems or databases. Figure 2-27 shows the
topology of such a network.

Container Total vCPU Total Memory
(GB)

Storage (GB)

Orderer (1) x (0.75) = 0.75 (1) x (0.75) = 0.75 (1) x (100) = 100

gRPC Proxy (1) x (0.1) = 0.5 (1) x (0.2) = 1 N/A

Total 4.25 4.75 100

Container Total vCPU Total Memory
(GB)

Storage (GB)

Peer (1) x (0.2) = 0.2 (1) x (1) = 1 (1) x (100) = 100

CouchDB (1) x (0.2) = 0.2 (1) x (0.4) = 0.4 (1) x (100) = 100

Smart Contract (1) x (1) = 1 (1) x (1) = 1 N/A

gRPC Proxy (1) x (0.2) = 0.2 (1) x (0.4) = 0.4 N/A

Log Collector (1) x (0.1) = 0.1 (1) x (0.2) = 0.2 N/A

Total 1.7 3 200
Chapter 2. Planning for installation 59

Figure 2-27 The pilot network

Based on Figure 2-27, we are deploying 10 total components; two peers to have a highly
available solution, three CAs (one for our ordering service, one for the first peer, and the last
CA for the second peer), and then five Raft nodes for our ordering service.

Table 2-18 is a chart of all of our components and their resources for a pilot network:

Table 2-18 .Components and their resources for a pilot network

To break it down a little further, here are the exact resource allocation by each component
and the container within each component.

Number of
Component

Component Total vCPU Total Memory
(GB)

Storage (GB)

2 Peer (2) x (4.2) = 8.4 (2) x (5.4) = 10.8 (2) x (200) 400

3 CA (3) x (0.1) = 0.3 (3) x (0.2) = 0.6 (3) x (20) = 60

5 Ordering node (5) x (0.85) = 4.25 (5) x (0.95) = 4.75 (5) x (100) = 500

10 Total 12.95 16.15 960
60 Implementation Guide for IBM Blockchain Platform for Multicloud

Table 2-19 on page 61 is the container breakdown of the CA:

Table 2-19 : Container breakdown of the CA

Table 2-20 is the container breakdown of the ordering service:

Table 2-20 Container breakdown of the ordering service

Table 2-21 is the container breakdown for the peers:

Table 2-21 Container breakdown for the peers

2.4.4 Production network

A production network must be in operation and available to end users and clients, either by
mobile applications or web interfaces. After the blockchain network is in production, very
limited downtime can be accepted, and the smart contracts have been finalized between
network participants. Ideally, much of the final testing of smart contracts, network participants,
and integration of existing transaction systems are done in minimal or pilot network
environment. Additionally, production networks include a highly available (HA) and disaster
recovery (DR) plan. Figure 2-28, “The production network” on page 62 shows the topology of
such a network.

Container Total vCPU Total Memory
(GB)

Storage (GB)

CA (3) x (0.1) = 0.3 (3) x (0.2) = 0.6 (3) x(20) = 60

Total 0.3 0.6 60

Container Total vCPU Total Memory
(GB)

Storage (GB)

Orderer (5) x (0.75) = 3.75 (5) x (0.75) = 3.75 (5) x (100) = 500

gRPC Proxy (5) x (0.1) = 0.5 (5) x (0.2) = 1 N/A

Total 4.25 4.75 500

Container Total vCPU Total Memory
(GB)

Storage (GB)

Peer (2) x (2) = 4 (2) x (1) = 2 (2) x (100) = 200

CouchDB (2) x (1) = 2 (2) x (1) = 2 (2) x (100) = 200

Smart Contract (2) x (1) = 2 (2) x (3) = 6 N/A

gRPC Proxy (2) x (0.1) = 0.2 (2) x (0.2) = 0.4 N/A

Log Collector (2) x (0.1) = 0.2 (2) x (0.2) = 0.4 N/A

Total 8.4 10.8 400
Chapter 2. Planning for installation 61

Figure 2-28 The production network

Just like the pilot network, there are a total 10 components; two peers to have a highly
available solution, three CAs (one for our ordering service, one for the first peer, and another
CA for the second peer), and five Raft nodes for the ordering service.

It is important to note, that this network is for one organization. Currently, each additional
organization would have to create their certificate authority for the peer and then the peer
itself. One organization can deploy the ordering service (five Raft ordering nodes) and that
deployment is sufficient for the entire network. Currently, there is no HA capability for the
ordering service, but Raft is a crash fault tolerant (CFT) ordering service. Being CFT means
that if two of the five ordering nodes stop working then the ordering service can still process
transactions into blocks, while the failing ordering nodes are coming back.

Table 2-22 is the recommended sizing and allocation per component for a production
blockchain network:

Table 2-22 Recommended sizing and allocation per component for a production blockchain network

Number of
Component

Component Total vCPU Total Memory
(GB)

Storage (GB)

2 Peer (2) x (6.2) = 12.4 (2) x (6.9) = 13.8 (2) x 200 = 400

3 CA (3) x (0.1) = 0.3 (3) x (0.2) = 0.6 (3) x (20) = 60
62 Implementation Guide for IBM Blockchain Platform for Multicloud

To break it down a little further, here are the exact resource allocations by each component
and the container within each component.

Table 2-23 is the container breakdown of the CA:

Table 2-23 container breakdown of the CA

It is possible to integrate your external certificate authorities if they are in X.509 format. For
more information on integrating your external certificate authority, go to
https://cloud.ibm.com/docs/services/blockchain/howto?topic=blockchain-ibp-console-
build-network#ibp-console-build-network-third-party-ca.

Table 2-24 shows the container breakdown of the ordering service:

Table 2-24 Container breakdown of the ordering service

Table 2-25 shows the container breakdown for the peers:

Table 2-25 Container breakdown for the peers

5 Ordering node (5) x (5.1) = 5.5 (5) x (1.2) = 6 (5) x (100) = 500

10 Total 18.2 18.4 960

Container Total vCPU Total Memory
(GB)

Storage (GB)

CA (3) x (0.1) = 0.3 (3) x (0.2) = 0.6 (3) x(20) = 60

Total 0.3 0.6 60

Note: The IBM Blockchain Platform for Multicloud doesn’t support intermediate certificate
authorities.

Container Total vCPU Total Memory
(GB)

Storage (GB)

Orderer (5) x (1) = 5 (5) x (1) = 5 (5) x (100) = 500

gRPC Proxy (5) x (0.1) = 0.5 (5) x (0.2) = 1.0 N/A

Total 5.5 6 500

Note: Choose five ordering nodes (Raft) to create a CFT ordering service. These five
ordering nodes are all apart of the Raft protocol, which is apart of etcd. Etcd is a distributed
open source key-value store.

Container Total vCPU Total Memory
(GB)

Storage (GB)

Peer (2) x (3) = 6 (2) x (1.25) = 2.5 (2) x (100) = 200

CouchDB (2) x (1.5) = 3 (2) x (1.25) = 2.5 (2) x (100) = 200

Smart Contract (2) x (1.5) = 3 (2) x (4) = 8 N/A

gRPC Proxy (2) x (0.1) = 0.2 (2) x (0.2) = 0.4 N/A

Number of
Component

Component Total vCPU Total Memory
(GB)

Storage (GB)
Chapter 2. Planning for installation 63

https://cloud.ibm.com/docs/services/blockchain/howto?topic=blockchain-ibp-console-build-network#ibp-console-build-network-third-party-ca
https://cloud.ibm.com/docs/services/blockchain/howto?topic=blockchain-ibp-console-build-network#ibp-console-build-network-third-party-ca

Proper sizing of all the components of the blockchain network is important. But sizing of the
peer is the most important. Typically, the more resources that are allocated to the peer, the
more transactions per second the network can achieve.

2.4.5 Component containers

In each of the blockchain networks, there is the specific component, but there are containers
within each component. In this section, we explain the containers in each of the components
and what they are responsible for.

Table 2-26 shows the component breakdown of the CA’s container:

Table 2-26 Component breakdown of the CA’s container

Table 2-27 shows the component breakdown of the ordering service’s containers:

Table 2-27 Component breakdown of the ordering service’s containers

Table 2-28 shows the component breakdown of the peer’s containers:

Log Collector (2) x (0.1) = 0.2 (2) x (0.2) = 0.4 N/A

Total 12.4 13.8 400

Note: Currently IBM Blockchain Platform for Multicloud supports coudchdb only, and not
leveldb.

Note: The smart contract container’s memory has a higher memory allocation. This is
required because when transactions come through — by either an application or web
interface — the execution of the transaction occurs in the smart contract container. The
more memory that you allocate for that container, the faster that your network typically
runs.

Container Total vCPU Total Memory
(GB)

Storage (GB)

Container Description

CA This container is responsible for registering and enrolling nodes and users.
Nodes analogous to a peer or ordering service. Users are analogous to an end
user who might interact with the blockchain network through a mobile app or web
interface. Additionally, the certificate authority saves a copy of every certificate it
creates.

Container Description

Orderer This container is responsible for ordering transactions and processing
configuration updates, such as channel updates. Additionally, this container
contains a copy of the blockchain ledger for each of the channels the ordering
service it is a part of. The ordering service is a Raft ordering node, whether that
is 1 ordering node or 5 ordering nodes.

gRPC This container is contains the processes that allow the console (user interface)
to communicate with this node (peer). It connects the IBM Cloud Private Instance
to the IBM Blockchain for Multicloud instance.
64 Implementation Guide for IBM Blockchain Platform for Multicloud

Table 2-28 Component breakdown of the peer’s containers

2.4.6 Resource reallocation

When you are creating each component, you give an initial resource allocation for that
component. This allocation includes giving the component a certain amount of vCPU and
memory. By default, you cannot change the storage on some of the containers. The defaults
in the resource allocation are sufficient to run a successful blockchain network. Figure 2-29
on page 65 is a picture of the sample default resource allocation for a CA:

Figure 2-29 sample default resource allocation for a CA:

However, consider a scenario where you use Grafana (https://grafana.com/) to monitor
your components and their resources. When you check Grafana, you notice that a certain
component could use more or less resources than what you originally allocated. If you want to

Container Description

Peer This container holds the smart contracts that are installed and instantiated on it.
Also, this containers holds the ledger for all the channels that the peer is joined
to.

CouchDB This container is the world state database for each channel that the peer is joined
to. The world state contains the current value for all the assets recorded on the
blockchain ledger. An analogy would be a potato that is an asset in the
blockchain network. Imagine that the potato is passed around 100 times. The
world state database would contain the information of who has the potato on the
100th transfer. It is the most up-to-date information in regard to a specific asset.
By default, the world state database is CouchDB.

Smart Contract This container is actually a docker-in-docker (dind) container. The smart
contracts are stored here, when there is an installation and instantiation of a
smart contract.

Log Collector This container is responsible for the log messages that are coming from the
smart contract container (dind).

gRPC This container contains the processes that allow the console (user interface) to
communicate with this node (peer). It connects the IBM Cloud Private Instance
to the IBM Blockchain for Multicloud instance.
Chapter 2. Planning for installation 65

https://grafana.com/

reallocate resources, you can do that easily through the blockchain user interface.
Figure 2-30 through Figure 2-32 on page 67 show how to actually do this:

Figure 2-30 Reallocating resources for a CA -1

Figure 2-31 on page 66

Figure 2-31 Reallocating resources for a CA -2
66 Implementation Guide for IBM Blockchain Platform for Multicloud

Figure 2-32 Reallocating resources for a CA -3

Imagine that you want to reallocate the orderer in the production environment. Because there
are multiple Raft ordering nodes running at the same time, we can maintain the network
without any downtime. We reallocate 1 ordering node at a time, and wait for the orderer pod
to say available. This means that the new orderer node is up and working and can process
transactions as they come through.

A minimal network environment performs differently. You run only 1 Raft ordering node in
such an environment. When you want to reallocate the orderer, the network must be down
temporarily.

When you define the resource allocation for the components, there is a concept of requests
and limits in Kubernetes. When you allocate resources in the blockchain user interface, this

Note: After you reallocate the component, the Kubernetes pod of that component restarts.
Depending on the environment in which you are reallocating the component, this can be a
significant event.
Chapter 2. Planning for installation 67

setting applies to both the request and limit. This means that if you were to create a CA with
0.1 vCPU (equivalent to 100m vCPU), it would be set as both the request and limit.

The following scenario reveals a benefit of knowing this concept of requests and limits:

� You request a certain amount of vCPU, but put a limit on how much vCPU the component
can actually take up. For example, you might have a CA request of 0.1 vCPU and put a
limit on of 0.5 vCPU.

� As a result, the CA take up 0.1 vCPU but can go up to 0.5 vCPU, if needed. It is the
upmost importance that you know your environment architecture before you configure the
requests and limits. Figure 2-33 shows the ellipsis icon (...) that you click when you want to
edit the configuration of the requests and limits of your deployed components:

Figure 2-33 Editing the configuration of the requests and limits of your deployed components - 1

Click Submit when you have edited the deployment as shown in Figure 2-34.

Figure 2-34 Editing the configuration of the requests and limits of your deployed components - 2

2.5 Considerations for specific use cases

Each installation comes with a unique set of challenges, depending on the infrastructure
environment. Some environments might be able to open their system to the internet, and
some environments might be completely closed to the internet. Also, a typical enterprise
requires a highly available (HA) blockchain network and disaster recovery (DR) plan if the
system goes down. For more information on such scenarios, see Chapter 5, “Specific
scenarios” on page 197.
68 Implementation Guide for IBM Blockchain Platform for Multicloud

Chapter 3. Secure Service Container
installation and configuration

In this chapter, we describe the installation and configuration process of the SSC partition,
including the components that are used for IBM Cloud Private (ICP).

This chapter includes the following topics:

� 3.1, “Secure Service Container architecture” on page 70
� 3.2, “An overview of SSC configuration and installation” on page 70
� 3.3, “Hardware and software requirements” on page 72
� 3.4, “Deploying and configuring SSC for ICP in our lab environment” on page 75
� 3.5, “Installing IBM Cloud Private cluster” on page 81
� 3.6, “Deploying IBM Cloud Private” on page 98
� 3.7, “Deploying GlusterFS on SSC ICP nodes” on page 104
� 3.8, “Uninstalling ICP and SSC” on page 123
� 3.9, “Updating the cluster resources dynamically” on page 125

3

© Copyright IBM Corp. 2019. All rights reserved. 69

3.1 Secure Service Container architecture

The Secure Service Container for IBM Cloud Private (ICP) requires a server (x86 or Linux on
Z). The server acts as master node to manage worker and proxy nodes that are hosted on the
Secure Service Container partition of a LinuxONE server. Figure 3-1 illustrates the SSC
architecture.

The downloaded Secure Service Container image file should be copied to this x86 or Linux
on Z server. Then, the installation of IBM Cloud Private can be started. During the installation,
the worker or proxy nodes are provisioned in the Secure Service Container of LinuxONE
servers.

After the IBM Cloud Private cluster is set up, you can deploy containerized IBM Middleware
applications. You can also use common management tooling for deploying home-grown or
third-party Docker- and Kubernetes-based applications.

Figure 3-1 Secure Service Container architecture for ICP

3.2 An overview of SSC configuration and installation

This section describes the required steps and all requirements to install and configure an
SSC into a LinuxONE Logical Partition (LPAR). You can use this information to deploy your
blockchain environment.

SSC components and requirements are described in section 3.3, “Hardware and software
requirements” on page 72.

3.2.1 SSC bootloader overview

The appliance contains the operating system and application. Figure 3-2 illustrates an
overview of the process to initiate an SSC partition.
70 Implementation Guide for IBM Blockchain Platform for Multicloud

Figure 3-2 SSC bootloader overview diagram

1. Firmware bootloader is loaded in memory.
2. Firmware loads the software bootloader from disk.

a. Checks integrity of software bootloader.
b. Decrypts software bootloader.

3. Software bootloader activates encrypted disks.
a. Key stored in software bootloader (encrypted).
b. Encryption/decryption done on the fly when it accesses appliance code and data.

4. Appliance designed to be managed by remote APIs only.
a. REST APIs to configure Linux and apps.
b. No ssh (allowed only in dev mode).

3.2.2 Download the image

To install SSC blockchain appliance, download the official packages from the IBM Passport
Advantage site https://www.ibm.com/software/passportadvantage/pao_customer.html.
Follow steps below to get access to the SSC images:

1. Log in to IBM Passport Advantage by using your IBM ID and password. Contact your sales
representative if you do not have one.

2. Go to My Programs, and then select the IBM Secure Service Container for IBM Cloud
Private program.

3. Download the Secure Service Container for IBM Cloud Private image to your x86 or Linux
on Z server.

4. Create an installation directory to store the Secure Service Container for IBM Cloud
Private image and configuration files. For example:
mkdir /opt/<installation-directory>/cluster/images

5. Change to the installation directory, and extract the compressed file on the x86 server.
cd /opt/<installation-directory>/cluster/images
tar -zxvf CNYC7EN.tar.gz

6. After decompressing the file, you should have the following files.
a. secure-service-container-for-icp_x86.tar.gz, which supports master node on

an x86 server.
b. secure-service-container-for-icp_s390x.tar.gz, which supports master node

on a Linux on Z server.
Chapter 3. Secure Service Container installation and configuration 71

https://www.ibm.com/software/passportadvantage/pao_customer.html

On your x86 or Linux on Z server, extract the chosen image to get the following compressed
files:

a. ssc4icp-cli-installer.docker-image.tar
The Secure Service Container for IBM Cloud Private command line tool to create IBM
Cloud Private nodes and configure the IBM Cloud Private cluster.

b. secure-service-container-for-icp.appliance.<version_number>.img.gz,
The Secure Service Container for IBM Cloud Private software appliance to be installed
on the IBM Z or LinuxONE system.

c. config/ICPIsolatedvm.tar.gz
The isolated VM image for hosting IBM Cloud Private proxy and worker nodes.

3.3 Hardware and software requirements

This section presents the required software, hardware, and system configuration settings for
setting up an IBM Cloud Private cluster on Secure Service Container.

3.3.1 Hardware requirements for the 64-bit x86 server or Linux on Z server

The x86 server or Linux on Z server is used to complete these tasks:

� Download Secure Service Container for IBM Cloud Private (SSC4ICP) and IBM Cloud
Private (ICP) installation binary.

� Install the SSC4ICP and ICP.

� Configure the network for the ICP cluster.

� Also, act as the master and boot node in the ICP cluster.

Minimal requirements are as follows:

� 8 or more cores with at least 2.4 GHz
� 16 GB RAM
� 300 GB disk space

3.3.2 Hardware requirements for Secure Service Container partition

The Secure Service Container partitions are used for hosting worker and proxy nodes. You
can find the hardware specifications for SSC partitions in Section 1.3.5, “IBM Secure Service
Container” on page 10 of this document. The following list shows the minimal requirement for
one Secure Service Container partition, which hosts one worker node and one proxy node.

Minimal (one worker + one proxy)
� 2 Integrated Facility (IFL)
� 1 Open System Adapter (OSA) card with two virtual devices (one for internal and one for

external data traffic)
� 12 GB RAM
� 530 GB disk space, including

– 50 GB for the Secure Service Container for IBM Cloud Private appliance
– 200 GB in the data pool for each node on the Secure Service Container partition
– 80 GB for each GlusterFS node on the Secure Service Container partition
72 Implementation Guide for IBM Blockchain Platform for Multicloud

3.3.3 Networking

To work properly, the Secure Service Container for IBM Cloud Private requires two levels of
network:

� Network among cluster nodes by using the internal IP addresses

� Network for proxy nodes for external requests to the services inside the cluster

Table 3-1 shows the supported network interfaces on the Secure Service Container
partitions.

Table 3-1 Supported network interfaces on the Secure Service Container partitions

3.3.4 Supported operating systems and platforms

The operating system for running the worker and proxy nodes is Ubuntu 18.04, which is
encapsulated into the Secure Service Container for IBM Cloud Private. This operating system
is installed into the Secure Service Container partition as a docker image during the
installation.

However, you must set up an x86 or Linux on Z server to host the master node. This node is
configured with one of the supported operating systems in the following list:

� Red Hat Enterprise Linux (RHEL) 7.3, 7.4, 7.5, 7.6 and 7.7

� Ubuntu 16.04 LTS and 18.04 LTS

� SUSE Linux Enterprise Server (SLES) 12 SP4, and 15

Note: For each worker node that runs on the Secure Service Container partition, you must
allocate as least 200 GB in the data pool (140 GB for the docker file system and 60 GB for
the root file system). See Hardware requirements and recommendations of IBM Cloud
Private for more details:
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/supported_system_co
nfig/hardware_reqs.html

For each Secure Service Container partition, you can use either SCSI or extended count
key data (IBM ECKD) disks as the storage subsystem. You can allocate 50 GB for the
appliance, and at least 200 GB distributed over one or more disks for the data pool.

Secure Service Container for IBM Cloud Private supports hostPath persistent volumes as
the storage solution. For more information about the hostPath volume, see hostPath:
https://kubernetes.io/docs/concepts/storage/#hostpath

Secure Service Container for IBM Cloud Private also supports GlusterFS as the persistent
volumes. You need to allocate at least 80 GB for each GlusterFS node. For more
information, see Deploying GlusterFS:
https://www.ibm.com/support/knowledgecenter/SSUPZ7_1.1.0.3/topics/deploy_gluste
rfs.html

Interface Layer 2 network Layer 3 network

Ethernet Yes Yes

VLAN Yes Yes

Bond Yes Yes
Chapter 3. Secure Service Container installation and configuration 73

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/supported_system_config/hardware_reqs.html
https://kubernetes.io/docs/concepts/storage/#hostpath
https://www.ibm.com/support/knowledgecenter/SSUPZ7_1.1.0.3/topics/deploy_glusterfs.html

3.3.5 Software requirements

You must invest in the following software infrastructure to run the Secure Service Container
for IBM Cloud Private solution:

� IBM Cloud Private

� IBM Secure Service Container for IBM Cloud Private, which you can get from IBM
Passport Advantage site. See 3.2.2, “Download the image” on page 71 for more details.

� Feature Code 0104 (Container Hosting Foundation), which is required by the IBM Secure
Service Container. It can be ordered on the IBM Z14, IBM LinuxONE Emperor II, and IBM
LinuxONE Rockerhopper II servers from the eConfig fulfillment system.

You can contact your sales representatives to obtain the required access to IBM Passport
Advantage site (Information provided earlier in this chapter) and eConfig system.

3.3.6 Supported Docker versions

The Docker release that is required by Secure Service Container for IBM Cloud Private is
identical to the requirements of IBM Cloud Private. See IBM Cloud Private Supported Docker
Versions for more details:
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/supported_system_confi
g/supported_docker.html

You must install one of supported Docker versions on the x86 server.
Note: The supported Kubernetes version for the master node is 1.11. The Docker/Kubernetes
environment on the Secure Service Container partition is configured during the installation of
Secure Service Container for IBM Cloud Private.

3.3.7 Supported IBM Cloud Private versions

The Secure Service Container for IBM Cloud Private solution is tested and developed on the
following IBM Cloud Private bundles. (Cloud Native is not available for these versions).

� 3.2.0
� 3.1.2
� 3.1.1

Note: Linux Unified Key Setup (LUKS) hardware encryption on the x86 or Linux on Z
server can protect the hardware from faulty access. When you install the Ubuntu onto the
x86 or Linux on Z server, select the Encrypt the new Ubuntu installation for Security
option to encrypt the hard disk.

Note: To install the IBM Cloud Private Community edition, the x86 or Linux on Z server
must have internet access to install the required docker images that are hosted on the
external site.

The installation packages of IBM Cloud Private Enterprise Edition can be acquired from
the IBM Passport Advantage site.

The code snippets or links to IBM Cloud Private documentation use Version 3.2.0 to
maintain consistency. You can also use a different supported version number or refer to its
documentation, as needed.
74 Implementation Guide for IBM Blockchain Platform for Multicloud

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/supported_system_config/supported_docker.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/supported_system_config/supported_docker.html

3.3.8 Required ports

The required ports of Secure Service Container for IBM Cloud Private are identical to the
ones for IBM Cloud Private. For more information, see Required ports at
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/supported_system_config/r
equired_ports.html.

3.3.9 Defining the lab environment

To build the SSC environment to install ICP, use information and table sheets in 1.4, “Our lab
environment” on page 12.

3.4 Deploying and configuring SSC for ICP in our lab
environment

This section describes the steps to deploy an IBM Blockchain Platform into an SSC partition
on a Linux on Z host system. Download the IBM Z Secure Service Container User's Guide at
https://www-01.ibm.com/support/docview.wss?uid=isg26ab9a15cbe12a81d85258194006e4a8
9. Some of the instructions are available in this publication.

Deployment consists of the following tasks:

� Create Secure Service Container Partition
� Install the Secure Service Container for IBM Cloud Private appliance
� Install the Secure Service Container for IBM Cloud Private CLI tool
� Install IBM Cloud Private Cluster

– Configure Secure Service Container storage
– Configure the appliance network
– Configure the network for worker and proxy nodes
– Configure the cluster resources
– Create the cluster nodes
– Configure the network on the master node

� Deploy IBM Cloud Private
� Deploy containerized applications

3.4.1 Creating Secure Service Container partitions

Configure and start a Secure Service Container partition with the boot option Secure Service
Container Installer selected. For additional instructions, see the following topics in IBM Z
Secure Service Container User's Guide
https://www-01.ibm.com/support/docview.wss?uid=isg26ab9a15cbe12a81d85258194006e4a89:

Refer to the following chapters for a standard mode system:

� Chapter 3 - Configuring a Secure Service Container partition on a standard mode system

� Chapter 4 - Starting a Secure Service Container partition on a standard mode system

Refer to the following chapters for a DPM-enabled system:

� Chapter 8 - Creating a Secure Service Container partition on a DPM-enabled system

� Chapter 9 - Starting a Secure Service Container partition on a DPM-enabled system
Chapter 3. Secure Service Container installation and configuration 75

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/supported_system_config/required_ports.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/supported_system_config/required_ports.html
https://www-01.ibm.com/support/docview.wss?uid=isg26ab9a15cbe12a81d85258194006e4a89
https://www-01.ibm.com/support/docview.wss?uid=isg26ab9a15cbe12a81d85258194006e4a89
https://www-01.ibm.com/support/docview.wss?uid=isg26ab9a15cbe12a81d85258194006e4a89

The following are the screen captures for the SSC partition that we created in our lab
environment:

Figure 3-3 Customize/delete Image Profiles window

Note: Write down the following values that are specified in the image profile (standard
mode system) or the partition definition (DPM-enabled system) for the Secure Service
Container partition when you configure the Secure Service Container. You need them
when you configure the appliance network and create cluster nodes.

� Master user ID
� Master password
� IP address
76 Implementation Guide for IBM Blockchain Platform for Multicloud

Figure 3-4 General SSC profile information

Figure 3-5 SSC profile login information
Chapter 3. Secure Service Container installation and configuration 77

Figure 3-6 SSC profile network information

3.4.2 Installing the Secure Service Container for IBM Cloud Private appliance

The Secure Service Container for IBM Cloud Private is a type of software appliance.
Therefore, you need to Install the appliance in the Secure Service Container partition as a
new software appliance. For instructions, see the following topic in IBM Z Secure Service
Container User's Guide at
https://www-01.ibm.com/support/docview.wss?uid=isg26ab9a15cbe12a81d85258194006e4a8
9:

See Chapter 13 - Installing a new software appliance in a Secure Service Container partition

For our lab environment, the installation disk is 0.0.313F.

Follow these steps in Chapter 13 of IBM Z Secure Service Container User's Guide at
https://www-01.ibm.com/support/docview.wss?uid=isg26ab9a15cbe12a81d85258194006e4a8
9.

1. Connect to the Secure Service Container installer (https://9.16.27.18) through the
Chrome or Firefox browsers.

2. On the login page, enter the master user ID and password values that are defined in the
image LPAR profile.

3. On the main page, click the plus (+) icon to install image files from local media. The page
that is displayed changes to the Install Software Appliance page.

Note: You can specify only one disk (either DASD or FCP) during the appliance installation
stage. Before you start the installation, ensure that you have the disks available.
78 Implementation Guide for IBM Blockchain Platform for Multicloud

https://www-01.ibm.com/support/docview.wss?uid=isg26ab9a15cbe12a81d85258194006e4a89
https://www-01.ibm.com/support/docview.wss?uid=isg26ab9a15cbe12a81d85258194006e4a89
https://www-01.ibm.com/support/docview.wss?uid=isg26ab9a15cbe12a81d85258194006e4a89
https://www-01.ibm.com/support/docview.wss?uid=isg26ab9a15cbe12a81d85258194006e4a89

4. On the Install Software Appliance page, complete the fields as shown in Figure 3-7 on
page 79.
a. Select Upload image to target disk.
b. Under Local Installation Image, click Browse and navigate to the location where you

downloaded the software appliance on our local disk. Then, select the software
appliance image and click Open. The Image Details section is populated with the
information about the selected software appliance.

c. Under Target Disk on Server, select FICON DASD as the device type. Then, click the
down arrow in the Disk field to display a list of available disks on the server. Type
0.0.3f3F in the text box, which is the disk address where the appliance image will be
installed.

d. Then, click Apply to upload the software appliance image to the target disk on the
server.

Figure 3-7 Uploading the software appliance image

A confirmation dialog box is displayed, as shown in Figure 3-8.

e. In the confirmation dialog box, complete the following steps.
i. Click Reboot to have the installer automatically reactivate the partition.
ii. Click Yes to continue with the installation.
Chapter 3. Secure Service Container installation and configuration 79

Figure 3-8 Confirmation dialog page

Figure 3-9 on page 80 shows a message that the image is being uploaded.

Figure 3-9 Uploading the image

f. The Secure Service Container installer uploaded the appliance image to the target
disk, and rebooted the partition to load the appliance on the 0.0.313F disk.

g. To confirm that appliance was installed, we accessed the appliance through a web
browser.

3.4.3 Installing the Secure Service Container for IBM Cloud Private CLI tool

IBM Secure Service Container for IBM Cloud Private is a secure node infrastructure that is
deployed on IBM Secure Service Container of LinuxONE. The product has a REST API layer
for creating nodes/isolated virtual machines (VMs) that can become the cluster nodes for IBM
Cloud Private after it is installed.

The Secure Service Container for IBM Cloud Private command line interface (CLI) tool
automates the infrastructure setup by creating all the necessary cluster nodes/isolated VMs.
The tool also provisions them with appropriate network, storage, CPU, memory resources.

The CLI tool configuration and installation is the prerequisite for an IBM Cloud Private
installation on the Secure Service Container for IBM Cloud Private environment.

On Linux on Z server, we completed the following steps.
80 Implementation Guide for IBM Blockchain Platform for Multicloud

1. Log in as a root user, and install the jq1 and network-manager2 utilities. See the
commands in Example 3-1.

Example 3-1 Installing jq and network-manager utilities

#Our Linux on Z is Redhat, And we ran:
yum install -y network-manager-applet
wget https://github.com/stedolan/jq/releases/download/jq-1.5/jq-1.5.tar.gz
gunzip -d jq-1.5.tar.gz
tar -xvf jq-1.5.tar
cd jq-1.5/
./configure --disable-maintainer-mode
make
make install

2. Navigate to the installation directory and extract the Secure Service Container for IBM
Cloud Private archive file as in Downloading Secure Service Container for IBM Cloud
Private. Then, install the docker image of the command line tool as shown in Example 3-2.

Example 3-2 Entered into installation directory and installing the docker image

cd /opt/blockchain/
docker load < ssc4icp-cli-installer.docker-image.tar

3. Downloaded configuration templates to the Linux on Z server by using the command listed
in Example 3-3. After the command was completed, a config directory was created with a
hosts and ssc4icp-config.yaml files. These files are using default values and they need
an update. These changes are shown in Section 3.5, “Installing IBM Cloud Private cluster”
section.

Example 3-3 Downloading the configuration templates file for the Linux on Z server

docker run --network=host --rm -v $(pwd):/data
ibmzcontainers/ssc4icp-cli-installer:1.1.0.3 cp -r config /data

4. Copy the isolated VM archive file ICPIsolatedvm.tar.gz to /opt/blockchain/config
folder. You need to copy it from where you extract the installation archive file. Keep in mind
that the CLI tool uses the isolated VM archive to create cluster nodes on the SSC partition.

3.5 Installing IBM Cloud Private cluster

The following steps were required to set up an IBM Cloud Private environment to deploy and
manage dockerized applications in our lab environment.

3.5.1 Configuring Secure Service Container storage

We used the following procedure to make resources such as storage devices and network
connections that are assigned to the Secure Service Container partition available in the
Secure Service Container for IBM Cloud Private. Keep in mind that these resources can then
be used by the containerized applications that run on worker nodes inside the Secure Service
Container.

1. To match the disk space requirements of the containerized application, we added storage
disks to the Logical Volume (LV) Data Pool Appliance Data, which is provided by the

1 https://stedolan.github.io/jq/
2 https://wiki.gnome.org/Projects/NetworkManager
Chapter 3. Secure Service Container installation and configuration 81

Secure Service Container. For additional instructions, see the following topic in IBM Z
Secure Service Container User's Guide at
https://www-01.ibm.com/support/docview.wss?uid=isg26ab9a15cbe12a81d85258194006e
4a89.
– Chapter 14, "Using the Secure Service Container user interface", section "Viewing and

managing storage resources"

For our SSC partition, we added 13 FICON DASD disks (model 54) as shown in
Figure 3-10.

Figure 3-10 Storage allocation using SSC

3.5.2 Configuring the appliance network

We can configure the network devices for the Secure Service Container for IBM Cloud Private
appliance by using the Secure Service Container user interface. The cluster nodes on the
Secure Service Container partitions communicate through the Ethernet-type or VLAN-type
connections over the network devices that are bound to Open Systems Adapter-Express
(OSA-Express) devices.

Tips:

� You can configure the LV data pool size by using the REST API. See the Secure
Service Container for IBM Cloud Private System APIs for a full list of REST API
endpoints.

� For each worker or proxy node that runs on the Secure Service Container, you must
allocate at least 200 GB for the data pool. So, we added more than 400 GB.
82 Implementation Guide for IBM Blockchain Platform for Multicloud

https://www-01.ibm.com/support/docview.wss?uid=isg26ab9a15cbe12a81d85258194006e4a89
https://www-01.ibm.com/support/docview.wss?uid=isg26ab9a15cbe12a81d85258194006e4a89

In our environment, we have both worker and proxy nodes on one Secure Service Container
partition. Therefore, we configured two network devices with one for internal communication
among the cluster nodes, and another for external access through the proxy node. We can
configure one network device to each of the OSA-Express devices on the Secure Service
Container partitions, or multiple network devices on one OSA-Express device.

We completed the following steps to configure the network devices.

1. Connect to the Secure Service Container partition (https://9.16.27.18) through the
browser of your choice, Chrome or Firefox (Safari is not supported).

2. On the Login page, enter the master use ID and password values that you supplied in the
image profile, and click Login.

Figure 3-11 Connecting to SSC partition

3. In the navigation pane, click the Network icon to display the network connections page.
Chapter 3. Secure Service Container installation and configuration 83

Figure 3-12 SSC network connections

4. Click the plus (+) icon to add a connection for chpid E2 and use device address 0b53. For
example, enccw0.0.0b53 is the network device name. After that, select the B53 network
device.

Figure 3-13 Adding the B53 OSA card

5. After you click Add, the device is added to the SSC partition. See Figure 3-14.
84 Implementation Guide for IBM Blockchain Platform for Multicloud

Figure 3-14 Listing all network connections

We have the two network devices to configure the cluster resources. The following list
gives some information about each device.

� vlan00b90.2309
A VLAN-type connection for vlan number 2309. We use this device for external cluster
communication and to allow connection to our appliance via 9.16.27.18.

� encb53
An ethernet-type connection that we use for internal cluster communication
(192.168.0.x/24).

Additional information about how to add network connections is shown here, in case you
need to add new network devices to the SSC partition.

� For an ethernet-type connection:

a. Click the plus (+) icon to add a connection, and then select Ethernet as the connection
type.

b. Select a new network device from the drop-down list. Ensure that the CHPID in the
Device Details section is different from the one in step 4. For example, the network
device name is encf700, and the CHPID is AB.

c. Use the default value for the Port field, and set the connection state to Active.

� For a VLAN-type connection:

Ensure that your OSA device is tagged with a VLAN ID (for example, 1121) and the OSA
device is connected to the trunk port of the switch.

a. Click the plus (+) icon to add a connection, and then select VLAN as the connection
type.

b. Select a parent device (also known as a tagged OSA device) from the drop-down list. If
the parent device is not available, click the plus (+) icon to create a parent device. For
example, the parent device name is encf300.

c. Enter the VLAN ID by which the OSA device is tagged, for example, 1121.

d. Use the auto-generated connection name, for example, vxlan0f300.1121.
Chapter 3. Secure Service Container installation and configuration 85

e. If the DHCP is not configured in your network, select the Manual checkbox on the
IPv4 tab, and assign an appropriate IP address according to your network.

f. Set the connection state on the General tab to Active.

g. Click ADD to save the changes.

For more information, see the following topic in IBM Z Secure Service Container User's
Guide, https://www-01.ibm.com/support/docview.wss?uid=isg26ab9a15cbe12a81d85258194006e4a89.

– Chapter 14, "Using the Secure Service Container user interface", section "Viewing and
managing network connections".

3.5.3 Configuring the cluster resources

Before starting creation of clusters, you must define the resource specifications for each node
on the Secure Service Container partitions. The resource specification includes the CPU
numbers, memory size, port range, and network settings.

On the Linux on Z server, we completed the following steps as a root user.

1. Go to the config directory (for example /opt/blockchain/config) where you extracted the
Secure Service Container for IBM Cloud Private archive file. Update the hosts file to
configure the password authentication for cluster nodes.

In the following example hosts file, the Master user ID in the login setting of the Secure
Service Container partition with IP address 9.16.27.19 was set to master and the Master
password to somesecurepassword.

Example 3-4 Sample of /opt/blockchain/config/hosts file

[master]
9.16.27.19 ansible_user="root" ansible_ssh_pass="somesecurepassword"
ansible_ssh_common_args="-oPubkeyAuthentication=no" ansible_become="true"
[worker]
9.16.27.18 rest_user="admin" rest_pass="ssc_master_password"

– The [master] section contains Linux on Z server details with IP address, username,
password for IBM Cloud Private master installation.

– The [worker] section contains Secure Service Container partition IP address,
username, and password for the zAppliance REST API. Keep in mind that if you use
different Secure Service Container partitions to host the worker or proxy nodes, you
must list each partition under the [worker] section. The zAppliance REST API
username rest_user and password rest_pass values are the user ID and password
used to log in to the Secure Service Container partition and UI. This values are initially
set in the login setting of the Secure Service Container partition as:
• Master user ID

Notes:

� Repeat all the steps on each Secure Service Container partition that will be used to
host the cluster nodes.

� Record the network device name that will be used for internal communications
among the cluster nodes, or by the proxy node for external access. You will use
those values for the parent parameter in the ssc4icp-config.yaml file. For more
information, see Configuring the cluster resources:
https://www.ibm.com/support/knowledgecenter/en/SSUPZ7_1.1.0.3/topics/conf
igure_cluster_resources.html
86 Implementation Guide for IBM Blockchain Platform for Multicloud

https://www-01.ibm.com/support/docview.wss?uid=isg26ab9a15cbe12a81d85258194006e4a89
https://www.ibm.com/support/knowledgecenter/en/SSUPZ7_1.1.0.3/topics/configure_cluster_resources.html
https://www.ibm.com/support/knowledgecenter/en/SSUPZ7_1.1.0.3/topics/configure_cluster_resources.html

• Master password

2. Create the ssc4icp-config.yaml file to configure the nodes on the Secure Service
Container partition with required CPU, memory, port range, and network specifications
with values of our lab. See Example 3-5.

The ssc4icp-config.yaml file (Example 3-5) shows that one cluster DemoCluster
contains these nodes:

– One worker node with resources specified in the template1 on the Secure Service
Container partition with an IP address 9.16.27.18.

– One proxy node with resources specified in the template2 on the same Secure Service
Container partition.
See the ssc4icp-config.yaml file that we used in our cluster configuration.

3. Remember to use the information in section 1.4, “Our lab environment” on page 12 to
build the file.

Example 3-5 Sample of ssc4icp-config.yaml file for our lab environment

cluster:
 name: "DemoCluster"
 masterconfig:
 internal_ips: ['192.168.0.251']
 subnet: "192.168.0.0/24"

LPARS:
 - ipaddress: '9.16.27.18'
 containers:
 - template: "template1"
 count: 1
 internal_ips: ['192.168.0.253']

 - ipaddress: '9.16.27.18'
 containers:
 - template: "template2"
 count: 1
 internal_ips: ['192.168.0.254']
 proxy_external_ips: ['9.16.27.25']

template1:
 name: "worker1"
 type: "WORKER"
 # cpu defined by Number of threads
 cpu: "2"
 # Memory in MB
 memory: "4098"
 port_range: '15000'
 root_storage: "50G"
 icp_storage: "140G"
 internal_network:
 subnet: "192.168.0.0/24"
 gateway: "192.168.0.1"
 parent: "encb53"

template2:
 name: "proxy1"
 type: "PROXY"
Chapter 3. Secure Service Container installation and configuration 87

 # cpu defined by Number of threads
 cpu: "2"
 # Memory in MB
 memory: "4096"
 port_range: '16000'
 root_storage: "50G"
 icp_storage: "140G"
 internal_network:
 subnet: "192.168.0.0/24"
 gateway: "192.168.0.1"
 parent: "encb53"
 proxy_external_network:
 subnet: "9.16.27.0/24"
 gateway: "9.16.27.1"
 parent: "vlan00b90.2309"

Table 3-2 describes each parameter of the ssc4icp-config.yaml file.

Table 3-2 Parameters description for ssc4icp-conf.yaml file

Parameter Description

datapool Defines that the quotagroup still exists after the containers are deleted.
If the value is not set for the datapool parameter, the CLI deletes
quotagroup after the uninstallation. Notice that we did not define any
datapool. However, description is here in case you need to set up it.

masterconfig Defines the network configurations for the master node.

internal_ips Defines an array of IP addresses for each worker and proxy node.

proxy_external_ips Defines an external IP addresses for the proxy node. The external
workloads can use the value of proxy_external_network_ip to access
the proxy node.

count Defines the number of nodes that will be created on the partition. Note
that the value of count is an integer and can not be enclosed by using
the quotation marks.

cpu Defines the number of CPU cores to be assigned for the node.

memory Defines the memory size (in MB) to be assigned for the node.

type Defines the type of node to be created by the CLI tool. The value must
be WORKER, PROXY, or STORAGE

name Defines the name of the proxy or worker node. The maximum length of
a node name is 20 characters.

internal_network Defines the subnet, gateway, and parent network interface settings of
the worker or proxy node.

proxy_external_network Defines the external subnet, gateway, and parent network interface
settings of the proxy node.

parent Defines the parent network device name that data traffic will physically
go through on the node.

port_range Defines the starting port number on each Secure Service Container
partition to be assigned to each node.
88 Implementation Guide for IBM Blockchain Platform for Multicloud

3.5.4 Creating the cluster nodes

We used the Secure Service Container for IBM Cloud Private command line interface (CLI)
tool to create all the necessary cluster nodes and provision them with appropriate network,
storage, CPU, memory resources.

The CLI tool configuration and installation is the prerequisite for IBM Cloud Private installation
on the Secure Service Container for IBM Cloud Private environment.

We completed the following steps as a root user on the Linux on Z server (master node):

1. Run the command line tool to create the cluster nodes.
You must run in the parent directory of the config directory, for example, /opt/blockchain.

docker run --network=host --rm -it -v
$(pwd)/config:/ssc4icp-cli-installer/config
ibmzcontainers/ssc4icp-cli-installer:1.1.0.3 install

After the installation is complete, the following directories and files are created under the
config directory (/opt/blockchain/config) for future reference and use. See Table 3-3.

Table 3-3 List of directories and files created by the ssc4icp installer

root_storage Defines the size of storage (G for GB or M for MB) allocated to the root
file system. It must be set to at least what is required by IBM Cloud
Private. IBM Cloud Private requires storage under the root file system
that is used to store temporary files during the installation. For
example, IBM Cloud Private 3.2.0 requires 50 GB under the root file
system. Therefore, the root_storage parameter must be set to 50 GB
plus an adequate buffer for the operating system on the node itself.

icp_storage Defines the size of the storage (G for GB or M for MB) allocated to the
IBM Cloud Private node runtime. It must be set to at least the sum of
the directory sizes used by a node at runtime, as specified by the IBM
Cloud Private system requirements. For example, based on IBM Cloud
Private 3.2.0 system requirements, a node requires at runtime:
� at least 100 GB under /var/lib/docker
� at least 10 GB under /var/lib/kubelet
Therefore, the icp_storage parameter must be set to 110 GB plus an
adequate buffer to run custom Kubernetes applications. The default
value is 140 GB.

Parameter Description

File/Directory name Description

Logs A directory that contains logs for all operations being performed

Cluster-status.yaml A file that is used to capture the current status of installation
Chapter 3. Secure Service Container installation and configuration 89

The following cluster-configuration.yaml example file (Example 3-6 on page 90) was
generated based on the cluster configuration that is specified in our ssc4icp-config.yaml file.

Example 3-6 Output of /opt/blockchain/config/DemoCluster/cluster-configuration.yaml file

LPARS:
- containers:
 - cpu: '2'
 icp_storage: 140000M
 internal_network:
 gateway: 192.168.0.1
 ip: 192.168.0.253
 parent: encb53
 subnet: 192.168.0.0/24
 memory: '4098'
 name: worker1-15001
 port: '15001'
 root_storage: 50000M
 ipaddress: 9.16.27.18
- containers:
 - cpu: '2'
 icp_storage: 140000M
 internal_network:
 gateway: 192.168.0.1
 ip: 192.168.0.254
 parent: encb53
 subnet: 192.168.0.0/24
 memory: '4096'
 name: proxy1-16001
 port: '16001'
 proxy_external_network:
 gateway: 9.16.27.1

DemoCluster A directory with your cluster name that contains the following files
for the cluster:
cluster-configuration.yaml - A file indicates that the cluster
configurations in the ssc4icp-config.yaml file are applied
successfully.
quotagroup-symlink.yaml - A file contains details of storage
containers, quotagroups and device names if you specify
GlusterFS configurations in the ssc4icp-config.yaml file. For more
information, see Deploying GlusterFS.
ipsec.conf - A file that contains the network topology of the
cluster.
ipsec.secret - A file that contains a randomly generated
Pre-Shared-Key (PSK) that will be used as an authorization token
to the IPSec network.
An ssh key pair ssh_key and ssh_key.pub files that provide SSH
access for the IBM Cloud Private installer to all the cluster nodes.
In order for the IBM Cloud Private installer to access your master
or boot node over SSH and also to use the generated SSH key,
you must follow the instructions in the Before you begin section of
Deploying IBM Cloud Private:
https://www.ibm.com/support/knowledgecenter/en/SSUPZ7_1.1
.0.3/topics/install_icp.html

File/Directory name Description
90 Implementation Guide for IBM Blockchain Platform for Multicloud

https://www.ibm.com/support/knowledgecenter/en/SSUPZ7_1.1.0.3/topics/install_icp.html
https://www.ibm.com/support/knowledgecenter/en/SSUPZ7_1.1.0.3/topics/install_icp.html

 ip: 9.16.27.25
 parent: vlan00b90.2309
 subnet: 9.16.27.0/24
 root_storage: 50000M
 ipaddress: 9.16.27.18
cluster:
 ipsecsecrets:
KjOrL+/az8yN3rEeqLP9mgzTUYI38x6qMFZk1DU9cqiz8lXzbS5NYGNnplQoyl/kY/1kFuqs9M3RlkrFfQ
rBtQ==
 masterconfig:
 internal_ips:
 - 192.168.0.251
 subnet: 192.168.0.0/24
 name: DemoCluster
 repoid: ICPIsolatedvm

Verify the containers status by using the following instructions. The containers for IBM
Cloud Private cluster will be displayed and you will be able to see the status of each
container.

a. Create a get_containers.sh file under your installation folder (/opt/blockchain) with
the content that is listed in Example 3-33.

Example 3-7 Sample of get_containers.sh script

#!/bin/bash
<emarins@br.ibm.com>

if ["$1" != ""]; then
USERNAME=$1

else
echo 'What is the SSC user admin name? (ie. admin)'
read option
USERNAME="$option"

fi

if ["$2" != ""]; then
 PASSWORD=$2
else

echo 'What is the SSC admin password?'

Notes:

� The generated directories and files must not be deleted because the uninstallation
procedure needs to validate those files when you reset the environment. It is
recommended that you back them up after cluster installation.

� The private key ssh_key must be protected because it provides SSH access to all of the
cluster nodes. Only the system administrator who will install the IBM Cloud Private can
have the access privilege to the ssh_key file.

� If you run the command line tool again with a same cluster name but different
configurations, you must delete the config/<ClusterName> directory first.

� The ipsec.secrets file contains the IPSec key that is generated by the command line
tool, and is used when creating the network configuration for each node. You can use
LUKS (Linux Unified Key Setup) hardware encryption to protect the key from access
other than the root user on Linux on Z server.
Chapter 3. Secure Service Container installation and configuration 91

read -s option
PASSWORD="$option"
printf "%s\n" "${PASSWORD//?/*}"

fi

if ["$3" != ""]; then
 server=$3
else

echo 'What is the SSC IP address or FQDN?'
read option
server="$option"

fi

Getting Token
token=$(curl --request POST --url
https://$server/api/com.ibm.zaci.system/api-tokens -H 'accept:
application/vnd.ibm.zaci.payload+json' -H 'cache-control: no-cache' -H
'content-type: application/vnd.ibm.zaci.payload+json;version=1.0' -H 'zaci-api:
com.ibm.zaci.system/1.0' --insecure --data '{ "kind" : "request", "parameters"
: { "user" : "'$USERNAME'", "password" : "'$PASSWORD'" } }' 2>/dev/null |
python -m json.tool |grep token | awk -F\: '{print $2}'|tr -d \" |tr -d
[:blank:])

if [$(echo $token|wc -c) -eq 210]; then
echo
#echo "Token is valid"

else
echo "Invalid Token. Exiting..."
exit 1

fi

sleep 1s

output=$(curl --silent -k -X GET "https://$server/api/com.ibm.zaas/containers"
-H "accept: application/vnd.ibm.zaci.payload+json" -H "zACI-API:
com.ibm.zaci.system/1.0" -H "Content-Type:
application/vnd.ibm.zaci.payload+json;version=1.0" -H "Authorization: Bearer
$token")

#echo $output | python -m json.tool

containers=$(echo $output | python -m json.tool |grep -A1 Names |grep \/|tr -d
\" |tr -d \/)
#echo $containers

echo "--"
for container in $containers;
do

echo "Container: $container"
echo "--"
output=$(curl --silent -k -X GET

"https://$server/api/com.ibm.zaas/containers/$container" -H "accept:
application/vnd.ibm.zaci.payload+json" -H "Authorization: Bearer $token" -H
"zACI-API: com.ibm.zaci.system/1.0" -H "Content-Type:
application/vnd.ibm.zaci.payload+json;version=1.0")
92 Implementation Guide for IBM Blockchain Platform for Multicloud

echo $output | python -m json.tool | egrep "IPv4Address|Status" |grep -v
SecondaryIPAddresses|tr -d \" | sed -e 's/^[[:space:]]*//g' -e
's/[[:space:]]*\$//g' |tr -d \,

echo "--"
echo
sleep 1s

done

b. Change permission for this script by using the following command to allow users to
execute it: chmod +x /opt/blockchain/get_containers.sh

c. Now, issue the script to get the status of the containers and IP address information.
See output in Example 3-34.

To execute this script, you need to provide the information about the SSC admin name,
SSC password and the SSC IP address. This script uses Secure Service Container
system APIs to authenticate and get the information about the containers.

Syntax of the script is get_containers.sh <SSC_ADMIN> <SSC_PASSWORD> <SSC_IP>.
Example 3-8 is an example of the command.

Example 3-8 Getting information about the containers

[root@ssc4icp-master blockchain]# /opt/blockchain/get_containers.sh admin
password 9.16.27.18

Container: worker1-15001
--
IPv4Address: 192.168.0.253
Status: running
Status: Up 13 hours
--

Container: proxy1-16001
--
IPv4Address: 9.16.27.25
IPv4Address: 192.168.0.254
Status: running
Status: Up 13 hours
--

[root@ssc4icp-master blockchain]#

3.5.5 Configuring the network on the master node

You need to configure the network on Linux on Z server to ensure that the master node is
connected with other cluster nodes on the LinuxONE system.

Before you deploy the SSC containers, ensure that the network interfaces (NIC) and IP
addresses are correctly configured and that IPs can be pinged from your master node. If you
do not know how to set it up, refer to
https://www.ibm.com/support/knowledgecenter/en/SSUPZ7_1.1.0.3/topics/configure_net
work_master.html.

The IPSec must be installed and configured to allow the communication with the worker and
proxy nodes that are running on the SSC partition. The IPSec ensures that the data traffic
within the network is encrypted. IPSec can operate in two different modes: transport or tunnel.
The transport mode is sufficient for encryption of the provided IP traffic. To configure IPSec,
Chapter 3. Secure Service Container installation and configuration 93

https://www.ibm.com/support/knowledgecenter/en/SSUPZ7_1.1.0.3/topics/configure_network_master.html
https://www.ibm.com/support/knowledgecenter/en/SSUPZ7_1.1.0.3/topics/configure_network_master.html

you must ensure that the strongSwan daemon is installed. See strongSwan
https://strongswan.org for more details.

To install strongSwan on our Redhat Linux on Z server (master node), follow these steps:

For Redhat on IBM Z
1. Download the strongswan source package and build the binary on the LinuxONE system.

Example 3-9 Compiling and installing strongswan package on Redhat

yum install gmp-devel
wget http://download.strongswan.org/strongswan-5.6.2.tar.bz2
tar xjvf strongswan-5.6.2.tar.bz2
cd strongswan-5.6.2/
./configure --prefix=/usr --sysconfdir=/etc
make
make install
ipsec version
ipsec start

For other distributions
Refer to
https://www.ibm.com/support/knowledgecenter/en/SSUPZ7_1.1.0.3/topics/configure_net
work_master.html or strongSwan’s manual for additional details.

Assuming that network IP addresses and network settings are in place, execute the following
steps to complete the pre-setup steps for ICP installation:

1. Copy the following two files into the /etc directory as shown in Example 3-10. Those two
files are generated in the config/<ClusterName> directory after the Secure Service
Container for IBM Cloud Private CLI tool is installed.

– config/<ClusterName>/ipsec.conf
This file contains the network topology of the cluster.

– config/<ClusterName>/ipsec.secret
This file contains a randomly generated Pre-Shared-Key (PSK) that is be used as an
authorization token to the IPSec network.

Example 3-10 Copying the ipsec files to /etc/

cp -a /opt/blockchain/config/DemoCluster/ipsec* /etc/

2. Start the strongSwan daemon to apply the changes by using the systemctl strongswan
restart command. Also, remember to make configuration persistent by issuing this
command:
systemctl enable strongswan

Note: You might experience network connectivity problems when using the strongswan
5.6.2 with Redhat 7 as the master node on IBM Z because of this known issue Using /32
groups in ipsec causing leaks https://access.redhat.com/solutions/4251881.
To work around the problem, create a cron job to run the ipsec restart command every 30
minutes on the master node.

For information on how to build the strongSwan package, see strongSwan Installation
Documentation at
https://wiki.strongswan.org/projects/strongswan/wiki/InstallationDocumentation.
94 Implementation Guide for IBM Blockchain Platform for Multicloud

https://strongswan.org
https://www.ibm.com/links?url=https%3A%2F%2Faccess.redhat.com%2Fsolutions%2F4251881
https://www.ibm.com/links?url=https%3A%2F%2Faccess.redhat.com%2Fsolutions%2F4251881
https://www.ibm.com/support/knowledgecenter/en/SSUPZ7_1.1.0.3/topics/configure_network_master.html
https://www.ibm.com/support/knowledgecenter/en/SSUPZ7_1.1.0.3/topics/configure_network_master.html
https://wiki.strongswan.org/projects/strongswan/wiki/InstallationDocumentation

3. Test the internal and external connection to each cluster node on the LinuxONE system by
using the ping command as can be seen in Example 3-11.

Example 3-11 Verifying if IPs are reachable from master node

[root@ssc4icp-master ~]# ping -c2 192.168.0.253
PING 192.168.0.253 (192.168.0.253) 56(84) bytes of data.
64 bytes from 192.168.0.253: icmp_seq=1 ttl=64 time=0.388 ms
64 bytes from 192.168.0.253: icmp_seq=2 ttl=64 time=0.516 ms

--- 192.168.0.253 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.388/0.452/0.516/0.064 ms
[root@ssc4icp-master ~]# ping -c2 192.168.0.254
PING 192.168.0.254 (192.168.0.254) 56(84) bytes of data.
64 bytes from 192.168.0.254: icmp_seq=1 ttl=64 time=0.399 ms
64 bytes from 192.168.0.254: icmp_seq=2 ttl=64 time=0.430 ms

--- 192.168.0.254 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.399/0.414/0.430/0.025 ms
[root@ssc4icp-master ~]# ping -c2 9.16.27.25
PING 9.16.27.25 (9.16.27.25) 56(84) bytes of data.
64 bytes from 9.16.27.25: icmp_seq=1 ttl=64 time=1.08 ms
64 bytes from 9.16.27.25: icmp_seq=2 ttl=64 time=0.478 ms

--- 9.16.27.25 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 0.478/0.783/1.089/0.306 ms
[root@ssc4icp-master ~]#

You can use ipsec status command to verify the status of ipsec connections for the internal
IP addresses (Example 3-12).

Example 3-12 Checking ipsec status

[root@ssc4icp-master ~]# ipsec status
Routed Connections:
main192.168.0.251{1}: ROUTED, TRANSPORT, reqid 1
main192.168.0.251{1}: 192.168.0.0/24 === 192.168.0.0/24
Security Associations (2 up, 0 connecting):
main192.168.0.251[40]: ESTABLISHED 26 minutes ago,
192.168.0.251[192.168.0.251]...192.168.0.254[192.168.0.254]
main192.168.0.251{90}: INSTALLED, TRANSPORT, reqid 1, ESP SPIs: c06be3c1_i
c1951f88_o, IPCOMP CPIs: e8e4_i d980_o
main192.168.0.251{90}: 192.168.0.251/32 === 192.168.0.254/32
main192.168.0.251[38]: ESTABLISHED 47 minutes ago,
192.168.0.251[192.168.0.251]...192.168.0.253[192.168.0.253]
main192.168.0.251{91}: INSTALLED, TRANSPORT, reqid 1, ESP SPIs: cbc344b7_i
ca4bb55f_o, IPCOMP CPIs: e04c_i 6998_o
main192.168.0.251{91}: 192.168.0.251/32 === 192.168.0.253/32
[root@ssc4icp-master ~]#
Chapter 3. Secure Service Container installation and configuration 95

Additional information about the Linux on Z server
To allow the Linux server to communicate to the SSC containers (worker, proxy, and storage
nodes), we defined the following configuration in the Linux on Z master node and z/VM user
directory for the Linux instance. Remember that the device names and IP addresses might
need to change to fit your environment.

The VM directory
As server is running on z/VM environment, we defined the VM user ID to have the required
network devices for the cluster connections.

� 1F00, 1F01, and 1F02 virtual devices are using devices on chpid E2 (0B53, 0B54, and
0B55) that are in the same channel where the SSC partition was defined.

� 1000 is the virtual interface that is attached to the external network, and this device is
configured to couple to the network using VLAN 2309.

In Figure 3-15, see the text that is highlighted in bold under the virtual network devices that
are defined to the Linux on Z server.

Figure 3-15 Sample for the VM user ID directory for the Linux on Z master node

Linux network configuration files for the Linux on Z server
The Example 3-13 shows the Linux configuration files that are used to set up our
environment.

Example 3-13 Linux configuration files

[root@ssc4icp-master ~]# cat /etc/sysconfig/network-scripts/ifcfg-enccw0.0.1000
DEVICE=enccw0.0.1000
UUID=135203ac-2871-4b0c-ae48-a5793380a5dd
ONBOOT=yes

USER LNXLG001 DIRCOPY 16G 16G G 08192211
 INCLUDE DFLTLNX 08192211
 CPU 00 BASE 08192211
 CPU 01 08192211
 CPU 02 08192211
 CPU 03 08192211
 CPU 04 08192211
 CPU 05 08192211
 CPU 06 08192211
 CPU 07 08192211
 IPL CMS 08192211
 POSIXINFO UID 100754 08192211
 VMRELOCATE ON 08192211
 DEDICATE 1F00 0B53 08192211
 DEDICATE 1F01 0B54 08192211
 DEDICATE 1F02 0B55 08192211
 NICDEF 1000 TYPE QDIO LAN SYSTEM VSWITCHM 08192211
 NICDEF 1000 VLAN 2309 08192211
 MDISK 0100 3390 0001 30042 LXADE2 M 08192211
 MDISK 0500 3390 0001 60101 LXADE3 M 08192211
 MDISK 0300 3390 0001 60101 LXADE4 M 08192211
 MDISK 0301 3390 0001 60101 LXADE5 M 08192211
 MDISK 0302 3390 0001 60101 LXADDL M 08192211
 MDISK 0303 3390 0001 60101 LXADDM M 08192211
 MDISK 0501 3390 0001 60101 LXADDN M 08192211
 MDISK 0502 3390 0001 60101 LXLNGJ M 08192211
*DVHOPT LNK0 LOG1 RCM1 SMS0 NPW1 LNGAMENG PWC20190815 CRC N 08200002
96 Implementation Guide for IBM Blockchain Platform for Multicloud

BOOTPROTO=static
MTU=1500
SUBCHANNELS=0.0.1000,0.0.1001,0.0.1002
IPADDR=9.16.27.19
NETMASK=255.255.255.0
BROADCAST=9.16.27.255
GATEWAY=9.16.27.1
DNS1=9.0.130.50
DNS="9.0.130.50"
DOMAIN="boulder.ibm.com"
NETTYPE=qeth
PORTNAME=FOOBAR
OPTIONS=''
ZONE=public
[root@ssc4icp-master ~]# cat /etc/sysconfig/network-scripts/ifcfg-enccw0.0.1f00
DEVICE=enccw0.0.1f00
ONBOOT=yes
BOOTPROTO=static
IPADDR=192.168.0.251
NETMASK=255.255.255.0
BROADCAST=192.168.0.255
#GATEWAY=192.168.0.1
DOMAIN="boulder.ibm.com"

To list the active network interfaces, issue the commands that are listed in Example 3-14. This
output contains several network information details, including the chpid number that might be
helpful to identify the physical port that is in use for the device.

Example 3-14 Listing Active network devices on the Master Node

[root@ssc4icp-master ~]# lsqeth
Device name : enccw0.0.1000

 card_type : VSWITCH: SYSTEM VSWITCHM (Type: QDIO)
 cdev0 : 0.0.1000

cdev1 : 0.0.1001
 cdev2 : 0.0.1002
 chpid : 00
 online : 1
 portname : FOOBAR
 portno : 0
 state : UP (LAN ONLINE)
 priority_queueing : always queue 2
 buffer_count : 64
 layer2 : 1
 isolation : none
 bridge_role : none
 bridge_state : inactive
 bridge_hostnotify : 0
 bridge_reflect_promisc : none

Device name : enccw0.0.1f00

 card_type : OSD_10GIG
 cdev0 : 0.0.1f00
Chapter 3. Secure Service Container installation and configuration 97

 cdev1 : 0.0.1f01
 cdev2 : 0.0.1f02
 chpid : E2
 online : 1
 portno : 0
 state : UP (LAN ONLINE)
 priority_queueing : always queue 2
 buffer_count : 64
 layer2 : 1
 isolation : none
 bridge_role : none
 bridge_state : inactive
 bridge_hostnotify : 0
 bridge_reflect_promisc : none
 switch_attrs : unknown

3.6 Deploying IBM Cloud Private

This section describes deployment of the IBM Cloud Private cluster to the cluster nodes on
Linux on Z server and Secure Service Container partitions. Notice that the Linux on Z server
is the master node and boot node for the IBM Cloud Private cluster.

The following steps can be used to define an IBM Cloud Private environment to deploy and
manage dockerized applications.

1. Create the required installation folder.

mkdir /opt/icp320/

2. Copy the ibm-cloud-private-s390x-3.2.0.gz image file to /opt/icp320.

3. From the installation directory (/opt/icp320), load the IBM Cloud Private archive file as
shown in Example 3-15.

Example 3-15 Loading Docker container images

[root@ssc4icp-master cluster]# tar xf ibm-cloud-private-s390x-3.2.0.tar.gz -O |
sudo docker load
Loaded image: ibmcom/icp-vip-manager-s390x:1.1
Loaded image: ibmcom/kafka-s390x:0.10.0.4
Loaded image: ibmcom/tiller-s390x:v2.12.3-icp-3.2.0
Loaded image: ibmcom/heketi-s390x:v8.0.0.1

Output snippet

Loaded image: ibmcom/istio-servicegraph-s390x:1.0.2
Loaded image: ibmcom/ma-file-wl-gen-s390x:3.2.0
Loaded image: ibmcom/metering-data-manager-s390x:3.2.0
Loaded image: ibmcom/compliance-annotator-s390x:3.2.0
Loaded image: ibmcom/cos-indexer-s390x:3.2.0
Loaded image: ibmcom/grafana-s390x:5.2.0-f3
Loaded image: ibmcom/kubectl-s390x:v1.13.5
[root@ssc4icp-master cluster]#
98 Implementation Guide for IBM Blockchain Platform for Multicloud

4. Extract the configuration files from the installer image by using the command in
Example 3-16.

Example 3-16 Extracting the configuration files from the installer image

sudo docker run -v $(pwd):/data -e LICENSE=accept \
ibmcom/icp-inception-s390x:3.2.0-ee \
cp -r cluster /data

5. Run the ls cluster command to confirm that the cluster folder was created.

6. Create the images directory under /opt/icp320/cluster folder:
mkdir /opt/icp320/cluster/images

7. Move the /opt/icp320/ibm-cloud-private-s390x-3.2.0.tar.gz image file to
/opt/icp320/cluster/images directory:
mv /opt/icp320/ibm-cloud-private-s390x-3.2.0.tar.gz /opt/icp320/cluster/images/

8. Copy the SSH private key ssh_key file for the cluster to the IBM Cloud Private installation
directory by running this command, where
/opt/<installation-directory>/config/<cluster_name>/ssh_key is the location of the
generated SSH private key for your cluster and /opt/icp320/cluster is the directory that is
configured for IBM Cloud Private installation:
cp -p /opt/blockchain/config/DemoCluster/ssh_key* /opt/icp320/cluster

9. Ensure that the new ssh_keys can be used to access the Linux master node
(192.168.0.251). We ran the command in Example 3-17 to authorize logins by using the
SSH keys.

Example 3-17 Authorizing the use of SSH_keys on Linux Master node

[root@ssc4icp-master cluster]# ssh-copy-id -i
/opt/blockchain/config/DemoCluster/ssh_key.pub root@192.168.0.251
/bin/ssh-copy-id: INFO: Source of key(s) to be installed:
"/opt/blockchain/config/DemoCluster/ssh_key.pub"
The authenticity of host '192.168.0.251 (192.168.0.251)' can't be established.
ECDSA key fingerprint is SHA256:hhlO+P8k6LaZ6EMRG5vwy/Ea9wGcZLJRtoi5r9hzu7Q.
ECDSA key fingerprint is MD5:75:3a:c2:12:39:ca:23:f7:5b:58:03:25:54:99:2a:13.
Are you sure you want to continue connecting (yes/no)? yes
/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out
any that are already installed
/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted
now it is to install the new keys

Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'root@192.168.0.251'"
and check to make sure that only the key(s) you wanted were added.

[root@ssc4icp-master cluster]#

Note: If you find problems with the installation of ICP, follow instructions on Installing an
IBM Cloud Private Enterprise environment. There, you find detailed information about the
ICP installation.

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/installing/install_
containers.html
Chapter 3. Secure Service Container installation and configuration 99

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/installing/install_containers.html?view=kc
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/installing/install_containers.html?view=kc
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/installing/install_containers.html

10.Before you start the installation, confirm communications between the Linux on Z master
node and the SSC containers. We used ssh commands that are listed in Example 3-18.

Example 3-18 Checking if communication with SSC containers are OK

Checking network connection with 192.168.0.254 (proxy node)

[root@ssc4icp-master ~]# ssh -i /opt/blockchain/config/DemoCluster/ssh_key
root@192.168.0.254 date
Sun Aug 18 14:37:08 UTC 2019

Now checking network connection with 192.168.0.253 (worker node)

[root@ssc4icp-master ~]# ssh -i /opt/blockchain/config/DemoCluster/ssh_key
root@192.168.0.253 date
Sun Aug 18 14:37:14 UTC 2019
[root@ssc4icp-master ~]#

11.Use commands in Example 3-19 to get hostnames for the proxy and work nodes that were
defined during the SSC installation. This information is required to perform the ICP
installation. (Optionally, you can configure skip_host_ip_check: true value pair in the
config.yaml file to skip checking IP addresses in the hosts file)

Example 3-19 Getting worker and proxy hostnames

[root@ssc4icp-master cluster]# ssh -i /opt/icp320/cluster/ssh_key
root@192.168.0.253 cat /etc/hostname
worker1-15001
[root@ssc4icp-master cluster]# ssh -i /opt/icp320/cluster/ssh_key
root@192.168.0.254 cat /etc/hostname
proxy1-16001

12.Connect through SSH to worker and proxy nodes by using the SSH key and update the
/etc/hosts entries as shown Example 3-20 below.

Example 3-20 Sample of /etc/hosts entries

192.168.0.251 ssc4icp-master
192.168.0.253 worker1-15001
192.168.0.254 proxy1-16001

13.To make the /etc/hosts updates easier, we recommend that you update the /etc/hosts file
on the master node server (192.168.0.251) first and then send it over the worker and
proxy nodes by using the two commands in Example 3-21.

Example 3-21 Updating /etc/hosts files on the worker and proxy nodes

[root@ssc4icp-master ~]# scp -i /opt/icp320/cluster/ssh_key /etc/hosts
root@192.168.0.253:/etc/
hosts
100% 497 204.0KB/s 00:00

root@ssc4icp-master ~]# scp -i /opt/icp320/cluster/ssh_key /etc/hosts
root@192.168.0.254:/etc/
hosts
100% 497 155.0KB/s 00:00
100 Implementation Guide for IBM Blockchain Platform for Multicloud

14.Update /opt/icp320/cluster/hosts file with the internal IPs for the master, worker, and
proxy node as shown in Example 3-22.

Example 3-22 Sample of /opt/icp320/cluster/hosts file

[master]
192.168.0.251

[worker]
192.168.0.253

[proxy]
192.168.0.254

#[management]
#4.4.4.4

#[va]
#5.5.5.5

15.Also, update /opt/icp320/cluster/config.yaml file with the modifications that are listed
in Example 3-23.

Example 3-23 config.yaml modifications

Remove the restriction for complex passwords
password_rules:
- '(.*)’

Advanced Settings
default_admin_user: admin
default_admin_password: abc12345

External loadbalancer IP or domain
Or floating IP in OpenStack environment
cluster_lb_address: none
cluster_lb_address: 9.16.27.19

External loadbalancer IP or domain
Or floating IP in OpenStack environment
proxy_lb_address: none
proxy_lb_address: 9.16.27.25

Install in firewall enabled mode
firewall_enabled: false
firewall_enabled: false

Calico Network Settings

Note: When you customize the IBM Cloud Private cluster, the value of the
cluster_lb_address parameter in the
<icp_installation_directory>/cluster/config.yaml file must be set to the public IP
address of master node that will be accessed. And the proxy_lb_address parameter must
be set to the public IP address of proxy node.
Chapter 3. Secure Service Container installation and configuration 101

Note that enccw0.0.1000 in the example is the device name of master node. You need to
replace ens7 with the actual name of the primary network device on the x86 or Linux on Z
server
calico_ipip_enabled: true
calico_tunnel_mtu: 1350
calico_ip_autodetection_method: interface=eth0,eth1,enccw0.0.1000

16.Run the following command to install ICP.

sudo docker run --net=host -t -e LICENSE=accept \
 -v "$(pwd)":/installer/cluster ibmcom/icp-inception-s390x:3.2.0-ee install

17.The installation takes some minutes (around 45 minutes) to complete. Your installation
might require more or less time, depending on the number of nodes and configurations
you selected. You receive the following output when the installation succeeds.

Figure 3-16 Sample of the Post Deploy message

18.Also, you can issue kubectl get nodes command to get information about the cluster
nodes as shown in Example 3-24.

Note: You need to update the password, IP addresses, and Calico Network interface to
match your environment.

TASK [kubectl-config : include_tasks]

TASK [k8s-resource : Finding all resource files]

ok: [192.168.0.251 -> localhost]

TASK [k8s-resource : Creating Kubernetes resources]

TASK [archive-addon : include_tasks]

PLAY RECAP

192.168.0.251 : ok=166 changed=94 unreachable=0 failed=0
192.168.0.253 : ok=92 changed=44 unreachable=0 failed=0
192.168.0.254 : ok=85 changed=38 unreachable=0 failed=0
localhost : ok=373 changed=195 unreachable=0 failed=0

POST DEPLOY MESSAGE
**

The Dashboard URL: https://9.16.27.19:8443, please use credentials in
config.yaml to login.

Playbook run took 0 days, 0 hours, 44 minutes, 37 seconds
102 Implementation Guide for IBM Blockchain Platform for Multicloud

Example 3-24 Output of kubectl get nodes command

[root@ssc4icp-master cluster]# kubectl get nodes
NAME STATUS ROLES AGE VERSION
192.168.0.251 Ready etcd,management,master 53m v1.13.5+icp-ee
192.168.0.253 Ready worker 37m v1.13.5+icp-ee
192.168.0.254 Ready proxy 37m v1.13.5+icp-ee

The 192.168.0.253 and 192.168.0.254 entries are container instances that run in the SSC
partition.

19.Access the dashboard URL to deploy your own blockchain workloads to the IBM Cloud
Private cluster. See dashboard screen in Figure 3-17.

Figure 3-17 ICP dashboard

3.6.1 Deploying containerized applications

To deploy your own workloads to the IBM Cloud Private cluster on LinuxONE system, you
need to install the bundled components into the IBM Cloud Private Catalog. Then, use Helm
charts for your applications.

Install the bundled components into the IBM Cloud Private catalog
See Installing bundled products at
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/installing/install_entitl
ed_workloads.html for more details. Each of the following bundled components is supported
by IBM Cloud Private on LinuxONE architecture, and is listed by its application category on
the IBM Cloud Private Catalog.

� Data Services
Chapter 3. Secure Service Container installation and configuration 103

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/installing/install_entitled_workloads.htm
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/installing/install_entitled_workloads.htm

� IBM Db2® Direct Advanced Edition 11.1 with Data Server Manager
� IBM Db2 Advanced Enterprise Server Ed. 11.1 with Data Server Manager
� IBM Db2 Warehouse Enterprise 2.0
� MongoDB
� PostgreSQL
� MariaDB
� Data Science and Business Analytics
� IBM Data Science Experience Local 1.1
� Toolchains & Runtimes
� IBM UrbanCode® Deploy
� Microclimate 18.03
� Jenkins
� IBM WebSphere® Liberty 17.0.0.4, 18.0.0.x
� IBM SDK for Node.js V6, V8
� Open Liberty
� Swift runtime
� Modernization Tools
� IBM Transformation Advisor 1.5.1
� Messaging
� IBM MQ Advanced 9.0 & v.next
� Rabbit MQ
� Digital Business Automation
� IBM Operational Decision Manager 8.9.2

Install your own components into the IBM Cloud Private Catalog by using Helm charts. For
more information, see IBM Cloud Private enablement guide for ISV and open source
software:
https://developer.ibm.com/linuxonpower/ibm-cloud-private-on-power/isv-guide/

3.7 Deploying GlusterFS on SSC ICP nodes

You can use GlusterFS storage either by deploying GlusterFS on your IBM Cloud Private
cluster nodes, or by integrating a GlusterFS storage cluster that is deployed outside the IBM
Cloud Private environment.

This section shows how to prepare dedicated nodes for a GlusterFS cluster in the Secure
Service Container (SSC) for IBM Cloud Private environment. Then, you can configure
GlusterFS during the IBM Cloud Private installation. For more information about how the
GlusterFS works, see GlusterFS.
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/manage_cluster/glusterfs_
land.html

Also, you have these configuration options for GlusterFS:

� Configure GlusterFS on worker nodes as described in Configuring GlusterFS during IBM
Cloud Private installation:
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/manage_cluster/configu
re_glusterfs_during.html

� Configure GlusterFS by using Helm charts or as an add-on service as in Configuring
GlusterFS after IBM Cloud Private installation:
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/manage_cluster/configu
re_glusterfs_after.html.
104 Implementation Guide for IBM Blockchain Platform for Multicloud

https://developer.ibm.com/linuxonpower/ibm-cloud-private-on-power/isv-guide/
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/manage_cluster/glusterfs_land.html?view=kc
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/manage_cluster/configure_glusterfs_during.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/manage_cluster/configure_glusterfs_after.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/manage_cluster/configure_glusterfs_after.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/manage_cluster/glusterfs_land.html

3.7.1 Preparing for deployment

Some or all of these steps might be required to prepare your environment for deployment of
GlusterFS on SCC ICP nodes:

� “Adding disks through IBM Service Secure Container console”
� “Uninstalling ICP (only if SSC is installed or when an installation failed)” on page 107
� “Uninstalling the SSC containers (optional if not installed)” on page 108
� “Creating the containers in your SSC partition” on page 109

Adding disks through IBM Service Secure Container console
Before starting this procedure, we needed to add six additional disks through the IBM Service
Secure Container console (https://9.16.27.18) to allow the configuration of the GlusterFS
as described in this section.

On the Linux on Z master node server, update the config/ssc4icp-config.yaml file to
configure the GlusterFS nodes on the Secure Service Container partition with the required
CPU, memory, port range, and network specifications by using a specified template.

The following ssc4icp-config.yaml example file shows that template5 and template6 are
defined for GlusterFS nodes in the DemoCluster with required resources. Template5 depicts
the configuration of two storage quotagroups. Template6 depicts the configuration of single
storage quotagroup. Ensure that the ss4icp-config.yaml file has the new settings.

Example 3-25 Sample of ss4icp-config.yaml file for GlusterFS

cluster:
 name: "DemoCluster"
 masterconfig:
 internal_ips: ['192.168.0.251']
 subnet: "192.168.0.0/24"

LPARS:
 - ipaddress: '9.16.27.18'
 containers:
 - template: "template1"
 count: 1
 internal_ips: ['192.168.0.253']

 - ipaddress: '9.16.27.18'
 containers:
 - template: "template2"
 count: 1
 internal_ips: ['192.168.0.254']
 proxy_external_ips: ['9.16.27.25']

 - ipaddress: '9.16.27.18'
 containers:
 - template: "template5"
 count: 1
 internal_ips: ['192.168.0.245']

 - ipaddress: '9.16.27.18'
 containers:

Note: You can get additional information about GlusterFS in “Persistent Storage providers”
on page 23.
Chapter 3. Secure Service Container installation and configuration 105

 - template: "template6"
 count: 2
 internal_ips: ['192.168.0.246','192.168.0.247']

template1:
 name: "worker1"
 type: "WORKER"
 # cpu defined by Number of threads
 cpu: "2"
 # Memory in MB
 memory: "4098"
 port_range: '15000'
 root_storage: "50G"
 icp_storage: "110G"
 internal_network:
 subnet: "192.168.0.0/24"
 gateway: "192.168.0.1"
 parent: "encb53"

template2:
 name: "proxy1"
 type: "PROXY"
 # cpu defined by Number of threads
 cpu: "2"
 # Memory in MB
 memory: "4096"
 port_range: '16000'
 root_storage: "50G"
 icp_storage: "110G"
 internal_network:
 subnet: "192.168.0.0/24"
 gateway: "192.168.0.1"
 parent: "encb53"
 proxy_external_network:
 subnet: "9.16.27.0/24"
 gateway: "9.16.27.1"
 parent: "vlan00b90.2309"

template5:
 name: "storage"
 type: "STORAGE"
 # Configure storage provisioner
 provisioner:
 - name: "glusterfs"
 size: "40G"
 - name: "glusterfs"
 size: "40G"
 # CPU defined by number of threads
 cpu: "4"
 # Memory in MB
 memory: "4098"
 port_range: '17000'
 root_storage: "50G"
 icp_storage: "110G"
 internal_network:
 subnet: "192.168.0.0/24"
 gateway: "192.168.0.1"
 parent: "encb53"
template6:
 name: "storage"
106 Implementation Guide for IBM Blockchain Platform for Multicloud

 type: "STORAGE"
 # Configure storage provisioner
 provisioner:
 - name: "glusterfs"
 size: "80G"
 # CPU defined by number of threads
 cpu: "4"
 # Memory in MB
 memory: "4098"
 port_range: '18000'
 root_storage: "50G"
 icp_storage: "110G"
 internal_network:
 subnet: "192.168.0.0/24"
 gateway: "192.168.0.1"
 parent: "encb53"

Table 3-4 Additional parameter description for the ssc4icp-config.yaml file

The previous sections instructed how to create the nodes without GlusterFS. This section
details how to deploy the ICP with GlusterFS.

Consider a scenario where you have already deployed ICP and also the containers SSC
containers for testing the deployment. In this case, you need to uninstall the ICP first and then
uninstall the SCC containers. Otherwise, your installation might fail. (If it is a new installation,
you can skip the following uninstallation steps.)

Uninstalling ICP (only if SSC is installed or when an installation failed)
1. Go to ICP installation folder (for example, /opt/icp320/cluster/)

Example 3-26 /opt/icp320/cluster/ folder

[root@ssc4icp-master /]# cd /opt/icp320/cluster/
[root@ssc4icp-master icp320]# pwd
/opt/icp320/cluster
[root@ssc4icp-master icp320]#

2. Issue the command that is listed in Example 3-27 to uninstalll ICP.

Example 3-27 Uninstall ICP command

sudo docker run --net=host -t -e LICENSE=accept \
 -v "$(pwd)":/installer/cluster ibmcom/icp-inception-s390x:3.2.0-ee uninstall

3. Wait for the command to complete, and confirm that you receive the following output.

Value Description

internal_ips Defines the IP addresses of GlusterFS node

provisioner Indicates the template is used for the glusterfs node. The value
of name under the provisioner section must be glusterfs.

size Defines the disk size of glusterfs quotagroup

Note: Some parameters are detailed in the ssc4icp-config.yaml file on Table 3-2 on
page 88.
Chapter 3. Secure Service Container installation and configuration 107

Figure 3-18 Output of the ICP uninstaller

Uninstalling the SSC containers (optional if not installed)
1. Go to SSC installation folder (for example, /opt/blockchain/). See Example 3-28.

Example 3-28 /opt/blockchain/ folder

[root@ssc4icp-master cluster]# cd /opt/blockchain/
[root@ssc4icp-master blockchain]# pwd
/opt/blockchain
[root@ssc4icp-master blockchain]#

2. Issue the command that is shown in Example 3-29.

Example 3-29 Uninstall command for the SSC containers

docker run --network=host --rm -it -v $(pwd)/config:/ssc4icp-cli-installer/config
ibmzcontainers/ssc4icp-cli-installer:1.1.0.3 uninstall

3. Wait for the command to complete, and confirm that your output is similar to this example:

TASK [uninstall : Restarting Containerd on cluster nodes]

skipping: [192.168.0.245]
skipping: [192.168.0.246]
skipping: [192.168.0.247]
skipping: [192.168.0.251]
skipping: [192.168.0.253]
skipping: [192.168.0.254]

TASK [uninstall : Removing local files]

changed: [192.168.0.245 -> localhost] => (item=/installer/cluster/cfc-certs)
ok: [192.168.0.245 -> localhost] => (item=/installer/cluster/cfc-keys)
changed: [192.168.0.245 -> localhost] => (item=/installer/cluster/cfc-components)
changed: [192.168.0.245 -> localhost] => (item=/installer/cluster/.install-3.2.0.lock)
ok: [192.168.0.245 -> localhost] => (item=/installer/cluster/conf)
changed: [192.168.0.245 -> localhost] => (item=/installer/cluster/.addon)
ok: [192.168.0.245 -> localhost] => (item=/installer/cluster/.misc)
ok: [192.168.0.245 -> localhost] =>
(item=/installer/cluster/misc/storage_class/none-sc.yaml)

PLAY RECAP

192.168.0.245 : ok=20 changed=17 unreachable=0 failed=0
192.168.0.246 : ok=17 changed=14 unreachable=0 failed=0
192.168.0.247 : ok=17 changed=14 unreachable=0 failed=0
192.168.0.251 : ok=16 changed=13 unreachable=0 failed=0
192.168.0.253 : ok=17 changed=14 unreachable=0 failed=0
192.168.0.254 : ok=17 changed=14 unreachable=0 failed=0

Playbook run took 0 days, 0 hours, 26 minutes, 11 seconds
108 Implementation Guide for IBM Blockchain Platform for Multicloud

Figure 3-19 Output of the SSC uninstaller

Creating the containers in your SSC partition

On the Linux on Z master node server, complete the following steps as a root user.

1. Run the command line tool to create the cluster nodes. Notice that the command must be
run in the parent directory of the config directory, for example, /opt/blockchain. See
Example 3-30.

Example 3-30 Installing the SSC containers

docker run --network=host --rm -it -v $(pwd)/config:/ssc4icp-cli-installer/config
ibmzcontainers/ssc4icp-cli-installer:1.1.0.3 install

2. Check the yaml files under config/DemoCluster/:

The following cluster-configuration.yaml example file is generated based on the cluster
configuration that is specified in the ssc4icp-config.yaml file. Notice that new containers
were created (192.168.0.245, 192.168.0.246, and 192/168.0.247).

Example 3-31 Sample of cluster-configuration.yaml file

LPARS:
- containers:
 - cpu: '2'
 icp_storage: 40000M
 internal_network:
 gateway: 192.168.0.1
 ip: 192.168.0.253
 parent: encb53
 subnet: 192.168.0.0/24

Deleting cluster configuration
--- 0.40s
cli-base : Delete Bridge Network
https://9.16.27.18/api/com.ibm.zBlockchain/networks/aaa_vlan00b90_2309_proxy_network
--- 0.38s
cli-base : LPAR API token https://9.16.27.18/api/com.ibm.zaci.system/api-tokens
--- 0.35s
Pre-UnInstallation Operations
--- 0.12s
Generate peer configuration
-- 0.11s
Update Peer configuration with master IP and IPSec shared key
--- 0.10s
Set container configuration
--- 0.10s
configuration : Checking container template
--- 0.10s
Delete containers for Templates
--- 0.09s
Delete containers for Templates
--- 0.09s

Note: Before you proceed with these steps, ensure that the internal IP address
(192.168.0.251) is configured on the IBM Z master node server. You might want to use ip
addr show command.
Chapter 3. Secure Service Container installation and configuration 109

 memory: '4098'
 name: worker1-15001
 port: '15001'
 root_storage: 35000M
 ipaddress: 9.16.27.18
- containers:
 - cpu: '2'
 icp_storage: 40000M
 internal_network:
 gateway: 192.168.0.1
 ip: 192.168.0.254
 parent: encb53
 subnet: 192.168.0.0/24
 memory: '4096'
 name: proxy1-16001
 port: '16001'
 proxy_external_network:
 gateway: 9.16.27.1
 ip: 9.16.27.25
 parent: vlan00b90.2309
 subnet: 9.16.27.0/24
 root_storage: 35000M
 ipaddress: 9.16.27.18
- containers:
 - cpu: '4'
 icp_storage: 40000M
 internal_network:
 gateway: 192.168.0.1
 ip: 192.168.0.245
 parent: encb53
 subnet: 192.168.0.0/24
 memory: '4098'
 name: storage-17001
 port: '17001'
 provisioner:
 - name: glusterfs
 quotagroup: storage_17001_glusterfs1_qg
 size: 40000M
 - name: glusterfs
 quotagroup: storage_17001_glusterfs2_qg
 size: 40000M
 root_storage: 35000M
 storagenode: 'Yes'
 ipaddress: 9.16.27.18
- containers:
 - cpu: '4'
 icp_storage: 40000M
 internal_network:
 gateway: 192.168.0.1
 ip: 192.168.0.246
 parent: encb53
 subnet: 192.168.0.0/24
 memory: '4098'
 name: storage-18001
 port: '18001'
 provisioner:
 - name: glusterfs
 quotagroup: storage_18001_glusterfs1_qg
 size: 40000M
 root_storage: 35000M
110 Implementation Guide for IBM Blockchain Platform for Multicloud

 storagenode: 'Yes'
 - cpu: '4'
 icp_storage: 40000M
 internal_network:
 gateway: 192.168.0.1
 ip: 192.168.0.247
 parent: encb53
 subnet: 192.168.0.0/24
 memory: '4098'
 name: storage-18002
 port: '18002'
 provisioner:
 - name: glusterfs
 quotagroup: storage_18002_glusterfs1_qg
 size: 40000M
 root_storage: 35000M
 storagenode: 'Yes'
 ipaddress: 9.16.27.18
cluster:
 ipsecsecrets:
VqyLzJM829aY1Dpm3FA1i0JuH6h16CA8RksKx/nz7CCqmmSNdvreUo0zPbH632/ORkttTKI69oqbKEg0nBLTVg==
 masterconfig:
 internal_ips:
 - 192.168.0.251
 subnet: 192.168.0.0/24
 name: DemoCluster
 repoid: ICPIsolatedvm

Generation of the following quotagroup-symlink.yaml example file is based on the
configuration of template5 and template6 in the ssc4icp-config.yaml file. In the example,

� two quotagroups storage_17001_glusterfs1_qg and storage_17001_glusterfs1_qg are
attached to the GlusterFS node storage-17001

� storage_18001_glusterfs1_qg is attached to node storage-18001
� storage_18002_glusterfs1_qg is attached to node storage-18002

Example 3-32 Sample of quotagroup-symlink.yaml file

container = storage-17001, quotagroup = storage_17001_glusterfs1_qg, symbolic_link =
/dev/disk/by-runq-id/storage_17001_glusterfs1_qg
container = storage-17001, quotagroup = storage_17001_glusterfs2_qg, symbolic_link =
/dev/disk/by-runq-id/storage_17001_glusterfs2_qg
container = storage-18001, quotagroup = storage_18001_glusterfs1_qg, symbolic_link =
/dev/disk/by-runq-id/storage_18001_glusterfs1_qg
container = storage-18002, quotagroup = storage_18002_glusterfs1_qg, symbolic_link =
/dev/disk/by-runq-id/storage_18002_glusterfs1_qg

Make a note of these symlinks, because you are going to include them in the ICP
config.yaml file during the ICP deployment later in this section.

Verify the cluster status by using the following instructions. The containers for IBM Cloud
Private cluster are displayed and you can see the status of each container.

a. Create get_containers.sh file under your installation folder (/opt/blockchain) with the
content that is listed in Example 3-33.

Example 3-33 Sample of get_containers.sh script

#!/bin/bash
<emarins@br.ibm.com>
Chapter 3. Secure Service Container installation and configuration 111

if ["$1" != ""]; then
USERNAME=$1

else
echo 'What is the SSC user admin name? (ie. admin)'
read option
USERNAME="$option"

fi

if ["$2" != ""]; then
 PASSWORD=$2
else

echo 'What is the SSC admin password?'
read -s option
PASSWORD="$option"
printf "%s\n" "${PASSWORD//?/*}"

fi

if ["$3" != ""]; then
 server=$3
else

echo 'What is the SSC IP address or FQDN?'
read option
server="$option"

fi

Getting Token
token=$(curl --request POST --url https://$server/api/com.ibm.zaci.system/api-tokens -H
'accept: application/vnd.ibm.zaci.payload+json' -H 'cache-control: no-cache' -H
'content-type: application/vnd.ibm.zaci.payload+json;version=1.0' -H 'zaci-api:
com.ibm.zaci.system/1.0' --insecure --data '{ "kind" : "request", "parameters" : {
"user" : "'$USERNAME'", "password" : "'$PASSWORD'" } }' 2>/dev/null | python -m
json.tool |grep token | awk -F\: '{print $2}'|tr -d \" |tr -d [:blank:])

if [$(echo $token|wc -c) -eq 210]; then
echo
#echo "Token is valid"

else
echo "Invalid Token. Exiting..."
exit 1

fi

sleep 1s

output=$(curl --silent -k -X GET "https://$server/api/com.ibm.zaas/containers" -H
"accept: application/vnd.ibm.zaci.payload+json" -H "zACI-API: com.ibm.zaci.system/1.0"
-H "Content-Type: application/vnd.ibm.zaci.payload+json;version=1.0" -H "Authorization:
Bearer $token")

#echo $output | python -m json.tool

containers=$(echo $output | python -m json.tool |grep -A1 Names |grep \/|tr -d \" |tr -d
\/)
#echo $containers

echo "--"
for container in $containers;
do

echo "Container: $container"
echo "--"
112 Implementation Guide for IBM Blockchain Platform for Multicloud

output=$(curl --silent -k -X GET
"https://$server/api/com.ibm.zaas/containers/$container" -H "accept:
application/vnd.ibm.zaci.payload+json" -H "Authorization: Bearer $token" -H "zACI-API:
com.ibm.zaci.system/1.0" -H "Content-Type:
application/vnd.ibm.zaci.payload+json;version=1.0")

echo $output | python -m json.tool | egrep "IPv4Address|Status" |grep -v
SecondaryIPAddresses|tr -d \" | sed -e 's/^[[:space:]]*//g' -e 's/[[:space:]]*\$//g' |tr
-d \,

echo "--"
echo
sleep 1s

done

b. Run the following command to change permissions for this script so that users can
execute it:
chmod +x /opt/blockchain/get_containers.sh

c. Issue the script to get the status of the containers and IP address information.

To execute this script, you need to provide information about the zAppliance user
name, password, and its IP address. This script uses Secure Service Container system
APIs to authenticate and get the information about the containers.

Syntax of the script is get_containers.sh <SSC_ADMIN> <SSC_PASSWORD> <SSC_IP>.
Typical output is shown in Example 3-34.

Example 3-34 Getting information about the containers

[root@ssc4icp-master blockchain]# /opt/blockchain/get_containers.sh admin password
9.16.27.18

--
Container: storage-17001
--
IPv4Address: 192.168.0.245
Status: running
Status: Up 13 hours
--

Container: storage-18002
--
IPv4Address: 192.168.0.247
Status: running
Status: Up 13 hours
--

Container: worker1-15001
--
IPv4Address: 192.168.0.253
Status: running
Status: Up 13 hours
--

Container: proxy1-16001
--
IPv4Address: 9.16.27.25
IPv4Address: 192.168.0.254
Status: running
Status: Up 13 hours
--

Container: storage-18001
Chapter 3. Secure Service Container installation and configuration 113

--
IPv4Address: 192.168.0.246
Status: running
Status: Up 13 hours
--

[root@ssc4icp-master blockchain]#

Deploying ICP with GlusterFS

The deployment of ICP with GlusterFS is very similar of installing it without GlusterFS. You
need to follow the steps listed in 3.6, “Deploying IBM Cloud Private” on page 98 and pay
attention of the updates on the config.yaml file for GlusterFS. See the instructions here. If
you have done it before, you can skip these steps.

1. Download the strongswan source package and build the binary on the LinuxONE system.

Example 3-35 Compiling and installing strongswan package on Redhat

Run as root
yum install gmp-devel
wget http://download.strongswan.org/strongswan-5.6.2.tar.bz2
tar xjvf strongswan-5.6.2.tar.bz2
cd strongswan-5.6.2/
./configure --prefix=/usr --sysconfdir=/etc
make
make install
ipsec version
ipsec start

2. Create the required installation folder:

mkdir /opt/icp320

3. Copy the ibm-cloud-private-s390x-3.2.0.gz image file to /opt/icp320

4. From the installation directory (/opt/icp320), load the IBM Cloud Private archive file as
shown in Example 3-15.

Example 3-36 Loading Docker container images

[root@ssc4icp-master cluster]# tar xf ibm-cloud-private-s390x-3.2.0.tar.gz -O | sudo
docker load
Loaded image: ibmcom/icp-vip-manager-s390x:1.1
Loaded image: ibmcom/kafka-s390x:0.10.0.4
Loaded image: ibmcom/tiller-s390x:v2.12.3-icp-3.2.0
Loaded image: ibmcom/heketi-s390x:v8.0.0.1

Note: You might experience network connectivity problems when you use strongswan
5.6.2 with Redhat 7 as the master node on IBM Z because of this known issue Using /32
groups in ipsec causing leaks https://access.redhat.com/solutions/4251881. To work
around the problem, create a cron job to run ipsec restart command every 30 minutes on
the master node.

For information on how to build the strongSwan package, see strongSwan Installation
Documentation
114 Implementation Guide for IBM Blockchain Platform for Multicloud

https://www.ibm.com/links?url=https%3A%2F%2Faccess.redhat.com%2Fsolutions%2F4251881
https://www.ibm.com/links?url=https%3A%2F%2Faccess.redhat.com%2Fsolutions%2F4251881

Output snippet

Loaded image: ibmcom/istio-servicegraph-s390x:1.0.2
Loaded image: ibmcom/ma-file-wl-gen-s390x:3.2.0
Loaded image: ibmcom/metering-data-manager-s390x:3.2.0
Loaded image: ibmcom/compliance-annotator-s390x:3.2.0
Loaded image: ibmcom/cos-indexer-s390x:3.2.0
Loaded image: ibmcom/grafana-s390x:5.2.0-f3
Loaded image: ibmcom/kubectl-s390x:v1.13.5
[root@ssc4icp-master cluster]#

5. Extract the configuration files from the installer image by using the command in this
example:

sudo docker run -v $(pwd):/data -e LICENSE=accept \
ibmcom/icp-inception-s390x:3.2.0-ee \
cp -r cluster /data

6. Confirm that the cluster folder was created by using ls cluster command.

7. Create the images directory under /opt/icp320/cluster folder.

mkdir /opt/icp320/cluster/images

8. Move the /opt/icp320/ibm-cloud-private-s390x-3.2.0.tar.gz image file to the
/opt/icp320/cluster/images directory.

mv /opt/icp320/ibm-cloud-private-s390x-3.2.0.tar.gz /opt/icp320/cluster/images/

9. Copy the following two files into the /etc directory. Those two files are generated in the
config/<ClusterName> directory after the Secure Service Container for IBM Cloud Private
CLI tool is installed.

– config/<ClusterName>/ipsec.conf
This file contains the network topology of the cluster.

– config/<ClusterName>/ipsec.secret
This file contains a randomly generated Pre-Shared-Key (PSK) for use as an
authorization token to the IPSec network.

Example 3-37 Copying the ipsec files to /etc/

cp -a /opt/blockchain/config/DemoCluster/ipsec* /etc/

10.Restart the strongSwan daemon to apply the changes by using systemctl restart
strongswan command. Also, remember to make configuration persistent by issuing
systemctl enable strongswan.

11.Run ipsec stop, wait for 1 minute, and then run ipsec start.

Note: If you find problems to install ICP, follow instructions on Installing an IBM Cloud
Private Enterprise environment to get detailed information about the ICP installation.

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/installing/install_
containers.html

Note: You might see the following message:
“Warning: strongswan.service changed on disk. Run 'systemctl daemon-reload' to
reload units.”

In this case, run systemctl daemon-reload and then systemctl restart strongswan.
Chapter 3. Secure Service Container installation and configuration 115

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/installing/install_containers.html?view=kc
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/installing/install_containers.html?view=kc
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/installing/install_containers.html

12.Wait for about 5 minutes, and test the internal and external connection to each cluster
node on the LinuxONE system by using the ping command as shown in Example 3-38.

Example 3-38 Verifying if IPs are reachable from master node

[root@ssc4icp-master ~]# ping -c2 192.168.0.245
PING 192.168.0.245 (192.168.0.245) 56(84) bytes of data.
64 bytes from 192.168.0.245: icmp_seq=1 ttl=64 time=0.241 ms
64 bytes from 192.168.0.245: icmp_seq=2 ttl=64 time=0.363 ms

--- 192.168.0.245 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1006ms
rtt min/avg/max/mdev = 0.241/0.302/0.363/0.061 ms

[root@ssc4icp-master ~]# ping -c2 192.168.0.246
PING 192.168.0.246 (192.168.0.246) 56(84) bytes of data.
64 bytes from 192.168.0.246: icmp_seq=1 ttl=64 time=0.371 ms
64 bytes from 192.168.0.246: icmp_seq=2 ttl=64 time=0.358 ms

--- 192.168.0.246 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.358/0.364/0.371/0.020 ms
[root@ssc4icp-master ~]# ping -c2 192.168.0.247
PING 192.168.0.247 (192.168.0.247) 56(84) bytes of data.
64 bytes from 192.168.0.247: icmp_seq=1 ttl=64 time=0.418 ms
64 bytes from 192.168.0.247: icmp_seq=2 ttl=64 time=0.335 ms

--- 192.168.0.247 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.335/0.376/0.418/0.045 ms
[root@ssc4icp-master ~]#

[root@ssc4icp-master ~]# ping -c2 192.168.0.253
PING 192.168.0.253 (192.168.0.253) 56(84) bytes of data.
64 bytes from 192.168.0.253: icmp_seq=1 ttl=64 time=0.388 ms
64 bytes from 192.168.0.253: icmp_seq=2 ttl=64 time=0.516 ms

--- 192.168.0.253 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.388/0.452/0.516/0.064 ms
[root@ssc4icp-master ~]# ping -c2 192.168.0.254
PING 192.168.0.254 (192.168.0.254) 56(84) bytes of data.
64 bytes from 192.168.0.254: icmp_seq=1 ttl=64 time=0.399 ms
64 bytes from 192.168.0.254: icmp_seq=2 ttl=64 time=0.430 ms

--- 192.168.0.254 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.399/0.414/0.430/0.025 ms
[root@ssc4icp-master ~]# ping -c2 9.16.27.25
PING 9.16.27.25 (9.16.27.25) 56(84) bytes of data.
64 bytes from 9.16.27.25: icmp_seq=1 ttl=64 time=1.08 ms
64 bytes from 9.16.27.25: icmp_seq=2 ttl=64 time=0.478 ms

--- 9.16.27.25 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 0.478/0.783/1.089/0.306 ms
[root@ssc4icp-master ~]#

13.Make sure all IP addresses are reachable you proceed.
116 Implementation Guide for IBM Blockchain Platform for Multicloud

14.You can use ipsec status command to verify the status of ipsec connections for the
internal IP addresses (Example 3-39).

Example 3-39 Checking ipsec status

[root@ssc4icp-master ~]# ipsec status
Routed Connections:
main192.168.0.251{1}: ROUTED, TRANSPORT, reqid 1
main192.168.0.251{1}: 192.168.0.0/24 === 192.168.0.0/24
Security Associations (5 up, 0 connecting):
main192.168.0.251[32]: ESTABLISHED 17 minutes ago,
192.168.0.251[192.168.0.251]...192.168.0.246[192.168.0.246]
main192.168.0.251{48}: INSTALLED, TRANSPORT, reqid 1, ESP SPIs: c1c93ae1_i c91bbd64_o,
IPCOMP CPIs: d1e0_i 64e2_o
main192.168.0.251{48}: 192.168.0.251/32 === 192.168.0.246/32
main192.168.0.251[30]: ESTABLISHED 18 minutes ago,
192.168.0.251[192.168.0.251]...192.168.0.253[192.168.0.253]
main192.168.0.251{47}: INSTALLED, TRANSPORT, reqid 1, ESP SPIs: c7b4d46e_i c0a66d49_o,
IPCOMP CPIs: e499_i 4959_o
main192.168.0.251{47}: 192.168.0.251/32 === 192.168.0.253/32
main192.168.0.251[28]: ESTABLISHED 19 minutes ago,
192.168.0.251[192.168.0.251]...192.168.0.245[192.168.0.245]
main192.168.0.251{46}: INSTALLED, TRANSPORT, reqid 1, ESP SPIs: c91dcaef_i cec302f3_o,
IPCOMP CPIs: 55dd_i 2a2a_o
main192.168.0.251{46}: 192.168.0.251/32 === 192.168.0.245/32
main192.168.0.251[26]: ESTABLISHED 25 minutes ago,
192.168.0.251[192.168.0.251]...192.168.0.254[192.168.0.254]
main192.168.0.251{45}: INSTALLED, TRANSPORT, reqid 1, ESP SPIs: c15dd72e_i cdfd5229_o,
IPCOMP CPIs: ba29_i 9765_o
main192.168.0.251{45}: 192.168.0.251/32 === 192.168.0.254/32
main192.168.0.251[25]: ESTABLISHED 26 minutes ago,
192.168.0.251[192.168.0.251]...192.168.0.247[192.168.0.247]
main192.168.0.251{44}: INSTALLED, TRANSPORT, reqid 1, ESP SPIs: cdd8a738_i c58a9788_o,
IPCOMP CPIs: 5e6a_i ca09_o
main192.168.0.251{44}: 192.168.0.251/32 === 192.168.0.247/32
[root@ssc4icp-master ~]#

15.In the /opt/icp320/cluster/config.yaml file, add a ‘nodes’ section under
‘storage-glusterfs’ section to specify quotagroups for each GlusterFS node configured in
the ssc4icp-config.yaml file.
For the details of each GlusterFS device, refer to the config/quotagroup-symlink.yaml
file information listed in Example 3-32 on page 111.

Example 3-40 Sample of new sections for config.yaml

no_taint_group: ["hostgroup-glusterfs"]

GlusterFS Storage Settings
storage-glusterfs:
 nodes:
 - ip: 192.168.0.245
 devices:
 - /dev/disk/by-runq-id/storage_17001_glusterfs1_qg
 - /dev/disk/by-runq-id/storage_17001_glusterfs2_qg
 - ip: 192.168.0.246
 devices:
 - /dev/disk/by-runq-id/storage_18001_glusterfs1_qg
 - ip: 192.168.0.247
 devices:
 - /dev/disk/by-runq-id/storage_18002_glusterfs1_qg
 storageClass:
Chapter 3. Secure Service Container installation and configuration 117

 create: true
 name: glusterfs
 isDefault: false
 volumeType: replicate:3
 reclaimPolicy: Delete
 volumeBindingMode: Immediate
 volumeNamePrefix: icp
 additionalProvisionerParams: {}
 allowVolumeExpansion: true
 gluster:
 resources:
 requests:
 cpu: 500m
 memory: 512Mi
 limits:
 cpu: 1000m
 memory: 1Gi
 heketi:
 backupDbSecret: heketi-db-backup
 authSecret: "heketi-secret"
 maxInFlightOperations: "20"
 dbSyncupDelay: "10"
 tls:
 generate: true
 issuer: "icp-ca-issuer"
 issuerKind: "ClusterIssuer"
 secretName: ""
 resources:
 requests:
 cpu: 500m
 memory: 512Mi
 limits:
 cpu: 1000m
 memory: 1Gi
 nodeSelector:
 key: hostgroup
 value: glusterfs
 prometheus:
 enabled: true
 path: "/metrics"
 port: 8080
 tolerations: []
 podPriorityClass: "system-cluster-critical"

16.Also, update /opt/icp320/cluster/config.yaml file with the modifications that are listed
in Example 3-23.

Note: When you customize the IBM Cloud Private cluster, you must set the value of the
cluster_lb_address parameter in the
<icp_installation_directory>/cluster/config.yaml file to the public IP address of
master node that will be accessed. And the proxy_lb_address parameter must be set to
the public IP address of proxy node.

While you deploy ICP in your environment, ensure that the IP addresses, password, and
devices are updated accordingly to fit your infrastructure.
118 Implementation Guide for IBM Blockchain Platform for Multicloud

Example 3-41 config.yaml modifications

Remove the restriction for complex passwords
password_rules:
- '(.*)’

Advanced Settings
default_admin_user: admin
default_admin_password: abc12345

External loadbalancer IP or domain
Or floating IP in OpenStack environment
cluster_lb_address: none
cluster_lb_address: 9.16.27.19

External loadbalancer IP or domain
Or floating IP in OpenStack environment
proxy_lb_address: none
proxy_lb_address: 9.16.27.25

Install in firewall enabled mode
firewall_enabled: false
firewall_enabled: false

Calico Network Settings
Note that enccw0.0.1000 in the example is the device name of master node. You need to replace
ens7 with the actual name of the primary network device on the x86 or Linux on Z server
calico_ipip_enabled: true
calico_tunnel_mtu: 1350
calico_ip_autodetection_method: interface=eth0,eth1,enccw0.0.1000

Note that these following settings already exist on the config.yaml file.
Ensure you do not add all parameters below. Intead of, update storage-glusterfs
from disabled to enabled.
management_services:
 istio: disabled
 vulnerability-advisor: disabled
 storage-glusterfs: enabled
 #storage-glusterfs: disabled
 storage-minio: disabled
 platform-security-netpols: disabled
 node-problem-detector-draino: disabled
 multicluster-endpoint: disabled

17.In the hosts file (/opt/icp320/cluster/hosts), add hostgroup-glusterfs section with the
IP address of each GlusterFS node. Also, ensure that the master, storage, worker, and
proxy nodes have the internal IP addresses. See Example 3-42.

Example 3-42 Sample of hostgroup-glusterfs section

[master]
192.168.0.251

[worker]
192.168.0.253

[proxy]
192.168.0.254

[hostgroup-glusterfs]
192.168.0.245
Chapter 3. Secure Service Container installation and configuration 119

192.168.0.246
192.168.0.247

#[management]
#4.4.4.4

#[va]
#5.5.5.5

18.Update /etc/hosts file on Linux on Z master node server to include all nodes. See
Example 3-43.

Example 3-43 Sample of /etc/hosts file

127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6

#For ICP and SSC
192.168.0.251 ssc4icp-master
192.168.0.253 worker1-15001
192.168.0.254 proxy1-16001
192.168.0.245 storage-17001
192.168.0.246 storage-18001
192.169.0.247 storage-18002

19.Copy config/DemoCluster/ssh_key* files to /opt/icp320/cluster folder to allow the
master node to access the SSC container images that was created previously.

cp -a /opt/blockchain/config/DemoCluster/ssh_key* /opt/icp320/cluster/

20.Upload /etc/hosts files from master to all nodes by using the scp commands that are
listed in Example 3-44.

Example 3-44 Uploading /etc/hosts files from master to storage, worker and proxy nodes.

[root@ssc4icp-master ~]# scp -i /opt/icp320/cluster/ssh_key /etc/hosts
root@192.168.0.245:/etc/
hosts
100% 497 51.9KB/s 00:00
[root@ssc4icp-master ~]# scp -i /opt/icp320/cluster/ssh_key /etc/hosts
root@192.168.0.246:/etc/
hosts
100% 497 68.2KB/s 00:00
[root@ssc4icp-master ~]# scp -i /opt/icp320/cluster/ssh_key /etc/hosts
root@192.168.0.247:/etc/
hosts
100% 497 204.2KB/s 00:00
[root@ssc4icp-master ~]# scp -i /opt/icp320/cluster/ssh_key /etc/hosts
root@192.168.0.253:/etc/
hosts
100% 497 204.0KB/s 00:00
root@ssc4icp-master ~]# scp -i /opt/icp320/cluster/ssh_key /etc/hosts
root@192.168.0.254:/etc/
hosts
100% 497 155.0KB/s 00:00

Now, ICP deployment is complete. You complete the deployment in the following steps.

21.Ensure the new ssh_key can be used to access the Linux master node (192.168.0.251).
Run the command in Example 3-45 to authorize logins with the SSH keys.
120 Implementation Guide for IBM Blockchain Platform for Multicloud

Example 3-45 Authorizing the use of SSH_keys on Linux Master node

[root@ssc4icp-master cluster]# ssh-copy-id -i
/opt/blockchain/config/DemoCluster/ssh_key.pub root@192.168.0.251
/bin/ssh-copy-id: INFO: Source of key(s) to be installed:
"/opt/blockchain/config/DemoCluster/ssh_key.pub"
The authenticity of host '192.168.0.251 (192.168.0.251)' can't be established.
ECDSA key fingerprint is SHA256:hhlO+P8k6LaZ6EMRG5vwy/Ea9wGcZLJRtoi5r9hzu7Q.
ECDSA key fingerprint is MD5:75:3a:c2:12:39:ca:23:f7:5b:58:03:25:54:99:2a:13.
Are you sure you want to continue connecting (yes/no)? yes
/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out any that
are already installed
/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted now it is
to install the new keys

Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'root@192.168.0.251'"
and check to make sure that only the key(s) you wanted were added.

22.Update and confirm that the /opt/icp320/cluster/hosts file contains the internal IPs for
the master, storage, worker, and proxy nodes as shown in Example 3-22.

Example 3-46 Sample of /opt/icp320/cluster/hosts file

[master]
192.168.0.251

[worker]
192.168.0.253

[proxy]
192.168.0.254

[hostgroup-glusterfs]
192.168.0.245
192.168.0.246
192.168.0.247

#[management]
#4.4.4.4

#[va]
#5.5.5.5

23.Run the following command to install IBM Cloud Private:

cd /opt/icp320/cluster && sudo docker run --net=host -t -e LICENSE=accept \
 -v "$(pwd)":/installer/cluster ibmcom/icp-inception-s390x:3.2.0-ee install

24.Wait for approximately 45 minutes or more for completion. Remember that the duration
depends on the number of nodes and settings that your installation requires. Therefore,
more or less time might be required. After successful completion, you see output that is
similar to Figure 3-20 on page 122.
Chapter 3. Secure Service Container installation and configuration 121

Figure 3-20 Output of a successful ICP installation

25.Confirm that the cluster is up.
a. Check the IBM Cloud Private console at this URL:

https://<cluster_lb_address>:8443.
In our example, this value is https://9.16.27.19:8443.

b. Run the following command to check the GlusterFS nodes:
kubectl get po -n kube-system | grep gluster.
Example 3-47 show typical output.

Example 3-47 Getting information about the gluster resources

[root@ssc4icp-master blockchain]# kubectl get po -n kube-system | grep gluster
storage-glusterfs-glusterfs-daemonset-6lfq7 1/1 Running
0 18h
storage-glusterfs-glusterfs-daemonset-jc2w5 1/1 Running
0 18h
storage-glusterfs-glusterfs-daemonset-xxkv8 1/1 Running
0 18h
storage-glusterfs-glusterfs-heketi-deployment-7755689cf4-8r6zd 1/1 Running
0 18h
storage-glusterfs-glusterfs-heketicert-job-9hjkm 0/1 Completed
0 18h
[root@ssc4icp-master blockchain]#

26.To check the storageclass component, run this command:
kubectl get storageclass -n kube-system
Example 3-48 shows sample output for this command.

TASK [kubectl-config : include_tasks]

TASK [k8s-resource : Finding all resource files]

ok: [192.168.0.251 -> localhost]

TASK [k8s-resource : Creating Kubernetes resources]

TASK [archive-addon : include_tasks]

PLAY RECAP

192.168.0.245 : ok=110 changed=62 unreachable=0 failed=0
192.168.0.246 : ok=103 changed=56 unreachable=0 failed=0
192.168.0.247 : ok=103 changed=56 unreachable=0 failed=0
192.168.0.251 : ok=188 changed=113 unreachable=0 failed=0
192.168.0.253 : ok=104 changed=56 unreachable=0 failed=0
192.168.0.254 : ok=104 changed=56 unreachable=0 failed=0
localhost : ok=383 changed=201 unreachable=0 failed=0

POST DEPLOY MESSAGE
**

The Dashboard URL: https://9.16.27.19:8443, please use credentials in config.yaml to
login.

Playbook run took 0 days, 1 hours, 14 minutes, 20 seconds
122 Implementation Guide for IBM Blockchain Platform for Multicloud

Example 3-48 Getting storageclass resources

[root@ssc4icp-master blockchain]# kubectl get storageclass -n kube-system
NAME PROVISIONER AGE
glusterfs kubernetes.io/glusterfs 18h
image-manager-storage kubernetes.io/no-provisioner 19h
logging-storage-datanode kubernetes.io/no-provisioner 18h
mongodb-storage kubernetes.io/no-provisioner 18h
[root@ssc4icp-master blockchain]#

27.Run the command in Example 3-49 to see information about the cluster nodes.

Example 3-49 Getting cluster nodes information

[root@ssc4icp-master ~]# kubectl get nodes
NAME STATUS ROLES AGE VERSION
192.168.0.245 Ready glusterfs 21h v1.13.5+icp-ee
192.168.0.246 Ready glusterfs 21h v1.13.5+icp-ee
192.168.0.247 Ready glusterfs 21h v1.13.5+icp-ee
192.168.0.251 Ready etcd,management,master 22h v1.13.5+icp-ee
192.168.0.253 Ready worker 21h v1.13.5+icp-ee
192.168.0.254 Ready proxy 21h v1.13.5+icp-ee
[root@ssc4icp-master ~]#

Now, you are ready to deploy blockchain through ICP.

3.8 Uninstalling ICP and SSC

This section describes how to uninstall ICP and SSC in case you need to perform this activity.

3.8.1 Uninstalling SSC for IBM Cloud Private

Uinstall the IBM Cloud Private as follows:

1. Log in as a root user.
2. Run the docker save command to back up all the images for your workloads.
3. Uninstall the IBM Cloud Private runtime environment by following the instructions in one of

these resources:

� Uninstalling IBM Cloud Private Community Edition
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/installing/uninstall_ce.html or

� Uninstalling IBM Cloud Private Enterprise Edition
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/installing/uninstall.html.

3.8.2 Uninstalling the Secure Service Container for IBM Cloud Private CLI tool

Uninstall the Secure Service Container for IBM Cloud Private CLI from the x86 or Linux on Z
master node server as follows:

1. Log in as a root user

2. Run the following command under the config folder to delete all the nodes:

docker run --network=host --rm -it -v \
$(pwd)/config:/ssc4icp-cli-installer/config \
ibmzcontainers/ssc4icp-cli-installer:1.1.0.3 uninstall
Chapter 3. Secure Service Container installation and configuration 123

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/installing/uninstall_ce.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/installing/uninstall.html

The uninstallation references the configuration details in the ssc4icp-config.yaml file to
delete all the cluster nodes and configurations that are created on the Secure Service
Container partitions. The command also removes the SSH key files from your Secure
Service Container for IBM Cloud Private config directory.

3. Run one of the following commands to perform the unregistration process on the Secure
Service Container partitions.

– Perform the basic unregistration process:
docker run --network=host --rm -it -v \
$(pwd)/config:/ssc4icp-cli-installer/config \
ibmzcontainers/ssc4icp-cli-installer:1.1.0.3 cleanup

– Perform the unregistration process, with removal of active nodes based on the use of
the --force option:
docker run --network=host --rm -it -v \
$(pwd)/config:/ssc4icp-cli-installer/config \
ibmzcontainers/ssc4icp-cli-installer:1.1.0.3 cleanup --force

4. (Optional) Delete the SSH key pair that was generated for the cluster, and remove the
associated SSH access from your master node. If you do not delete the SSH key pair, the
existing SSH keys are used if you install the IBM Cloud Private again with the same
cluster installation directory.

a. Run the following command to find the public SSH key in your authorized_keys file,
including the line number.
You must modify the path of ~/config/ssh_key.pub file to match the public key location
inside your Secure Service Container for IBM Cloud Private config directory when you
run the command.
grep -n "$(cat ~/config/ssh_key.pub)" /root/.ssh/authorized_keys

b. Use a text editor such as vi to remove the line that you see here from your
authorized_keys file:
vi /root/.ssh/authorized_keys

c. Run the following command to remove the SSH private key from the IBM Cloud Private
installation directory.
You must modify the path of ~/cluster/ssh_key file to match the SSH private key
location in your IBM Cloud Private installation directory when you run the command.
rm -rf ~/cluster/ssh_key

3.8.3 Uninstalling Secure Service Container partitions

You can stop, deactivate, or delete the Secure Service Container partitions on the IBM Z or
LinuxONE machine. These steps refer to chapters in the IBM Z Secure Service Container
User's Guide:
https://www-01.ibm.com/support/docview.wss?uid=isg26ab9a15cbe12a81d85258194006e4a89.

1. (Optional) Export the Secure Service Container configuration as described in the
Exporting or importing appliance configuration data section of Chapter 14, "Using the
Secure Service Container user interface."

2. Stop/deactivate or delete the Secure Service Container partition:
– On a standard mode system, Chapter 7, “Deactivating or deleting a Secure Service

Container partition on a standard mode system.”
– On a DPM-enabled system, Chapter 12, “Stopping or deleting a Secure Service

Container partition on a DPM-enabled system.”

Note: The data pool of the active nodes is not deleted after a forced cleanup.
124 Implementation Guide for IBM Blockchain Platform for Multicloud

https://www-01.ibm.com/support/docview.wss?uid=isg26ab9a15cbe12a81d85258194006e4a89

3.9 Updating the cluster resources dynamically

IBM Cloud Private allows you to change the CPU or memory resources on the cluster nodes
while the cluster is still running. To do this on the x86 or Linux on Z server, you complete the
following steps as the root user.

1. Run the following command to identify the node IP addresses for which you want to
update the resources. (You could also get the information from the ssc4icp-config.yaml
file by checking the node IP addresses that use the template to be updated.)

kubectl get nodes

2. Configure each of those to-be-updated cluster nodes to the maintenance mode by
following the instructions on Node maintenance.

kubectl cordon <node_IP_address>
kubectl drain <node_IP_address> --grace-period=300 --ignore-daemonsets=true

3. Update the config/ssc4icp-config-update.yaml file to include the nodes to be updated
and resource settings that you want to apply.
For example, to change the CPU number to 5 for a worker node 192.168.0.252, the
ssc4icp-config-update.yaml needs to specify only the following values:

– The configuration that is related to this node 192.168.0.252, such as LPAR
configuration.

– The template for this worker node, template1 in this example.
cluster:
 name: "temp"
 datapool: "exists"
 masterconfig:
 internal_ips: ['192.168.0.251']
 subnet: "192.168.0.0/24"
LPARS:
-ipaddress: '10.152.151.105'
 containers:
 -template: "template1"
 count: 1
 internal_ips: ['192.168.0.252']
template1:
 name: "worker"
 type: "WORKER"
 cpu: "5"
 memory: "4098"
 port_range: '15000'
 root_storage: "60G"
 icp_storage: "140G"
 internal_network:
 subnet: "192.168.0.0/24"
 gateway: "192.168.0.1"
 parent: "encf700"

– The cluster name in the ssc4icp-config-update.yaml file must be temp.
– The value of count setting under the container configuration is 1 because only one

worker node will be updated.

Note: Only the changes to the CPU and Memory settings are applied. Any other changes
in the ssc4icp-config-update.yaml file are ignored. Ensure that the total CPU or memory
of your cluster does not exceed the assigned resources on the Secure Service Container
partitions.
Chapter 3. Secure Service Container installation and configuration 125

For more information of the existing cluster settings in the ssc4icp-config.yaml file, see
“Configuring the cluster resources” on page 86.

4. Run the following command to apply the changes to the cluster node.

docker run --rm -it --net host -v $(pwd)/config:/ssc4icp-cli-installer/config
ibmzcontainers/ssc4icp-cli-installer:1.1.0.3 update

5. After the command completes, the updated cluster nodes are in the NotReady state. Run
the following commands to reactivate those cluster nodes.

Remove those cluster nodes by following the instructions on Removing an IBM Cloud
Private cluster node:
https://www-03preprod.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/installing/r
emove_node.html

For example, remove the updated worker node 192.168.0.252 from the existing cluster by
running the following command on the Linux on Z server.

docker run -e LICENSE=accept --net=host -t -e LICENSE=accept -v
"$(pwd)":/installer/cluster ibmcom/icp-inception-s390x:3.2.0-ee uninstall -l
192.168.0.252

6. Configure the /cluster/hosts file under the IBM Cloud Private installation directory to
include the cluster node information. For example, for a cluster with two worker nodes and
one proxy node, the cluster/hosts file resembles the following settings.

[master]
<master_node_IP_address> ansible_user="root"
[worker]
<worker_node_1_IP_address> ansible_user="root"
<worker_node_2_IP_address> ansible_user="root"
[proxy]
<proxy_node_IP_address> ansible_user="root"

7. Log in to the updated cluster nodes by using the ssh utility, and configure the /etc/hosts
file by adding the IP address and node name of each cluster node. You can get the IP
address and node name information from the cluster-configuration.yaml file. For
example, the /etc/hosts file for a cluster with two worker nodes and one proxy node
resembles the following settings.

...
<master_node_IP_address> <master_node_host_name>
<worker_node_1_IP_address> <worker_node_1_host_name>
<worker_node_2_IP_address> <worker_node_2_IP_host_name>
<proxy_node_IP_address> <proxy_node_host_name>

8. Add those cluster nodes back into the cluster by following the instructions on Adding an
IBM Cloud Private cluster node:
https://www-03preprod.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/installing/a
dd_node.html

9. For example, add the updated worker node 192.168.0.252 back into the existing cluster
by running the following command on the Linux on Z server.

docker run -e LICENSE=accept --net=host -t -e LICENSE=accept -v
"$(pwd)":/installer/cluster ibmcom/icp-inception-s390x:3.2.0-ee worker -l 192.168.0.252

Note: The cluster-configuration.yaml file of the cluster will be refreshed with the new
configuration. For more information of the cluster-configuration.yaml file, see “Creating
the cluster nodes” on page 89.
126 Implementation Guide for IBM Blockchain Platform for Multicloud

https://www-03preprod.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/installing/remove_node.html
https://www-03preprod.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/installing/remove_node.html
https://www-03preprod.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/installing/remove_node.html
https://www-03preprod.ibm.com/support/knowledgecenter/SSBS6K_3.2.0/installing/add_node.html

Chapter 4. IBM Blockchain Platform
installation and configuration

In this chapter, we describe the installation and configuration process of IBM Blockchain
Platform (IBP), including the IBP Console.

This chapter includes the following topics:

� 4.1, “Console installation” on page 128
� 4.2, “Verifying console installation and initializing console with users” on page 152
� 4.3, “IBM Blockchain Platform installation” on page 173
� 4.4, “OpenShift support: Statement of direction” on page 194
� 4.5, “Troubleshooting the installation” on page 194

4

© Copyright IBM Corp. 2019. All rights reserved. 127

4.1 Console installation

To install the IBM Blockchain Platform for Multicloud Console, a Kubernetes administrator
must complete the general process that is described in this section:

1. “Loading Helm chart” on page 128
2. “Setting up role-based access control (RBAC) roles for blockchain [1x per cluster only]” on

page 131
3. Console installation:

– “Scripted console installation” on page 136 or
– “Manual console installation” on page 143

Before beginning this section, you must have configured an IBM Cloud Private cluster and
created a storage class for use with the blockchain platform such as local storage, nfs, or
glusterfs.

You can deploy only one console per namespace. If you need to create multiple blockchain
networks (for example development, staging, and production), you must create a unique
namespace for each environment. You can do this by setting a higher team_number in the
procedure “Scripted console installation” on page 136 or manually by repeating the steps in
“Manual console installation” on page 143.

4.1.1 Loading Helm chart

After you set up the security policy, download the Helm chart of IBM Blockchain Platform for
IBM Cloud Private from Passport Advantage Online. Then, follow these steps for installation:

1. Log in to your IBM Cloud Private cluster to any namespace:

cloudctl login -a https://<cluster_CA_domain>:8443 --skip-ssl-validation

2. Create a namespace for your Helm chart:

kubectl create ns <namespace_name>

3. Set this namespace as your current namespace:

kubectl config set-context --current --namespace=<namespace>

Note: To complete console installation, the Kubernetes administrator must have cluster
administrator access and cloudctl, helm (client), and kubectl must be installed. If the
administrator is not cluster administrator, they must get this access or must ask a cluster
administrator to perform these steps.

If you need to install cloudctl, helm, or kubectl,

� cloudctl instructions are here:
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/manage_cluster/i
nstall_cli.html

� helm (client) instructions are here:

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/app_center/creat
e_helm_cli.html

� kubectl instructions are here:
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/manage_cluster/i
nstall_kubectl.html
128 Implementation Guide for IBM Blockchain Platform for Multicloud

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/manage_cluster/install_cli.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/manage_cluster/install_cli.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/app_center/create_helm_cli.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/manage_cluster/install_kubectl.html

4. Ensure that the Docker CLI is configured. After you configure the Docker CLI, access the
image registry on your cluster by using the following command:
docker login <cluster_CA_domain>:8500

5. List current helm repositories:
cloudctl catalog repos

6. Import the Helm chart by using the command line. Access the directory where you stored
the downloaded Helm chart package from PPA. Then, run the following command in the
IBM Cloud Private CLI to import the Helm chart into your IBM Cloud Private cluster:
cloudctl catalog load-archive --archive <archive-name> --registry
<cluster_CA_domain>:8500/<namespace> --repo <repo-name>

7. Replace the following values:

– <archive-name> with the name of the downloaded.tar.gz file.
– <cluster_CA_domain>:8500 with the domain that you use to log in to your IBM Cloud

Private cluster.
– <namespace> with the namespace where you plan to upload your chart.
– <repo-name> with the Helm repository where you want to upload the chart.

When this command completes successfully, you can see something that is similar to the
following information:

Example 4-1 Command successful

Uploading Helm chart(s)
Processing chart: charts/ibm-blockchain-platform-prod-1.1.0.tgz
Updating chart values.yaml
Uploading chart
Loaded Helm chart
OK

Synch charts
Archive finished processing

8. Click Catalog in the IBM Cloud Private console, and then click Blockchain in the left
navigation panel. If the import was successful, the ibm-blockchain-platform-prod tile is
displayed on the IBM Cloud Private Catalog page.

Example 4-2 shows an example.

Example 4-2 Loading Helm chart to cluster

cloudctl login -a https://9.56.28.25:8443 --skip-ssl-validation -n default

Username> admin

Password>
Authenticating...

Note: If you are using macOS, add --username value and --password value, or set in
the environment as DOCKER_USER and DOCKER_PASSWORD.

Note: You can upload the chart to your local repo (local-charts) by first running
cloudctl catalog repos and selecting one of your existing repos such as local-charts
and uploading there with --repo local-charts. Choose this repository when you look
for the chart in the catalog to install the Helm chart.
Chapter 4. IBM Blockchain Platform installation and configuration 129

OK

Targeted account mycluster Account (id-mycluster-account)

Targeted namespace default

Configuring kubectl ...
Property "clusters.mycluster" unset.
Property "users.mycluster-user" unset.
Property "contexts.mycluster-context" unset.
Cluster "mycluster" set.
User "mycluster-user" set.
Context "mycluster-context" created.
Switched to context "mycluster-context".
OK

Configuring helm: /Users/garrettwoodworth/.helm
OK

kubectl create ns blockchain-time
namespace/blockchain-time created

kubectl config set-context --current --namespace=blockchain-time
Context "mycluster-context" modified.

docker login mycluster.icp:8500
Username: admin
Password:
Login Succeeded

cloudctl catalog repos
Name URL
Local
ibm-charts https://raw.githubusercontent.com/IBM/charts/master/repo/stable/
false
local-charts https://mycluster.icp:8443/helm-repo/charts
true
mgmt-charts https://mycluster.icp:8443/mgmt-repo/charts
true
ibm-charts-public https://registry.bluemix.net/helm/ibm/
false
ibm-community-charts https://raw.githubusercontent.com/IBM/charts/master/repo/community/
false
ibm-entitled-charts https://raw.githubusercontent.com/IBM/charts/master/repo/entitled/
false

cloudctl catalog load-archive --archive IBM_BLOCKCHAIN_PLATFORM_FOR_IBM_C.tar.gz --registry
mycluster.icp:8500/blockchain-time --repo local-charts --username admin --password
mypassword

Expanding archive
OK

Importing docker image(s)
 Processing image: op-tools/op-tools:2.0.0-amd64
 Loading Image

Tip: --username and --password are needed for MacOS only. These values are not
needed on Linux.
130 Implementation Guide for IBM Blockchain Platform for Multicloud

 Tagging Image
 Pushing image as: mycluster.icp:8500/blockchain-time/op-tools/op-tools:2.0.0-amd64
 Processing image: op-tools/op-tools:2.0.0-s390x
 Tagging Image
 Pushing image as:

.....<Output truncated for brevity>

mycluster.icp:8500/blockchain-time/fluentd:v1.4-2-amd64
 Annotating manifest list: mycluster.icp:8500/blockchain-time/fluentd:v1.4-2-s390x
 Pushing manifest list: mycluster.icp:8500/blockchain-time/fluentd:v1.4-2
Digest: sha256:5f15171e80504fb6d5811885eeee42c6ce034852c470cff8bf25b5bb8e5dcc4d 743
OK

Uploading Helm chart(s)
 Processing chart: charts/ibm-blockchain-platform-prod-2.0.0.tgz
 Updating chart values.yaml
 Uploading chart
Loaded Helm chart
OK

Synch charts
OK

Archive finished processing

4.1.2 Setting up role-based access control (RBAC) roles for blockchain [1x per
cluster only]

Kubernetes grants roles that give users or service accounts the ability to perform a set of
specified actions against specified resources. Running applications have the roles that are
bound to their service account. The IBM Blockchain Platform for Multicloud Console requires
specific roles at both the namespace and cluster level to control the deployment and
monitoring of your blockchain networks.

For the maximum amount of security, using least-privilege is important (in other words, giving
as little access as necessary). This means defining rolebindings rather than
clusterrolebindings wherever possible to get these advantages:

� You limit the privileges that are granted to the namespace scope.
� You always grant privileges to a non-default service account in a non-default namespace

so that only pods explicitly designated to gain these extra privileges will receive them.
� Other users cannot claim cluster-admin-like privileges for themselves.

The IBM Blockchain Platform Helm chart requires that the cluster administrator bind specific
security and access policies to the target namespace before installation. We provide YAML
files that define the policies in the following steps. Save these files to your local system, and
then bind them your namespace using the IBM Cloud Private CLI. Follow the steps below
before deploying the IBM Blockchain Platform Helm chart.

You have two ways to apply these policies:

� Clone a github repository and apply the files from there. OR

Note: This setup needs to be done only once per cluster. After the initial creation, the
cluster administrator merely creates more rolebindings to the cluster roles that are created
in this section. (The administrator can use either the script or manual methods.)
Chapter 4. IBM Blockchain Platform installation and configuration 131

� Copy and paste the files directly onto your local machine and apply the files from there.

Scripted: Files on GitHub
Perform the following steps to for scripted installation:

1. Log in to your IBM Cloud Private cluster and select the target namespace of your
deployment.

cloudctl login -a https://mycluster.icp:8443 --skip-ssl-validation -n
default

2. Clone the script to the computer that you use to interact with your cluster. Use the
command line tools (kubectl and cloudctl), and move the cluster into its main directory and
apply all cluster roles and pod security policy to your cluster.

git clone --recursive -j8
https://github.com/IBMRedbooks/SG248458-Implementation-Guide-for-IBM-Blockchain-Platform
-for-Multicloud.git ibpbook-scripts && cd
ibpbook-scripts/IBM_Blockchain_Platform_for_Multicloud_Automation && kubectl apply -f .

Example 4-3 shows an example GitHub session.

Example 4-3 Apply all cluster roles and pod security policy to your cluster

cloudctl login -a https://mycluster.icp:8443 --skip-ssl-validation -n default

Username> admin

Password>
Authenticating...
OK

Targeted account mycluster Account (id-mycluster-account)

Targeted namespace default

Configuring kubectl ...
Property "clusters.mycluster" unset.
Property "users.mycluster-user" unset.
Property "contexts.mycluster-context" unset.
Cluster "mycluster" set.
User "mycluster-user" set.
Context "mycluster-context" created.
Switched to context "mycluster-context".
OK

Configuring helm: /home/support/.helm
OK

git clone --recursive -j8
https://github.com/IBMRedbooks/SG248458-Implementation-Guide-for-IBM-Blockchain-Platform
-for-Multicloud.git ibpbook-scripts && cd
ibpbook-scripts/IBM_Blockchain_Platform_for_Multicloud_Automation && kubectl apply -f .
Cloning into 'ibpbook-scripts'...
remote: Enumerating objects: 6, done.
remote: Counting objects: 100% (6/6), done.
remote: Compressing objects: 100% (5/5), done.
remote: Total 6 (delta 1), reused 6 (delta 1), pack-reused 0
Unpacking objects: 100% (6/6), done.
Submodule 'IBM_Blockchain_Platform_for_Multicloud_Automation'
(https://github.com/siler23/IBM_Blockchain_Platform_for_Multicloud_Automation)
registered for path 'IBM_Blockchain_Platform_for_Multicloud_Automation'
132 Implementation Guide for IBM Blockchain Platform for Multicloud

Submodule 'nfs-helm-dynamic-multiarch'
(https://github.com/siler23/nfs-helm-dynamic-multiarch) registered for path
'nfs-helm-dynamic-multiarch'
Cloning into
'/Users/garrettwoodworth/Documents/Redbook_IBP4Multicloud/ibpbook-scripts/IBM_Blockchain
_Platform_for_Multicloud_Automation'...
remote: Enumerating objects: 46, done.
remote: Counting objects: 100% (46/46), done.
remote: Compressing objects: 100% (33/33), done.
remote: Total 46 (delta 24), reused 34 (delta 12), pack-reused 0
Cloning into
'/Users/garrettwoodworth/Documents/Redbook_IBP4Multicloud/ibpbook-scripts/nfs-helm-dynam
ic-multiarch'...
remote: Enumerating objects: 122, done.
remote: Counting objects: 100% (122/122), done.
remote: Compressing objects: 100% (70/70), done.
remote: Total 122 (delta 53), reused 105 (delta 36), pack-reused 0
Receiving objects: 100% (122/122), 180.74 KiB | 3.23 MiB/s, done.
Resolving deltas: 100% (53/53), done.
Submodule path 'IBM_Blockchain_Platform_for_Multicloud_Automation': checked out
'd04f7d3f9cd911179bb66d75cd1426a08140c800'
Submodule path 'nfs-helm-dynamic-multiarch': checked out
'c879b3d17c3e8ef105e6be9818365c25c6e23215'
clusterrole.rbac.authorization.k8s.io/crd-clusterrole created
clusterrole.rbac.authorization.k8s.io/ibm-blockchain-platform-clusterrole created
clusterrole.rbac.authorization.k8s.io/ibm-blockchain-platform-psp-clusterrole created
podsecuritypolicy.extensions/ibm-blockchain-platform-psp created

Manual: Copy and paste piles
Perform the following steps to install the console manually:

1. Define pod security policy as described here.
IBP Helm charts require specific security and access policies be bound to the target
namespace prior to installation. The file that is shown in Example 4-4 defines the
PodSecurityPolicy. Save it as ibm-blockchain-platform-psp.yaml on your local system.

Example 4-4 ibm-blockchain-platform-psp.yaml

apiVersion: extensions/v1beta1
kind: PodSecurityPolicy
metadata:
 name: ibm-blockchain-platform-psp
spec:
 hostIPC: false
 hostNetwork: false
 hostPID: false
 privileged: true
 allowPrivilegeEscalation: true
 readOnlyRootFilesystem: false
 seLinux:
 rule: RunAsAny
 supplementalGroups:
 rule: RunAsAny
 runAsUser:

Note: Pod Security Policies (PSPs) and ClusterRoles (CRs) are at the Cluster
Scope, so you set them only one time per cluster. Thus, the preceding PSPs and
CRs should be applied only one time per cluster.
Chapter 4. IBM Blockchain Platform installation and configuration 133

 rule: RunAsAny
 fsGroup:
 rule: RunAsAny
 allowedCapabilities:
 - NET_BIND_SERVICE
 - CHOWN
 - DAC_OVERRIDE
 - SETGID
 - SETUID
 - FOWNER
 volumes:
 - '*'

2. Save the file shown in Example 4-5 that defines the required ClusterRole for the
PodSecurityPolicy as ibm-blockchain-platform-psp-clusterrole.yaml.

Example 4-5 ibm-blockchain-platform-psp-clusterrole.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 annotations:
 name: ibm-blockchain-platform-psp-clusterrole
rules:
 - apiGroups:
 - extensions
 resourceNames:
 - ibm-blockchain-platform-psp
 resources:
 - podsecuritypolicies
 verbs:
 - use

3. Save the file in Example 4-6 that defines the required ClusterRole for the blockchain
console as ibm-blockchain-platform-clusterrole.yaml.

Example 4-6 ibm-blockchain-platform-clusterrole.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 annotations:
 name: ibm-blockchain-platform-clusterrole
rules:
- apiGroups:
 - '*'
 resources:
 - pods
 - services
 - endpoints
 - persistentvolumeclaims
 - persistentvolumes
 - events
 - configmaps
 - secrets
 - ingresses
 - roles
134 Implementation Guide for IBM Blockchain Platform for Multicloud

 - rolebindings
 - serviceaccounts
 verbs:
 - '*'
- apiGroups:
 - apiextensions.k8s.io
 resources:
 - customresourcedefinitions
 verbs:
 - '*'
- apiGroups:
 - ibp.com
 resources:
 - '*'
 verbs:
 - '*'
- apiGroups:
 - apps
 resources:
 - deployments
 - daemonsets
 - replicasets
 - statefulsets
 verbs:
 - '*'

4. Save the file in Example 4-7, which defines the clusterrole for custom resource definitions
at a cluster scope as crd-clusterrole.yaml.

Example 4-7 crd-clusterrole.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: crd-clusterrole
rules:
- apiGroups:
 - apiextensions.k8s.io
 resources:
 - customresourcedefinitions
 verbs:
 - get
 - watch
 - list
 - create

5. After the PodSecurityPolicy, ClusterRole, and ClusterRoleBinding YAML files are saved to
your local system, a cluster administrator must use the IBM Cloud Private CLI to bind the
policies to your namespace.

a. Log in to your IBM Cloud Private cluster, and select the target namespace of your
deployment.

cloudctl login -a https://<cluster_CA_domain>:8443 --skip-ssl-validation

b. Use the following commands to apply the policies to your cluster:

kubectl apply -f ibm-blockchain-platform-psp.yaml
Chapter 4. IBM Blockchain Platform installation and configuration 135

kubectl apply -f ibm-blockchain-platform-psp-clusterrole.yaml
kubectl apply -f ibm-blockchain-platform-clusterrole.yaml
kubectl apply -f crd-clusterrole.yaml

4.1.3 Scripted console installation

A console installation script is available in the GitHub page for this Redbooks document:
https://github.com/IBMRedbooks/SG248458-Implementation-Guide-for-IBM-Blockchain-Pl
atform-for-Multicloud

The script automates the IBM Blockchain Platform for Multicloud console installation. This
script is in the IBM_Blockchain_Platform_for_Multicloud_Automation directory of the main
GitHub page.

(Instead of the script, you can follow the manual steps for this operation in the section 4.1.4,
“Manual console installation” on page 143.)

This section describes the basic steps to set up and run the script. For more information, see
the README on the main page of GitHub repository.

Script setup instructions
1. Clone the script to the computer that you use to interact with your cluster by using the

command line tools (kubectl and cloudctl), if you have not already done so.

git clone --recursive -j8
https://github.com/IBMRedbooks/SG248458-Implementation-Guide-for-IBM-Blockchain-Platform
-for-Multicloud.git ibpbook-scripts && cd
ibpbook-scripts/IBM_Blockchain_Platform_for_Multicloud_Automation

2. Log in to your IBM Cloud Private Cluster with a cluster admin user account:

cloudctl login -a https://<cluster_hostname>:8443 -n default

3. Find the chart repo to which you uploaded the blockchain chart, and get its address in your
repo:

cloudctl catalog charts | grep ibm-blockchain-platform-prod
cloudctl catalog repos | grep <repo_blockchain-result_of_command_above>

4. Configure a local blockchain-charts helm repo (by using this address) if you do not already
have one:

helm repo add blockchain-charts --ca-file "${HOME}"/.helm/ca.pem --cert-file
"${HOME}"/.helm/cert.pem --key-file "${HOME}"/.helm/key.pem <repo_url_from_end_of_step3>

helm repo update

Note: Pod Security Policies (PSPs) and ClusterRoles (CRs) are at the Cluster
Scope, so you set them only one time per cluster. Thus, the preceding PSPs and
CRs should be applied only one time per cluster.

Note: This script exists for educational purposes and is not supported by IBM.
Nonetheless, the script might provide a valid way for you to quickly deploy consoles, and
also delete and redeploy consoles.
136 Implementation Guide for IBM Blockchain Platform for Multicloud

https://github.com/siler23/IBM_Blockchain_Platform_for_Multicloud_Automation
https://github.com/siler23/IBM_Blockchain_Platform_for_Multicloud_Automation

5. Run the script with your designated values.

TEAM_NUMBER=<number_of_consoles_to_deploy> PREFIX=<prefix_deploy>
DOCKER_NAMESPACE=<helm_chart_loaded_namespace> STORAGE_CLASS=<storage_class_setup>
CLUSTER_HOSTNAME=<cluster_hostname> ARCH=<hardware_architecture>
ADMIN_EMAIL=<admin_username> ./Blockchain_Setup.sh

An explanation of each value in the script is listed with the default value in brackets ([]). A
[Must Set] flag means that the values must be set by the users during installation. If you
do not set a value, the default is used. If a [Must Set] variable is not set, the script stops
and prompts the user to set the value for that variable.

– [Must Set] TEAM_NUMBER
The number of consoles that the user wants to deploy. This must be set for chart to run.

– [Must Set] PREFIX
The prefix for the console installation script. The prefix adds uniqueness so that
multiple users can coexist. Do the following search to confirm that your prefix is not
being used by a namespace already:

kubectl get ns | grep prefix

where prefix is the name of your prefix.

– [blockchain-time] DOCKER_NAMESPACE
Holds the blockchain images in its section of the private docker repository.

– [managed-nfs-storage] STORAGE_CLASS
The storage class name that is used for your console helm release and the subsequent
blockchain component deployments. Typically, you set this up by following the
instructions in the previous section on storage classes (Hint: either glusterfs or nfs).

The options to use in the cluster for this document have been italicized in the following
example. These options might be either of the ones with dynamic provisioners
(glusterfs and managed-nfs-storage). You can use the one that you set up earlier,
based on your preference. [managed-nfs-storage]

Note: You might get the following error from the helm repo add command:

Error: Couldn't load repositories file
(/home/support/.helm/repository/repositories.yaml).

In this case, you might need to run ‘helm init’ (or ‘helm init --client-only’
if tiller is already installed)

Run this command:

helm init --client-only

Then, rerun the previous commands for your values:

helm repo add blockchain-charts
https://<cluster_hostname>:8443/helm-repo/charts
helm repo update

Note: If your cluster does not have the storage class yet, complete this operation now
and then complete the current step. Run the kubectl command to confirm creation of
your storage classes.
Chapter 4. IBM Blockchain Platform installation and configuration 137

kubectl get sc
NAME PROVISIONER AGE
glusterfs kubernetes.io/glusterfs 7d
image-manager-storage kubernetes.io/no-provisioner 58d
logging-storage-datanode kubernetes.io/no-provisioner 58d
managed-nfs-storage nfs-provisioner 8d
mongodb-storage kubernetes.io/no-provisioner 58d

– [s390x] ARCH
The hardware architecture used for the helm release. LinuxONE uses s390x while x86
uses amd64

– [optional] ADMIN_EMAIL
An optional field that gives all consoles this admin username for login. The default is to
not set this value. As a result, team numbers 0 to x @ibm.com serve as usernames.

6. After the script runs to completion, find the username and initial password that was set for
each console. Also, find the two URLs that access and accept certificates (the console
itself and the proxy):

cat portList.txt

7. Visit the URLs that are provided in the portList document. If this operation fails at this
stage or earlier, look at more details on the README page for this script at this website:
https://github.com/IBMRedbooks/SG248458-Implementation-Guide-for-IBM-Blockchain
-Platform-for-Multicloud/blob/master/automation-README.md

8. When you are done with the consoles (if you are using it for development or testing), run
the clean-up script that is provided at the end of the portList.txt document. When you
plan for development deployments, you typically use that as a prefix for easy deletion of all
consoles at once. Alternatively, you can adjust the START_NUMBER parameters as part
of your cleanup to see which console number to start at, beginning from 0. If 10 consoles
were deployed, run the following cleanup operation to delete teams 6-10, as in this
example:

TEAM_NUMBER=11 PREFIX=garrett PRESTART_NUMBER=6 ./cleanupNamespaces.sh

Script example that runs with setup
A script example that runs with setup is shown in Example 4-8 on page 138.

Example 4-8 Script example run with setup

git clone --recursive -j8
https://github.com/IBMRedbooks/SG248458-Implementation-Guide-for-IBM-Blockchain-Platform-fo
r-Multicloud.git ibpbook-scripts && cd
ibpbook-scripts/IBM_Blockchain_Platform_for_Multicloud_Automation

Cloning into 'ibpbook-scripts'...
remote: Enumerating objects: 6, done.
remote: Counting objects: 100% (6/6), done.
remote: Compressing objects: 100% (5/5), done.
remote: Total 6 (delta 1), reused 6 (delta 1), pack-reused 0
Unpacking objects: 100% (6/6), done.
Submodule 'IBM_Blockchain_Platform_for_Multicloud_Automation'
(https://github.com/siler23/IBM_Blockchain_Platform_for_Multicloud_Automation)
registered for path 'IBM_Blockchain_Platform_for_Multicloud_Automation'
Submodule 'nfs-helm-dynamic-multiarch'
(https://github.com/siler23/nfs-helm-dynamic-multiarch) registered for path
'nfs-helm-dynamic-multiarch'
Cloning into
'/Users/garrettwoodworth/Documents/Redbook_IBP4Multicloud/ibpbook-scripts/IBM_Blockc
hain_Platform_for_Multicloud_Automation'...
138 Implementation Guide for IBM Blockchain Platform for Multicloud

https://github.com/siler23/IBM_Blockchain_Platform_for_Multicloud_Automation

remote: Enumerating objects: 46, done.
remote: Counting objects: 100% (46/46), done.
remote: Compressing objects: 100% (33/33), done.
remote: Total 46 (delta 24), reused 34 (delta 12), pack-reused 0
Cloning into
'/Users/garrettwoodworth/Documents/Redbook_IBP4Multicloud/ibpbook-scripts/nfs-helm-d
ynamic-multiarch'...
remote: Enumerating objects: 122, done.
remote: Counting objects: 100% (122/122), done.
remote: Compressing objects: 100% (70/70), done.
remote: Total 122 (delta 53), reused 105 (delta 36), pack-reused 0
Receiving objects: 100% (122/122), 180.74 KiB | 2.70 MiB/s, done.
Resolving deltas: 100% (53/53), done.
Submodule path 'IBM_Blockchain_Platform_for_Multicloud_Automation': checked out
'd04f7d3f9cd911179bb66d75cd1426a08140c800'
Submodule path 'nfs-helm-dynamic-multiarch': checked out
'c879b3d17c3e8ef105e6be9818365c25c6e23215'

cloudctl login -a https://mycluster.icp:8443 -n default

Username> admin

Password>
Authenticating...
OK

Targeted account mycluster Account (id-mycluster-account)

Targeted namespace default

Configuring kubectl ...
Property "clusters.mycluster" unset.
Property "users.mycluster-user" unset.
Property "contexts.mycluster-context" unset.
Cluster "mycluster" set.
User "mycluster-user" set.
Context "mycluster-context" created.
Switched to context "mycluster-context".
OK

Configuring helm: /home/support/.helm
OK

cloudctl catalog charts | grep ibm-blockchain-platform-prod
ibm-blockchain-platform-prod 2.0.0 local-charts IBM Blockchain
Platform for IBM Cloud Private

cloudctl catalog repos | grep local-charts
local-charts https://mycluster.icp:8443/helm-repo/charts
true

helm repo add blockchain-charts https://mycluster.icp:8443/helm-repo/charts
Error: Couldn't load repositories file
(/home/support/.helm/repository/repositories.yaml).
You might need to run `helm init` (or `helm init --client-only` if tiller is already
installed)

helm init --client-only
Creating /home/support/.helm/repository
Creating /home/support/.helm/repository/cache
Chapter 4. IBM Blockchain Platform installation and configuration 139

Creating /home/support/.helm/repository/local
Creating /home/support/.helm/plugins
Creating /home/support/.helm/starters
Creating /home/support/.helm/cache/archive
Creating /home/support/.helm/repository/repositories.yaml
Adding stable repo with URL: https://kubernetes-charts.storage.googleapis.com
Adding local repo with URL: http://127.0.0.1:8879/charts
$HELM_HOME has been configured at /home/support/.helm.
Not installing Tiller due to 'client-only' flag having been set
Happy Helming!

helm repo add blockchain-charts --ca-file "${HOME}"/.helm/ca.pem --cert-file
"${HOME}"/.helm/cert.pem --key-file "${HOME}"/.helm/key.pem
https://mycluster.icp:8443/helm-repo/charts

"blockchain-charts" has been added to your repositories

helm repo update
Hang tight while we grab the latest from your chart repositories...
...Skip local chart repository
...Successfully got an update from the "blockchain-charts" chart repository
...Successfully got an update from the "stable" chart repository
Update Complete. Happy Helming!

TEAM_NUMBER=1 PREFIX=ibp-auto-deploy DOCKER_NAMESPACE=blockchain-time
STORAGE_CLASS=managed-nfs-storage ARCH=s390x CLUSTER_HOSTNAME=mycluster.icp
ADMIN_EMAIL=siler23@ibm.com ./Blockchain_Setup.sh

Example 4-9 Blockchain setup script

______________ _____________________ _______________ ____________________ __
___ __)__ / __ __ _ ____/__ //_/_ ____/__ / / /__ |___ _/__ | / /
__ __ |_ / _ / / / / __ ,< _ / __ /_/ /__ /| |__ / __ |/ /
_ /_/ /_ /___/ /_/ // /___ _ /| | / /___ _ __ / _ ___ |_/ / _ /| /
/_____/ /_____/____/ ____/ /_/ |_| ____/ /_/ /_/ /_/ |_/___/ /_/ |_/

___________________ ________________
__ ___/_ __ _ / / /__ |__ __ \
_____ _ / / / / / /__ /| |_ / / /
____/ // /_/ // /_/ / _ ___ | /_/ /
/____/ ________/ /_/ |_/_____/

 ---- Creating 1 of Optools Instances ----

Setting up namespace for team00
+ kubectl create ns ibp-auto-deploy-team00
namespace/ibp-auto-deploy-team00 created
+ kubectl config set-context --current --namespace=ibp-auto-deploy-team00
Context "mycluster-context" modified.

Note: Because the command in Example 4-8 uses many of the defaults (for demonstration
purposes) this script would be equivalent to running the following command:

TEAM_NUMBER=1 PREFIX=ibp-auto-deploy ADMIN_EMAIL=siler23@ibm.com
./Blockchain_Setup.sh

Example 4-9 shows the output for this command, which results in the application of all
default values.
140 Implementation Guide for IBM Blockchain Platform for Multicloud

+ kubectl create secret generic team00-ibp-ui-secret --from-literal=password=team00pw12438
secret/team00-ibp-ui-secret created
+ kubectl create sa ibp
serviceaccount/ibp created
+ kubectl create rolebinding ibp-admin --serviceaccount ibp-auto-deploy-team00:ibp
--clusterrole=ibm-blockchain-platform-clusterrole
rolebinding.rbac.authorization.k8s.io/ibp-admin created
+ kubectl create rolebinding ibp-psp --group system:serviceaccounts:ibp-auto-deploy-team00
--clusterrole=ibm-blockchain-platform-psp-clusterrole
rolebinding.rbac.authorization.k8s.io/ibp-psp created
+ kubectl create clusterrolebinding ibp-auto-deploy-team00-ibp-crd --serviceaccount
ibp-auto-deploy-team00:ibp --clusterrole=crd-clusterrole
clusterrolebinding.rbac.authorization.k8s.io/ibp-auto-deploy-team00-ibp-crd created
++ kubectl get secret -n blockchain-time sa-blockchain-time -o 'jsonpath={.data.\.dockerconfigjson}'
++ base64 --decode
+ kubectl create secret generic blockchain-docker-registry
'--from-literal=.dockerconfigjson={"auths":{"mycluster.icp:8500":{"username":"sa-blockchain-time","password
":"9jbd5hsmf6","auth":"c2EtYmxvY2tjaGFpbi10aW1lOjhrYmQ0aHhtZjY="}}}' --type=kubernetes.io/dockerconfigjson
secret/blockchain-docker-registry created
+ set +x
+ helm install --tls --namespace ibp-auto-deploy-team00 blockchain-charts/ibm-blockchain-platform-prod
--version 2.0.0 -n ibp-auto-deploy-team00-ibp-console --set app.email=siler23@ibm.com --set
app.multiArch=true --set app.passwordSecretName=team00-ibp-ui-secret --set app.proxyIP=9.56.28.25 --set
app.serviceAccountName=ibp --set arch=s390x --set dataPVC.storageClassName=managed-nfs-storage --set
image.caImage=mycluster.icp:8500/blockchain-time/ibp2/hlfabric-ca --set image.caTag=1.4.1 --set
image.configtxlatorImage=mycluster.icp:8500/blockchain-time/ibp2/hlfabric-configtxlator --set
image.configtxlatorTag=1.4.1 --set
image.couchdbImage=mycluster.icp:8500/blockchain-time/ibp2/hlfabric-couchdb --set image.couchdbTag=1.4.1
--set image.deployerImage=mycluster.icp:8500/blockchain-time/ibp2/deployer-to-go --set
image.deployerTag=2.0.0 --set image.dindImage=mycluster.icp:8500/blockchain-time/ibp2/hlfabric-dind --set
image.dindTag=1.4.1 --set image.fluentdImage=mycluster.icp:8500/blockchain-time/fluentd --set
image.fluentdTag=v1.4-2 --set image.grpcwebImage=mycluster.icp:8500/blockchain-time/ibp2/hlfabric-grpcweb
--set image.grpcwebTag=1.4.1 --set image.imagePullSecret=blockchain-docker-registry --set
image.initImage=mycluster.icp:8500/blockchain-time/ibp2/hlfabric-init --set image.initTag=1.4.1 --set
image.operatorImage=mycluster.icp:8500/blockchain-time/ibp2/ibp-operator --set image.operatorTag=2.0.0
--set image.optoolsImage=mycluster.icp:8500/blockchain-time/op-tools/op-tools --set image.optoolsTag=2.0.0
--set image.ordererImage=mycluster.icp:8500/blockchain-time/ibp2/hlfabric-orderer --set
image.ordererTag=1.4.1 --set image.peerImage=mycluster.icp:8500/blockchain-time/ibp2/hlfabric-peer --set
image.peerTag=1.4.1 --set ingress.optools.hostname=9.56.28.25 --set ingress.optools.port=30003 --set
ingress.proxy.hostname=9.56.28.25 --set ingress.proxy.port=30004 --set license=accept --set
resources.configtxlator.limits.cpu=25m --set resources.configtxlator.limits.memory=100Mi --set
resources.configtxlator.requests.cpu=25m --set resources.configtxlator.requests.memory=10Mi --set
resources.couchdb.limits.cpu=250m --set resources.couchdb.limits.memory=250Mi --set
resources.couchdb.requests.cpu=50m --set resources.couchdb.requests.memory=100Mi --set
resources.deployer.limits.cpu=100m --set resources.deployer.limits.memory=100Mi --set
resources.deployer.requests.cpu=25m --set resources.deployer.requests.memory=10Mi --set
resources.operator.limits.cpu=100m --set resources.operator.limits.memory=100Mi --set
resources.operator.requests.cpu=25m --set resources.operator.requests.memory=20Mi --set
resources.optools.limits.cpu=250m --set resources.optools.limits.memory=250Mi --set
resources.optools.requests.cpu=50m --set resources.optools.requests.memory=100Mi
NAME: ibp-auto-deploy-team00-ibp-console
LAST DEPLOYED: Fri Aug 23 08:32:51 2019
NAMESPACE: ibp-auto-deploy-team00
STATUS: DEPLOYED

RESOURCES:
==> v1/ConfigMap
NAME DATA AGE
ibp-auto-deploy-team00-ibp-console-env 9 2s
ibp-auto-deploy-team00-ibp-console-template 1 2s
Chapter 4. IBM Blockchain Platform installation and configuration 141

ibp-auto-deploy-team00-ibp-console-deployer-template 1 2s

==> v1/PersistentVolumeClaim
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
ibp-auto-deploy-team00-ibp-console Pending managed-nfs-storage 2s

==> v1/Service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
ibp-auto-deploy-team00-ibp-console-optools NodePort 10.0.152.0 <none>
3000:30003/TCP,3001:30004/TCP 2s

==> v1/Deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
ibp-auto-deploy-team00-ibp-console 1 1 1 0 2s

==> v1/Pod(related)
NAME READY STATUS RESTARTS AGE
ibp-auto-deploy-team00-ibp-console-6d45d47868-2qjp5 0/5 Pending 0 0s

NOTES:
Open IBM Blockchain Console:
https://9.56.28.25:30003

Note: Please go to the following URL and accept the certificate:
https://9.56.28.25:30004

+ RC=0
+ set +x
Checking deploy for team00
Waiting for pod ibp-auto-deploy-team00-ibp-console-6d45d47868-2qjp5 to start completion. Status = Pending, Readiness = 0/5
Waiting for pod ibp-auto-deploy-team00-ibp-console-6d45d47868-2qjp5 to start completion. Status = Pending, Readiness = 0/5
Waiting for pod ibp-auto-deploy-team00-ibp-console-6d45d47868-2qjp5 to start completion. Status = Pending, Readiness = 0/5
Waiting for pod ibp-auto-deploy-team00-ibp-console-6d45d47868-2qjp5 to start completion. Status = Pending, Readiness = 0/5
Waiting for pod ibp-auto-deploy-team00-ibp-console-6d45d47868-2qjp5 to start completion. Status = ContainerCreating, Readiness = 0/5
Waiting for pod ibp-auto-deploy-team00-ibp-console-6d45d47868-2qjp5 to start completion. Status = ContainerCreating, Readiness = 0/5
Waiting for pod ibp-auto-deploy-team00-ibp-console-6d45d47868-2qjp5 to start completion. Status = ContainerCreating, Readiness = 0/5
Waiting for pod ibp-auto-deploy-team00-ibp-console-6d45d47868-2qjp5 to start completion. Status = Running, Readiness = 0/5
Waiting for pod ibp-auto-deploy-team00-ibp-console-6d45d47868-2qjp5 to start completion. Status = Running, Readiness = 0/5
Waiting for pod ibp-auto-deploy-team00-ibp-console-6d45d47868-2qjp5 to start completion. Status = Running, Readiness = 3/5
Waiting for pod ibp-auto-deploy-team00-ibp-console-6d45d47868-2qjp5 to start completion. Status = Running, Readiness = 4/5
Waiting for pod ibp-auto-deploy-team00-ibp-console-6d45d47868-2qjp5 to start completion. Status = Running, Readiness = 4/5
Waiting for pod ibp-auto-deploy-team00-ibp-console-6d45d47868-2qjp5 to start completion. Status = Running, Readiness = 4/5
Waiting for pod ibp-auto-deploy-team00-ibp-console-6d45d47868-2qjp5 to start completion. Status = Running, Readiness = 4/5
Waiting for pod ibp-auto-deploy-team00-ibp-console-6d45d47868-2qjp5 to start completion. Status = Running, Readiness = 4/5
Waiting for pod ibp-auto-deploy-team00-ibp-console-6d45d47868-2qjp5 to start completion. Status = Running, Readiness = 4/5
Waiting for pod ibp-auto-deploy-team00-ibp-console-6d45d47868-2qjp5 to start completion. Status = Running, Readiness = 4/5
Waiting for pod ibp-auto-deploy-team00-ibp-console-6d45d47868-2qjp5 to start completion. Status = Running, Readiness = 4/5
Waiting for pod ibp-auto-deploy-team00-ibp-console-6d45d47868-2qjp5 to start completion. Status = Running, Readiness = 4/5
Waiting for pod ibp-auto-deploy-team00-ibp-console-6d45d47868-2qjp5 to start completion. Status = Running, Readiness = 4/5

@@@@@@@@ @@@ @@@ @@@ @@@ @@@@@@ @@@ @@@ @@@@@@@@ @@@@@@@
@@@@@@@@ @@@ @@@@ @@@ @@@ @@@@@@@ @@@ @@@ @@@@@@@@ @@@@@@@@
@@! @@! @@!@!@@@ @@! !@@ @@! @@@ @@! @@! @@@
!@! !@! !@!!@!@! !@! !@! !@! @!@ !@! !@! @!@
@!!!:! !!@ @!@ !!@! !!@ !!@@!! @!@!@!@! @!!!:! @!@ !@!
!!!!!: !!! !@! !!! !!! !!@!!! !!!@!!!! !!!!!: !@! !!!
!!: !!: !!: !!! !!: !:! !!: !!! !!: !!: !!!
:!: :!: :!: !:! :!: !:! :!: !:! :!: :!: !:!
 :: :: :: :: :: :::: :: :: ::: :: :::: :::: ::
 : : :: : : :: : : : : : : :: :: :: : :

It took 1 minutes and 16 seconds to setup 1 optools instances each in an unique namespace
cat portList.txt
List of ports for each team for quick reference
**************** TEAM0 ****************
142 Implementation Guide for IBM Blockchain Platform for Multicloud

team00 optools URL: https://9.56.28.25:30003
team00 proxy URL: https://9.56.28.25:30004
team00 USERNAME: siler23@ibm.com
team00 PASSWORD: team00pw12438

Full Cleanup Command: TEAM_NUMBER=1 PREFIX=ibp-auto-deploy ./cleanupNamespaces.sh

4.1.4 Manual console installation

In this section, we describe manual installation of the console.

Setting up namespace for installation

1. If you deploy more than one console, create subsequent namespaces for other consoles:

kubectl create ns <namespace>

2. Set kubectl to use this new namespace.

kubectl config set-context --current --namespace=<namespace>

3. Create a secret to store the default console password. The user resets this password
upon login:

kubectl create secret generic ibp-ui-secret
--from-literal=password=<chosen_password>

4. After you apply the policies, run the following classes to create a new service account:

kubectl create sa <sa_name>

5. Run the following commands to grant your service account the required level of
permissions to deploy your console:

The commands specify the name of your target namespace and newly created service
account. This action creates bindings at the namespace level (rolebinding) and cluster
level (clusterrolebinding), which grants the permissions that are necessary for the IBM
Blockchain Platform to run.

kubectl create rolebinding <rolebinding_name> --serviceaccount <namespace>:<sa_name>
--clusterrole=ibm-blockchain-platform-clusterrole

kubectl create rolebinding <rolebinding_name> --group system:serviceaccounts:<namespace>
--clusterrole=ibm-blockchain-platform-psp-clusterrole

kubectl create clusterrolebinding <namespace>-ibp-crd --serviceaccount
<namespace>:<sa_name> --clusterrole=crd-clusterrole

6. Create a Docker Registry Secret. You use the secret name to access the images in the
unique namespace that you pushed them to. To do this you copy the docker secret name
while granting pull-only access to these images in the namespace to which you pushed
the chart.

kubectl create secret generic <docker_secret_name>
--from-literal=.dockerconfigjson=$(kubectl get secret -n <helm_chart_loaded_namespace>
sa-<helm_chart_loaded_namespace> -o jsonpath='{.data.\.dockerconfigjson}' | base64
--decode) --type=kubernetes.io/dockerconfigjson

Note: Do all of these steps one time per namespace. You must deploy each console in its
own namespace. In other words, these steps must be performed for each new console that
you create.
Chapter 4. IBM Blockchain Platform installation and configuration 143

7. (Optional) [Only if necessary for your organization] Create a secret for using your
organization’s own TLS certificates instead of making these certificates self-signed. If you
do this, create your tls private key and have your organization’s certificate authority create
a certificate for it first. Then, create a Kubernetes secret using the certificate and private
key by providing paths to them by running the following command:

kubectl create secret tls <tls_secret_name> --cert=<"path-to-tls-cert-file">
--key=<"path-to-tls-key-file">

Example 4-10 shows an example of namespace setup.

Example 4-10 Example of namespace setup

kubectl create ns blockchain-console1
namespace/blockchain-console1 created

kubectl config set-context --current --namespace=blockchain-console1
Context "mycluster-context" modified.

kubectl create secret generic ibp-ui-secret
--from-literal=password=I-Live-4-SECurity-OhYEAH
secret/ibp-ui-secret created

kubectl create sa ibp
serviceaccount/ibp created

kubectl create rolebinding ibp-admin --serviceaccount blockchain-console1:ibp
--clusterrole=ibm-blockchain-platform-clusterrole
rolebinding.rbac.authorization.k8s.io/ibp-admin created

kubectl create rolebinding ibp-psp --group system:serviceaccounts:blockchain-console1
--clusterrole=ibm-blockchain-platform-psp-clusterrole
rolebinding.rbac.authorization.k8s.io/ibp-psp created

kubectl create clusterrolebinding blockchain-console1-ibp-crd --serviceaccount
blockchain-console1:ibp --clusterrole=crd-clusterrole
clusterrolebinding.rbac.authorization.k8s.io/blockchain-console1-ibp-crd created

kubectl create secret generic blockchain-docker-registry
--from-literal=.dockerconfigjson=$(kubectl get secret -n blockchain-time sa-blockchain-time
-o jsonpath='{.data.\.dockerconfigjson}' | base64 --decode)
--type=kubernetes.io/dockerconfigjson
secret/blockchain-docker-registry created

(Optional) [Only if necessary for your organization]
kubectl create secret tls blockchain-tls --cert="tls.crt" --key="tls.key"
secret/blockchain-tls created
144 Implementation Guide for IBM Blockchain Platform for Multicloud

Installing console
First, go to the catalog and look in local-charts for the blockchain chart and click it. Figure 4-1
on page 145 shows it highlighted in blue. Click the Repository drop-down and select
local-charts.

Figure 4-1 Installing console -1

8. Configure the chart with the following values for your cluster. We have labeled the pictures
with numbers that match each value. The value that is required for this installation is
shown in brackets ([]).

The first three values apply to Figure 4-2 on page 146.
Chapter 4. IBM Blockchain Platform installation and configuration 145

Table 4-1 Values for callout numbers 1 to 3

Figure 4-2 Installing console -2

1. Helm release name is the name you choose for your helm release. Make sure to use a unique name for each helm
release in the cluster. [blockchain-console-1]

2. Target namespace is the namespace you set up in the previous sections. [blockchain-console1]
3. Target Cluster should be local-cluster unless installing on a different cluster. [local-cluster]
146 Implementation Guide for IBM Blockchain Platform for Multicloud

Values 4 to 6 apply to Figure 4-3.

Table 4-2 Values for callout numbers 4 to 6

Figure 4-3 Installing console -3

4. Target Namespace Policies displays the policies that are configured to all service accounts in the namespace that
you selected in field 2, Target namespace. Following the earlier setup, ibm-blockchain-platform-psp should be
available in your list. If you do not have this policy, go back to the section, “Setting up namespace for installation” on
page 143. [ibm-blockchain-platform-psp, ibm-restricted-psp]

5. Click the drop-down arrow to the left of All Parameters to see all the parameters that you can configure. Some of
the parameter settings are essential enablement of the console on IBM LinuxONE, as described in the procedure.

6. Architecture of the hardware where you run blockchain. s390x applies to IBM LinuxONE and amd64 applies to
x86 servers. [s390x]
Chapter 4. IBM Blockchain Platform installation and configuration 147

Values 7 to 11 apply to Figure 4-4 on page 148.

Table 4-3 Values for callout numbers 7 to 11

Figure 4-4 Installing console -4

7. serviceAccountname is the name of the service account setup in “Setting up namespace for
installation” on page 143. If you forget, you can check with kubectl. [ibp]

kubectl get sa
NAME SECRETS AGE
default 1 36h
ibp 1 36h

8. Proxy IP is the IP of your proxy node for IBM Cloud Private. (It might also be any worker node that is
accessible from your web browser.) You can find this if you do not already know it. [9.56.28.25]

kubectl get nodes -l proxy -o
jsonpath='{.items[0].metadata.labels.kubernetes\.io\/hostname}' && echo
9.56.28.25

9. Console administrator email will be the initial user’s username. Enter a username that you want.
[book@ibm.com]

10.Console administrator password secret name is the secret that holds the initial password for console
users setup in Setting up Namespaces for Installation section. You can use kubectl to find this secret.
[ibp-ui-secret]

kubectl get secrets --field-selector=type=Opaque
NAME TYPE DATA AGE
ibp-ui-secret Opaque 1 37h

11.imagePullSecret name is the name for the imagePullSecret used by all pods to pull the blockchain
images. Set this to the one that you created in Setting up Namespaces for Installation. You can use
kubectl to find this secret. [blockchain-docker-registry]

kubectl get secrets --field-selector=type=kubernetes.io/dockerconfigjson
NAME TYPE DATA AGE
blockchain-docker-registry kubernetes.io/dockerconfigjson 1 37h
148 Implementation Guide for IBM Blockchain Platform for Multicloud

Values 12 to 19 apply to Figure 4-5 on page 150.

Table 4-4 Values for callout numbers 12 to 19

Callout numbers 12 to 19

12. Console Hostname is the IP of your proxy node for IBM Cloud Private. (It could also be any worker node that is
accessible from your web browser.) This value is the same as callout number 8 (Proxy IP). Again, you can use
kubectl to find this value. [9.56.28.25]
kubectl get nodes -l proxy -o
jsonpath='{.items[0].metadata.labels.kubernetes\.io\/hostname}' && echo
9.56.28.25

13. Console port is the port you will use to externally access your IBM Blockchain Platform console. Choose an open
NodePort from ports 30000-32767. Find used NodePorts with kubectl and pick the first open one. [30003]
kubectl get svc --all-namespaces -o go-template='{{range .items}}{{range.spec.ports}}{{if
.nodePort}}{{.nodePort}}{{"\n"}}{{end}}{{end}}{{end}}' | sort
30000
30001
30002
30170
Note: The notes in the chart state that you should pick an open port from 31310-31220. These notes should read
‘an open port from 30000-32767’. Additionally, these ports do not need to be successive. For example, 30003 and
300005 would also work here.

14. Proxy Hostname is the IP of your proxy node for IBM Cloud Private. (It could also be any worker node that is
accessible from your web browser.) This value is the same as callout number 8 (Proxy IP) and callout number 12
(console hostname). Again, you can use kubectl to find this value. [9.56.28.25]
kubectl get nodes -l proxy -o jsonpath='{.items[0].metadata.labels.kubernetes\.io\/hostname}' && echo
9.56.28.25

15. Proxy port is the port used as a proxy for your IBM Blockchain Platform console. Choose an open NodePort from
ports 30000-32767. Find used NodePorts with kubectl and pick the second open one (the first one should have
been picked for your Console port above). [30004]
kubectl get svc --all-namespaces -o go-template='{{range .items}}{{range.spec.ports}}{{if
.nodePort}}{{.nodePort}}{{"\n"}}{{end}}{{end}}{{end}}' | sort
30000
30001
30002
30170
Note: The notes in the chart state that you should pick an open port from 31310-31220. These notes should read
‘an open port from 30000-32767’. Additionally, these ports do not need to be successive. For example, 30003 and
300005 would also work here.

16. TLS Secret [Optional] is the TLS secret that is required if you are using your own (for example, bring your own)
TLS certificate for the console. If you wanted this option, you would first create the secret in “Setting up namespace
for installation” on page 143. Typically, you want your certificates to be issued by your organization's CA. If this is
not a requirement for you, do not enter a secret. And in that case, a TLS certificate and secret is created for you
during the console installation process. To confirm your TLS secret or lack of one, you can use kubectl. [blank]
kubectl get secrets --field-selector=type=kubernetes.io/tls
No resources found.
Note: If your organization wanted to use its own certificate authority for the IBM Blockchain Console TLS certificate,
you would first create this secret in “Setting up namespace for installation” on page 143. In this case, the preceding
get secrets command would give output similar to the following:
kubectl get secrets --field-selector=type=kubernetes.io/tls
NAME TYPE DATA AGE
blockchain-tls kubernetes.io/tls 2 2m45s
In that case, enter blockchain-tls (in your case, whatever the name of the secret from the command above) in the
TLS Secret field (which is number 16 in the image).

17. Volume Claim Size is the size of the persistent volume that is created for use by the IBM Blockchain Platform for
Multicloud console to persist its database. Leave as the default. [10Gi]
Chapter 4. IBM Blockchain Platform installation and configuration 149

Figure 4-5 Installing console -5

Minimum Resource Configurations for the chart are in Figure 4-6 on page 151 and
Figure 4-7 on page 159. (They are spread over two figures due to the length of the
pictures.) These values should enable you to use the console with a lower resource

18. Storage class name is the name of the storage class that you have set up. Typically, you set this up by following
the instructions in the previous section on storage classes (Hint: either glusterfs or nfs). Run the following kubectl
command to see your created storage classes. The options to use are italicized here, which could be either of the
ones that have dynamic provisioners (glusterfs and managed-nfs-storage). You would use the one that you set
up earlier based on your preference. [managed-nfs-storage]
kubectl get sc
NAME PROVISIONER AGE
glusterfs kubernetes.io/glusterfs 7d
image-manager-storage kubernetes.io/no-provisioner 58d
logging-storage-datanode kubernetes.io/no-provisioner 58d
managed-nfs-storage nfs-provisioner 8d
mongodb-storage kubernetes.io/no-provisioner 58d

19. Storage access mode describes the access mode to use for your persistent volume/persistent volume claim. This
dictates whether one or many nodes can mount the volume concurrently. If other pods in Kubernetes want to mount
the blockchain volume to read from its data, ReadWriteMany is necessary (because we cannot guarantee that this
pod will land on the same node if it is following best practices). This approach can also prevent lock problems if a
node goes down. ReadWriteOnce means that only one node can mount the persistent volume claim as a volume at
a time. [ReadWriteMany]

Callout numbers 12 to 19
150 Implementation Guide for IBM Blockchain Platform for Multicloud

burden for the minimum configuration. If you have enough resources for the default values
in the chart, this approach is advised for production usage. [Listed values are for minimum
configuration. Default values in the chart are for production configuration].

Figure 4-6 Installing console -6

Click Install to install the helm release after you enter all the values above.

To learn how to verify your installation, see section 4.2.1, “Verifying installation of the
blockchain console” on page 152 section.

Note: If you get any errors on the installation step in the UI, read the error and apply the
necessary change. For help, visit section 4.5, “Troubleshooting the installation” on
page 194.
Chapter 4. IBM Blockchain Platform installation and configuration 151

4.2 Verifying console installation and initializing console with
users

This section describes these tasks for the IBM Blockchain Platform for Multicloud web
console:

� 4.2.1, “Verifying installation of the blockchain console”
� 4.2.2, “Initializing blockchain console for other users” on page 167

4.2.1 Verifying installation of the blockchain console

Before you access the console through its URL, you can confirm its installation by using one
of the options that is described in this section:

� “Verifying the console of a scripted installation”
� “Verifying the console with Kubectl (command line)” on page 153
� “Verifying the console with the IBM Cloud Private user interface (UI)” on page 158

Verifying the console of a scripted installation
When you use the scripted console installation that is described in section 4.1.3, “Scripted
console installation” on page 136, the script performs verification itself. Here is the output of a
successful completion:

Example 4-11 Output of a successful completion

Checking deploy for team00
Waiting for pod ibp-auto-deploy-team00-ibp-console-6d45d47868-qn8xc to start
completion. Status = ContainerCreating, Readiness = 0/5
Waiting for pod ibp-auto-deploy-team00-ibp-console-6d45d47868-qn8xc to start
completion. Status = ContainerCreating, Readiness = 0/5
Waiting for pod ibp-auto-deploy-team00-ibp-console-6d45d47868-qn8xc to start
completion. Status = Running, Readiness = 0/5
Waiting for pod ibp-auto-deploy-team00-ibp-console-6d45d47868-qn8xc to start
completion. Status = Running, Readiness = 1/5
Waiting for pod ibp-auto-deploy-team00-ibp-console-6d45d47868-qn8xc to start
completion. Status = Running, Readiness = 4/5

@@@@@@@@ @@@ @@@ @@@ @@@ @@@@@@ @@@ @@@ @@@@@@@@ @@@@@@@
@@@@@@@@ @@@ @@@@ @@@ @@@ @@@@@@@ @@@ @@@ @@@@@@@@ @@@@@@@@
@@! @@! @@!@!@@@ @@! !@@ @@! @@@ @@! @@! @@@
!@! !@! !@!!@!@! !@! !@! !@! @!@ !@! !@! @!@
@!!!:! !!@ @!@ !!@! !!@ !!@@!! @!@!@!@! @!!!:! @!@ !@!
!!!!!: !!! !@! !!! !!! !!@!!! !!!@!!!! !!!!!: !@! !!!
!!: !!: !!: !!! !!: !:! !!: !!! !!: !!: !!!
:!: :!: :!: !:! :!: !:! :!: !:! :!: :!: !:!
 :: :: :: :: :: :::: :: :: ::: :: :::: :::: ::
 : : :: : : :: : : : : : : :: :: :: : :

It took 1 minutes and 19 seconds to setup 1 optools instances each in an unique
namespace

Note: At this point, you know that the console installation was successful. Typically, you
then view the portList.txt file to get the URL of the console, as shown here.
152 Implementation Guide for IBM Blockchain Platform for Multicloud

cat portList.txt

List of ports for each team for quick reference

**************** TEAM0 ****************
team00 optools URL: https://9.56.28.25:30003
team00 proxy URL: https://9.56.28.25:30004
team00 USERNAME: siler23@ibm.com
team00 PASSWORD: team00pw2266

Full Cleanup Command: TEAM_NUMBER=1 PREFIX=ibp-auto-deploy
./cleanupNamespaces.sh

You use these details to log in and initialize the console as described in 4.2.2, “Initializing
blockchain console for other users” on page 167.

If the script times out instead of reaching this message, follow the steps in the “Verifying the
console with Kubectl (command line)” section. If that verification fails, seek further help in
section 4.5, “Troubleshooting the installation” on page 194.

Verifying the console with Kubectl (command line)
Perform the following steps:

1. Choose one of the options to set up kubectl to point to the namespace for your blockchain
console. (Choose only one of the two options.)

Example 4-12 Sample cloudctl login

cloudctl login -a https://mycluster.icp:8443 --skip-ssl-validation -n
ibp-auto-deploy-team00

Username> admin

Password>
Authenticating...
OK

Targeted account mycluster Account (id-mycluster-account)

Kubectl option Details

cloudctl Use cloudctl to log in to the namespace that you installed the blockchain console helm release into.
This action generates two results:
� Configures kubectl with a new authentication token for the Kubernetes API server.
� Sets kubectl to point to the correct namespaces for commands. You don’t need to use the -n

namespace (the alternative) flag.
The syntax is as follows:
cloudctl login -a https://<cluster_hostname>:8443 --skip-ssl-validation -n
<blockchain_console_namespace>

Example 4-12 shows a sample cloudctl login.

kubectl config Set the namespace of a previously authenticated user to the namespace of the blockchain console
helm release by using the kubectl config command. (Previous authentication would have been
done through cloudctl or a kubectl token that was received from the IBM Cloud Private UI.)
kubectl config set-context --current --namespace=<blockchain-console-namespace>
Example 4-13 on page 154 shows a sample command for setting the namespace for kubectl
config.
Chapter 4. IBM Blockchain Platform installation and configuration 153

Targeted namespace ibp-auto-deploy-team00

Configuring kubectl ...
Property "clusters.mycluster" unset.
Property "users.mycluster-user" unset.
Property "contexts.mycluster-context" unset.
Cluster "mycluster" set.
User "mycluster-user" set.
Context "mycluster-context" created.
Switched to context "mycluster-context".
OK

Configuring helm: /Users/garrettwoodworth/.helm

Example 4-13 Setting the namespace for kubectl

kubectl config set-context --current --namespace=ibp-auto-deploy-team00
Context "mycluster-context" modified.

2. Run the following command to confirm the availability of the console:

kubectl get deployments -l app=ibm-blockchain-platform-prod

When AVAILABLE =1 as shown in bold in Example 4-14, the console is available. When
AVAILABLE=0 as shown in bold in Example 4-15, the console is not available.

Example 4-14 The deployment is available

kubectl get deploy -l app=ibm-blockchain-platform-prod
NAME READY UP-TO-DATE AVAILABLE AGE
ibp-auto-deploy-team00-ibp-console 1/1 1 1 4h39m

Example 4-15 The deployment is not available

kubectl get deploy -l app=ibm-blockchain-platform-prod
NAME READY UP-TO-DATE AVAILABLE AGE
ibp-auto-deploy-team00-ibp-console 0/1 0 0 4h50m

If AVAILABLE=1, go to 4.2.2, “Initializing blockchain console for other users” on page 167.
If AVAILABLE=0, it is possible that the console is still loading. In the meantime, you can
proceed with the other verification tests in the following steps.

3. Run the following commands to identify pods of the deployment to crosscheck.

kubectl get pods -l app=ibm-blockchain-platform-prod

– If pods are found, you see a list like the one in Example 4-16. Go to the next Step.

Example 4-16 There is a pod

kubectl get pods -l app=ibm-blockchain-platform-prod
NAME READY STATUS
RESTARTS AGE
ibp-auto-deploy-team00-ibp-console-6d45d47868-mvcwn 0/5
ContainerCreating 0 6s

– If no pods are found, you see the following message: No resources found. Run
through this troubleshooting logic to seek a solution:
154 Implementation Guide for IBM Blockchain Platform for Multicloud

a. Did the deployment show up in step 2 above, and now you get the no pods (No
resources found.) message?

b. If yes, check for problems with the pod security policy as follows:

i. Run the command that is shown in Example 4-17. You might see a similar error.

Example 4-17 kubectl get events

kubectl get events
2m51s Warning FailedCreate ReplicaSet Error creating: pods
"ibp-auto-deploy-team00-ibp-console-6d45d47868-" is forbidden: unable to
validate against any pod security policy

This error means that the pod security policy is not giving enough permissions.

ii. Review the pod security policy, clusterrole, and rolebinding steps from these topics:

• 4.1.2, “Setting up role-based access control (RBAC) roles for blockchain [1x per
cluster only]” on page 131

• “Setting up namespace for installation” on page 143” from Section 4.1.4, “Manual
console installation” on page 143.

iii. Consider whether this your scenario:
Your deployment exists, your pod does not exist, and kubectl get events does not
show a pod security policy error like the one in Example 4-17

iv. If this state is your scenario, make sure that you have accessed the correct
namespace. Also, run the kubectl get pods command alone, with no parameters.
If the problems persist, visit Section 4.5, “Troubleshooting the installation” on
page 194 for additional help.

4. Run the following command to monitor the status of the pod:

kubectl get pods -l app=ibm-blockchain-platform-prod --watch

Example 4-18 shows pod status from the beginning. Depending on when you started the
watch command, you might not see every stage that is listed in Example 4-18.

Example 4-18 watch command

kubectl get pods -l app=ibm-blockchain-platform-prod --watch
NAME READY STATUS RESTARTS AGE
ibp-auto-deploy-team00-ibp-console-6d45d47868-mvcwn 0/5 Pending 0 0s
ibp-auto-deploy-team00-ibp-console-6d45d47868-mvcwn 0/5 Pending 0 0s
ibp-auto-deploy-team00-ibp-console-6d45d47868-mvcwn 0/5 ContainerCreating 0 0s
ibp-auto-deploy-team00-ibp-console-6d45d47868-mvcwn 0/5 Running 0 18s
ibp-auto-deploy-team00-ibp-console-6d45d47868-mvcwn 1/5 Running 0 26s
ibp-auto-deploy-team00-ibp-console-6d45d47868-mvcwn 2/5 Running 0 29s
ibp-auto-deploy-team00-ibp-console-6d45d47868-mvcwn 3/5 Running 0 29s
ibp-auto-deploy-team00-ibp-console-6d45d47868-mvcwn 4/5 Running 0 30s
ibp-auto-deploy-team00-ibp-console-6d45d47868-mvcwn 5/5 Running 0 35s

Table 4-5 on page 156 describes the status messages.
Chapter 4. IBM Blockchain Platform installation and configuration 155

Table 4-5 Pod status messages

a. Wait for the blockchain console pod to move through its phases (STATUS) until the
Running status. Then, wait for all the containers to enter the ready state (5/5):

• If successful, go to Section 4.2.2, “Initializing blockchain console for other users” on
page 167.

• If you see the Error status, or it has been over 2 minutes on a given phase, go to
the next step.

b. Run the following command to check the details of events in your namespace:

kubectl get events

This command displays the events for the resources that are present in the
namespace. The output has a time stamp, so look for events that are recent. Normal
events are normal for the cluster. Warning events indicate that something might
require corrective action. To look at warning events in particular, run this command:

kubectl get events --field-selector type=Warning

The warnings from our failed (and later fixed) deployment are shown in Example 4-19.

Example 4-19 The warnings from our failed (and later fixed) deployment

kubectl get events --field-selector type=Warning
LAST SEEN TYPE REASON KIND MESSAGE
52m Warning Unhealthy Pod Readiness probe failed: dial tcp 10.1.153.123:3000:
connect: connection refused
52m Warning Unhealthy Pod Readiness probe failed: dial tcp 10.1.153.123:8383:
connect: connection refused
52m Warning Unhealthy Pod Liveness probe failed: dial tcp 10.1.153.123:8383:
connect: connection refused
53m Warning Unhealthy Pod Readiness probe failed: dial tcp 10.1.153.117:3000:
connect: connection refused
53m Warning Unhealthy Pod Liveness probe failed: dial tcp 10.1.153.117:3000:
connect: connection refused
51m Warning Unhealthy Pod Readiness probe failed: dial tcp 10.1.153.104:8383:
connect: connection refused

Status Description

Pending The containers are waiting for something to start. This is most likely due to
a persistent volume claim waiting to be bound to a persistent volume (i.e.
dynamic provisioner has to go to work to do this). Depending on how fast
storage is provisioned, this could take seconds or minutes. Generally, the
GlusterFS storage can take up to a few minutes while the nfs storage
should be done in a few seconds.
Note: A performance update for GlusterFS has been released that should
improve GlusterFS performance. Currently, it can take a few minutes
without the update.

ContainerCreating Kubelet is interfacing with the container runtime (through the
container runtime interface [CRI]) to cause creation of the
containers for the pod. This operation can take up to a few minutes
while images are pulled from the appropriate docker repository
(especially if the images are not on the node).

Running All containers in the pod are in the running state. This is what we like
to see.

Error One or more of the containers in the pod have encountered an error
state. This might be a momentary lapse that is fixed by restarting the
container, but usually this is something that the user must debug.
156 Implementation Guide for IBM Blockchain Platform for Multicloud

51m Warning Unhealthy Pod Readiness probe failed: dial tcp 10.1.153.104:3000:
connect: connection refused
51m Warning Unhealthy Pod Liveness probe failed: dial tcp 10.1.153.104:8383:
connect: connection refused
48m Warning Unhealthy Pod Readiness probe failed: dial tcp 10.1.153.92:3000:
connect: connection refused
58m Warning FailedCreate ReplicaSet Error creating: pods
"ibp-auto-deploy-team00-ibp-console-6d45d47868-" is forbidden: unable to validate against any pod security
policy: [spec.containers[0].securityContext.capabilities.add: Invalid value: "NET_BIND_SERVICE": capability
may not be added spec.containers[0].securityContext.allowPrivilegeEscalation: Invalid value: true: Allowing
privilege escalation for containers is not allowed spec.containers[1].securityContext.capabilities.add:
Invalid value: "NET_BIND_SERVICE": capability may not be added
spec.containers[1].securityContext.allowPrivilegeEscalation: Invalid value: true: Allowing privilege
escalation for containers is not allowed spec.containers[2].securityContext.capabilities.add: Invalid
value: "NET_BIND_SERVICE": capability may not be added
spec.containers[3].securityContext.allowPrivilegeEscalation: Invalid value: true: Allowing privilege
escalation for containers is not allowed spec.containers[4].securityContext.capabilities.add: Invalid
value: "NET_BIND_SERVICE": capability may not be added spec.containers[4].securityContext.capabilities.add:
Invalid value: "CHOWN": capability may not be added spec.containers[4].securityContext.capabilities.add:
Invalid value: "DAC_OVERRIDE": capability may not be added
spec.containers[4].securityContext.capabilities.add: Invalid value: "SETGID": capability may not be added
spec.containers[4].securityContext.capabilities.add: Invalid value: "SETUID": capability may not be added]

The readiness and Liveness Probe failures show a normal status, because the pod
came up after being deleted. However, we needed to fix the FailedCreate warning
because of lack of access to a Pod Security Policy with the special permissions that
the container requires to run.

If you see a particular event that causes problems, refer to Section 4.5,
“Troubleshooting the installation” on page 194.

5. Check status for all resources and describe particular resources:

a. See all resources by running this command:

kubectl get all -l app=ibm-blockchain-platform-prod

The output should look similar to Example 4-20.

Example 4-20 See all resources

kubectl get all -l app=ibm-blockchain-platform-prod

NAME READY STATUS RESTARTS AGE
pod/ibp-auto-deploy-team00-ibp-console-6d45d47868-mvcwn 5/5 Running 0 74m

NAME TYPE CLUSTER-IP EXTERNAL-IP AGE PORT(S)
service/ibp-auto-deploy-team00-ibp-console-optools NodePort 10.0.67.247 <none> 7h
3000:30003/TCP,3001:30004/TCP

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/ibp-auto-deploy-team00-ibp-console 1/1 1 1 7h

NAME DESIRED CURRENT READY AGE
replicaset.apps/ibp-auto-deploy-team00-ibp-console-6d45d47868 1 1 1 7h

Note: This command might display old events that are no longer relevant, so make
sure to consider the time stamp of all events.
Chapter 4. IBM Blockchain Platform installation and configuration 157

6. You can describe particular resources with this command:

kubectl describe <resource> -l <selector>

For example, to describe the blockchain console to see how each container is doing use
this command:

kubectl describe pod -l app=ibm-blockchain-platform-prod

You can also look at a resource by using either of these commands:

kubectl describe <resource_full_name>

or:

kubectl describe <resource> <resource_name>

Using the output of Example 4-20, the command syntax would look like these examples:

kubectl describe pod/ibp-auto-deploy-team00-ibp-console-6d45d47868-mvcwn

or:

kubectl describe pod ibp-auto-deploy-team00-ibp-console-6d45d47868-mvcwn

depending on your preference.

7. To see logs of all blockchain console containers run this command:

kubectl logs --all-containers -l app=ibm-blockchain-platform-prod

To see logs of a particular container use:

kubectl logs -c <container_name> -l app=ibm-blockchain-platform-prod

as in this example:

kubectl logs -c optools -l app=ibm-blockchain-platform-prod

To see logs for the prior 1-minute period (use m for minutes, h for hours, s for seconds)

kubectl logs --all-containers -l app=ibm-blockchain-platform-prod --since=1m

8. After 5 minutes or more, you might be unable to find out why some resources in your
deployment are still unavailable. In this case, visit the section 4.5, “Troubleshooting the
installation” on page 194.
Also, it might help to learn more about kubectl, by using the summary at this website:
https://kubernetes.io/docs/reference/kubectl/cheatsheet/

Verifying the console with the IBM Cloud Private user interface (UI)
Perform the following steps to verify the console installation by using the UI.

1. Check the helm release. Through the user interface, find the helm release for the
blockchain console. You click that release in the dropdown menu that is shown in
Figure 4-7.
158 Implementation Guide for IBM Blockchain Platform for Multicloud

https://kubernetes.io/docs/reference/kubectl/cheatsheet/

Figure 4-7 Verify the console installation using the UI -1

The main helm release page is displayed, with information about all of the components of
the helm release. The main page should look similar to Figure 4-8 on page 159.

Figure 4-8 Verify the console installation using the UI -2
Chapter 4. IBM Blockchain Platform installation and configuration 159

From this page, the user can see the release notes and navigate to the individual
components of the helm release. (Navigate between components by clicking the blue links
under each section).

2. Get the access details for blockchain. At the bottom of the helm release page are notes.
These notes include the access details for the blockchain console and proxy when it is up
and running (in other words, the deployment is available). The notes for a
blockchain-console-1 helm release are shown in Figure 4-9.

Figure 4-9 Verify the console installation using the UI -3

Make note of these values to use in the section 4.2.2, “Initializing blockchain console for
other users” on page 167 after the blockchain console deployment is available. For now,
follow on to step 3.

3. Check the deployment.
To check on the deployment, first look at the deployment section of the helm release. In
Figure 4-10 on page 161, the deployment is already available so it would make sense to
move on to 4.2.2, “Initializing blockchain console for other users” on page 167. However, in
this case the screen capture was taken long after successful installation of the helm
release. In most cases, the deployment will not be available yet. If this is the case for you,
the best next step is to visit the deployment by clicking the link for the blockchain console
deployment under the Deployment section.

Tip: Use Right-click → Open new tab (instead of the typical left click), so that the
current helm releases tab remains open for future reference.
160 Implementation Guide for IBM Blockchain Platform for Multicloud

Figure 4-10 Verify the console installation using the UI -4
Chapter 4. IBM Blockchain Platform installation and configuration 161

The deployment console illustrates a number of the different deployment values including
its availability, which Figure 4-11 points out with an arrow.

Figure 4-11 Verify the console installation using the UI -5

In the Replicas section of the deployment details, the red arrow points to the display that
shows that the deployment is available (Available=1). If you see this, go to Section 4.2.2,
“Initializing blockchain console for other users” on page 167. If your deployment is still not
available, it is time to check the pod.

4. Scroll to the bottom of the deployment page until you see the pod. In Figure 4-12 on
page 163, all the containers in the pod are running (in other words, the pod is running) and
all five containers are ready (5/5). Click the pod name to see more about the individual
pods including an overview, a container breakdown, and events.
162 Implementation Guide for IBM Blockchain Platform for Multicloud

Figure 4-12 Verify the console installation using the UI -6

5. Review pod details as illustrated in Figure 4-13.
A newly available data point is the PodSecurityPolicy. This setting should either match
the created pod security policy of ibm-blockchain-platform-psp or be
ibm-privileged-psp. If it is neither of these options, and you did not change names, make
sure that everything in the deployment has gone according to plan. In this case, your pod
has been provisioned so you are probably fine in terms of PodSecurityPolicy itself.
Chapter 4. IBM Blockchain Platform installation and configuration 163

However, other changes might affect you later. So, it is good to confirm that you have
completed all necessary steps in support of your organization’s plan.

Figure 4-13 Verify the console installation using the UI -7

Containers tab: Another good information source is the Containers tab. This tab is
especially useful if you see an error and want to know immediately the status of
containers. Click the Containers (to the left of the highlighted overview) tab in the upper
left to see a window similar to Figure 4-14.
164 Implementation Guide for IBM Blockchain Platform for Multicloud

Figure 4-14 Verify the console installation using the UI -8

Events tab: Finally, pod events tell us what is happening with our pods. Events in general
help us easily discover problems that are emerging in our cluster, with pod events
specifically focusing on the pods. This Events section is the third section that is accessible
from the pod view. Figure 4-15 on page 165 shows the events view.

Figure 4-15 Verify the console installation using the UI -9

You see Warning and Normal events. Normal events document the activities of the pods
and Warning events flag something potentially problematic. However, many Warning
events — such as Liveness and Readiness check failures — are normal at first. A large
number of such events in a small period of time is a cause for concern indicating, because
Chapter 4. IBM Blockchain Platform installation and configuration 165

that indicates downtime of the application. For this reason, Kubernetes documents these
as Warnings, along with many other events.

6. Check the PersistentVolumeClaims (storage) status. Blockchain is a persistent data base,
so you must keep track of backing storage. To see the persistent volume claim for the
helm release, click the name of the PersistentVolumeClaim item in the Persistent Volume
Claim section. In Figure 4-16 it is named blockchain-console-1. The
PersistentVolumeClaim details are displayed.

Figure 4-16 Verify the console installation using the UI -10

7. Click the Events tab to see the automated activities of the dynamic provisioner, as it
creates the storage that is necessary for the blockchain console. The events are captured
in Figure 4-17.

Figure 4-17 Verify the console installation using the UI -11

Often, a pod has a Pending status because it is waiting for storage provisioning. You can
consult the events view in Figure 4-17 to see what is happening with this storage
166 Implementation Guide for IBM Blockchain Platform for Multicloud

provisioning and begin to diagnose an error. For further help with errors, see Section 4.5,
“Troubleshooting the installation” on page 194.

4.2.2 Initializing blockchain console for other users

In this section, we show how to initialize blockchain console with users.

Log in to blockchain console
Perform the following steps to log in to blockchain console.

1. Accept the Certificates Proxy prompt, which is shown in Figure 4-18. Visit the URL for the
proxy and accept certificates if they appear. Unless you opted to use your own TLS
certificates, your use of the default self-signed certificates require that you accept the
security risk on your browser.

Figure 4-18 initializing blockchain console with users -1

After you do this for the proxy, the up message is displayed, as you see in Figure 4-19.

Figure 4-19 initializing blockchain console with users -2

2. Accept Certificates console. Go to the IBM Blockchain Platform console main page and
accept any certificate message that you see there, too. (Depending on your web browser,
you might not see a message.)

3. Log in to the console. You must enter your username and password in the console. The
username is the email address that you entered. The password is the password that you
entered in the Kubernetes secret before you installed the console. You can find the secret
name first with this command:

kubectl get secrets --field-selector=type=Opaque

Then, extract the password from the secret by using this command:

kubectl get secret <secret_name> -o jsonpath='{.data.password}' | base64
--decode && echo

We do this on our cluster in Example 4-21.
Chapter 4. IBM Blockchain Platform installation and configuration 167

Example 4-21 Secret name and password

kubectl get secrets --field-selector=type=Opaque
NAME TYPE DATA AGE
ibp-ui-secret Opaque 1 10h

kubectl get secret ibp-ui-secret -o jsonpath='{.data.password}' | base64
--decode && echo
I-Live-4-SECurity-OhYEAH

Now, you use these credentials for the login, shown in Figure 4-20.

Figure 4-20 initializing blockchain console with users -3

4. Reset your password. After logging in the first time, the IBM Blockchain Platform for
Multicloud console immediately requests that you reset your password and log in again

Note: The password that your get secret command displays will be the default
password for all users you initialize in the console, unless you change it later. All users
are forced to change their password when they first log in. For this example
deployment, the default password is visible in Example 4-21 and is as follows:
I-Live-4-SECurity-OhYEAH
168 Implementation Guide for IBM Blockchain Platform for Multicloud

before you can access the platform itself. After you reset your password, you log in and
see the formal greeting from the welcome screen that is shown in Figure 4-21.

Figure 4-21 initializing blockchain console with users -4

5. Click Let’s get started to enter the IBM Blockchain Platform for Multicloud console for the
first time.

Managing console - Adding users and more
1. Go to the Users section by clicking the round icon of a person on the lower left and

highlighted in blue in Figure 4-22 on page 170. Here, administrators manage existing
users, add new users, and update the configuration of couchdb. (There, you can change
Chapter 4. IBM Blockchain Platform installation and configuration 169

the default password for the network, which is the password that everyone starts with
before they reset their password.).

Figure 4-22 Managing console -1

2. Add new users with their email addresses by first clicking Add new users as shown in
Figure 4-22 on page 170. Then, add the new users’ email addresses with one of the
available roles. In Figure 4-23, the administrator enters the email addresses of several
users, with same role. The UI also displays the specific privileges that each role gives to a
user.
170 Implementation Guide for IBM Blockchain Platform for Multicloud

Figure 4-23 Managing console -2

Figure 4-24 on page 172 shows the users that have been added.

Note: The default password for all these users is whatever the default password was
originally set to. This should be the same initial password that you had before you were
forced to change it at login, unless you changed the couchdb configuration Figure 4-22
on page 170. This will also be the password for reset passwords that are sent to users
who forget their password. Users must change their passwords immediately upon
entering the console for the first time.

Note for long-term reference: To operate components that are deployed by the
console, you need both permission and the cryptographic material for that component.
Currently, the console stores the cryptographic material for new components in the
user’s web browser. Thus, if they want to give someone else access to that component,
they must export the credentials (from their wallet) and securely transport it to the other
individual (and that individual can add them to their wallet). No action is required at this
time, other than keeping this convention in mind as you manage the console.

For more details on the credential transferring process visit this website:
https://cloud.ibm.com/docs/services/blockchain?topic=blockchain-ibp-console-
identities#ibp-console-identities-wallet
Chapter 4. IBM Blockchain Platform installation and configuration 171

https://cloud.ibm.com/docs/services/blockchain?topic=blockchain-ibp-console-identities#ibp-console-identities-wallet

Figure 4-24 Managing console -3

3. Console is initialized. Start using the console with your group of users. Go to 4.3, “IBM
Blockchain Platform installation” on page 173 to set up your blockchain network with the
IBM Blockchain Platform for Multicloud.

4. Monitor notifications. The bell icon in the upper right of the console tracks events that
might require your attention. Zero (0) notifications indicates that the console is running
smoothly, as in Figure 4-25.

Figure 4-25 Managing console -4

For more information about managing the console, see this section of the IBM Cloud
documentation:
https://cloud.ibm.com/docs/services/blockchain?topic=blockchain-console-icp-man
age
172 Implementation Guide for IBM Blockchain Platform for Multicloud

https://cloud.ibm.com/docs/services/blockchain?topic=blockchain-console-icp-manage
https://cloud.ibm.com/docs/services/blockchain?topic=blockchain-console-icp-manage

5. Further training. To access the “Getting Started” tutorials, click Get started in the upper
right of the UI (See Figure 4-26) to access links to training with the IBM Blockchain
Platform.

Figure 4-26 Managing console -5

4.3 IBM Blockchain Platform installation

IBM Blockchain Platform is a blockchain-as-a-service offering that enables you to develop,
deploy, and operate blockchain applications and networks

The IBM Blockchain Platform is highly customizable. For the resources in your Kubernetes
cluster, you can use the console to deploy components in an endless array of configurations.
Figure 4-27presents an example of a business network that is composed of two
Chapter 4. IBM Blockchain Platform installation and configuration 173

organizations, with one peer each, an ordering service, the peer organization and ordering
service respective CAs and one channel.

Figure 4-27 Example of business network and components

This configuration is sufficient for two purposes:

� Testing applications and smart contracts.
� As a guide for building components and joining production networks that suit your needs.

The network contains the following components:

� Peer organizations: Organizations that need to transact with each other. Represented in
Figure 4-27 as Org 1 and Org 2.

� Ordering service organization: In a distributed ledger, the peers and ordering service
should be part of separate organizations. Therefore, a separate organization is created for
the ordering service. Among other things, an ordering service orders the blocks of
transactions that are sent to the peers to be written to their ledgers and become the
blockchain.

� Certificate authority (CA): The node that issues certificates to both the users and the
nodes that are associated with an organization. It’s a best practice to deploy one CA per
organization. These CAs also create the definition of each organization, which is
encapsulated by a Membership Service Provider (MSP). A TLS CA is automatically
deployed together with each organization CA. The TSL CA provides the TLS certificates
that are used for communication between nodes.

� Ordering service: Either a one-node ordering service or a crash fault tolerant five-node
ordering service. The ordering service uses an implementation of the Raft protocol, for
both one- and five-node configurations. One-node ordering service is suitable for
development and testing, while five-node ordering service provides crash fault-tolerance
174 Implementation Guide for IBM Blockchain Platform for Multicloud

and is suitable for production. Currently, only one ordering service organization per
ordering service is supported, regardless of the number of ordering nodes associated with
that organization. This ordering service adds peer organizations to its "consortium", which
is the list of peer organizations that can create and join channels. If you want to create a
channel that has organizations that are deployed in different clusters — which is how most
production networks are structured — the ordering service admin must import a peer
organization that has been deployed in another console into their console. This action
allows the peer organization to join the channel that is hosted on that ordering service.

� Peers: Distributed peers that maintain the ledger. In Figure 4-27, Ledger x is the ledger.
These peers are deployed by using Couch DB as the state database in a separate
container that is associated with the peer. This database holds the current value of all
"states" (as represented by key-value pairs), also known as world-state. The blockchain,
the list of transactions, is stored locally on the peer.

� Channel: An area that allows sets of organizations to transact without exposing their data
to organizations that are not members of the channel. Each channel has its own ledger,
which is collectively managed by the peers that are joined to that channel. The smart
contract is instantiated on the channel that the organizations can use to transact.

Figure 4-28 depicts the steps that are required to build a new blockchain network from
scratch.

.

Figure 4-28 Steps to build a fresh blockchain network in IBM Blockchain Platform

4.3.1 Creating peer organizations

For each organization that you want to create with the console, you deploy at least one CA. A
CA is the node that issues certificates to all network participants (peers, ordering services,
clients, admins, and so on). These certificates, which include a signing certificate and private
key, allowing network participants to communicate, authenticate, and ultimately transact.
These CAs create all the identities and certificates that belong to your organization. They also
define the organization itself. Then, you use those identities to deploy nodes, create admin
identities, and submit transactions.

1. Navigate to the Nodes tab on the left and click Add Certificate Authority. The side
panels allow you to configure the CA that you want to create and the organization that this
CA will issue keys for.

2. Select the option Create a Certificate Authority, then click Next.

3. In the second side panel, give your CA a display name.

4. On the next panel, give your CA admin credentials by specifying a CA administrator
enroll ID and a secret.

5. Set the resource allocation for the node.

6. Review the Summary page and then, click Add certificate authority.

After the CA is successfully created and it is running, a green box appears in the tile, as
shown in Figure 4-29.
Chapter 4. IBM Blockchain Platform installation and configuration 175

Figure 4-29 CAs created successfully for Org 1 and Org 2

Registering identities in a CA
Each node or application that you want to create needs a certificate and private key to
participate in the blockchain network. You also need to create admin identities for these
nodes and applications so that you can manage them from the console. You need at least two
identities:

� An organization admin: This identity allows you to operate nodes by using the platform
console.

� A peer identity: This is the identity of the peer itself. Whenever a peer performs an action
(for example, endorsing a transaction), it signs by using its certificate.

After the CA is running, as indicated by the green box in the tile, generate these certificates
by completing the following steps. (These organization names are only examples. Use names
that match the needs of your organization.)

1. Click Org1 CA and ensure that the admin identity that you created for the CA is visible in
the table. Then, click Register User.

2. First, register the organization admin:

a. Give an Enroll ID of admin and a secret.

b. Set the Type for this identity as client
(Always register admin identities as client . In contrast, always register node identities
as peer).
The Maximum enrollments field is optional.

c. Click Next.

3. Optionally, you can specify any attribute-based access control attributes for the user. For
example, you can use this section to create another CA admin with the authority to
register and enroll new identities.
You can see a full list of available Fabric CA attributes in the Registering a new identity
section of the Fabric CA User’s Guide on this web page:
176 Implementation Guide for IBM Blockchain Platform for Multicloud

(https://hyperledger-fabric-ca.readthedocs.io/en/release-1.4/users-guide.html)
When you are ready, click Register User.

4. Repeat this process for the identity of the peer (also using the Org1 CA). For the peer
identity, select peer as the Type.

5. Repeat the steps for Org2 CA.

Figure 4-30 shows the list of registered users of Org1 CA after the users are registered.

Figure 4-30 Registered users in Org1 CA

Creating peer organization MSP definition
After creating the peer's CA and using it to register identities for the admin and for the peer,
we need to create a formal definition of the peer's organization, which is known as an MSP.

During the process of creating the MSP, you enroll the admin identity and add it to the Wallet.

1. Navigate to the Organizations tab in the left navigation, and click Create MSP definition.

2. Give your MSP a display name and an MSP ID. You must follow the specifications about
the limitations to this name that are mentioned in the tooltip.

3. Under Root Certificate Authority details, specify the CA that you used to register the
identities in the previous step.

Note: These identities must be enrolled before they can be used. Enrollment for an
organization admin happens during the creation of the MSP and the peer identity is
enrolled during the creation of the peer.

Note: Many peers can belong to an organization. It is not necessary to create a new
organization every time that you create a peer.
Chapter 4. IBM Blockchain Platform installation and configuration 177

https://hyperledger-fabric-ca.readthedocs.io/en/release-1.4/users-guide.html

4. The Enroll ID and Enroll secret fields below are automatically populated with the enroll ID
and secret for the first user that you created with your CA. However, using this identity
would give your organization the same admin identity as your CA. For security reasons,
this practice is not recommended. Instead, select the enroll ID that you created for your
organization admin from the drop-down list and enter its associated secret. Then, give this
identity a display name.

5. Click Generate to enroll this identity as the admin for your organization and export the
identity to the Wallet. There, it can be used when you create the peer and create channels.

6. Click Export to export the admin certificates to your file system.

7. Click Create MSP definition.

Figure 4-31 depicts the MSP after the organization definitions are in place.

Figure 4-31 MSP definition for Org1 and Org2

Note: This identity is not stored in your console or managed by IBM. It is only stored in
local browser storage. If you change browsers, you must import this identity into your
Wallet to be able to administer the peer.
178 Implementation Guide for IBM Blockchain Platform for Multicloud

After you create the MSP, you see the peer organization admin in your Wallet. You can
access the Wallet by clicking the Wallet icon in the left navigation. See Figure 4-32.

Figure 4-32 Wallet with two identities

4.3.2 Creating a peer

At this stage, you must create a peer for each organization.

Remember that organizations themselves do not maintain ledgers. Peers do. Organizations
also use peers to sign transaction proposals and approve channel configuration updates.
Having at least two peers per organization on a channel makes them highly available. For this
reason, having three peers per organization joined to a channel is considered a best practice
for production-level implementations. That way, you ensure high availability even while one
peer is down for maintenance.

This section shows how to create one peer. You can create more peers to match your
business requirements.

From a resource allocation perspective, you can join the same peers to multiple channels.
The design of the peer ensures that the data from one channel cannot pass to another
through the peer. However, because the peer stores a separate ledger for each channel, you
must ensure that the peer has enough processing power and storage to handle the
transaction and data load.

Use your console to perform the following steps:

1. On the Nodes page, click Add peer.

2. Ensure that the Create a peer option is selected. Then, click Next.

3. Give your peer a Display name. Choose to use certificates that are provided by an
external CA or use a CA that is hosted by IBM. Click Next.
Chapter 4. IBM Blockchain Platform installation and configuration 179

4. If you are using a CA that is hosted by IBM, take the following actions:
On the next screen, select a CA you used to register the peer identity. Select the Enroll ID
for the peer identity that you created for your peer from the drop-down list, and enter its
associated secret. Then, select the appropriate MSP from the drop-down list, and click
Next.

5. The next side panel asks for TLS CA information. When you created the CA, a TLSCA
was created alongside it. This CA is used to create certificates for the secure
communication layer for nodes. Therefore, select the Enroll ID for the peer identity that
you created for your peer from the drop-down list. Then, enter the associated secret. The
TLS Certificate Signing Request (CSR) hostname is an option for advanced users who
want to specify a custom domain name. This name is used to address the peer endpoint.

6. On the next panel, you can configure resource allocation for the node.

7. In the last side panel, you can Associate an identity to make it the admin of your peer.

8. Confirm the summary of your changes, and click Add peer.

Peer creation might take 15 minutes or more. After the peer is successfully created and
running, a green box is displayed in the tile, as shown in Figure 4-33.

Figure 4-33 Peers created and running

4.3.3 Creating the ordering service

Distributed blockchains such as Ethereum and Bitcoin have no central authority to order
transactions and send them out to peers. In contrast, the blockchain that the IBM Blockchain
Platform is based on, Hyperledger Fabric, works differently. It features a node, or a cluster of
nodes, that is called an ordering service.

Note: If you choose to use certificates from an external CA, you must define an
organization for this peer by building an MSP definition file. This file must include
certificates from the external CA. Then, import that file into the Organizations tab before
you proceed.
180 Implementation Guide for IBM Blockchain Platform for Multicloud

The ordering service is a key component in a network because it fulfills some essential
functions:

� Orders the blocks of transactions that are sent to the peers to be written to their ledgers.

� Maintains the ordering system channel, where the following components reside:

– The consortium, which is a multi-tenancy vehicle. By design, a single ordering service
can host multiple consortia.

– The list of peer organizations that are permitted to create channels.

� Enforces the policies of the consortium or the channel administrators. These policies
define everything from who gets to read or write to a channel, to who can create or modify
a channel.

Consider a policy scenario. When a network participant asks to modify a channel or
consortium policy, the ordering service must run through this process:

a. Confirm that the participant has the proper administrative privileges for that
configuration update.

b. Validate it against the existing configuration.
c. Generate a new configuration.
d. Relay it to the peers.

Just as with the peer, the following action is required before we can create an ordering
service:
We must create a CA to supply the identities and the MSP of our ordering service
organization.

In this release, distributed ordering services — in which multiple organizations contribute
nodes to an ordering service — are not supported. Every ordering node in the ordering
service is administered by a single organization.

The production-level ordering service that is available is a crash fault tolerant (CFT) ordering
service based on an implementation of Raft protocol. Raft follows a “leader and follower”
model, where a leader node is elected (per channel) and its decisions are replicated by the
followers.

Currently, for ordering nodes, five nodes is the only available configuration that is crash fault
tolerant. While it is possible to create a crash fault tolerant ordering service with as little as
three nodes, this configuration incurs risk. For example, if one node goes down during a
maintenance cycle, only two nodes would be left. If another node is lost during this cycle for
any reason, only one node would be left. In that state — literally now a one-node ordering
service, when you started with three — you no longer have a majority of nodes available. This
majority is also known as a "quorum". When a quorum does not exist, no transactions can be
pushed. The channel ceases to function.

In contrast, with five nodes you can lose two nodes and still maintain a quorum. This
approach means that you can go through a maintenance cycle while you maintain high
availability. Production networks should choose the five-nodes option, because, by definition,
a one-node ordering service is not crash fault tolerant. Therefore, such a one-node service is
suitable only for development and test networks.

Creating the ordering service organization
The process for creating a CA for an ordering service is identical to creating it for a peer.

1. Navigate to the Nodes tab and click Add Certificate Authority.

2. Select the option to Create a Certificate Authority then click Next.

3. Give this CA a unique Display name.
Chapter 4. IBM Blockchain Platform installation and configuration 181

4. Enter the CA administrator Enroll ID and a secret.

5. Configure Resource allocation for the CA.

6. Review the Summary page, then click Add certificate authority.

As with the peer, advanced users might already have their own CA and not want to create a
new CA by using the console. If your existing CA can issue certificates in X.509 format, you
can use your own external CA instead of creating a new one here.

Registering ordering service admin and ordering service node
After the CA is running, as indicated by the green box in the tile, generate these certificates
by completing the following steps:

1. Click Ordering Service CA in the Nodes tab and ensure the admin identity that you
created for the CA is visible in the table. Then, click Register User.

2. Register the organization admin by giving an Enroll ID and a secret. Then, set the Type
for this identity as client (admin identities should always be registered as client, while
node identities should always be registered by using the peer type). The Maximum
enrollments field is optional. Click Next.

3. Optionally, you can specify any attribute-based access control attributes for the user. For
example, you can use this section to create another CA admin with the authority to
register and enroll new identities. You can see a full list of available Fabric CA attributes in
the Registering a new identity section of the Fabric CA User’s Guide. When you are ready,
click Register User.

4. After the organization admin has been registered, repeat this same process for the identity
of the ordering service. For the ordering service node identities, give an Enroll ID, a
secret, and select peer as the Type. The Maximum enrollments field and the attributes
for the user are both optional.

Figure 4-34 shows the registered organization admin and ordering service users. (The
usernames that are shown are only examples. Names can be set to match the needs of your
organization).

Figure 4-34 Ordering Service users created
182 Implementation Guide for IBM Blockchain Platform for Multicloud

Creating ordering service organization MSP definition
Create your ordering service organization MSP definition, and specify the admin identity for
the organization. After you register the ordering service admin and ordering service users,
you must create the MSP ID and enroll the admin user that was registered as the admin of
the organization.

1. Navigate to the Organizations tab in the left navigation and click Create MSP definition.

2. Give the MSP definition a Display name and an MSP ID.

3. Under Root Certificate Authority details, select the Ordering Service CA created before.

4. The Enroll ID and Enroll secret fields below automatically populate with the enroll ID and
secret for the first user that you created with your CA. However, using this identity would
give your organization the same identity as your CA identity. For security reasons, this
approach is not recommended. Instead, in the drop-down list select the enroll ID that you
created for your organization admin, and enter its associated secret. Then, give this
identity a Display name.

5. Click Generate to enroll this identity as the admin of your organization, and export the
identity to the Wallet.

6. Click Export to export the admin certificates to your file system. As we said above, this
identity is not stored in your console or managed by IBM. It is only stored in your browser.
If you change browsers, you must import this identity to the other browser so that you can
administer the ordering service there.

7. Click Create MSP definition.

Figure 4-35 shows the Ordering Service MSP that was created.

Figure 4-35 Ordering Service MSP created
Chapter 4. IBM Blockchain Platform installation and configuration 183

Deploying ordering nodes
Now, deploy the ordering service in your organization.

1. On the Nodes page, click Add ordering service.

2. Confirm that the option to Create an ordering service is selected. Then, click Next.

3. Give your ordering service a Display name, and choose whether you want your ordering
service to have one node (sufficient for development and testing) or five nodes (good for
production). If you want to use an external CA, select it here.

Click Next.

4. On the next panel, select Ordering Service CA as your CA. Then, select the enroll ID for
the node identity that you created for your ordering service from the drop-down list, and
enter the associated secret. Then, select your MSP from the drop-down list.

5. The next side panel asks for TLS CA information. When you created the CA, a TLS CA
was created alongside it. This CA is used to create certificates for the secure
communication layer for nodes. Therefore, in the drop-down list select the enroll ID for the
ordering service identity that you created, and enter its associated secret. The TLS
Certificate Signing Request (CSR) hostname is an option for those who want to specify a
custom domain name that can be used to address the ordering service endpoint. Click
Next.

6. Configure resource allocation for the node. The selections that you make here are applied
to all five ordering nodes. If you want to learn more about how to allocate resources in IBM
Cloud for your node, see this topic in the IBM Knowledge Center:
https://cloud.ibm.com/docs/services/blockchain?topic=blockchain-ibp-console-gov
ern#ibp-console-govern-allocate-resources

7. In the Associate identity step, you can choose an admin for your ordering service. Select
an admin and click Next.

8. Review the Summary page and click Add ordering service.

Figure 4-36 confirms that the ordering service was successfully deployed.

Note: To use an external CA, you must first build an MSP definition file that includes
certificates from the external CA. Then, import that file into the Organizations tab.
184 Implementation Guide for IBM Blockchain Platform for Multicloud

https://cloud.ibm.com/docs/services/blockchain?topic=blockchain-ibp-console-govern#ibp-console-govern-allocate-resources
https://cloud.ibm.com/docs/services/blockchain?topic=blockchain-ibp-console-govern#ibp-console-govern-allocate-resources

Figure 4-36 Ordering service deployed

4.3.4 Join the consortium

A peer organization must be known to the ordering service before it can create or join a
channel. (This activity is also called joining the consortium, the list of organizations that are
known to the ordering service.)

At the technical level, channels are messaging paths between peers through the ordering
service. A peer can be joined to multiple channels without information passing from one
channel to another. Likewise, an ordering service can have multiple channels run through it
without exposing data to organizations on other channels.

Because only ordering service admins can add peer organizations to the consortium, you
either must be the ordering service admin or send MSP information to the ordering service
admin.

In the console, you join organizations to a consortium as follows:

1. Navigate to the Nodes tab.

2. Scroll down to the ordering service that you created and click to open it.

3. Under Consortium Members, click Add organization.

4. From the drop-down list, select the MSP of the organization that you want to add.

5. Click Add organization.

6. Repeat the steps for any organization that you want to add to the consortium.

Figure 4-37 depicts the organizations that were added to the consortium.
Chapter 4. IBM Blockchain Platform installation and configuration 185

Figure 4-37 Consortium members added

When this process is complete, it is possible for the organizations that participate in the
consortium to create or join a channel that is hosted on your ordering service.

In a typical production scenario, the MSP definitions of other organization would be created
by different network operators in their own cluster and by using their own IBM blockchain
console. In those cases, when the organization wants to join your consortium, the
organization MSP definition of the organization must be sent to your console in an
out-of-band operation. Also, you must export your ordering service and send it to them. That
way, they can import it into their console and join a peer to a channel (or create a new
channel).

4.3.5 Creating a channel

The members of a network are usually related business entities that want to transact with
each other. However, there might be instances when subsets of the members want to
transact without the knowledge of the others. This is possible if you create a channel on
which these transactions can take place. Channels replicate the structure of a blockchain
network in that they contain members, peers, an ordering service, a ledger, policies, and
smart contracts. But channels restrict the membership, and even the knowledge of the
channel, to particular subsets of the network membership. In this way, channels ensure that
network members can leverage the overall structure of the network while maintaining privacy,
where needed.

The console uses peers to gather information about the channels that the peers belong to.
Consequently, the console cannot interact with the channel, unless an organization has
joined a peer to a channel.
186 Implementation Guide for IBM Blockchain Platform for Multicloud

When you have created your CAs, identities, MSPs, ordering service, a peer, and have added
your peer organization to the consortium, navigate to the Channels tab in the left navigation.
Channel creation and management is handled here.

When you first navigate to this tab, it is empty except for the Create channel and Join
channel buttons. This state reflects the fact that you have not yet created a channel and
joined a peer to it.

Consider a case where the organization is not a member of the consortium at channel
creation time. You can create the channel and add the organization later by clicking Settings
on the page of the relevant channel and going through the Update Channel flow.

Follow these steps to create a channel:

1. Navigate to the Channels tab.

2. Click Create channel. A side panel opens.

3. Give the channel a name. Make a note of this value. Later, you must share it with anyone
who wants to join this channel.

4. Select the desired ordering service from the drop-down list.

5. Choose the Organizations who will be a part of this channel. Make at least one
organization an Operator.

6. Choose a Channel update policy for the channel. This is the policy that dictates how
many organizations will have to approve updates to the channel configuration. As you add
organizations to the channel, you should change this policy to reflect the needs of your
use case. A sensible standard is to use a majority of organizations. For example, 3 out of
5.

7. Specify any Access control limitations that you want to make.

8. Select the Channel creator organization. Because the console allows multiple
organizations to be owned by a single user, you must specify which organization is
creating the channel.

9. When you are ready, click Create channel. The console returns you to the Channels tab
and you can see a pending tile of the channel that you just created (Figure 4-38).

Note: Do not use the Ordering Service MSP here.

Note: This is an advanced option. If you set the access to a resource to a particular
organization, it will restrict access to that resource for every other organization in the
channel. Consider a case where the default access to a particular resource is the Readers
of all organizations, and that access is changed to the Admin of Org1. In this case, only the
admin of Org1 will have access to that resource. Because access to certain resources is
fundamental to the smooth operation of a channel, you must plan access control decisions
carefully. If you decide to limit access to a resource, ensure that the access to that
resource is added, as needed, for each organization.
Chapter 4. IBM Blockchain Platform installation and configuration 187

Figure 4-38 Created channel will remain in status pending until one or more peers are added

4.3.6 Joining peers to channel

Perform the following steps from your console:

1. Navigate to the Channels tab

2. Click the pending tile channel to launch the side panel.

3. Select which peers you want to join to the channel.

4. Click Join channel.

After you join peers to a channel, the genesis block is created and deployed to peers. The tile
for the channel shows the block height as one block as seen in Figure 4-39.

Figure 4-39 Peers joined the channel and it now shows block height
188 Implementation Guide for IBM Blockchain Platform for Multicloud

To configure a peer to be an anchor peer, click the Channels tab and open the channel
where the smart contract was instantiated. Then, follow the steps below:

1. Click the Channel details tab.

2. Scroll down to the Anchor peers table and click Add anchor peer.

3. Select at least one peer from each organization in collection definition that you want to
serve as the anchor peer for the organization. For redundancy reasons, you can select
more than one anchor peer from each organization in the collection.

4.3.7 Deploying smart contracts

A smart contract is the code, sometimes referred to as chaincode, that allows you to read and
update data on the blockchain ledger. A smart contract can turn business logic into an
executable program that is agreed to and verified by all members of a blockchain network.

Smart contracts are installed on peers and then instantiated on channels. All members that
want to submit transactions or read data by using a smart contract need to install the contract
on their peer. A smart contract is defined by its name and version. Therefore, both the name
and version of the installed contract must be consistent across all peers on the channel that
plan to run the smart contract.

After a smart contract is installed on the peers, a single network member instantiates the
contract on the channel. The network member needs to have joined the channel in order to
perform this action. Instantiation updates the ledger with the initial data that is used by the
smart contract. Then, it starts smart contract containers on peers that are joined to the
channel that have the contract installed. The peers can then use the running containers to
transact.

� Only one network member needs to instantiate a smart contract.

� If a peer with a smart contract installed joins a channel where the same smart contract
version has already been instantiated, the smart contract container starts automatically.

Figure 4-40 depicts the workflow of smart contracts, including every step that is required to
manage them.

Figure 4-40 Workflow for smart contracts.

About anchor peers: For service discovery and private data to work, you must enable
cross-organizational communication that is based on the gossip protocol. An anchor peer
must exist for each organization. This anchor peer is not a special type of peer. It is merely
the peer that the organization makes known to other organizations and it works to
bootstrap cross-organizational gossip. Therefore, you must define at least one anchor peer
for each organization in the collection definition. For more information on the gossip
protocol (see https://hyperledger-fabric.readthedocs.io/en/stable/gossip.html).

Note: Until a peer installs a smart contract, it cannot access or update data on the ledger.
Chapter 4. IBM Blockchain Platform installation and configuration 189

https://hyperledger-fabric.readthedocs.io/en/stable/gossip.html

Install smart contract on peers
The IBM blockchain console manages the deployment of smart contracts rather than the
development. For smart contract development, you can use the IBM Blockchain Platform
Visual Studio (VS) Code extension.

Use your console to perform these steps:

1. Click the Smart contracts tab to install one or more smart contracts.

2. Click Install smart contract to upload the smart contract package file in .cds format.

You can use the IBM Blockchain Visual Studio code extension to create a smart contract
package in .cds format. When you install the package from the Smart contracts tab, you
can select one or more peer nodes to install the smart contracts on.

3. If only one peer exists in the console, the smart contract is installed on it. Otherwise, you
are prompted to select a peer on which to install the smart contract. After you select the
peers that you want, click Install smart contract.

Installed smart contracts are listed under “Installed smart contracts” sections of Smart
Contracts tab, as seen in Figure 4-41.

Figure 4-41 Contract name, version and peers where the smart contract is installed

4. You can navigate to the Nodes tab and click a peer that is managed by your console.
There, you see the list of smart contracts that are installed on an individual peer.

Instantiate a smart contract and specify endorsement policy
Smart contracts are instantiated on a channel. Any console member with peers that are
joined to a channel can instantiate a smart contract and specify the associated endorsement
policy.

The combination of installation and instantiation is a powerful feature. That way, a peer to use
a single smart contract across many channels. Peers might want to join multiple channels
that use the same smart contract, but with different sets of network members able to access
the data. A peer can install the smart contract once, and then use the same smart contract

Note: The smart contract package file must be less than 4 MB in size.
190 Implementation Guide for IBM Blockchain Platform for Multicloud

container on any channel where it has been instantiated. This lightweight approach saves
compute and storage space, and helps you scale your network.

Perform these steps in the console to instantiate a smart contract:

1. On the smart contracts tab, find the smart contract from the list that is installed on your
peers. Then, click Instantiate from the overflow menu on the right side of the row.

2. On the side panel that is displayed, select a channel on which to instantiate the smart
contract. Then, click Next.

3. You can use Simple or Advanced specification for the endorsement policy for the smart
contract:

– Simple: From the list of peers that have installed the smart contract on the channel,
you select the peers that need to endorse the transaction. You can use this method to
specify an endorsement policy of all channel members, a majority of them, a single
member, or a simple +1 preventing members from self-signing. The default
endorsement policy is set to 1 of x, meaning only a single member is required to
endorse a smart contract transaction.

– Advanced: Use this option when you want to specify a policy in JSON format. You can
use this method to specify more complicated endorsement policies. For example, a
policy can require that a certain member of the channel must validate a transaction,
along with a majority of other members.

4. On the Select peer panel, select a peer from the drop-down list that is from an
organization that is a member of the channel. Click Next.

5. If your smart contract includes Fabric private data collections, you need to upload the
associated collection configuration JSON file. Otherwise, you can skip this step.
For more information on using private data, see this topic:
https://cloud.ibm.com/docs/services/blockchain/howto?topic=blockchain-ibp-conso
le-smart-contracts#ibp-console-smart-contracts-private-data

6. On the last panel, you are prompted to specify the name of the smart contract initialization
function, and also the associated arguments to pass to that function.

Upgrading a smart contract
You can upgrade a smart contract to change its code, endorsement policy, or private data
collection while it maintains its relationship to the assets on the ledger. There are a various
reasons why you might want to upgrade an instantiated smart contract.

� You can upgrade the smart contract to add or remove functionality from its code and
iterate on the logic of your business network.

Note: Endorsement policies are not updated automatically when new organizations join
the channel and install a chaincode. Consider a scenario where the endorsement policy
requires two of five organizations to endorse a transaction. When a new organization
joins the channel, that policy is not updated to require two out of six organizations.
Instead, the new organization will not be listed on the policy, and they will not be able to
endorse transactions. To add another organization to such an endorsement policy, you
must upgrade the relevant chaincode and update the policy.

Tip: View all of the smart contracts that have been instantiated on a channel as follows:
1) Click the channel icon in the left navigation. 2) Select a channel from the table. 3) Click
the Channel details tab.
Chapter 4. IBM Blockchain Platform installation and configuration 191

https://cloud.ibm.com/docs/services/blockchain/howto?topic=blockchain-ibp-console-smart-contracts#ibp-console-smart-contracts-private-data

� Whenever a new member is added to a channel, the endorsement policy of the
instantiated smart contracts must be updated to include the new channel member. To work
with the new channel member, the smart contract must be repackaged with a new version
number and instantiated on the channel, even if the smart contract itself is unchanged.
Otherwise, transaction endorsement cannot succeed.

� When a private data collection has changed, for example an organization is added or
removed you need to upgrade your smart contract. Or, use this action whenever a new
private data collection is added to the collection configuration JSON file.

� The smart contract initialization arguments have changed.

To upgrade a smart contract, install the updated code by specifying the same smart contract
name but by using and a new version number. If you have installed a newer version of a smart
contract on any peer in the channel, notice that the original version now has the Upgrade
Available button next to it in the Instantiated smart contracts table (in Smart contracts
tab).

Follow these steps to upgrade your smart contract:

1. Navigate to the Smart contracts tab on the left.

2. Scroll down to the Instantiated smart contracts table.

3. In the Instantiated smart contracts table, locate the smart contract version and channel
that you want to upgrade. It must have the Upgrade Available label next to it.

4. Click the overflow menu on the right side of the smart contract row and click Upgrade.

5. Select the smart contract version that you want to upgrade on the channel from the
drop-down list.

6. Update the endorsement policy by adding or removing channel members. You can also
click Advanced to paste in a new JSON formatted string, which modifies the existing
policy.

7. On the Select peer panel, you need to select a peer that can approve the proposal to
upgrade the smart contract. Therefore, you must select a peer from the drop-down list that
is from an organization that was a member of the channel before the smart contract was
last instantiated on the channel.

8. If you want to associate a private data collection configuration file with the smart contract,
you can upload the JSON file. Or if you want to update an existing collection configuration,
you can upload the JSON file.

9. If the smart contract was previously instantiated with a collection configuration file, you
must again upload the previous version or a new version of the collection configuration file
during this step.

10.(Optional) Modify the smart contract initialization argument values if the parameters have
changed. If you are unsure about it, check with your smart contract developer. If they have
not changed, you can leave this field blank.

After you upgrade the smart contract, you will change the version of the contract that is
instantiated on the channel. And you will change the smart contract container for all the
peers that have installed the new version. If you are using private data collections, be sure
that you have configured anchor peers on the channel.
192 Implementation Guide for IBM Blockchain Platform for Multicloud

4.3.8 Verifying blockchain components installation

To verify installation of the blockchain components, you should verify the deployments,
replicaSets, Pods, and Services that were created for blockchain. Use the commands in
Example 4-23, Example 4-24, and Example 4-25 to verify each of these Kubernetes objects.

Example 4-22 Blockchain component deployments showing ordering service, CA and Peer
deployments

$ kubectl get deploy --namespace=redbook-team00
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
orderingservice1 0 0 0 0 5d
orderingserviceca 1 1 1 1 5d
org1ca 1 1 1 1 6d
org2ca 1 1 1 1 6d
peer1org1 0 0 0 0 5d
peer1org2 0 0 0 0 5d
redbook-team00-ibp-console 1 1 1 1 11d

Example 4-23 Blockchain component replicaset showing ordering service, CA and Peer replicaset

$ kubectl get rs --namespace=redbook-team00
NAME DESIRED CURRENT READY AGE
orderingservice1-75c5955d79 0 0 0 5d
orderingservice1-9fc97c8b4 0 0 0 5d
orderingserviceca-c4d577476 1 1 1 5d
org1ca-66d5848fc8 1 1 1 6d
org2ca-5d6bd5d8b4 1 1 1 6d
peer1org1-5bbf776ff5 0 0 0 5d
peer1org1-74c654f4c7 0 0 0 5d
peer1org1-78d4458c57 0 0 0 5d
peer1org2-6b949769cc 0 0 0 5d
peer1org2-7f9c44dc75 0 0 0 5d
redbook-team00-ibp-console-78b77b676d 1 1 1 11d

Example 4-24 Blockchain component pods showing ordering service, CA and Peer pods

$ kubectl get pods --namespace=redbook-team00
NAME READY STATUS RESTARTS AGE
orderingserviceca-c4d577476-z88px 1/1 Running 0 4d
org1ca-66d5848fc8-5nvb9 1/1 Running 0 4d
org2ca-5d6bd5d8b4-8wx8k 1/1 Running 0 4d
redbook-team00-ibp-console-78b77b676d-db2dc 5/5 Running 2 11d
Chapter 4. IBM Blockchain Platform installation and configuration 193

Example 4-25 Blockchain component services

$ kubectl get svc --namespace=redbook-team00
NAME TYPE CLUSTER-IP EXTERNAL-IP AGE PORT(S)
ibp-operator ClusterIP 10.0.233.8 <none> 11d 8383/TCP
orderingservice1-service NodePort 10.0.62.129 <none> 5d 7050:30858/TCP,

8443:31497/TCP,8080:30644/TCP,7443:31575/TCP
orderingserviceca-service NodePort 10.0.81.10 <none> 5d 7054:32127/TCP,

9443:31979/TCP
org1ca-service NodePort 10.0.76.40 <none> 6d 7054:32152/TCP,

9443:30170/TCP
org2ca-service NodePort 10.0.245.113 <none> 6d 7054:31141/TCP,

9443:31797/TCP
peer1org1-service NodePort 10.0.146.99 <none> 5d 7051:31599/TCP,

7052:32455/TCP,9443:32558/TCP,8080:30374/TCP,7443:31755/TCP
peer1org2-service NodePort 10.0.196.158 <none> 5d 7051:30635/TCP,

7052:30707/TCP,9443:30790/TCP,8080:30002/TCP,7443:32503/TCP
redbook-team00-ibp-console-optools NodePort 10.0.92.28 <none> 11d 3000:30000/TCP,

3001:30001/TCP

4.4 OpenShift support: Statement of direction

In July 2019, IBM acquired Red Hat, an enterprise software company with an open source
development model. Red Hat is now a part of IBM’s Hybrid Cloud division.

OpenShift (https://www.openshift.com/) is a RedHat Platform-as-a-Service (PaaS) solution
based on Kubernetes. At the time this book is published, OpenShift is not supported in IBM
LinuxONE. Availability of support is expected by 1Q 2020. After OpenShift is available in
LinuxONE, we are planning to update this book to include directions on how to enable IBP on
OpenShift.

4.5 Troubleshooting the installation

This section explains some typical errors that you might see when installing the IBM
Blockchain Platform (IBP) and the IBP console.

4.5.1 Troubleshooting console installation

The command in Example 4-26 shows how to find errors that are related to IBP console.

Example 4-26 Command to grep for errors for console

$ kubectl logs redbook-team00-ibp-console-5c7c48669d-zhfzd --all-containers | grep -i ERROR

Common errors
Here are typical errors that arise during installation of the console.

You might get an out of cpu or out of storage error. Example 4-27 shows an out of cpu
error. This means that you need more resources on your machine to schedule the console,
according to the resource requests that are specified for the console installation.

Example 4-27 .Out of cpu error.

$kubectl describe pods peer1org1-5bbf776ff5-tw6r -n redbook-team00
Events:
 Type Reason Age From Message
194 Implementation Guide for IBM Blockchain Platform for Multicloud

https://www.openshift.com/

 ---- ------ ---- ---- -------
 Warning FailedScheduling 42s (x85 over 56m) default-scheduler 0/1 nodes are
available: 1 Insufficient cpu

You also might get an role-based access control (RBAC) error based on lack of permissions
to a resource within Kubernetes. If you get this, make sure that you satisfy all the
prerequisites for installing the console. Focus on checking that you have created all
necessary clusterroles, roles, clusterrolebindings, rolebindings, and pod security policies.

Example 4-28 Incorrect permissions (permissions errors for rbac)

kubectl get pods redbook-team00-ibp-console-78b77b676d-68cnn
NAME READY STATUS RESTARTS AGE
redbook-team00-ibp-console-78b77b676d-68cnn 4/5 CrashLoopBackOff 5 3m58s

kubectl logs redbook-team00-ibp-console-78b77b676d-68cnn -c operator
{"level":"error","ts":1567087886.392721,"logger":"k8sutil","msg":"Failed to get
Pod","Pod.Namespace":"redbook-team00","Pod.Name":"redbook-team00-ibp-console-78b77b676d-68cnn","error":"pod
s \"redbook-team00-ibp-console-78b77b676d-68cnn\" is forbidden: User
\"system:serviceaccount:redbook-team00:ibp\" cannot get resource \"pods\" in API group \"\" in the
namespace \"redbook-team00\""

4.5.2 Troubleshooting blockchain component installation

The commands in Example 4-29 show how to grep errors for blockchain components.

Example 4-29 Command to grep for errors in blockchain components

$ kubectl logs orderingserviceca-c4d577476-z88px --all-containers -n redbook-team00 | grep -i ERROR
$ kubectl logs org1ca-66d5848fc8-5nvb9 --all-containers -n redbook-team00 | grep -i ERROR
$ kubectl logs org2ca-5d6bd5d8b4-8wx8k --all-containers -n redbook-team00 | grep -i ERROR

Common errors

Here are some common errors that you might see for IBP installation:

� Need more permissive PodSecurity policy. Example 4-30 shows this error, which deals
with Certificate Authority component permissions.

Example 4-30 PodSecurity policy error

$kubectl get events
LAST SEEN TYPE REASON KIND MESSAGE
9s Warning FailedCreate ReplicaSet Error creating: pods
"peer1ca-846fcbf996-" is forbidden: unable to validate against any pod security policy:
[spec.initContainers[0].securityContext.runAsNonRoot: Invalid value: false: must be true
spec.initContainers[0].securityContext.capabilities.add: Invalid value: "CHOWN": capability may not be
added spec.initContainers[0].securityContext.capabilities.add: Invalid value: "FOWNER": capability may not
be added spec.containers[0].securityContext.capabilities.add: Invalid value: "NET_BIND_SERVICE": capability
may not be added]
54s Normal ExternalProvisioning PersistentVolumeClaim waiting for a volume to be created,
either by external provisioner "nfs-provisioner" or manually created by system administrator

� Insufficient memory allocation in Peer pod causes DinD container to fail as shown in
Example 4-31.

Example 4-31 DinD container memory allocation error
Chapter 4. IBM Blockchain Platform installation and configuration 195

Error processing tar file(exit status 1): open
/usr/local/lib/node_modules/npm/node_modules/path-exists/license: cannot allocate memory
Loaded image: noderuntime:latest
Done loading images
REPOSITORY TAG IMAGE ID CREATED SIZE carruntime latest e1c971eb0642 2 weeks ago 14.4MB golangruntime latest
e1c971eb0642 2 weeks ago 14.4MB noderuntime latest 36f10d8170f0 2 weeks ago 839MB
time=“2019-06-27T19:37:11.889461068Z” level=error msg=“Not continuing with pull after error:
errors:\ndenied: requested access to the resource is denied\nunauthorized: authentication required\n”
time=“2019-06-27T19:37:11.889486118Z” level=info msg=“Ignoring extra error returned from registry:
unauthorized: authentication required”
time=“2019-06-27T19:37:12.024115280Z” level=warning msg=“could not write error response: write tcp
127.0.0.1:2375->127.0.0.1:44280: write: broken pipe

Insufficient memory allocation to the Peer pod might cause underlying errors for DinD
chaincode containers. Confirm that you meet the prerequisites for the installation.

� Unable to configure RAFT node to System channel error is shown in Example 4-32.

Example 4-32 RAFT node unable to connect to system channel

Unable to get system channel. If you associated an identity without administrative
privilege on the ordering service node, you will not be able to view or manage
ordering service details

Check the pod logs of ordering service. Those logs might reveal failures in deployment of the
ordering service pods.
196 Implementation Guide for IBM Blockchain Platform for Multicloud

Chapter 5. Specific scenarios

In this chapter we discuss specific deployment scenarios. This chapter has the following
sections.

� 5.1, “Behind firewalls (isolated blockchain environment)” on page 198
� 5.2, “Using proxies” on page 198
� 5.2.1, “Manual installation of Docker” on page 198
� 5.2.2, “Automatic installation of Docker by using IBM Cloud Private” on page 199
� 5.2.3, “Post-installation proxy configuration” on page 200
� 5.3, “High availability and disaster recovery” on page 201

5

© Copyright IBM Corp. 2019. All rights reserved. 197

5.1 Behind firewalls (isolated blockchain environment)

Highly regulated industries often require an air-gapped, disconnected cloud; in other words, a
private cloud solution that is not connected to the internet. Even these industries can reap the
benefits of DevOps, Microservices, Cloud, and Containers by setting up local catalogs and
offline Docker image repositories, private Docker registry, and private Helm chart repository.

IBM Blockchain Platform is delivered as a Helm chart with all the images that are required to
install the solution. There is no need for an internet-connected server. You only need an
internet-connected laptop or host somewhere that you can use to download the Helm charts
from IBM Passport Advantage (PPA).

5.2 Using proxies

This section describes two options for installing Docker in your IBM Cloud Private, behind an
HTTP proxy. First, you must manually install Docker on your boot node. Second, you can
either manually install Docker on the rest of your cluster nodes, or the installer can
automatically install Docker.

5.2.1 Manual installation of Docker

1. Create the docker.service.d/ folder. You must run the following command on all nodes
(boot, master, management, proxy, work, and VA nodes):

Example 5-1 Creating necessary docker service folder

sudo mkdir -p /etc/systemd/system/docker.service.d

2. Create the docker.service.d/http-proxy.conf file and add the following variables:
HTTP_PROXY, HTTPS_PROXY and NO_PROXY

Example 5-2 Sample of /etc/sytemd/system/docker.service.d/http-proxy.conf file

[Service]
Environment="HTTP_PROXY=http://1.2.3.4:3128" "HTTPS_PROXY=http://1.2.3.4:3128"
"NO_PROXY=localhost,127.0.0.1,<cluster_CA_domain>.icp,<ICP ip address/range>

3. Run the following commands to restart Docker:
sudo systemctl daemon-reload
sudo systemctl restart docker

Note: If you use JavaScript to write your chaincode, you must set up local repositories for
npm modules.

Note: The NO_PROXY entry dictates that no proxy should be used for the IBM Cloud
Private’s Docker private registry. <cluster_CA_domain> is the certificate authority (CA)
domain that was set in the config.yaml file during installation. Change
<ICPipaddress/range> to the IP address range of your ICP nodes, for example,
192.168.1.0/24. This setting ensures that Docker doesn’t use the proxy for inter-Docker
communications.
198 Implementation Guide for IBM Blockchain Platform for Multicloud

4. Customize the IBM Cloud Private config.yaml file by setting the tiller_http_proxy and
tiller_https_proxy parameters as shown in Example 5-3. This configures proxy settings
of the Helm tiller daemon to populate the IBM Cloud Private App Catalog.

Example 5-3 Sample of /<installation_directory>/cluster/config.yaml file

/<installation_directory>/cluster/config.yaml

Licensed Materials - Property of IBM
@ Copyright IBM Corp. 2017 All Rights Reserved
US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Network Settings
network_type: calico
Network in IPv4 CIDR format
network_cidr: 10.1.0.0/16
Kubernetes Settings
service_cluster_ip_range: 10.0.0.1/24
...
tiller_http_proxy: http://1.2.3.4:3128
tiller_https_proxy: http://1.2.3.4:3128
...

5. Continue the standard IBM Cloud Private installation process. From the IBM Cloud Private
management console, check Catalog.

5.2.2 Automatic installation of Docker by using IBM Cloud Private

If you installed Docker on your boot node manually and you haven't installed it on your other
cluster nodes, you use the IBM Cloud Private installer to automatically deploy Docker. Follow
the steps below to install IBM Cloud Private behind an HTTP proxy.

1. Uncomment the following Docker environment variables in your config.yaml file, which are
bolded here for clarity:

Example 5-4 Sample of config.yaml file

Docker environment setup
docker_env:
- HTTP_PROXY=http://1.2.3.4:3128
- HTTPS_PROXY=http://1.2.3.4:3128
- NO_PROXY=localhost,127.0.0.1,{{ cluster_CA_domain }}
Install/upgrade docker version

2. Customize the IBM Cloud Private config.yaml file, set the tiller_http_proxy and
tiller_https_proxy parameters, as shown in the following command:

Example 5-5 Sample of /<installation_directory>/cluster/config.yaml file

Licensed Materials - Property of IBM
IBM Cloud private
@ Copyright IBM Corp. 2017 All Rights Reserved
US Government Users Restricted Rights - Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Network Settings
network_type: calico
Network in IPv4 CIDR format
network_cidr: 10.1.0.0/16
Kubernetes Settings
Chapter 5. Specific scenarios 199

service_cluster_ip_range: 10.0.0.1/24
...
tiller_http_proxy: http://1.2.3.4:3128
tiller_https_proxy: http://1.2.3.4:3128
...

3. Continue the standard IBM Cloud Private installation process. From the IBM Cloud Private
management console, check Catalog.

5.2.3 Post-installation proxy configuration

After installation is completed, you can edit proxy settings of IBM Cloud Private as described
here:

1. From the IBM Cloud Private management console, go to Workloads → Deployments.
2. In the Deployments window search for helm-api.
3. Click Edit.
4. Look for the following lines as shown in Example 5-6:

Example 5-6 ICP proxy configuration -1

{
"name": "HTTP_PROXY"
},
{
"name": "HTTPS_PROXY"
},
{
"name": "NO_PROXY",
"value": "<ICP cluster
IP>,mycluster.icp,mongodb,platform-identity-provider,localhost,127.0.0.1"
},

5. Edit the HTTP_PROXY and HTTPS_PROXY values as appropriate.

Example 5-7 ICP proxy configuration -2

{
"name": "HTTP_PROXY",
"value": "http://1.2.3.4:3128"
},
{
"name": "HTTPS_PROXY",
"value": "http://1.2.3.4:3128"
},
{
"name": "NO_PROXY",
"value": "<ICP cluster
IP>,mycluster.icp,mongodb,platform-identity-provider,icp-management-ingress,iam-pap,loca
lhost,127.0.0.1"
},

6. Click Submit.
7. Go to Catalog to confirm that the Helm charts are shown.

Note: Depending on your environment, the NO_PROXY values might vary. For example,
they might include Kubernetes Ingresses and Services resources. It is important that
NO_PROXY is fully configured to prevent IBM Cloud Private from communicating over the
proxy.
200 Implementation Guide for IBM Blockchain Platform for Multicloud

5.3 High availability and disaster recovery

This section presents considerations for high availability and disaster recovery.

5.3.1 High availability

High availability is a core discipline in an IT infrastructure to keep solutions up and running,
even after a partial or full site failure. The main purpose of high availability is to eliminate
potential points of failures in an IT infrastructure. For example, a solution might be prepared
for the failure of one system by adding redundancy and setting up failover mechanisms.
Solutions can achieve high availability on different levels in the IT infrastructure and within
different layers of Kubernetes cluster. The level of availability that is right for solution depends
on several factors, such as business requirements and the Service Level Agreements.

As with many other complex IT systems, we can create a reliable blockchain solution based
on inherently unreliable components. We achieve this goal by leveraging redundancy and
careful design. A highly available blockchain solution should ensure that blockchain
components of the same type and organizations are deployed across different worker nodes.
By adding redundancy across the blockchain network a solution, you avoid failures and
downtime.

Consider the following issues for a highly available blockchain solution:

Table 5-1 Considerations for a highly available blockchain solution

Consideration Details

Peers High Availability for peers means always having redundant peers. In other words, have at least two
peers available for each organization on the same channel to process requests from client
applications.
Multiple peers can be deployed to a single worker node, or spread across worker nodes. Whenever
you deploy multiple peers and join them to the same channel, the peers act as highly available pairs.
This is possible because the channel and the data are automatically synchronized across all peers
in the channel.
By design, a blockchain network can have multiple organizations that transact on the same channels.
Therefore, the common deployment model for any given channel is as follows:
� Create redundant peers for each organization
� Spread the peers across several organization account clusters.
� Ensure that the clusters are all synchronizing data between each other.
� Each organization can have a peer in their own cluster in any region.

Ordering
service

IBM Blockchain Platform is built upon Hyperledger Fabric v1.4.1, which includes the Raft ordering
service. Raft is a crash fault tolerant (CFT) ordering service that is based on an implementation of the
Raft protocol. By design, Raft ordering nodes automatically synchronize data between each other by
using Raft based consensus. In IBM Blockchain Platform, an organization network operator can
choose one of these options:
� Stand up a single-node Raft-based orderer, with no HA. OR
� Stand up five orderers in a single region that are automatically configured for HA

through Raft.

Hyperledger
Fabric CA

The IBP approach is to deploy the Hyperledger Fabric CA server in Kubernetes cluster mode for HA.
This deployment option is well documented in the Hyperledger Fabric documentation.
Chapter 5. Specific scenarios 201

5.3.2 Disaster recovery

The goal of disaster recovery is to restore the business after an unplanned outage. It does
this by providing a standby of a primary storage and keeping it current through replication of
changes from the primary. Changes can be replicated synchronously or asynchronously. If
done asynchronously and an outage happens, changes might be lost (if the primary is down
permanently) or stranded (if the primary is down temporarily). The amount of change data tht
is lost or stranded depends on the latency of replicated changes. If done synchronously, no
committed changes are lost or stranded in an outage.

In all cases, to protect against data corruption, it is recommended that a solution regularly
back up the storage that is associated with every deployed component. Because the
blockchain ledger is shared across all the peers and ordering nodes, taking regular backups
is critical. For example, if incorrect data is accidentally propagated to a peer's ledger or if data
is mistakenly deleted, this might spread to the ledgers of some other peers. This would
require the restoration of the ledgers of all the peers from an established backup point to
ensure synchronicity. You can decide how often to perform the backups, based your recovery
needs. A general guideline is to perform daily backups.

For more information on disaster recovery on IBM Cloud Private, see this website:

https://www.ibm.com/cloud/garage/practices/manage/high-availability-ibm-cloud-priv
ate/1_0

Transaction
endorsement
policy

If a policy requires a particular peer to endorse a transaction and that peer is down, every transaction
fails endorsement. When possible, leverage endorsement policy rules that are not peer specific. For
example, “2 out-of 3 must endorse” is a policy rule that is not peer specific. For more information, see
Section 4.3.7, “Deploying smart contracts” on page 189.
Note: Apart from the blockchain components, consider designing the integration layer and
application layer to be highly available to achieve a highly available solution.

Consideration Details
202 Implementation Guide for IBM Blockchain Platform for Multicloud

https://www.ibm.com/cloud/garage/practices/manage/high-availability-ibm-cloud-private/1_0

Chapter 6. Performance considerations

This chapter discusses the performance considerations of this solution and has the following
sections:

� 6.1, “Blockchain performance considerations” on page 204
� 6.2, “Blockchain Input/Output (I/O) accelerated: IBM HiperSockets” on page 205
� 6.3, “Meet CPACF - Speeding up your blockchain” on page 208

6

© Copyright IBM Corp. 2019. All rights reserved. 203

6.1 Blockchain performance considerations

When you run IBM Blockchain Platform for Multicloud, you can make many decisions about
the configuration of your blockchain application and network. This section outlines the effect
of different decisions on the overall performance of your solution.

6.1.1 Application client

Application client sends transactions to the endorsing nodes in the blockchain network. The
programming language in which you develop the client application influences the choices of
Hyperledger SDK to use. Hyperledger SDKs are available in Go, NodeJS, Java, and Python,
as shown in GitHub:

https://github.com/hyperledger?utf8=%E2%9C%93&q=fabric-sdk&type=&language=

The choice of SDK affects performance depending on the language in which it is written. The
Go and Java SDKs might yield better performance than the Node.js or Python SDK for one
simple reason: Go and Java are compiled and support multiple threads of execution.

6.1.2 Smart contract programming language

You can develop smart contracts or chaincode with Go, JavaScript, or Java. As with SDK
choices, Go or Java for your chaincode might yield performance than JavaScript, because, to
repeat, Go and Java are compiled and support multiple threads of execution. Specifically, Go
is a multi-threaded compiled language that takes advantage of single instruction multiple data
(simd) computers.

6.1.3 Endorsement policy

Choice of endorsement policy and the number of available endorsing nodes for a channel can
affect peer performance. Throughput of the blockchain network is indirectly proportional to
number of endorsement peers in the policy. You can scale your throughput by load balancing
your endorsement across a pool of endorsers.

6.1.4 Orderer Block Configuration

In ordering service nodes (OSN), the configuration parameters that determine the block size
and frequency can affect performance. Modifying these parameters can influence the latency
that transactions experience, starting from submission to the OSN and ending with being
committed to the ledger. If too few messages are received for a channel to fill the block (per
the BatchSize configuration), the minimum latency is the BatchTimeout setting.

� Batch Size: These parameters dictate the number and size of transactions in a block. No
block appears that is larger than the value for absolute_max_bytes or greater than the
value for max_message_count transactions inside the block. If it is possible to construct
a block with a size that is under preferred_max_bytes, a block is cut prematurely, and
transactions larger than this size will appear in their own block. Example 6-1 shows the
example of configuring batch size on that channel.
204 Implementation Guide for IBM Blockchain Platform for Multicloud

https://github.com/hyperledger?utf8=%E2%9C%93&q=fabric-sdk&type=&language=

Example 6-1 Batch size configuration on channel

{
 "absolute_max_bytes": 102760448,
 "max_message_count": 10,
 "preferred_max_bytes": 524288
}

� Batch Timeout: This value is the amount of time to wait after the first transaction arrives
for additional transactions before cutting a block. Decreasing this value improves latency,
however decreasing it too much migth decrease throughput by not allowing the block to fill
to its maximum capacity. Example 6-2 shows the example of configuring batch timeout on
that channel.

Example 6-2 Batch timeout configuration on channel

{ "timeout": "2s" }

Other properties can also be configured on a channel. See the following URL for a summary
of these properties:

https://hyperledger-fabric.readthedocs.io/en/release-1.4/config_update.html

6.1.5 Peer container resource allocation

The physical and virtual infrastructure that all these services run on that can affect
performance. For instance, giving the peer nodes more virtual CPUs (vCPUs) can help to
improve performance in many cases. However, this approach comes at a cost. So you must
balance the cost of running a peer with the benefits of the improved performance.

6.2 Blockchain Input/Output (I/O) accelerated: IBM
HiperSockets

When it runs on IBM Z and LinuxONE, IBM Blockchain Platform can take control of IBM
HiperSockets in the background. This section explains where blockchain uses I/O, and how
employing HiperSockets can improve performance, security, and availability. This section
covers the following issues:

� 6.2.1, “Where does blockchain use I/O? Everywhere”
� 6.2.2, “What are HiperSockets” on page 206
� 6.2.3, “HiperSockets benefits” on page 207

6.2.1 Where does blockchain use I/O? Everywhere

Blockchain is a transactional system. Like many other transactional systems, it depends on
throughput of transactions that is high enough to satisfy the needs of the use case. This
throughput is dependent in part on I/O speed. This is true because this peer-to-peer network
employs communication among the peers in the network for data dissemination and
cross-verification.
Chapter 6. Performance considerations 205

https://hyperledger-fabric.readthedocs.io/en/release-1.4/config_update.html

In Hyperledger Fabric, the peers perform their communication function through the gossip
protocol (see https://hyperledger-fabric.readthedocs.io/en/stable/gossip.html). This
protocol enlists each peer to gossip to other peers about these issues:

� Confirming which peers are currently part of the network.
� Updating all peers regarding new blocks.
� Broadcasting transactions to nearby peers to enable better network scaling.

Each of these communications in the IBM Blockchain Platform, requires a TLS network
connection for security. Furthermore, networking between components takes effect at these
points:

� Each time that the ordering service sends blocks of data to initial sets of peers.
� When the client sends transactions to peers for endorsement during every transaction

submission.

In a Kubernetes network, these components can be spread across multiple virtual machines
for reliability and availability and also security. To improve the performance of the network,
administrators must optimize these many connections to eliminate delays in network traffic.
Otherwise, such delays might lead to both slowdown in the number of transactions that are
processed per second and certain peers falling behind the overall network in terms of
blockchain records.

One way to optimize performance is HiperSockets. It allows quick transfer of information
between blockchain components that sit on different Logical Partitions (LPARS).
HiperSockets also offers an EAL5+ certified isolation of components for a level of security that
meets the standards of the isolation of separate physical machines. Combining performance
and efficiency, HiperSockets unleash our blockchain solution to communicate efficiently, while
eliminating the need for excess components. The following two sections describe
HiperSockets and all of the potential benefits that they provide.

6.2.2 What are HiperSockets

HiperSockets provides high-speed TCP/IP connectivity for Logical partitions (LPARs) that run
in the same LinuxONE machine. Also, it eliminates the need for any physical cabling or
external networking connection between servers that run in different LPARs.

The communication is through the system memory of the processor, so servers are
connected to form a “internal LAN.”

The HiperSockets implementation is based on the OSA-Express Queued Direct I/O (QDIO)
protocol. So, HiperSockets is also called internal QDIO, or IQDIO. The microcode emulates
the link control layer of an OSA-Express QDIO interface.

Therefore, the LinuxONE can provide high network connection speeds for blockchain
workloads, which require read/write of many components that communicate to each other
over a network. Because of blockchain’s requirement for many TCP/IP connections,
HiperSockets can play an important role in these communications. It helps to create a solid
infrastructure layer to run your blockchain workloads.

As shown in Figure 6-1, HiperSockets enables quick transfer of information between LPARs.
206 Implementation Guide for IBM Blockchain Platform for Multicloud

https://hyperledger-fabric.readthedocs.io/en/stable/gossip.html

Figure 6-1 HiperSockets enables quick transfer of information between LPARs

6.2.3 HiperSockets benefits

The following table describes the benefits to of IBM HiperSockets:

Table 6-1 Benefits of IBM HiperSockets

Goal Benefits of IBM HiperSockets

High
performance

Consolidated servers that have to access corporate data on the LinuxONE can do so at memory
speeds with the lowest possible latency, bypassing network traffic and delays.
Also, you can customize HiperSockets to accommodate varying traffic sizes. With HiperSockets, you
can define a maximum frame size (MFS) according to the traffic characteristics for each
HiperSockets. In contrast, Ethernet LANs have a MFS predefined by their architecture.
The bandwidth of your Ethernet interfaces becomes fully available for external network traffic when
the internal traffic is running over HiperSockets.

Cost savings You can use HiperSockets to communicate among consolidated servers in a single processor.
Therefore, you can eliminate all of the hardware boxes that run these separate servers. As a result,
you reduce floor space and power consumption. With HiperSockets, there are zero external
components or cables to pay for, to replace, to maintain, or to wear out.

Consolidation LinuxONE can consolidate multiple Linux servers into a single machine and can run workloads in
SSC (Secure Service Container) partitions. With HiperSockets, this capability reduces the amount of
server hardware. It can also reduce the complexity of your physical network, because subnets
between the consolidated servers can be turned into virtual HiperSockets networks. The more you
consolidate your servers, the greater your savings potential for costs that are related to external
servers and their associated networking components.

Flexibility You make changes to a HiperSockets network more easily, because installation of physical
components or re-cabling is not needed.
Chapter 6. Performance considerations 207

6.3 Meet CPACF - Speeding up your blockchain

Blockchain (in the case of IBM Blockchain Platform, specifically Hyperledger Fabric) requires
many cryptographic operations, which can become a bottleneck for blockchain performance.
Thus, optimal performance depends on the machine’s throughput of cryptographic
operations. CP Assist for Cryptographic Functions (CPACF) is a set of instructions for the IBM
LinuxONE and IBM Z family of systems. This instruction set uses a dedicated portion of the
processor chip (for example, a synchronous co-processor) to run cryptographic functions in
hardware. As a result CPACF significantly speeds up cryptography operations. This section
covers the following topics:

� 6.3.1, “Cryptography’s importance in blockchain”
� 6.3.2, “CPACF’s role in acceleration and protection” on page 210

6.3.1 Cryptography’s importance in blockchain

In this section, we discuss performance considerations for cryptography and blockchain.

Hashing: the key to blockchain’s immutability
The blockchain is a data structure with these components:

� A group of blocks, which is a group of transactions that are hashed together.
� Connections among the blocks that form a chain. The chain is made of hashes that point

from one block to its previous block.

A hash is a one-way function that maps a set of data into a specified number of bits. For
example, Secure Hash Algorithm 2 using 256 bits (SHA 2- 256) uses the SHA 2 algorithm to
map data into a 256-bit pattern. One-way means that you can use the function to hash the
data, but it is not technically feasible to "unhash" the data (find out what the original data set
was). Moreover, if the data changes by even one bit, the hash drastically changes. Thus, you
can verify that data has not changed by confirming that is has the same hash.

Simplicity HiperSockets is part of LinuxONE technology, including QDIO and advanced adapter interrupt
handling. Data transfer is handled much like a cross-address space memory move, using the memory
bus. HiperSockets is application-neutral, and it appears as a typical TCP/IP device. Its configuration
is simple, so installation is easy. It is supported by familiar management and diagnostic tools.

Security Cables or external components are vulnerable to physical attacks. Because HiperSockets does not
have any physical interfaces, it is protected against any attacks from the outside. This characteristic
might enable you to run network traffic without encryption, which results in additional performance
improvements.
For isolation purposes, you can connect servers to different HiperSockets. All security features, such
as firewall filtering, are available for HiperSockets interfaces in the same way that they are for other
Internet Protocol network interfaces. In a blockchain environment, HiperSockets increase security
because you can define internal network communications between your Linux servers or SSC
partitions. As a result, the data traffic stays inside the LinuxONE box, which increases security.

Availability With HiperSockets, there are no network switches, routers, adapters, or wires that can break or that
have to be maintained. The absence of mechanical components greatly improves availability.

Goal Benefits of IBM HiperSockets
208 Implementation Guide for IBM Blockchain Platform for Multicloud

Blockchain systems use hashing to make the blockchain immutable. In other words, based on
hashing we can prove that the blockchain has not been changed since it was created. How is
this possible? These qualities emerge from hashing:

� If any transactions change, the backing hashes change. Because the block hash is made
from a combination of the hashes of the pieces of data in the blockchain, this means that
the block hash itself changes.

� Each block in the chain has a pointer to the hash of the previous block. This means that if
any of the transactions in that block change, the hash of the block does not match the old
hash that is contained in the previous block.

� Unmatched hashes “break” the blockchain, because they signify tampering. The original,
untampered set is still be available in the other copies of the ledger (on the other peers).
These copies represent the “true” data.

� Verification quickly identifies an invalid blockchain among valid ones:

– Valid: Any blockchain with an unchanged hash — any hash that is unchanged
between the time that it was made and the current time — is valid, because it meets
the immutability requirement.

– Invalid: A blockchain with a changed hash has been tampered with.

Permissioned blockchain: signing transactions with identities
Hyperledger Fabric, the blockchain protocol that powers the IBM Blockchain Platform in the
background, is a permissioned blockchain. This means that the different organizations that
participate in the network are known to the other organizations. The network manages
identities on this basis:

� A Public Key Infrastructure (PKI). (See this website:
https://en.wikipedia.org/wiki/Public_key_infrastructure)

� Certificate Authorities for each organization that issue keys and certificates for
identification purposes. (Each Certificate Authority’s root certificate included as part of the
configuration of individual networks at the channel level.)

Each time that a user submits a transaction, it includes as part of the submission its signature.
(A signature is encryption of the hash of the transaction with the private key of the
organization.) Each peer verifies this signature with the public key of the submitter. These
public and private keys use Elliptic Curve Cryptography (ECC), specifically the Elliptic Curve
Digital Signature Algorithm (ECDSA).

Protecting your connections: TLS/SSL in blockchain
The different components in the blockchain (Orderers, Peers, and Certificate Authorities) and
also blockchain clients use TLS/SSL connections to communicate. For more information see
this website:
(https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/8.0/html
/Deployment_Guide/SSL-TLS_ecc-and-rsa.html)

TLS/SSL connections involve an initial handshake that is based on elliptic curve
cryptography. The handshake exchanges key information to initiate network connections with
traffic encrypted that is based on a symmetric encryption algorithm such as the Advanced
Encryption Standard (AES). This encryption enables security for connections between clients
and blockchain components. It also enables security for connections between blockchain
components, which continuously communicate all of the blocks in the chain to distribute them
through the gossip protocol. This protocol is further explained on this web page:
https://hyperledger-fabric.readthedocs.io/en/release-1.4/gossip.html
Chapter 6. Performance considerations 209

https://en.wikipedia.org/wiki/Public_key_infrastructure
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/8.0/html/Deployment_Guide/SSL-TLS_ecc-and-rsa.html
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/8.0/html/Deployment_Guide/SSL-TLS_ecc-and-rsa.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/gossip.html

6.3.2 CPACF’s role in acceleration and protection

This section raises performance considerations for acceleration and protection.

Acceleration: hardware encryption
The CPACF provides on-chip acceleration for these operations by using instructions for SHA2
and SHA3 (hashing), AES, and new with IBM z15™ ECC (Elliptic Curve Cryptography)
including ECDSA. By performing these operations on a dedicated co-processor, on-chip,
these cryptographic algorithms run at the full clock speed of the processing chip and minimize
the latency that is caused by data transfer. This capability increases the performance of every
hashing and signing operation that the IBM Blockchain Platform employs. No intervention
from the user is required, besides enablement of the (no-charge) CPACF feature for AES.

Also, CPACF increases the performance of every connection that you make with TLS by
using the Advanced Encryption Standard (AES) instructions. CPACF also boosts
performance of the ECDA functions on the chip, in the case of IBM z15™. For examples of
how performance can increase with CPACF, look at the performance paper for CPACF on
z14, which are available in the following document:
[https://www.ibm.com/downloads/cas/K4AR1NLQ

This performance paper includes detailed data for the z14 cryptographic operations that use
CPACF. The dat shows that speeds increase as amounts of data that is encrypted increase.
This is true because the loading of data is more efficient. The largest bottleneck becomes the
cryptographic operations themselves, which are being accelerated by the CPACF
coprocessor.

Security: protecting keys from generation (true random) to use
In cryptography, your keys provide access to the data. Whoever has those keys has access.
This means that protecting keys is a top priority. LinuxONE and Linux on Z use true random
number generation (TRNG) to create keys. This approach improves security and throughput
of key generation. This capability is built into the Linux kernel and is transparently
implemented in crypto libraries to enhance the security of your system.

Beyond just generating a random key, it also implements measures to keep the key
protected. One of these measures is protected key. Protected key employs a wrapping key —
two per-LPAR keys (one for AES and one for DES/TDES) — that CPACF code creates and
stores in the protected area of the Hardware System Area (HSA). The wrapping key “wraps”
(encrypts) encryption keys to protect them. In this way, protected key keeps the encryption
key wrapped by its wrapping key in CPACF. When the key is outside of the addressable
program memory, it is in the clear only to Licensed Internal Code (LIC). This approach brings
these benefits:

� Protects the key from running in the clear where it might be found by an attacker.
� Increases security for keys that are used for symmetric encryption for something like a

TLS connection.

For more information on what you can do with a protected key in Linux, see the following
explanation of the protected key driver for the Linux on Z operating system:
https://www.ibm.com/support/knowledgecenter/en/linuxonibm/com.ibm.linux.z.ljdd/ljd
d_r_pkey.html

Note: The performance paper applies to IBM z14. Thus, it doesn’t describe ECDSA operations for
CPACF. In z15, these operations are available as part of CPACF in addition to the symmetric
encryption algorithms such as AES and hashing algorithms such as SHA2.
210 Implementation Guide for IBM Blockchain Platform for Multicloud

https://www.ibm.com/downloads/cas/K4AR1NLQ
https://www.ibm.com/support/knowledgecenter/en/linuxonibm/com.ibm.linux.z.ljdd/ljdd_r_pkey.html

Appendix A. Additional material

This book refers to additional material that can be downloaded from the Internet as described
in the following sections.

Locating the GitHub material

The web material that is associated with this book is available in softcopy on the internet from
the IBM Redbooks GitHub location:
https://github.com/IBMRedbooks/SG248458-Implementation-Guide-for-IBM-Blockchain-Pl
atform-for-Multicloud.

Cloning the GitHub material

Complete the following steps to clone the GitHub repository for this book:

1. Download and install Git client if not installed from this web page.

2. Run the following command to clone the GitHub repository:

git clone
https://github.com/IBMRedbooks/SG248458-Implementation-Guide-for-IBM-Blockchain
-Platform-for-Multicloud.git.

A

© Copyright IBM Corp. 2019. All rights reserved. 211

https://github.com/IBMRedbooks/SG248458-Implementation-Guide-for-IBM-Blockchain-Platform-for-Multicloud
https://github.com/IBMRedbooks/SG248458-Implementation-Guide-for-IBM-Blockchain-Platform-for-Multicloud
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads

212 Implementation Guide for IBM Blockchain Platform for Multicloud

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Be aware that some publications that are referenced in this list might be available
in softcopy only.

� Developing a Blockchain Business Network with Hyperledger Composer using the IBM
Blockchain Platform Starter Plan, REDP-5492

You can search for, view, download or order these documents and other Redbooks,
Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Online resources

These websites are also relevant as further information sources:

� Zero to Blockchain IBM Redbooks workshop

https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/crse0401.html?Open

� Blockchain use cases:

http://www.ibm.com/blockchain/use-cases

� IBM Blockchain Platform for Multicloud V3.2 Knowledge Center:

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/featured_applicatio
ns/ibm_blockchain_platform.html

� IBM LinuxONE website:

https://www.ibm.com/it-infrastructure/linuxone

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
© Copyright IBM Corp. 2019. All rights reserved. 213

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.2.0/featured_applications/ibm_blockchain_platform.html
http://www.ibm.com/support/
http://www.ibm.com/support/
https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/crse0401.html?Open
http://www.ibm.com/services/
http://www.ibm.com/services/
https://www.ibm.com/it-infrastructure/linuxone.

214 Implementation Guide for IBM Blockchain Platform for Multicloud

ISBN 0738458031

SG24-8458-00

ISBN 0738458031

SG24-8458-00

ISBN 0738458031

SG24-8458-00

(0.1”spine)
0.1”<->0.169”

53<->89 pages

(0.2”spine)
0.17”<->0.473”

90<->249 pages

(1.5” spine)
1.5”<-> 1.998”

789 <->1051 pages

(1.0” spine)
0.875”<->1.498”

460 <-> 788 pages

(0.5” spine)
0.475”<->0.873”

250 <-> 459 pages

Implementation Guide for IBM Blockchain Platform for Multicloud

Implementation Guide for IBM
Blockchain

Implementation Guide for IBM
Blockchain

Implementation Guide for IBM Blockchain Platform for Multicloud

ISBN 0738458031

SG24-8458-00

ISBN 0738458031

SG24-8458-00

(2.0” spine)
2.0” <-> 2.498”

1052 <-> 1314 pages

(2.5” spine)
2.5”<->nnn.n”

1315<-> nnnn pages

Implementation Guide for
IBM Blockchain

Implementation Guide for IBM
Blockchain
Platform for Multicloud

ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738458031

SG24-8458-00

®

https://www.facebook.com/IBMRedbooks
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/groups/2130806
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Figures
	Examples
	Tables
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Introduction
	1.1 Introduction
	1.1.1 What does blockchain do for a business network?
	1.1.2 Why blockchain?
	1.1.3 IBM Blockchain Platform introduction
	1.1.4 Benefits and differentiators of deploying and using a blockchain environment on LinuxONE

	1.2 Typical use cases
	1.3 Solution components
	1.3.1 LinuxONE
	1.3.2 Kubernetes (K8s)
	1.3.3 IBM Cloud Private
	1.3.4 GlusterFS
	1.3.5 IBM Secure Service Container
	1.3.6 IBM Blockchain Platform

	1.4 Our lab environment
	1.4.1 Secure Service Container partition
	1.4.2 IBM Cloud Private cluster

	Chapter 2. Planning for installation
	2.1 Why Secure Service Container?
	2.2 Persistent Storage providers
	2.3 Setting up file storage
	2.3.1 Network File System (NFS)
	2.3.2 Gluster File System (GlusterFS)

	2.4 Sizing
	2.4.1 IBM Blockchain Platform console
	2.4.2 Minimum network
	2.4.3 Pilot network
	2.4.4 Production network
	2.4.5 Component containers
	2.4.6 Resource reallocation

	2.5 Considerations for specific use cases

	Chapter 3. Secure Service Container installation and configuration
	3.1 Secure Service Container architecture
	3.2 An overview of SSC configuration and installation
	3.2.1 SSC bootloader overview
	3.2.2 Download the image

	3.3 Hardware and software requirements
	3.3.1 Hardware requirements for the 64-bit x86 server or Linux on Z server
	3.3.2 Hardware requirements for Secure Service Container partition
	3.3.3 Networking
	3.3.4 Supported operating systems and platforms
	3.3.5 Software requirements
	3.3.6 Supported Docker versions
	3.3.7 Supported IBM Cloud Private versions
	3.3.8 Required ports
	3.3.9 Defining the lab environment

	3.4 Deploying and configuring SSC for ICP in our lab environment
	3.4.1 Creating Secure Service Container partitions
	3.4.2 Installing the Secure Service Container for IBM Cloud Private appliance
	3.4.3 Installing the Secure Service Container for IBM Cloud Private CLI tool

	3.5 Installing IBM Cloud Private cluster
	3.5.1 Configuring Secure Service Container storage
	3.5.2 Configuring the appliance network
	3.5.3 Configuring the cluster resources
	3.5.4 Creating the cluster nodes
	3.5.5 Configuring the network on the master node

	3.6 Deploying IBM Cloud Private
	3.6.1 Deploying containerized applications

	3.7 Deploying GlusterFS on SSC ICP nodes
	3.7.1 Preparing for deployment
	Deploying ICP with GlusterFS

	3.8 Uninstalling ICP and SSC
	3.8.1 Uninstalling SSC for IBM Cloud Private
	3.8.2 Uninstalling the Secure Service Container for IBM Cloud Private CLI tool
	3.8.3 Uninstalling Secure Service Container partitions

	3.9 Updating the cluster resources dynamically

	Chapter 4. IBM Blockchain Platform installation and configuration
	4.1 Console installation
	4.1.1 Loading Helm chart
	4.1.2 Setting up role-based access control (RBAC) roles for blockchain [1x per cluster only]
	4.1.3 Scripted console installation
	4.1.4 Manual console installation

	4.2 Verifying console installation and initializing console with users
	4.2.1 Verifying installation of the blockchain console
	4.2.2 Initializing blockchain console for other users

	4.3 IBM Blockchain Platform installation
	4.3.1 Creating peer organizations
	4.3.2 Creating a peer
	4.3.3 Creating the ordering service
	4.3.4 Join the consortium
	4.3.5 Creating a channel
	4.3.6 Joining peers to channel
	4.3.7 Deploying smart contracts
	4.3.8 Verifying blockchain components installation

	4.4 OpenShift support: Statement of direction
	4.5 Troubleshooting the installation
	4.5.1 Troubleshooting console installation
	4.5.2 Troubleshooting blockchain component installation

	Chapter 5. Specific scenarios
	5.1 Behind firewalls (isolated blockchain environment)
	5.2 Using proxies
	5.2.1 Manual installation of Docker
	5.2.2 Automatic installation of Docker by using IBM Cloud Private
	5.2.3 Post-installation proxy configuration

	5.3 High availability and disaster recovery
	5.3.1 High availability
	5.3.2 Disaster recovery

	Chapter 6. Performance considerations
	6.1 Blockchain performance considerations
	6.1.1 Application client
	6.1.2 Smart contract programming language
	6.1.3 Endorsement policy
	6.1.4 Orderer Block Configuration
	6.1.5 Peer container resource allocation

	6.2 Blockchain Input/Output (I/O) accelerated: IBM HiperSockets
	6.2.1 Where does blockchain use I/O? Everywhere
	6.2.2 What are HiperSockets
	6.2.3 HiperSockets benefits

	6.3 Meet CPACF - Speeding up your blockchain
	6.3.1 Cryptography’s importance in blockchain
	6.3.2 CPACF’s role in acceleration and protection

	Appendix A. Additional material
	Locating the GitHub material
	Cloning the GitHub material

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

