
CICS Transaction Server for z/OS
Version 5 Release 3

IMS Database Control Guide

SC34-7413-00Licensed Materials – Property of IBM

IBM

CICS Transaction Server for z/OS
Version 5 Release 3

IMS Database Control Guide

SC34-7413-00Licensed Materials – Property of IBM

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 153.

This edition applies to the IBM CICS Transaction Server for z/OS Version 5 Release 3 (product number 5655-Y04)
and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1989, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Licensed Materials – Property of IBM

Contents

Preface v
Who this manual is for v

What this manual is about. v
What you need to know before reading this
manual v
How to use this manual v
Terms used v
Location of topics in the Knowledge Center . .. v

Changes in CICS Transaction Server
for z/OS, Version 5 Release 3 vii

Chapter 1. Overview of Database Control
(DBCTL). 1
Connecting to DBCTL 2
CICS-IMS DBCTL environment 2

CICS-DBCTL interface control components in
CICS address space 5
Components of DBCTL in IMS address spaces .. 6

Coordinator control subsystem (CCTL) 7
Resources you can access from a CICS environment
that includes DBCTL 7
System service requests 9
Access to data entry databases (DEDBs) 9
Online image copy utility. 11
Online change utility 11
Online reorganization for DEDBs 11

Chapter 2. Installing DBCTL, and
defining CICS and IMS system
resources 13
Installing and generating DBCTL 13
Defining CICS system resources for DBCTL . .. 14

System initialization parameters 14
PSB directories (PDIRs) 16
DD statements 16
CICS-supplied groups within CICS system
definition 18
Log management 18
Monitoring control table (MCT). 18
Program list table (PLT) 18
Transient data queues 19

Generating DBCTL 19
Defining the DBCTL subsystem. 19
IMS logging 24
IMS dynamic allocation macro (DFSMDA) . .. 27
Database buffer specifications and option
parameters 27
Overriding DBCTL generation parameters at
execution time 27

Starting DBCTL, DLISAS, and DBRC 28
Defining the IMS DRA startup parameter table .. 29

Example JCL to generate a DRA startup table .. 31
Customizing DBCTL 33

DFHDBUEX 33
Global user exits XDLIPRE and XDLIPOST . .. 33
Global user exits XRMIIN and XRMIOUT . .. 34

Illustration of DBCTL startup parameter creation
and selection 34

Chapter 3. Administering DBCTL . .. 37
Connecting to DBCTL: overview 37
Connecting DBCTL to CICS automatically 38
Connection, disconnection, and inquiry transactions
for the CICS DBCTL interface 39

CDBC transaction for connect and disconnect .. 39
What happens when you have requested
connection to DBCTL 42
Deciding whether to use orderly or immediate
disconnection. 43
CDBI transaction for inquiry. 43

Operator communication with DBCTL: overview .. 45
DBCTL operator commands 45

Format of DBCTL operator commands 45
Multisegment DBCTL operator commands . .. 46

Summary of DBCTL operator commands 47
CDBM operator transaction 49

DFHDBFK - The CDBM GROUP command file 53
The MAINTENANCE panel for DFHDBFK . .. 54
Input fields 54

Issuing DBRC commands. 56
IMS password security 57
Controlling tracing of DBCTL events 57
Finding out current status of DBCTL activities. .. 57
Specifying messages to be logged on IMS log . .. 59
Changing DBCTL resources online. 59
Preventing programs and transactions from
updating DBCTL databases 59
Switching to a new OLDS 60
Entering external subsystem commands from
DBCTL 60
Making DBCTL resources available 61
Preventing scheduling of PSBs and use of DBCTL
databases 61
Purging a transaction that is using DBCTL 62
Stopping DBCTL normally 64
Stopping DBCTL abnormally 65
Dealing with messages from DBCTL and CICS .. 65
Recovery and restart operations for DBCTL . .. 66

Overview of CICS and IMS recovery and restart 66
Commit protocols and units of recovery for
DBCTL 71
IMS database utilities 76
IMS log utilities 79
Component failures in the CICS DBCTL
environment 79

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1989, 2015 iii

Chapter 4. Application programming
for DBCTL 85
Programming languages and environments for DL/I 85

Issue IMS AIB call format 86
Enabling CICS IMS applications to use the open
transaction environment (OTE) through threadsafe
programming. 87
Facilities available with DBCTL. 90

Application program access to DEDBs 90
Additional EXEC DLI keywords 91
Keywords and corresponding command codes . 92
POS command and call 93
Addressing and residency mode 94
Enhanced scheduling 94
Obtaining information about database availability 95
Accepting database availability status codes .. 96
Status codes and backout 97
Batch message processing programs (BMPs) .. 97
System service requests 99
Comparing EXEC DLI commands and DL/I
calls 103
DL/I requests supported 104

Summary of DBCTL abends and return codes .. 105

Chapter 5. Security for DBCTL 109
PSB authorization checking by CICS. 109

Chapter 6. Troubleshooting DBCTL 111
Interactions between CICS and DBCTL 111
DBCTL error scenarios 111

Connection to DBCTL has failed to complete 112
Disconnection from DBCTL failed to complete 112
Failures during PSB scheduling 113
Failures during DL/I request processing . .. 113

Trace for CICS DBCTL 114
Trace entries produced by CICS 114
Connection to DBCTL 115
Disconnection from DBCTL. 118
PSB schedule 120
PSB scheduling failure 121
CICS task issuing DL/I requests to be processed
by DBCTL 122
Thread termination 123
Trace entries produced by DBCTL 124
Printing and formatting IMS X'67FA' log records 126

Dumps for CICS DBCTL 126
CICS transaction dump 126
CICS system dump 127
Determining whether a problem is occurring in
CICS or DBCTL 127
DRA snap data set 127
What is provided in a CICS dump 127

Dumps produced by the DRA 128
Dumps produced by DBCTL 128

Messages for CICS DBCTL 129
Return codes in DBCTL 129
PAPL request and return codes 130

Using CICS EDF to debug application programs in
DBCTL 131

Chapter 7. Monitoring DBCTL 133
Data available for a CICS-DBCTL system 133

DBCTL statistics 134
Monitoring DBCTL: transaction level data 136

DBCTL monitoring data returned to CICS . .. 136
IMS monitor reports with DBCTL 139
Data contained in relevant IMS monitor reports 140
Regions and jobname report 140
Region summary and transaction queuing
report 140
DBCTL data returned to IMS log 142
DL/I trace 143
Trace facilities 143
Additional performance tools 144

Chapter 8. Improving DBCTL
performance 145
Performance parameters in CICS 145
Performance parameters in IMS 145

Response time: assigning job dispatching
priorities 146
Specifying numbers of threads. 146
DEDB performance and tuning considerations 148
Exploiting Open Transaction Environment (OTE) 149

Using DEDBs 150
High speed sequential processing (HSSP) . .. 150

IMS asynchronous database buffer purge facility 151
Virtual storage usage 151
Improved throughput on multiprocessors 151

Notices 153
Programming Interface Information 155
Trademarks 155

Bibliography. 157
CICS books for CICS Transaction Server for z/OS 157
CICSPlex SM books for CICS Transaction Server
for z/OS 158
Other CICS publications 158

Accessibility 159

Index 161

Licensed Materials – Property of IBM

iv CICS TS for z/OS 5.3: IMS Database Control Guide

Preface

Who this manual is for
This manual is for anyone who uses the CICS®-IMS™ Database Control interface,
referred to as DBCTL in the rest of this manual.

This manual documents intended Programming Interfaces that allow the customer
to write programs to obtain the services of IBM® CICS Transaction Server Version 5
Release 3.

This manual is intended to help you understand DBCTL. It contains guidance on
evaluating, installing, and using DBCTL. This manual also discusses migration
from local DL/I.

For programming information on programming interfaces provided by IMS, see
IMS: Application programming for EXEC DLI and IMS Application programming: DL/I
calls reference.

What this manual is about
The aim of this manual is to give introductory and guidance information on
evaluating, installing, and using DBCTL.

This manual is intended to be used in conjunction with existing manuals in the
CICS and IMS libraries, to which it refers where appropriate.

What you need to know before reading this manual
Before you read this manual, you need a general understanding of CICS and IMS.
You should also have some knowledge of the concepts of data management and
databases.

How to use this manual
Aspects of DBCTL, from installation through performance considerations, are
presented in the order in which you are likely to need them.

Terms used
In general, this manual refers to Customer Information Control System and
Information Management System as “CICS” and “IMS”, respectively. CICS used
without qualification normally refers to the CICS element of CICS Transaction
Server for z/OS®.

Location of topics in the Knowledge Center
The topics in this publication can also be found in the CICS Transaction Server for
z/OS Knowledge Center. The Knowledge Center uses content types to structure
how the information is displayed.

The Knowledge Center content types are generally task-oriented, for example:
upgrading, configuring, and installing. Other content types include reference,
overview, and scenario or tutorial-based information. The following mapping
shows the relationship between topics in this publication and the Knowledge
Center content types, with links to the external Knowledge Center:

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1989, 2015 v

Table 1. Mapping of PDF topics to Knowledge Center content types. This table lists the relationship between topics
in the PDF and topics in the content types in the Knowledge Center

Set of topics in this publication
Location in the Knowledge
Center

Chapter 1, “Overview of Database Control (DBCTL),” on page 1
Chapter 2, “Installing DBCTL, and defining CICS and IMS system resources,” on page 13
Chapter 3, “Administering DBCTL,” on page 37
Chapter 4, “Application programming for DBCTL,” on page 85
Chapter 5, “Security for DBCTL,” on page 109
Chapter 6, “Troubleshooting DBCTL,” on page 111
Chapter 7, “Monitoring DBCTL,” on page 133
Chapter 8, “Improving DBCTL performance,” on page 145

v Product overview

v Configuring

v Administering

v Developing applications

v Monitoring overview

v Improving performance

v Securing

v Troubleshooting and support

Licensed Materials – Property of IBM

vi CICS TS for z/OS 5.3: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.productoverview.doc/concepts/ProductOverview.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/topics/configuring.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/topics/administering.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.applicationprogramming.doc/topics/developing.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/monitoring.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/improving_performance.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/topics/security.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.support.doc/topics/troubleshooting.html

Changes in CICS Transaction Server for z/OS, Version 5
Release 3

For information about changes that have been made in this release, please refer to
What's New in the Knowledge Center, or the following publications:
v CICS Transaction Server for z/OS What's New

v CICS Transaction Server for z/OS Upgrading to CICS TS Version 5.3

Any technical changes that are made to the text after release are indicated by a
vertical bar (|) to the left of each new or changed line of information.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1989, 2015 vii

Licensed Materials – Property of IBM

viii CICS TS for z/OS 5.3: IMS Database Control Guide

Chapter 1. Overview of Database Control (DBCTL)

CICS can access DL/I databases with the CICS-DBCTL interface or by using
remote DL/I.

Using DBCTL
This is when DBCTL satisfies the DL/I request issued from the CICS
system with the CICS-DBCTL interface.

Installing and using DBCTL are introduced in this information (but you
also must refer to other CICS and IMS information).

Using remote DL/I
Remote DL/I is done with CICS function shipping a DL/I request to
another CICS system, in which the DL/I support can be remote DL/I or
DBCTL. For more information about function shipping, see CICS function
shipping in Getting started. For information about adding remote DL/I
support, see Defining DL/I support in the CICS Transaction Server for z/OS
Installation Guide.

Note:

1. Although these methods to access DL/I databases can coexist, a program
specification block (PSB) can only contain databases that are controlled by one
of the methods.

2. CICS Transaction Server does not support local DL/I.

CICS can also access DL/I databases in an IMS Database Manager/Transaction
Manager (IMS DM/TM) system using the CICS-DBCTL interface. This means that
you can have access to DL/I databases controlled by IMS DM/TM without
needing to use IMS data sharing, if CICS and IMS DM/TM are in the same MVS™

image.

Figure 1 on page 2 illustrates the three kinds of DL/I request.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1989, 2015 1

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.intercommunication.doc/topics/dfht10p.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.intercommunication.doc/topics/dfht10p.html

Note:

1. Request #1 is a DBCTL request from CICS A to DBCTL A for a database
controlled by DBCTL A. See “CICS-DL/I router (DFHDLI)” on page 5 for a
description of request processing.

2. Requests #2a and #2b are two separate remote (function shipped) DL/I requests
to databases controlled by, or connected to, other CICS systems (which can be
in the same MVS image or a different one). There are two ways of issuing such
requests:
v Request #2a from CICS A to CICS B for a database controlled by CICS B.
v Request #2b from CICS A to CICS B for a database controlled by DBCTL B.

The most likely reason for using request #2b is if CICS A and CICS B are in
different MVS images.

Connecting to DBCTL
You can connect to, and disconnect from, DBCTL using the CICS-supplied
transaction CDBC.

When you have connected to DBCTL by means of CDBC, you can issue DL/I
requests from your application programs. There is another CICS-supplied
transaction, CDBI, which you can use to inquire on the status of the connection to
DBCTL from CICS. See “Connection, disconnection, and inquiry transactions for
the CICS DBCTL interface” on page 39 for information on using CDBC and CDBI.

CICS-IMS DBCTL environment
This figure summarizes the components of a CICS-DBCTL interface.

Figure 1. DL/I request handling within CICS

Licensed Materials – Property of IBM

2 CICS TS for z/OS 5.3: IMS Database Control Guide

Figure 2 on page 4 gives an overview of a CICS-DBCTL interface. Each box
represents an address space running within a single MVS system. The marked area
between the second CICS and the first BMP is the point at which CICS
components end and IMS components begin.

Licensed Materials – Property of IBM

Chapter 1. Overview of Database Control (DBCTL) 3

Figure 2. CICS-DBCTL interface

Licensed Materials – Property of IBM

4 CICS TS for z/OS 5.3: IMS Database Control Guide

CICS-IMS DBCTL environment: description of components

The following topics give detailed information about each of the major components
of the CICS-IMS DBCTL interface. See “Summary of DBCTL components in CICS
and IMS” on page 7 for an illustration of these components.

CICS-DBCTL interface control components in CICS address
space

The components of the CICS-DBCTL interface in the CICS address space are: the
CICS-DL/I router (DFHDLI), the CICS database adapter transformer (DFHDBAT),
and the database resource adapter (DRA).

CICS-DL/I router (DFHDLI)

The CICS-DL/I router, DFHDLI, forms the interface between your application
programs and the DL/I call processor. DFHDLI accepts requests for remote or
DBCTL database processing. If the request is for DBCTL, DFHDLI passes the
request to the CICS-DL/I DBCTL processor, DFHDLIDP. The request then goes to
the task-related user exit interface and the CICS database adapter transformer,
DFHDBAT. The task-related user exit interface is also referred to as the resource
manager interface (RMI). For more information about the task-related user exit
interface, see the CICS Customization Guide.

CICS database adapter transformer (DFHDBAT)

The main responsibility of the CICS database adapter transformer, DFHDBAT (also
referred to in IMS publications as the adapter, or adapter/transformer) is to
communicate with the database resource adapter (DRA). DFHDBAT constructs
parameter lists for the DRA. These parameter lists enable CICS to connect to and
disconnect from DBCTL, and enable DL/I requests to be processed. To summarize,
DFHDBAT performs the following tasks:
v Tells the DRA that it must initialize the interface to DBCTL in response to a

request from the connection program (DFHDBCON).
v Tells the DRA when it must issue PSB schedule requests, DL/I requests, and

sync point requests in response to a request from the CICS-DBCTL processor
(DFHDLIDP).

v Tells the DRA that it must terminate the interface to DBCTL in response to a
request from the disconnection program (DFHDBDSC). If an orderly
disconnection has been requested, DFHDBAT ensures that all current CICS tasks
that use DBCTL complete before telling the DRA to terminate the interface. If an
immediate disconnection has been requested, DFHDBAT ensures that only the
current CICS-DL/I requests that use DBCTL can complete before telling the
DRA to terminate the interface.

CICS master terminal operators can use the CICS-supplied transaction CDBC to
connect to and disconnect from DBCTL. They can also automate connection to
DBCTL, as described in “Connecting to DBCTL: overview” on page 37.

DFHDBAT is defined as a threadsafe program.

Database resource adapter (DRA)

The database resource adapter (DRA) performs the following tasks:
v Requests connection to, and disconnection from, DBCTL.

Licensed Materials – Property of IBM

Chapter 1. Overview of Database Control (DBCTL) 5

v Tells CICS when a shutdown of DBCTL has been requested, or if DBCTL has
failed.

v Manages threads. A CICS application thread provides a two-way link between
an application and DBCTL. When a CICS transaction issues a DL/I request to
DBCTL, the thread represents that CICS transaction in DBCTL. It identifies the
existence of the transaction, traces its progress, sets aside the resources it needs
to be processed, and delimits its accessibility to other resources.

v Establishes contact with the DBCTL address space and loads the DRA startup
parameter table. The DRA startup parameter table provides the parameters
needed to define the interface to a DBCTL subsystem. (See “Defining the IMS
DRA startup parameter table” on page 29, for a list of DRA startup table
parameters.)

Components of DBCTL in IMS address spaces
The components of DBCTL that reside in IMS address spaces are: the DBCTL
subsystem, the DL/I separate address space (DLISAS), the Database Recovery
Control (DBRC) facility, and the internal resource lock manager (IRLM).

DBCTL

The DBCTL subsystem contains support and features required to process full
function DL/I databases and DEDBs. Full function supports HSAM, SHSAM,
HISAM, SHISAM, HDAM, and HIDAM databases. Each DBCTL subsystem is
made up of three address spaces: DBCTL, DLISAS, and DBRC. A single DBCTL
can service multiple CICS systems, but a CICS system can connect to only one
DBCTL at a time. A CICS system can connect to one DBCTL, disconnect from it,
and then connect to a different DBCTL.

DL/I separate address space (DLISAS)

DL/I separate address space (DLISAS), which is required with DBCTL, is a
separate address space that contains DL/I code, control blocks, buffers for DL/I
databases.

Database Recovery Control (DBRC)

Database Recovery Control (DBRC) is an IMS facility that supports log
management, recovery control, and database sharing by providing the necessary
information to subsystems, batch programs, and utilities. DBRC is required with
DBCTL for log control and can optionally be used for database recovery control
and data sharing. See “Database recovery control (DBRC)” on page 70 for
information about DBRC and logging, and IMS: Operations and automation for more
general information about using DBRC.

Internal resource lock manager (IRLM)

The internal resource lock manager (IRLM) is a global lock manager that is a
feature of IMS and resides in its own address space.

IRLM is the preferred lock manager for DBCTL. For more information about
locking using IRLM, see IMS: System administration.

Licensed Materials – Property of IBM

6 CICS TS for z/OS 5.3: IMS Database Control Guide

Summary of DBCTL components in CICS and IMS

These are the major components in a simple CICS-IMS DBCTL environment. Each
separate box represents an address space. All the components shown are
mandatory, except for the IRLM.

Coordinator control subsystem (CCTL)
The coordinator control subsystem (CCTL) is the transaction management
subsystem that communicates with the DRA, which in turn communicates with
DBCTL.

In a CICS-DBCTL environment, the CCTL is CICS. The term CCTL is used in a
number of DBCTL operator commands and in the IMS manuals. CICS users of
DBCTL should take the term CCTL to mean a CICS system that is attached to IMS
by means of DBCTL.

Resources you can access from a CICS environment that includes
DBCTL

This diagram shows you the resources you can access from a CICS environment
that includes DBCTL.

Shipped with CICS Shipped with IMS

CICS address space IMS address spaces

D D R D D D D D I
F F M F R B L B R
H H I H A C I R L
D D D T S C M

CICS L L B L A
I I A S

D T
P

P
I

CICS IMS
LOG LOG

Figure 3. Major components of a simple CICS-IMS DBCTL environment

Licensed Materials – Property of IBM

Chapter 1. Overview of Database Control (DBCTL) 7

A single CICS task can use DB2® tables, IMS databases (using DBCTL or remote
DL/I), and CICS-managed local or remote resources (for example, VSAM files).

The CICS-DB2 and the CICS-DBCTL interfaces are similar in that they both use the
task-related user exit interface, and have a two-phase commit process. However,
they differ in a number of respects. For example, CICS supports DBCTL and
remote DL/I, and must determine at PSB schedule time which of them is being
used.

Figure 4. Resources you can access from a CICS environment that includes DBCTL

Licensed Materials – Property of IBM

8 CICS TS for z/OS 5.3: IMS Database Control Guide

System service requests
Your CICS application programs can use these IMS system service requests in
addition to those related to data availability.
v DEQ (in its command or call format) releases segments that were retrieved using

the LOCKCLASS keyword or the Q command code. LOCKCLASS and Q enable
an application program to reserve segments for its use.

v LOG (in its command or call format) can be used to write a record from an
application program to the IMS log. You may prefer to use this instead of EXEC
CICS journal commands so that all your DBCTL information is on the IMS log
instead of the CICS log.

See Chapter 4, “Application programming for DBCTL,” on page 85 for more
information on using these requests.

Access to data entry databases (DEDBs)
Data entry databases (DEDBs) provide the same features as HDAM databases
(with the exceptions of secondary indexing and logical relationships).

They also have a number of advantages. Using DEDBs enables you to have very
large databases with high availability. DEDBs are designed to provide efficient
storage and fast online gathering, retrieval, and update of data, using VSAM entry
sequenced data sets (ESDSs).

DEDBs are hierarchic databases that can contain up to 127 segment types. One of
these segments is always a root segment. The remaining 126 segments can either
be direct dependent (DDEP) segments, or 125 DDEP segments and one sequential
dependent (SDEP) segment. A DEDB structure can have as many as 15 hierarchical
levels.

DEDBs are made up of database records stored in a set of up to 240 areas. Each
area contains a range of database records (which you can specify using the DEDB
randomizing routine) that contain the entire logical structure for a set of root
segments and their dependent segments. Areas are independent of each other, are
individually recognized, can be accessed by multiple programs and DEDB utilities,
are the basis for recovery procedures, and are largely transparent to application
programs.

DEDBs provide the following advantages:
v Large databases

– Areas can be as large as 4 gigabytes, and because you can have up to 240
areas in a single database, you can use very large databases, which you
would have to partition if you were not using DEDBs.

v Flexible design
– Each area can be designed to meet your storage, availability, performance,

and application needs. Areas can be separately reorganized and reacquired.
– You use the DEDB direct reorganization utility to physically reorganize

DEDBs to reduce ESDS fragmentation without taking them offline.
v Increased data availability

– If a DEDB area is not available, a PSB requiring that database can still be
scheduled provided the area it requires is not the one that is unavailable and,
of course, the database itself is available. A PSB that requires an unavailable

Licensed Materials – Property of IBM

Chapter 1. Overview of Database Control (DBCTL) 9

area is still scheduled, and receives a status code indicating the condition. You
can therefore delay recovery until it is convenient to take the area offline.

– You can have up to seven copies of the same area. Each copy is called an area
data set (ADS) and all are automatically maintained in synchronization. This
is called multiple area data set (MADS) support. Write operations are done to
each ADS, but read operations are done from only one ADS. With MADS,
read and write errors are much less common because, if data cannot be read
from, or written to, the first copy, the next copy will automatically be used.
Read errors are transparent to application programs (except in the rare
instance where a read operation is unsuccessful with all ADSs).

– You can use DEDB utilities, which are run on an area basis and can be run
online concurrently with online update. This helps to reduce the time for
which areas have to be taken offline. For example, you can avoid using offline
database recovery by using the DEDB area data set create utility. This online
utility makes a new corrected copy of an area from existing copies of that
area. It creates one or more copies from multiple DEDB ADSs during online
transaction processing, enabling application programs to continue while the
utility is running.

– You use the DEDB initialization utility to initialize one or more data sets or
one or more areas of a DEDB offline.

– You can use the DEDB area data set compare utility if you suspect you may
have problems with compatibility of data. It compares control intervals (CIs)
of different copies of an area, and lists all the CIs that do not have equal
content. In the case of unequal comparison, full dumps of up to ten
unmatched CIs are printed out on the device you have specified.

v Efficient data retrieval and entry
– DEDB attempts to physically write DDEP segments hierarchically in the same

CI as the parent segment, which can make retrieval faster.
– The SDEP segment (located at the end of the ADS) is designed especially for

fast, online, mass insert in applications such as data collection, auditing, and
journaling. This is because SDEP segments for an area are stored rapidly,
regardless of the root on which they are dependent. For example, in a
banking application, transaction data can be collected during the day and
inserted as SDEPs in an account database. At the end of the day, these
transactions can be reprocessed by first retrieving them using the sequential
dependent scan utility. This online utility retrieves SDEP segments in mass
and copies them to a sequential data set. You can then process this data set
offline using your own programs; for example, for a statistical analysis. The
area involved remains available while the utility is running.

– You can delete SDEPs using the DEDB sequential dependent delete utility,
which deletes SDEP segments within a specified limit of a DEDB area.

– The ability to use high speed sequential processing (HSSP). HSSP is useful
with applications that do large scale sequential updates to DEDBs. HSSP can
reduce DEDB processing time, enables an image copy to be taken during a
sequential update job, and minimizes the amount of log data written to the
IMS log. For further guidance, see “High speed sequential processing (HSSP)”
on page 150.

v Improved performance
– Pathlength is reduced because DEDBs use the MVS Data Facility Product

(MVS/DFP) Media Manager offering.
– You can improve speed of access, or concurrent access, to DEDBs by tuning

DEDB buffer pool specifications. (See “DEDB performance and tuning
considerations” on page 148.)

Licensed Materials – Property of IBM

10 CICS TS for z/OS 5.3: IMS Database Control Guide

– Logging overhead is reduced because only after-images are logged and
because logging is done during syncpoint processing only.

– The amount of I/O needed for each SDEP segment inserted can be very low,
because SDEPs are gathered from various transactions, stored in last-in
first-out order in one buffer, and are written out only when that buffer is full.
This means that many transactions “share the cost” of SDEP writes.

– Most DEDB processing is done in parallel to allow multithreading. Writes to
the database are done by a number you specify (up to 255) of parallel
processes called output threads. Furthermore, the DEDBs are not updated
during application program processing, but the updates are kept in buffers
until a syncpoint occurs. (See “When updates are written to databases” on
page 71.) This means that waiting applications can be processed sooner and
improves throughput on multiprocessors.

– DEDBs have their own resource manager and normally need to interact very
infrequently with program isolation or the IRLM (unless you are using block
level sharing). DEDBs maintain their own buffer pool.

– You can use subset pointers in your application programs to speed up
processing. A major problem in some applications is the need to process long
twin chains of segments. Occasionally database design must be modified
because some database records have excessively long twin chains. Subset
pointers give direct access to subsets of long twin chains of segments, which
can speed up application processing because segments located in front of the
subset do not have to be searched. Each pointer points to the first occurrence
of a subset in a range of direct dependent segments. See “Command codes to
manage subset pointers in DEDBs” on page 90 and “Keywords and
corresponding command codes” on page 92 for information about using
subset pointers in application programs. (See IMS: Database administration or
IMS: Database administration for guidance on database structure.)

Online image copy utility
The online image copy utility is used to create an as-is copy of your database
while it is being updated. The copy can then be used for recovery purposes. This
utility is used for HISAM, HDAM, and HIDAM databases only.

Online change utility
In many installations, it is important for the online system to be is available to
users for most of the day.

The online change utility enables you to update ACBLIBs, which contain PSBs and
data management blocks (DMBs), and security information belonging to full
function databases, without bringing down the system. For guidance information
on this utility, see IMS: System administration and IMS reference: Database utilities.

Online reorganization for DEDBs
The data entry database (DEDB) direct reorganization utility enables you to
reorganize DEDBs without taking them offline.

For more information see “Access to data entry databases (DEDBs)” on page 9.

Licensed Materials – Property of IBM

Chapter 1. Overview of Database Control (DBCTL) 11

Licensed Materials – Property of IBM

12 CICS TS for z/OS 5.3: IMS Database Control Guide

Chapter 2. Installing DBCTL, and defining CICS and IMS
system resources

This section describes how to install DBCTL and define CICS and IMS system
resources.

The IMS Release Planning Guide has information on release compatibility for CICS
and IMS.

Installing and generating DBCTL
Install DBCTL, verify the installation, and connect CICS to DBCTL.

Before you begin

Before installing and generating DBCTL you must have CICS Transaction Server
for z/OS, Version 5 Release 3 and IMS installed. Check the program directory for
any PTFs or APARs that need installing. Develop your own procedures for
installing DBCTL, depending on the DBCTL facilities you want to use. For more
information about IMS installation and system definition, see theIMS: Installation,
the IMS: System definition, and the IMS: System definition.

About this task

Follow these steps to install DBCTL, verify the installation, and connect CICS to
DBCTL.

Procedure
1. Prepare a PDIR that does not specify PSBs. For more information, see “PSB

directories (PDIRs)” on page 16.
2. Update system procedure libraries; for example, SYS1.PROCLIB, with the

startup procedures for DBCTL, DLISAS, DBRC, and the IRLM if you are using
it. These startup procedures can be found in the IMS.PROCLIB library.

3. Use the CICS supplied DBCTL-installation verification procedure, DFHIVPDB,
to check that: DBCTL has been fully installed, CICS has integrated with MVS,
and that all required online data sets have been allocated and initialized. For
more information, see the CICS Transaction Server for z/OS Installation Guide.

4. You must use ACB generation to create members of the IMS.ACBLIB. Failure
to carry out this step can cause user errors.

5. If you plan to use dynamic allocation, create DFSMDA members. For more
information, see “IMS dynamic allocation macro (DFSMDA)” on page 27.

6. Start DBCTL; DBCTL then issues a start command for DLISAS and DBRC.
7. Verify that DBCTL recognizes the PSBs and DBDs you defined in the DBCTL

generation, you can check this using the DBCTL operator command
/DISPLAY. For more information, see “Finding out current status of DBCTL
activities” on page 57.

8. Check that your log archiving setup works before doing any more testing. If
your log archiving is not set up it is possible for the logs to fill and stall your
system. For more information about setting your log archive setting, see “Log
control with DBRC” on page 25.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1989, 2015 13

9. Assemble a database resource adapter (DRA) to connect CICS to DBCTL. For
more information, see “Defining the IMS DRA startup parameter table” on
page 29.

10. Start CICS and test the connection to DBCTL, using the CDBC transaction. For
more information, see “CDBC transaction for connect and disconnect” on page
39.

11. Generate an initialization PLT, so that CICS can connect to DBCTL
automatically at startup time. For more information, see “Connecting DBCTL
to CICS automatically” on page 38.

12. Test the applications that you defined to DBCTL.
13. Set up and test recovery and restart of CICS and DBCTL, and database

recovery. For more information, see “Recovery and restart operations for
DBCTL” on page 66.

Defining CICS system resources for DBCTL
Use this information to help you define system resources for DBCTL.

System initialization parameters
The CICS system initialization parameters contain information needed to initialize
and control system functions and the initialization process.

It also contains module suffixes to enable you to choose between different versions
of CICS modules and tables. You can generate several SITs and select the one that
best meets your current requirements at initialization time. If you have more than
one CICS system, each can use a different SIT.

Specifying DL/I support in system initialization parameters
In CICS Transaction Server for z/OS, Version 5 Release 3 , there is no DLI system
initialization parameter. Support for DBCTL is always present. Support for remote
DL/I is included if the PDIR system initialization parameter is specified.

Note: The default is PDIR=NO, meaning that by default support for remote DL/I
is not included.
Related information:

PDIR system initialization parameter in Reference -> System definition

Reviewing CICS system initialization parameters
With DBCTL, many CICS system initialization parameters are replaced by DBCTL
generation parameters. You must change what you specify for others, because
DL/I code has been removed from the CICS address space.

Table 2 on page 15 lists the CICS system initialization parameters relevant to DL/I.
It states whether each parameter applies to DBCTL or remote DL/I (in the D and
R columns, respectively). Where applicable, it lists the corresponding IMS startup
parameter that applies to DBCTL. Finally, it mentions special considerations for
DBCTL.

See “Generating DBCTL” on page 19 for more information about the IMS and
DBCTL parameters mentioned in this table. See “Defining the IMS DRA startup
parameter table” on page 29 for information about DRA startup table parameters.

Licensed Materials – Property of IBM

14 CICS TS for z/OS 5.3: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_pdir.html

Table 2. CICS system initialization parameters and DBCTL

System initialization
parameter

D R IMS/DBCTL startup
parameter

Comments

APPLID Y Y N/A The generic z/OS Communications Server
application identifier for this CICS system. For
more information, see APPLID system
initialization parameter in Reference -> System
definition.

DBCTLCON Y N N/A YES specifies that you want CICS to connect to a
DBCTL subsystem automatically during CICS
initialization. This causes CICS to invoke the
DBCTL attach program, DFHDBCON. The other
information CICS needs for starting the
attachment, such as the DRA startup table suffix
or the DBCTL subsystem name, is taken from an
INITPARM system initialization parameter.

Specifying DBCTLCON=YES means you do not have
to define the DBCTL attach program in the CICS
post-initialization program list table (PLT), as
described in “Program list table (PLT)” on page
18. For more information, see DBCTLCON system
initialization parameter in Reference -> System
definition.

DSALIM Y Y N/A Upper limit of the total amount of storage within
which CICS can allocate the individual dynamic
storage areas (DSAs) below the 16 MB line. For
information about specifying DSALIM, see DSALIM
system initialization parameter in Reference ->
System definition. See IMS: System administration
for guidance on DBCTL storage estimates.

EDSALIM Y Y N/A Upper limit of the total amount of storage within
which CICS can allocate the individual dynamic
storage areas (EDSAs) above the 16 MB line. For
more information, see EDSALIM system
initialization parameter in Reference -> System
definition. See IMS: System administration for
guidance on DBCTL storage estimates.

INITPARM Y N N/A Used to pass parameters to programs (for
example, PLT programs) during CICS startup.
With DBCTL, you can use it to specify DRA
startup parameter table suffix and DBCTL
identifier to automate connection to a particular
DBCTL. INITPARM applies to COLD, INITIAL,
WARM, or EMERGENCY starts of CICS. For more
information, see INITPARM system initialization
parameter in Reference -> System definition.

PDIR N Y N/A: use APPLCTN Suffix of the PDIR. With DBCTL, the PDIR is
generated during DBCTL generation using the
APPLCTN macro. For more information, see PDIR
system initialization parameter in Reference ->
System definition.

Licensed Materials – Property of IBM

Chapter 2. Installing DBCTL, and defining CICS and IMS system resources 15

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_applid.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_applid.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_applid.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_dbctlcon.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_dbctlcon.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_dbctlcon.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_dsalim.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_dsalim.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_dsalim.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_edsalim.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_edsalim.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_edsalim.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_initparm.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_initparm.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_pdir.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_pdir.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_pdir.html

Table 2. CICS system initialization parameters and DBCTL (continued)

System initialization
parameter

D R IMS/DBCTL startup
parameter

Comments

PSBCHK Y Y N/A Requests PSB authorization checking of a remote
terminal initiating a transaction using transaction
routing. To obtain the check, you must also
specify YES or name on the XPSB system
initialization parameter. For more information, see
PSBCHK system initialization parameter in
Reference -> System definition.

XPSB Y Y N/A Security class name by which PSBs are defined to
RACF®. For DBCTL, you specify the RACF
resource class to be used to security check PSBs.
For more information, see CICS resource class
system initialization parameters in Securing.

PSB directories (PDIRs)
PSB directories (PDIRs) contain entries defining each PSB to be accessed using
remote DL/I.

If you are using DBCTL exclusively, you do not need to generate a PDIR for CICS.
Instead you must define PSBs and DMBs using the IMS macros APPLCTN and
DATABASE respectively. (For information on the APPLCTN and DATABASE
macros, see “Generating DBCTL” on page 19.)

If you want to function ship requests to a CICS system, at which the database
manager may be DBCTL or remote DL/I (function shipping), you will need to
generate a PDIR.

CICS routes DL/I requests to remote DL/I or DBCTL according to the PSB that is
named. If the PSB appears in the CICS PDIR, the request is routed to remote DL/I
(that is, function shipped to another CICS system). If the PSB does not appear in
the CICS PDIR, and CICS is connected to DBCTL, CICS routes the request to
DBCTL. In addition, if the PSB appears in the PDIR and specifies a SYSID that
matches the local SYSID, the request is routed to DBCTL.

DD statements
You must put these two modules, which appear in the IMS.RESLIB library, in the
CICS STEPLIB data set concatenation.
v The DRA startup parameter table: DFSPZPxx (where xx is the user-defined

suffix)
v The DRA startup router program: DFSPRRC0.

You can do this by placing a DD statement for IMS.RESLIB in the CICS STEPLIB
concatenation (which must be APF-authorized). For example:
//STEPLIB DD DSN=CICSTS53.CICS.SDFHAUTH,DISP=SHR
// DD DSN=IMS.RESLIB,DISP=SHR

IMS.RESLIB (which must also be APF-authorized) contains a default DRA startup
table, in which the suffix is set to 00. You can generate your own versions into this
library. If you decide to use a different library for your own versions, make sure it
is APF-authorized, and is included in the CICS STEPLIB concatenation.

Licensed Materials – Property of IBM

16 CICS TS for z/OS 5.3: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_psbchk.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_psbchk.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.racfsecurity.doc/topics/dfht52t.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.racfsecurity.doc/topics/dfht52t.html

The DRA will dynamically allocate the IMS.RESLIB library using the DD name
CCTLDD and the data set name IMS.RESLIB, unless either has been overridden in
the DRA startup parameter table.

DD statements removed from CICS JCL in a DBCTL-exclusive
environment
The following DD statements are not required in a DBCTL environment.

DFSCTL
For DBCTL, DFSCTL is not required. DBCTL owns the OSAM buffer pools,
which are specified in DBCTL startup JCL and in the DRA startup parameter
table. See “Database buffer specifications and option parameters” on page 27
and “Defining the IMS DRA startup parameter table” on page 29.

DFSRESLB
For DBCTL, DFSRESLB is not required. DFSRESLB is replaced by the DRA
dynamically allocating IMS.RESLIB as described in “DD statements” on page
16.

IEFRDER
Used to define DL/I batch logging. For DBCTL, DL/I logging is to the IMS
log. See “Defining IMS logging parameters” on page 26.

IMSMON
With DBCTL, you can start and stop the IMS monitor dynamically. See “Using
the IMS monitor” on page 141.

IMSACB
For DBCTL, IMSACB is in the DBC procedure and the DLS procedure. There
are additional DD statements: IMSACBA and IMSACBB. One is the active
library and the other is available for the IMS online change utility.

DFSVSAMP
For DBCTL, DFSVSAMP is not used. The information it contains, for example,
VSAM buffer parameters and performance and trace options, is in the
DFSVSMxx member of IMS.PROCLIB in the PROCLIB DD statement of the
DBCTL startup procedure (DBC). The DFSVSMxx member must be available to
DLISAS, which means that you must add a data set with member DFSVSMxx
to the DLISAS address space. The last two characters of the DFSVSM member
are a suffix, which you specify in the VSPEC parameter of the DBCTL startup
procedure (DBC).

RECON data sets
RECON data sets are generally specified in DFSMDA IMS dynamic allocation
members in the IMS.RESLIB library. See “IMS dynamic allocation macro
(DFSMDA)” on page 27. For DBCTL, RECON data sets can be specified in the
DBRC procedure.

JCLPDS
For DBCTL, JCLPDS is in the DBRC procedure.

JCLOUT
For DBCTL, JCLOUT is in the DBRC procedure.

Database DD statements
Generally, you specify database DD statements in DFSMDA IMS dynamic
allocation members in the IMS.RESLIB library. For DBCTL, they can be
specified in the DLS address space for DL/I databases, or in the DBC address
space for DEDBs.

Licensed Materials – Property of IBM

Chapter 2. Installing DBCTL, and defining CICS and IMS system resources 17

CICS-supplied groups within CICS system definition
Program, transaction, and mapset entries for the CICS system definition (CSD) file
to provide DBCTL support are supplied in the group DFHDBCTL.

This includes the DBCTL connection and disconnection transaction, CDBC, the
inquiry transaction, CDBI, and the operator transaction, CDBM. DFHDBCTL is in
DFHLIST, which contains the CICS resource definitions needed to run IBM
supplied transactions that must be installed in your system. Also in DFHLIST is
the DFHEDP group, which provides the program definition required to run EXEC
DLI applications. The group DFHEDP must always be installed in the CICS
system. If you need further information about DFHLIST, see "CICS-supplied
resource definitions, groups, and lists" in the CICS Resource Definition Guide.

You might also want to specify the following options of the TRANSACTION
definition for transactions using DBCTL:
v RESTART

This option defines whether CICS will attempt to restart a transaction that has
been backed out after a failure. (See “Deadlocks and interactions with automatic
restart” on page 82.)

v SPURGE
Specify SPURGE(YES) so that the transaction can be purged using CEMT.
“Purging a transaction that is using DBCTL” on page 62 tells you how to use
CEMT in this way.

Log management
All DBCTL-related information is sent to the IMS log, not the CICS system log.

This method of logging uses the IMS log utilities and the online log data sets
(OLDS) and write-ahead data sets (WADS). Because database change records are
written to the IMS log, you do not need to retain the CICS system log for use by
IMS database recovery utilities in a DBCTL-exclusive environment. IMS logging
operations are described in “IMS logging” on page 24.

Monitoring control table (MCT)
If you were using local DL/I when converting to DBCTL, you can remove the
entries for the DL/I event monitoring points (EMPs) from the monitoring control
table (MCT).

However, you will need additional monitoring control table (MCT) entries if you
want to provide support for the monitoring information returned from DBCTL.
These MCT entries are in CICSTS53.CICS.SDFHSAMP in the copy member
DFH$MCTD.

Program list table (PLT)
To connect CICS to DBCTL at CICS startup time, you can invoke it in the second
stage of program list table postinitialization (PLTPI) processing (that is, the third
stage of CICS initialization).

You do this by including an entry for DFHDBCON (the DBCTL connection
program) using the DFHPLT macro. Including an entry for DFHDBCON in the
PLT enables you to connect automatically to the same DBCTL as when the system
was last shut down, or to a different one. For more information, see “Connecting
DBCTL to CICS automatically” on page 38.

Licensed Materials – Property of IBM

18 CICS TS for z/OS 5.3: IMS Database Control Guide

As an alternative, you can use the DBCTLCON system initialization parameter to
make the automatic connection. For more information, see Table 2 on page 15.

Transient data queues
You need a definition for the CDBC transient data queue. The CDBC transient data
queue is used for messages issued by the CICS-DBCTL interface.

You can suppress or reroute messages sent to transient data queues such as CDBC.
You can reroute from CDBC to a list of consoles, or from CDBC to a different
transient data queue, or reroute console messages to CDBC. For programming
information about coding the CICS-supplied user exit used to reroute messages,
and on the example user exit provided to help you do so, see Global user exit
points in Developing system programs.

Generating DBCTL
You generate the appropriate IMS control blocks and resource definitions for a
DBCTL subsystem by performing an IMS system definition.

About this task

IMS system definition is a two-stage process with an optional preprocessor. Stage 1
checks your input specifications (appropriate JCL and macro statements) and
generates a series of MVS job steps for stage 2. Stage 2 builds IMS system libraries,
execution procedures, and the DBCTL control program. The optional preprocessor
is a convenient tool that checks for duplicate names and checks the length and
format of the names used as input for stage 1.

This topic includes the following information:
v “Defining the DBCTL subsystem”
v “IMS logging” on page 24
v “IMS dynamic allocation macro (DFSMDA)” on page 27
v “Database buffer specifications and option parameters” on page 27
v “Overriding DBCTL generation parameters at execution time” on page 27

Defining the DBCTL subsystem
IMS uses macro statements for system definition. These macro statements define
the operating systems, operating system interfaces, storage pools, PSBs, and
databases. From some of these macro statements, DBCTL constructs a set of control
blocks with which to execute.

About this task

To define the environment in which DBCTL operates, you use DBCTL startup
parameters and control information in a number of IMS system data sets. You then
use the appropriate suffixes to specify the information to be used for a particular
DBCTL run. This is like selecting CICS tables by specifying their suffixes in the SIT
or in SIT overrides.

The IMS system generation macros you need are listed in “IMS system generation
macros used by DBCTL” on page 20. See IMS: System definition or IMS: System
definition for guidance on the syntax of these macros. “Illustration of DBCTL
startup parameter creation and selection” on page 34 shows how DBCTL startup
parameters are created and selected during startup. If you are new to IMS system

Licensed Materials – Property of IBM

Chapter 2. Installing DBCTL, and defining CICS and IMS system resources 19

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfha3/topics/dfha331.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfha3/topics/dfha331.html

definition, you might find it helpful to look at this illustration while reading the
information about generating DBCTL.

IMS system generation macros used by DBCTL
DBCTL uses the IMSCTRL, MAXREGN, APPLCTN, BUFPOOLS, DATABASE,
FPCTRL, IMSCTF, SECURITY, and IMSGEN macros.
v IMSCTRL

The first macro in a DBCTL system generation is IMSCTRL. It is always required
and there can be only one in each IMS system definition. IMSCTRL describes the
MVS system under which IMS executes, the type of IMS system, the type of
generation to be performed, and the components of the IMS environment, for
example, IRLM and DBRC. Because DBRC is mandatory for DBCTL, you do not
need to specify the IMSCTRL parameter, DBRC=YES. (If you do specify this
parameter, it is ignored.) You can use IMSCTRL to cause the IMS nucleus and
the DDIR and PDIR to be regenerated.

v MAXREGN
MAXREGN is the number of regions (threads) that DBCTL allocates at startup.
MAXREGN takes a value 1 - 999. It can increase dynamically to a maximum of
999. Each BMP needs one region. Each connected CICS needs from MINTHRD
to MAXTHRD regions. See also MINTHRD and MAXTHRD, which are used to
specify the minimum and maximum numbers of threads for a particular CICS
system, as described in “Defining the IMS DRA startup parameter table” on
page 29. For information about how these parameters interact, see “Specifying
numbers of threads” on page 146. (MAXREGN is not the only parameter you
need in IMSCTRL, but is mentioned here to contrast it with MINTHRD and
MAXTHRD.)

v APPLCTN
You use the APPLCTN macro to name PSBs (one macro for each PSB) that
application programs use to access databases through DBCTL.
If multiple CICS transactions or BMPs are to schedule a PSB concurrently, the
APPLCTN macro for that PSB must specify SCHDTYP=PARALLEL. If you do
not specify SCHDTYP=PARALLEL, only one transaction at a time can
schedule a PSB. You can change the SCHDTYP of a PSB using the online change
process and the /MODIFY command, which you enter at the DBCTL console.
See “Changing DBCTL resources online” on page 59 for more information about
the online change process and the /MODIFY command.
In DBCTL, PSBs used by CICS transactions can be defined with either the TP
option or the BATCH option. In the example in “Example of JCL required to
generate a basic DBCTL subsystem” on page 22, the BATCH option is used. This
example also includes an example of defining a PSB for the CDBM operator
transaction.

v BUFPOOLS
You use the BUFPOOLS macro to specify default main storage buffer pool sizes
for DBCTL, including the size of the DMB and PSB pools. You can override
these values at startup using the CSAPSB=, DLIPSB=, and DMB= parameters.

v DATABASE
You use DATABASE macro statements to define the databases that DBCTL
accesses (one macro for each database). Each physical database must be
referenced on a DATABASE macro statement. You can change this resource
through the online change process using the /MODIFY command, which you
enter at the DBCTL console. See “Changing DBCTL resources online” on page 59
for more information about the /MODIFY command.

v FPCTRL

Licensed Materials – Property of IBM

20 CICS TS for z/OS 5.3: IMS Database Control Guide

The FPCTRL macro statement defines the fast path options when DEDBs are
used. You must use this macro only if you want DEDB support.

Note: For DBCTL users, fast path support refers only to DEDBs. Parameters that
begin with FP refer to DEDBs in a DBCTL-exclusive environment.

v IMSCTF
The IMSCTF macro statement includes parameters to define the SVCs to be used
by DBCTL, logging options, and the device type for DBCTL's restart data set.

v SECURITY
The SECURITY macro statement enables you to specify optional security features
to be in effect during IMS execution, unless they are overridden during system
initialization.
If you are implementing IMS security use the Resource Access Control Facility
(RACF), see IMS: System administration. For more information about security
with DBCTL, see Chapter 5, “Security for DBCTL,” on page 109.

v IMSGEN
The IMSGEN macro statement must be the last system definition macro in the
Stage 1 input. It specifies the assembler and linkage editor data sets and options,
and the system definition output options and features. It specifies the suffix
character for the IMS nucleus (DFSVNUCx in IMS.RESLIB) and for the DDIR
(DFSDDIRx) and PDIR (DFSPDIRx) in IMS.MODBLKS. You must specify the
MACLIB parameter of the IMSGEN macro as MACLIB=ALL when using DBCTL
for the first time.

Implementing CICS-supplied transaction CDBM
CICS provides a transaction, CDBM, that enables DBCTL operator commands to be
input from a CICS terminal. The CICS terminal must be a BMS supported device.

About this task

“CDBM operator transaction” on page 49 has more information about CDBM. To
use CDBM, you must have a DBCTL system running IMS.

CDBM uses the AOI commands that can be issued across the DRA interface
between CICS and DBCTL. For more information about these commands, see
“Issue IMS AIB call format” on page 86.

Choose either of these methods to implement CDBM:

Procedure
1. Use PSBGEN to generate, and add to the DBCTL system, a PSB named

DFHDBMP.
a. Specify parallel scheduling for DFHDBMP, so that multiple CDBM

transactions can be active at the same time.
b. DFHDBMP does not need to have any associated PCBs.
c. The IOASIZE parameter must be large enough to cope with the largest AOI

command issued. Large AOI commands can result from using wild cards.
For example, issuing CDBM /START DATABASE D* results in a start
command being issued for all database names beginning with D. See IMS
reference: System utilities for information on defining IOASIZE.

Example input for PSBGEN is:
PSBGEN LANG=ASSEM,PSBNAME=DFHDBMP,IOASIZE=1000

Licensed Materials – Property of IBM

Chapter 2. Installing DBCTL, and defining CICS and IMS system resources 21

2. Alternatively, with IMS V10, you can use the batch SPOC (Single Point of
Control) interface to create DFHDBMP. Specify the following command in the
batch SPOC:
CREATE PGM NAME(DFHDBMP) SET(BMPTYPE(Y) DOPT(N) +
FP(N) GPSB(Y) LANG(ASSEM) RESIDENT(N) +
SCHDTYPE(PARALLEL) TRANSTAT(N))

Modifying IMS system data sets using online change
You can modify the IMS system data sets MODBLKS, MATRIX, and ACBLIB using
online change.

About this task

Each of IMS system data sets must be present in the following copies:
v A staging library, which is identified by an unsuffixed DD statement

(MODBLKS, MATRIX, ACBLIB), and is used offline only to prepare changes to
the active library.

v An active and an inactive library, which are used in flip-flop mode and are
identified by suffixed DD statements (MODBLKSA and MODBLKSB, and so on).
The same parameter (MODBLKSx, where x= A or B) controls the active library
for both MODBLKS and MATRIX. While the active library (either ...A or ...B) is
being used online by DBCTL, you can use the online change utility to copy the
contents of the staging library to the inactive library. You use a series of
/MODIFY commands to perform the actual switch from the active library to the
updated inactive library.

The IMS.MODSTAT data set, which is created during the IMS system generation
and updated automatically, indicates which of the suffixed data sets is currently
active. For guidance on using online change, see “Changing DBCTL resources
online” on page 59 and IMS: System administration.

Example of JCL required to generate a basic DBCTL subsystem
You can copy and modify this JCL example to generate a DBCTL subsystem.

The minimum generation required to generate DBCTL is ON-LINE,DBCTL. (You
must perform an online generation to change the SVC numbers.) You must include
the dash (-) in the ON-LINE parameter. If you do not, you get the following
messages when you try to generate DBCTL:
** ASMA254I *** MNOTE *** 76+ 4,G002 FOLLOWING OPERAND(S) OMITTED OR INVALID:
** ASMA254I *** MNOTE *** 77+ 4, SYSTEM

You use an ACB generation to create members of the IMS.ACBLIB. See IMS
reference: Database utilities for further guidance on doing this.

Figure 5 on page 23 shows an example DBCTL generation that you can copy and
modify to generate a DBCTL subsystem. This example includes only the
parameters needed to get a “basic” system up and running. This example does not
include optional parameters, such as those for DEDB support, and it assumes that
you want to tune other parameters (such as the number of threads) later, when
you have had an opportunity to see how the subsystem runs.

Note: You can, instead, use the IMS INSTALL/IVP dialog to generate stage 1
macros for DBCTL. For guidance on doing so, see IMS: Installation.

Licensed Materials – Property of IBM

22 CICS TS for z/OS 5.3: IMS Database Control Guide

//DBCGEN JOB 1,PGMERID,
// MSGCLASS=A,MSGLEVEL=(1,1),
// CLASS=A,NOTIFY=PGMERID
//ASM EXEC PGM=ASMA90,
// PARM=’DECK,NOOBJECT’,
// REGION=4096K
//SYSLIB DD DSN=IMS.OPTIONS,DISP=SHR
// DD DSN=IMS.SDFSMAC,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
//*
//SYSUT1 DD UNIT=SYSDA,SPACE=(1700,(400,400))
//SYSUT2 DD UNIT=SYSDA,SPACE=(1700,(400,400))
//SYSUT3 DD UNIT=SYSDA,SPACE=(1700,(400,400))
//SYSPRINT DD SYSOUT=*
//SYSPUNCH DD DSN=IMS.STAGE2,DISP=SHR
//SYSIN DD *
* *
* *
* SAMPLE DBCTL SYSTEM DEFINITION STAGE 1 INPUT SPECIFICATIONS *
* *
* *

IMSCTRL SYSTEM=(VS/2,(ON-LINE,DBCTL),3.1), X
MAXREGN=(20,52K,A,A), X
MCS=(2,7),DESC=7,MAXCLAS=1,IMSID=IMSA

*
IMSCTF SVCNO=(,203,202), X

LOG=(DUAL,MONITOR), X
RDS=(3380,4096), X
CPLOG=1000,CORE=(,50,1)

*
* DEFINE SYSTEM BUFFERS
*

BUFPOOLS PSBW=60000,DMB=10000,SASPSB=(20000,80000)
*
* DEFINE DL/I DATABASES
*

DATABASE RESIDENT,DBD=DI21PART

Figure 5. Example JCL to generate DBCTL 1/2

Licensed Materials – Property of IBM

Chapter 2. Installing DBCTL, and defining CICS and IMS system resources 23

For more detailed system definition examples and further guidance on selecting
the appropriate system definitions, and for IMS system definition examples, see
IMS: System definition or IMS: System definition.

IMS logging
IMS logging uses two types of data set: online log data sets (OLDS) and write
ahead data sets (WADS).

These data sets are described fully in individual subtopics. For further guidance on
using the OLDS and the WADS, see IMS Administration > Operations and automation
in Information Management Software for z/OS product documentation.

IMS online log data set (OLDS)
IMS writes log records to a DASD data set called the online log data set (OLDS).

The OLDS is made up of multiple data sets written in wraparound form. Using
more than one OLDS enables IMS to continue logging when the first OLDS is full.
Also, if an I/O error occurs while writing to an OLDS, IMS can continue logging
by isolating the OLDS where the problem occurred and switching to another one.

IMS can write committed log records to the write-ahead data set (WADS) so that
these records are externalized to avoid the need to write partially filled and
padded log blocks to the OLDS. The WADS is described in “IMS write-ahead data
set (WADS)” on page 25.

When the OLDS is full, it is archived to the system log data set (SLDS). How
frequently the OLDS is archived depends on whether you specified automatic
archiving using the ARC=parameter in the DBC JCL. You can specify ARC=1

* DEFINE SAMPLE APPLICATIONS
*

APPLCTN PSB=DFHSAM04,PGMTYPE=BATCH,SCHDTYP=PARALLEL
APPLCTN PSB=DFHSAM05,PGMTYPE=BATCH,SCHDTYP=PARALLEL
APPLCTN PSB=DFHSAM14,PGMTYPE=BATCH,SCHDTYP=PARALLEL
APPLCTN PSB=DFHSAM15,PGMTYPE=BATCH,SCHDTYP=PARALLEL
APPLCTN PSB=DFHSAM24,PGMTYPE=BATCH,SCHDTYP=PARALLEL
APPLCTN PSB=DFHSAM25,PGMTYPE=BATCH,SCHDTYP=PARALLEL
APPLCTN PSB=DFHDBMP,PGMTYPE=BATCH,SCHDTYP=PARALLEL

*
IMSGEN ASM=(H,SYSLIN), X

ASMPRT=ON, X
LKPRT=(XREF,LIST), X
LKSIZE=(880K,64K), X
LKRGN=4096K, X
SUFFIX=1, X
SURVEY=NO, X
SYSMSG=TIMESTAMP, X
MACLIB=ALL, X
OBJDSET=IMS.OBJDSET, X
USERLIB=IMS.LOADLIB, X
PROCLIB=(YES,), X
NODE=(IMS,IMS,IMS), X
JCL=(GENJOB, X
(1), X
PGMERID, X
A, X
(TIME=5,CLASS=K,NOTIFY=PGMERID)), X
SCL=(99)

END

Figure 6. Example JCL to generate DBCTL 2/2

Licensed Materials – Property of IBM

24 CICS TS for z/OS 5.3: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSEPH2/welcome

through ARC=99. Automatic archiving takes place only when the number of OLDS
you specified is full. The system reuses the OLDS after it has been archived. An
SLDS can be on DASD or on tape. The contents are used as input to the database
recovery process.

IMS archives the OLDS using the log archive utility (DFSUARC0). During
archiving, IMS can write a subset of the log records it writes to the SLDS to the
recovery log data set (RLDS). This subset consists only of the log records required
to perform a database recovery.

During logging, IMS writes system checkpoint ID information (including OLDS
positioning information) to the restart data set (RDS). IMS uses the RDS during the
restart process to determine from which checkpoint to begin a restart. (See IMS:
Operations and automation for further guidance about the RDS.)

IMS write-ahead data set (WADS)
The main purpose of the write-ahead data set (WADS) is to contain a copy of
committed log records that are in the OLDS buffers, but have not yet been written
to the OLDS because the OLDS buffer is not yet full.

IMS uses the WADS to avoid the need to write partially filled and padded blocks
to the OLDS. WADS space is continually reused after the appropriate log data has
been written to the OLDS. If there is a system failure, IMS uses the log data in the
WADS to complete the content of the OLDS in use, and then closes the OLDS as
part of an emergency restart. This is also an option of the IMS log recovery utility
(DFSULTR0). (The OLDS must be closed before database recovery can take place.)
You can change the following specifications for the WADS at any restart:
v Number of WADSs
v Sequence of WADSs
v WADSs data set names
v Use of single or dual WADSs.

Log control with DBRC
Database Recovery Control (DBRC) assists you in controlling DBCTL logs and in
managing recovery of databases. With DBCTL, you must use DBRC to control
DBCTL logs, and you may optionally use it to control batch logs and database
recovery.

DBRC places the information it uses to control recovery in the RECON data sets,
which are required with DBCTL. These data sets include information about the
OLDS; for example, it indicates whether an OLDS is available for use or contains
data that must be archived.

Define three RECON data sets when you install DBRC. Two of the RECON data
sets are active; the third is a spare. For most purposes, you can think of the two
active RECON data sets as a single RECON data set, or the RECON.

DBCTL requires DBRC to be at SHARECTL level; if it is not, DBCTL will not start.
To initialize the RECON specify (or let it default to) INIT.RECON SHARECTL.
Figure 7 on page 26 shows some example JCL you can copy to initialize the
RECON.

Licensed Materials – Property of IBM

Chapter 2. Installing DBCTL, and defining CICS and IMS system resources 25

If you already have a RECON, specify (or let it default to) CHANGE.RECON
SHARECTL. When the OLDS is full, DBRC starts a log archive job. Skeleton JCL
statements are edited by DBRC before the job is submitted. The skeleton JCL is
member ARCHJCL of the library specified in the JCLPDS DD statement in the
DBRC JCL. You do not have to wait for the OLDS to fill in order to test the
automatic log archive. Instead, you can cause the OLDS to switch using the
DBCTL operator command /SWITCH OLDS. Alternatively, you can use the
/DBRECOVERY without the NOFEOV keyword. For guidance on the syntax of the
/SWITCH and /DBRECOVERY commands, see IMS: Operations and automation .
(See also “Operator communication with DBCTL: overview” on page 45 for
information on using DBCTL operator commands.)

For detailed guidance on automatic log archiving and DBRC skeleton JCL, see IMS
reference: Database utilities . For further guidance on using DBRC, see IMS:
Operations and automation.

Defining IMS logging parameters
You define IMS logging parameters in member DFSVSMxx in the IMS.PROCLIB,
identified by DD name PROCLIB in the DBC and DLISAS JCL.

About this task

You specify the suffix xx for DFSVSMxx in the DBCTL startup parameter VSPEC.
For an illustration of the parameters involved, see “Illustration of DBCTL startup
parameter creation and selection” on page 34. The logging parameters in
DFSVSMxx include:
v Number of OLDS
v Number of OLDS buffers
v Selection of single or dual OLDS
v Number of WADS.

A further logging parameter, used to specify single or dual copies of the WADS is
in the DBCTL startup parameters. See “Starting DBCTL, DLISAS, and DBRC” on
page 28 for information about the DBCTL startup procedure.

You must preallocate the OLDS and WADS data sets and specify the block size
when the data set is allocated. See IMS: Installation for guidance on doing this.

Provide dynamic allocation members for all OLDS and WADS data sets. See “IMS
dynamic allocation macro (DFSMDA)” on page 27.

//INITREC JOB 1,PGMERID,CLASS=Q,MSGCLASS=A
//*
//RECON EXEC PGM=DSPURX00,REGION=1000K
//STEPLIB DD DSN=IMS.RESLIB,DISP=SHR
//DFSRESLB DD DSN=IMS.RESLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//RECON1 DD DSN=IMS.RECON1,DISP=SHR
//RECON2 DD DSN=IMS.RECON2,DISP=SHR
//SYSIN DD *
INIT.RECON SSID(IMSA)

/*

Figure 7. Example JCL to initialize the RECON

Licensed Materials – Property of IBM

26 CICS TS for z/OS 5.3: IMS Database Control Guide

Archiving
DBRC automatically submits a job to archive the OLDS when:
v IMS terminates
v The OLDS fills and logging switches to an empty OLDS
v You issue a /DBRECOVERY command without the NOFEOV keyword
v You switch the OLDS manually.

See IMS: Operations and automation and IMS reference: Database utilities for guidance
on implementing automatic archiving, and IMS: Operations and automation for the
syntax of the /DBRECOVERY command. (You can also use the /DBRECOVERY
command without the NOFEOV keyword to test your implementation.)

IMS dynamic allocation macro (DFSMDA)
Use the IMS dynamic allocation macro (DFSMDA) in all production databases.

Use DFSMDA in all production databases for the following reasons:
v Allocation is controlled from a central point.
v You do not have to change DBCTL JCL or batch job JCL to change a data set

name.
v It avoids possible confusion over which DBCTL address space requires the DD

statement for a database, because the library with the DFSMDA members can be
concatenated in the STEPLIB DD statement.

v If you do not use DFSMDA, DL/I database DD statements must be in the
DLISAS (DLS) address space, and DEDB DD statements must be in the DBCTL
(DBC) address space.

To use dynamic allocation, you need one member per database in the IMS.RESLIB
library (or an authorized STEPLIB library), using the IMSDALOC procedure to
assemble and link-edit the appropriate DFSMDA macros. See IMS: System
administration for general guidance on dynamic allocation and IMS reference:
Database utilities for guidance on using the DFSMDA macro.

Database buffer specifications and option parameters
You define the VSAM and OSAM database buffer pool specifications and IMS
performance and trace options in the DFSVSMxx member of the IMS.PROCLIB
data set, which is pointed to by the PROCLIB DD statement of the DBCTL startup
procedure (DBC).

The last two characters of the DFSVSMxx member are a suffix. You specify this
suffix in the VSPEC parameter of the DBCTL startup procedure. See IMS: System
definition for guidance on the syntax of these parameters and IMS: Database
administration for guidance on specifying the database buffer pool parameters. For
an illustration of the parameters involved in DBCTL startup, see “Illustration of
DBCTL startup parameter creation and selection” on page 34.

Overriding DBCTL generation parameters at execution time
About this task

You can change many IMS system definition values at DBCTL startup using
parameters on the DBC procedure. You can specify these override parameters on
the PARM of the EXEC statement. However, there is a 100-character limit to the
length of the PARM field you can specify on a JCL EXEC statement, which means

Licensed Materials – Property of IBM

Chapter 2. Installing DBCTL, and defining CICS and IMS system resources 27

that you cannot override all possible DBC parameters in the JCL. A better
approach is to use member DFSPBDBC, which allows you to specify DBCTL
control region execution parameters that override those specified in the stage 1
macros.You can place several DFSPBDBC members in PROCLIB by replacing the
member name DFSPBDBC with DFSPBxxx, where xxxmust be three alphanumeric
characters. The RGSUF= keyword in the DBC procedure specifies the xxx suffix to
be used during startup of the DBCTL control region. For more information about
DFSPBDBC, see IMS: System definition.

Naming convention
The DBCTL display commands (for example, /DISPLAY ACTIVE and /DISPLAY
CCTL, described in “Finding out current status of DBCTL activities” on page 57).
and the DRA startup table USERID parameter, all use what is known in IMS and
DBCTL as the CCTL ID to identify the transaction management subsystem. In the
case of CICS, the CCTL is CICS and the ID is the CICS APPLID.

However, many IMS messages use the jobname of the CICS system instead. An
example of this sort of message is DFS554, which notifies you that a BMP region,
or a thread from a CICS transaction, has terminated abnormally. If the DFS554
message was caused by an abnormal termination of a thread that originated from
CICS, the message text contains the CICS job name or CICS startup procedure
name. You will therefore need a naming convention that enables operators to
immediately identify a corresponding CICS APPLID and CICS JOBNAME. For
example, if you use the APPLID DBDCCICA, your job name could also contain the
characters CICA.

Starting DBCTL, DLISAS, and DBRC
You use the procedure library member DBC that is supplied with DBCTL to start
the DBCTL subsystem.

About this task

The procedure is generated during IMS system definition and must be modified to
fit your system's needs.

Also generated during system definition are procedures for DBRC and DLISAS,
which are used to generate the DBRC and DLISAS address spaces. The DBRC and
DLISAS procedures are started automatically by DBCTL during DBCTL startup.

The region types specified for each one are:

PARM=’DBC’
for DBCTL PARM=’DRC’ for DBRC PARM=’DLS’ for DLISAS

All three procedures use positional parameters on the EXEC statement:
PARM=’region type,parm1,parm2,parm3,...’

Many of the positional parameter defaults are specified during system generation,
but you can override them with parameters you specify at execution time.

When all three address spaces have been started successfully, DBCTL issues the
following message indicating it is ready to accept an appropriate restart command:
DFS989I IMS (DBCTL) READY (CRC=x) xxxx

Licensed Materials – Property of IBM

28 CICS TS for z/OS 5.3: IMS Database Control Guide

where x is the command recognition character (CRC), as explained in “Operator
communication with DBCTL: overview” on page 45, and xxxx is the DBCTL sysid,
as specified in the IMSID= parameter of the DBCTL startup JCL.

See IMS: System definition or IMS: System definition for guidance on DBCTL
procedures, including JCL and descriptions of parameters.

Defining the IMS DRA startup parameter table
The DRA startup parameter table provides the parameters needed to define the
interface to the DBCTL subsystem.

About this task

You create the DRA startup parameter table by assembling the DFSPRP macro and
link-editing it into the IMS.RESLIB library (or another APF-authorized library) as
DFSPZPxx, where xx=00, for the default, or any other alphanumeric characters.
Unless your IMS RESLIB uses the default name IMS.RESLIB, supplied in
DFSPZP00, you must specify the name you have chosen in your version of the
DRA. In “Example JCL to generate a DRA startup table” on page 31, the name
IMS.RESLIB is used.

Note: The macro used is DFSPRP, but the name of the module you must link edit
is DFSPZPxx. You must also link edit the DRA into an authorized library that is
part of the CICS STEPLIB concatenation.

The DFSPRP macro has the following parameters:
v DSECT=NO

A DSECT statement for PZP is not generated. You must specify this option in
order to create a CSECT, which is required in order to assemble the module
DFSPZPxx.

v FUNCLV=
The CCTL (in this case, CICS) functional level. The default (and the only valid
value) is 1.

v DDNAME=
A 1- to 8-character ddname to be used with dynamic allocation of the DRA
RESLIB. The default is CCTLDD.

v DSNAME=
A 1- to 44-character data set name of the DRA RESLIB. The default is
IMS.RESLIB.

v DBCTLID=xxxx
The 1- to 4-character name of the DBCTL address space. The default is SYS1.
This parameter must be the same as the IMSID in the DBCTL startup procedure
for the DBCTL to which you want this CICS to connect. You can connect
multiple CICS systems to the same DBCTL, but a CICS system can connect to
only one DBCTL at a time.

v USERID=xxxxxxxx
CICS users do not specify this parameter; it is supplied by CICS itself. If you do
specify anything, CICS overrides it. USERID is the 1- to 8-character name of the
CICS address space (or CCTLID). The value CICS supplies when it connects to
DBCTL is the CICS APPLID.

v MINTHRD=xxx

Licensed Materials – Property of IBM

Chapter 2. Installing DBCTL, and defining CICS and IMS system resources 29

This parameter specifies the number of threads for this CICS system that, once
initialized, remain created while the DRA is active. These threads remain
allocated until this CICS system is disconnected from DBCTL, except if a thread
is stopped by a /STOP command or by a thread failure. Additional threads are
created, up to the number specified in MAXTHRD, or the number specified in
MAXREGN, or the maximum of 999, whichever of these values is the lowest.
These additional threads (not the MINTHRDs) are released when there is not
enough system activity to require them. The maximum value you can specify for
MINTHRD is 999, and the default is 1. For information about specifying values
for MINTHRD, see “Specifying numbers of threads” on page 146. See also
MAXREGN in “IMS system generation macros used by DBCTL” on page 20.

v MAXTHRD=xxx
This parameter specifies the maximum number of transactions for which this
CICS system can have PSBs scheduled in DBCTL. Any schedule requests that are
over this limit are queued in the DRA. You can balance the load sent to a single
DBCTL from multiple CICS systems by specifying appropriate values for
MAXTHRD in each CICS.
The maximum value you can specify for MAXTHRD is 999 (but it should not
exceed the value specified for MAXREGN) and the default is 1, or the value you
specified in MINTHRD. For information about specifying values for MAXTHRD,
see “Specifying numbers of threads” on page 146. See also MAXREGN in “IMS
system generation macros used by DBCTL” on page 20.

v TIMER=xx
The frequency, in seconds, with which CICS is to repeat attempts to connect to
DBCTL when connection has failed and the console operator has requested that
CICS wait for connection in reply to a DFS690 message (rather than canceling
the connection attempt). You can specify any value from 0 through 99. However,
note that if you specify 0, the default value is used. The default is 60.

v CNBA=xxx
The total number of DEDB buffers that are allocated for this CICS system. The
default is 0.

v FPBUF=xxx
The number of DEDB buffers to be allocated and fixed per thread. The default is
0. See “DEDB performance and tuning considerations” on page 148 for
information about defining DEDB buffer pools.

v FPBOF=xxx
The number of DEDB overflow buffers to be allocated per thread. The default is
0. See “DEDB performance and tuning considerations” on page 148 for
information defining DEDB buffer pools.

Notes:

1. For DBCTL users, fast path support refers only to DEDBs. Parameters that
begin with FP refer to DEDBs in the DRA startup table.

2. You do not need the parameters CNBA, FPBUF, and FPBOF if you are not
using DEDBs.

3. For detailed guidance on specifying DEDB buffers, see IMS: System
administration .

v TIMEOUT=xxx
The amount of time, in seconds, that CICS should wait for a DRA TERM request
to complete. The maximum value is 999, and the default is 60. For guidance on
what to specify, see TIMEOUT in “CICS failure” on page 79.

v SOD=x

Licensed Materials – Property of IBM

30 CICS TS for z/OS 5.3: IMS Database Control Guide

The output class to be used for a snap memory dump of abnormal thread
terminations. The default is A. See “Dumps produced by the DRA” on page 128
for more information about these memory dumps.

v AGN=xxxxxxxx
The 1- to 8-character application group name (AGN). You must use this
parameter only if you have specified AGN security checking for DBCTL. There
is no default. See Chapter 5, “Security for DBCTL,” on page 109 for more
information.

v OPENTHRD={CCTL | DISABLE}
This parameter specifies whether DRA Open Thread support processing is
enabled. CCTL is the default, and when this is specified, the DRA uses CICS
TCBs for processing instead of dedicated IMS DRA TCBs, enabling increased
parallelism. To disable DRA Open Thread support processing, specify DISABLE

Example JCL to generate a DRA startup table
Some example JCL you can copy to generate a DRA.

Licensed Materials – Property of IBM

Chapter 2. Installing DBCTL, and defining CICS and IMS system resources 31

//DRAJOB JOB 1,PGMERID,MSGCLASS=A,MSGLEVEL=(1,1),
// CLASS=A,NOTIFY=PGMERID
//ASM EXEC PGM=ASMA90,
// PARM=’DECK,NOOBJECT,LIST,XREF(SHORT),ALIGN’,
// REGION=4096K
//SYSLIB DD DSN=IMS.OPTIONS,DISP=SHR
// DD DSN=IMS.SDFSMAC,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
//*
//SYSUT1 DD UNIT=SYSDA,SPACE=(1700,(400,400))
//SYSUT2 DD UNIT=SYSDA,SPACE=(1700,(400,400))
//SYSUT3 DD UNIT=SYSDA,SPACE=(1700,(400,400))
//SYSPUNCH DD DSN=&&OBJMOD,
// DISP=(,PASS),UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=400),
// SPACE=(400,(100,100))
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
PZP TITLE ’DATABASE RESOURCE ADAPTER STARTUP PARAMETER TABLE’
DFSPZP00 CSECT
**
* MODULE NAME: DFSPZP00 *
* *
* DESCRIPTIVE NAME: DATABASE RESOURCE ADAPTER (DRA) *
* STARTUP PARAMETER TABLE. *
* *
* FUNCTION: TO PROVIDE THE VARIOUS DEFINITIONAL PARAMETERS *
* FOR THE COORDINATOR CONTROL REGION. THIS *
* MODULE MAY BE ASSEMBLED BY A USER SPECIFYING *
* THEIR PARTICULAR NAMES, ETC. AND LINKEDITED *
* INTO THE USER RESLIB AS DFSPZPXX. WHERE XX *
* IS EITHER 00 FOR THE DEFAULT, OR ANY OTHER ALPHA- *
* NUMERIC CHARACTERS. *
* *
**

EJECT
DFSPRP DSECT=NO, X

DBCTLID=IMSA, X
DDNAME=CCTLDD, X
DSNAME=IMS.SDFSRESL, X
MAXTHRD=99, X
MINTHRD=10, X
TIMER=60, X
USERID=, X
CNBA=10, X
FPBUF=, X
FPBOF=, X
TIMEOUT=60, X
SOD=A, X
AGN=

END
/*
//LNKEDT EXEC PGM=IEWL,
// PARM=’LIST,XREF,LET,NCAL’
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(100,50))
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DSN=IMS.SDFSRESL,DISP=SHR
//SYSLIN DD DISP=(OLD,DELETE),DSN=&&OBJMOD
// DD DDNAME=SYSIN
//SYSIN DD *

NAME DFSPZP00(R)
/*

Figure 8. Example JCL to generate a DRA startup table

Licensed Materials – Property of IBM

32 CICS TS for z/OS 5.3: IMS Database Control Guide

Customizing DBCTL
CICS provides several global user exits and a user-replaceable program to help you
customize DBCTL processing.
v “DFHDBUEX”
v “Global user exits XDLIPRE and XDLIPOST”
v “Global user exits XRMIIN and XRMIOUT” on page 34

DFHDBUEX
DFHDBUEX is an IBM-supplied user-replaceable program that is invoked each
time CICS connects to, and disconnects from, DBCTL.

You can use DFHDBUEX to enable or disable CICS-DBCTL transactions at DBCTL
connection and disconnection time. The transactions are available to be run if that
DBCTL is connected. Users who attempt to enter one of these transactions when
DBCTL is not connected are notified immediately that the transaction is
unavailable. This means that users will not be able to start one of these
transactions, only to find that it fails because the database is unavailable.

To summarize, DFHDBUEX is invoked when:
v CICS has successfully connected to DBCTL.
v CICS is disconnecting from DBCTL, and has been notified that:

– DBCTL has been terminated normally (using a /CHECKPOINT FREEZE or
/CHECKPOINT PURGE command, as described in “Stopping DBCTL
normally” on page 64).

– The DRA has terminated abnormally.
– DBCTL has terminated abnormally.
– The menu transaction CDBC has been used to request disconnection from

DBCTL.

See Writing a CICS–DBCTL interface status program in Developing system
programs for programming information on DFHDBUEX.

Global user exits XDLIPRE and XDLIPOST
The two global user exits XDLIPRE and XDLIPOST are available to all DL/I users,
both remote users and DBCTL users. Use these global user exits to intercept any
Call level or EXEC level DL/I request on entry to and exit from DL/I.

XDLIPRE is invoked before the DL/I request is processed. XDLIPOST is invoked
after the DL/I request is processed. If you are using function shipping, the exits
are invoked from the application owning region (AOR), and the database owning
region (DOR). However, there are restrictions on what actions can be performed by
an exit program running at exit point XDLIPRE or XDLIPOST in a DOR. For
programming information about these exits, see Naming, testing, and debugging
your autoinstall control program in Developing system programs and CICS action
on return from the control program in Developing system programs.

Programs running in these exits must be coded to threadsafe standards and
defined to CICS as threadsafe.

Licensed Materials – Property of IBM

Chapter 2. Installing DBCTL, and defining CICS and IMS system resources 33

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfha3/topics/dfha38k.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfha3/topics/dfha38k.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfha3/topics/dfha388.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfha3/topics/dfha388.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfha3/topics/dfha387.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfha3/topics/dfha387.html

Uses of the XDLIPRE and XDLIPOST global user exits

Use XDLIPRE to change the PSB name that the application program has scheduled
at execution time. An example of XDLIPRE that you can modify is shown in
Example use of global user exit XDLIPRE in Reference -> System programming.

Use the XDLIPRE exit to change the identity of the SYSID during CICS execution.
You might want to change the identity of the SYSID if the one you are currently
using becomes unavailable.

Use the XDLIPOST exit with DBCTL to ensure that all the required resources are
available before an application starts. The enhanced scheduling feature in DBCTL
allows a PSB to be scheduled when one or more databases are unavailable, you
can use XDLIPOST to prevent this from happening. Use XDLIPOST to scan the list
of PCBs and update the status of any unavailable databases to a response code of
0805. Setting the status of unavailable databases to 0805 means that CALLDLI
programs return a value of 0805, EXEC DLI programs abend with code DHTE, and
DBCTL does not raise any new schedule requests before the PSB is stopped.

Global user exits XRMIIN and XRMIOUT
The global user exits XRMIIN and XRMIOUT enable you to monitor activity across
the resource manager interface (RMI).

XRMIIN is invoked just before control is passed from the RMI to a task-related
user exit, and XRMIOUT is invoked just after control is returned to the RMI. You
can use these exits to monitor DL/I activity; for example, control being passed to
and from DFHDBAT for DBCTL requests, or DFHEDP for EXEC DLI.

For programming information on using these exits, see "Naming, testing, and
debugging your autoinstall control program" and "CICS action on return from the
control program" in the CICS Customization Guide.

Illustration of DBCTL startup parameter creation and selection
This illustration shows you how the DBCTL startup parameters are created and
selected during startup.

If you are new to IMS system definition, use this figure while reading “Generating
DBCTL” on page 19.

Note: “OCU” in Figure 9 on page 35 refers to the IMS online change utility.

Licensed Materials – Property of IBM

34 CICS TS for z/OS 5.3: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfha3/topics/dfht454.html

IMS system
definition

IMS.
MODBLKSm

MODBLKSm, IMSACBm

Assembled/
link-edited

INCLUDE ...
NAME
DFSPBxxx(R)

IMS.MODSAT

PRLD=xx

FIX=xx

VSPEC=xx

RGSUF=x
SUF=x

EXEC
parms

IMS.PROCLIB

IMS start-up
parms DFSPBxxx

DFSVSMxx
(VSAM .. parms)

DFSFIXxx
(Page fixing)

DFSMPLxx
(Resid.modules)

IMS.
RESLIB

DFSVNUCx

IMS.
ACBLIBm

IMS.
ACBLIB

ACBGEN

DFSDDIRx .

.

.

.
DFSPDIRx

DATABASE
...

O

C

U

O

C

U

APPLCTN
...

IMSGEN SUFFIX=x

IMSCTRL SYSTEM=
ALL/MODBLKS/
NUCLEUS/...

Figure 9. Creating and selecting DBCTL startup parameters

Licensed Materials – Property of IBM

Chapter 2. Installing DBCTL, and defining CICS and IMS system resources 35

Licensed Materials – Property of IBM

36 CICS TS for z/OS 5.3: IMS Database Control Guide

Chapter 3. Administering DBCTL

This information shows you how to connect to DBCTL and issue operator
commands.

Connecting to DBCTL: overview
You can perform CICS and DBCTL startup from a TSO terminal or an MVS
console.

About this task

Before DBCTL can begin accepting transactions, several things must happen, as
shown in Figure 10. The numbers in the figure and corresponding step numbers
indicate the sequence of events.

1. CICS is started by submitting a job or starting a procedure, as described in
CICS actions on an initial start in Reference -> Utilities.

2. DBCTL is started by submitting a job or starting a procedure, as described in
“Starting DBCTL, DLISAS, and DBRC” on page 28.

3. After receiving a DBCTL READY message, indicating that startup is complete,
the IMS console operator enters a start command, as follows:
v If starting DBCTL for the first time, use /NRESTART CHECKPOINT 0

FORMAT ALL. This command performs a cold start of DBCTL and formats
the write ahead data set (WADS) and the restart data set (RDS).

v /NRESTART for a warm start.
v /ERESTART for an emergency restart after a failure.
The / used in these commands is explained in “Operator communication with
DBCTL: overview” on page 45. See “Restarting DBCTL” on page 67 for
information about restart options.
When the start has completed, the following message is issued:
DFS994I rtype START COMPLETED

where rtype is the type of start requested (COLD, WARM, or EMERGENCY).
4. The CICS operator requests connection to DBCTL using the CDBC transaction.

Step 1 can be done before, during, or after steps 2 and 3. Steps 2 and 3 must be
done in the sequence described, and all three steps must be completed successfully
before step 4 can begin.

The previous steps show you how to manually start IMS. IMS can also be started
and restarted automatically; for more details, see IMS: System administration.

CICS CONNECT request DBCTL DBCTL READY IMS start
startup startup command
(step 1) (step 4) (step 2) message (step 3)

Figure 10. Connecting to DBCTL

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1989, 2015 37

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfha6/topics/dfha635.html

Connecting DBCTL to CICS automatically
You can specify that CICS is connected automatically to either the same or a
different DBCTL.

If you want to connect automatically to the DBCTL that was being used when
CICS was last shutdown, use the DBCTLCON system initialization parameter, or add
an entry for DFHDBCON to the PLTPI so that it is invoked in the second stage of
PLTPI processing (that is, the third stage of CICS initialization).

If you want to connect automatically to a specific DBCTL, or to connect CICS to
DBCTL when it was not connected at shutdown, use the CICS INITPARM system
initialization parameter, in addition to specifying DFHDBCON in the PLTPI.
INITPARM enables DFHDBCON to have access to the DRA startup parameter table
suffix you want to use. Specify:
INITPARM=(DFHDBCON=’xx[,yyyy]’)

where xx is a 1-to 2-character DRA startup table suffix, which you must enter, and
yyyy is an optional 1-to 4-character DBCTL identifier. The DBCTL identifier
specified in INITPARM overrides the DRA startup parameter DBCTLID.

Using INITPARM avoids the need to use the CRLP or DASD sequential terminal as
your means of automating connection to a specific DBCTL. Use the following code
if you prefer to use a CRLP or DASD sequential terminal:
//DDIN DD *

CDBC CONNECT SUFFIX(xx) DBCTLID(yyyy)\

where xx is the 1- to 2-character DRA startup table suffix and yyyy is the 1- to
4-character DBCTL identifier, both of which are optional. Specifying a DBCTL
identifier here overrides the one specified in the DRA startup table parameter
DBCTLID. \ is the end-of-line character. (See "DFHLIST definitions" in the CICS
Resource Definition Guide and "Using sequential terminal support" in the CICS
Application Programming Guide for guidance on using sequential terminal support.)

What happens at startup depends on the type of CICS start being used, whether
you specified INITPARM, and whether DBCTL was connected to CICS when CICS
was last shutdown.

Connecting to DBCTL after a CICS WARM or EMERGENCY start

If CICS startup is WARM or EMERGENCY:
v If you used INITPARM, the DRA startup table suffix and DBCTL identifier

specified there are used to determine which DBCTL to connect to, whether CICS
and DBCTL were connected when CICS was last shutdown.

v If you did not use INITPARM:
– If CICS and DBCTL were connected when CICS was last shutdown, CICS is

reconnected to the same DBCTL. DFHDBCON uses the DRA startup
parameter table suffix and DBCTL identifier override (which might be blanks)
from the catalog.

– If CICS and DBCTL were not connected when CICS was last shutdown CICS
issues message DFHDB8117 and does not attempt to connect to DBCTL.

Connecting to DBCTL after a CICS COLD or INITIAL start

If CICS startup is COLD or INITIAL:

Licensed Materials – Property of IBM

38 CICS TS for z/OS 5.3: IMS Database Control Guide

v If you used INITPARM, CICS attempts to connect to DBCTL, using the suffix
and DBCTL identifier (if any) you specified.

v If you did not use INITPARM, CICS attempts to connect to DBCTL using the
default DRA startup table suffix (00) and no DBCTL identifier override, whether
DBCTL was connected when CICS was last shutdown.

Connection, disconnection, and inquiry transactions for the CICS
DBCTL interface

There are two CICS transactions that you can use to connect to, disconnect from,
and inquire on the status of the CICS-DBCTL interface.

They are:
v CDBC, which enables users (for example, CICS operators and network

controllers) to display a menu to connect to and disconnect from DBCTL.
– For connection, CDBC issues a DBCTL connection request to DFHDBAT,

which issues a DRA INIT request internally to the DRA.
CDBC also enables you to override the DRA startup parameter table suffix
and DBCTL identifier when you are connecting CICS to DBCTL. (See
“Defining the IMS DRA startup parameter table” on page 29 for information
on the contents of the DRA startup table.)

– For disconnection, CDBC can issue an orderly or an immediate disconnection
request to DFHDBAT, which issues a DRA TERM request internally to the
DRA.
(See “CDBC transaction for connect and disconnect” for more information on
using CDBC.)

v CDBI, which enables users to inquire on the status of the CICS-DBCTL interface.
See “CDBI transaction for inquiry” on page 43 for more information.

You can enter CDBC and CDBI from either a CICS terminal or an MVS console.
You can restrict access to these transactions using transaction security. Messages
from CDBC can be sent to the transient data destination CDBC.

CDBC transaction for connect and disconnect
Typing CDBC on a 3270-type terminal displays a menu for connecting CICS to,
and disconnecting it from, DBCTL.

Figure 11 on page 40 shows an example of the menu.

To connect to DBCTL, enter option number 1 after:
Option Selection ==>

Licensed Materials – Property of IBM

Chapter 3. Administering DBCTL 39

If you want to specify a DRA startup table suffix, you can enter it after:
Startup Table Suffix ==>

If you do not specify a suffix, CICS uses the one that was used when it was last
connected to DBCTL. If this is the first time you have connected CICS to DBCTL,
and you do not specify a suffix, CICS uses the default suffix, which is 00.

If you want to specify a DBCTL identifier, you can enter it after:
DBCTL ID Override ==>

If you do not specify a DBCTL identifier, the DRA uses the DBCTL identifier
specified on the DBCTLID parameter in the DRA startup table.

When you have pressed ENTER, you should get the message:
DFHDB8209 I DBCTL orderly disconnection requested. Press PF5 to confirm.

as shown on the example screen in Figure 11.

The CDBC menu screen displays the following additional information:
v Status of the CICS-DBCTL interface; in this case, DBCTL is connected and ready
v The APPLID of the CICS system; in this case, DBDCCICS
v The identifier of the DBCTL system; in this case, SYS2
v The DRA startup parameter table suffix for this connection; in this case, 00.

The DBCTL identifier and the DRA startup parameter table suffix are only
displayed when CICS has been connected to DBCTL. You can refresh any of the
information on the CDBC menu screen by pressing PF2.

You can obtain a help screen for the CDBC menu by pressing PF1. As you can see
in Figure 12 on page 41, the CDBC help screen reminds you which number to
specify for which option, what the options mean, and summarizes the
CICS-DBCTL interface information displayed on the CDBC menu screen.

CDBC CICS-DBCTL CONNECTION/DISCONNECTION 93.259
13:39:20

Select one of the following:

1 Connection
2 ORDERLY disconnection
3 IMMEDIATE disconnection

Option Selection ==> 2
Startup Table Suffix ==> 00
DBCTL ID Override ==>

DFHDB8209D DBCTL orderly disconnection requested. Press PF5 to confirm.

Status of the Interface: DFHDB8293I DBCTL connected and ready.
CICS APPLID: IYAHZCD2

DBCTL ID: SYS2
Startup Table Suffix: 00

PF1 = Help 2 = Refresh 3 = End

Figure 11. CDBC transaction menu screen

Licensed Materials – Property of IBM

40 CICS TS for z/OS 5.3: IMS Database Control Guide

Using CDBC without the menu screen
About this task

The menu screen is displayed if you use CDBC from a 3270-type terminal,
However, if you issue CDBC from a CRLP or DASD sequential terminal or
operating system console, the menu screen is not displayed. For example, if you
specify:
CDBC CONnect

DBCTL is connected using the default suffix, 00.

If you specify a suffix:
CDBC CONnect SUFfix(12)

and DBCTL is connected using suffix 12.

You can also type a DBCTL identifier, in addition to the suffix, or on its own. For
example, if you enter:
CDBC CONnect DBCtlid(DBC1)

CICS is connected to the DBCTL named DBC1.

You can also enter:
CDBC CONnect DBCtlid(DBC2) SUFfix(11)

or
CDBC CONnect SUFfix(11) DBCtlid(DBC2)

in either case, CICS is connected to DBCTL DBC2, using suffix 11.

See “What happens when you have requested connection to DBCTL” on page 42
for details of the system’s response to your connection request.

HELP : CICS-DBCTL CONNECTION/DISCONNECTION

To CONNECT to DBCTL, select option 1. You can also specify a startup
table suffix, or accept the existing suffix. The id of the DBCTL system is
obtained from the startup table, but can be optionally overridden.

To DISCONNECT from DBCTL, select option 2 or option 3.

Select option 2 for ORDERLY disconnection: this allows all CICS-DBCTL
transactions from this CICS to complete before disconnecting from DBCTL.

Select option 3 for IMMEDIATE disconnection: this allows all CICS-DBCTL
requests from this CICS to complete before disconnecting from DBCTL.

--
Displayed information (press PF2 to refresh the information):

STATUS OF THE INTERFACE The current status of the connection to DBCTL.
CICS APPLID The application identifier for this CICS system.

Displayed when available:
DBCTL ID Identifier of the DBCTL system with which this

CICS system is communicating.
STARTUP TABLE SUFFIX Suffix used when CICS was connected to DBCTL.

PRESS ENTER TO RETURN TO SELECTION SCREEN

Figure 12. CDBC transaction menu help screen

Licensed Materials – Property of IBM

Chapter 3. Administering DBCTL 41

If you disconnect CICS from DBCTL using a BSAM CRLP-type terminal, the menu
screen is not displayed.

For orderly disconnection, specify:
CDBC DISconnect

For immediate disconnection, enter:
CDBC DISconnect IMMediate

See “Deciding whether to use orderly or immediate disconnection” on page 43 for
information on the two types of disconnection request.

What happens when you have requested connection to
DBCTL

When you have requested connection to DBCTL, you get messages confirming that
connection is taking place.

If you have used the CDBC menu, the following messages are displayed on the
terminal:
Status of the Interface: DFHDB8292I DBCTL CONNECT PHASE 2 IN PROGRESS.
Status of the Interface: DFHDB8293I DBCTL CONNECTED AND READY.

If you have not used the CDBC menu, the following messages are displayed on the
MVS console:
+DFHDB8210D CONNECTION TO DBCTL IS PROCEEDING. CHECK CDBC TD QUEUE.
+DFHDB8225I DBDCCICS THE DBCTL ID IS SYS1. THE DRA STARTUP TABLE SUFFIX IS 00.

CICS-DBCTLDFHDBnnnn messages that are issued when you are using CDBC.

If DBCTL is not yet available, the main CICS-supplied IMS control exit,
DFHDBCTX, is invoked. DFHDBCTX in turn calls DFHDXAX. For more
information about the IMS control exit routines, see the appropriate IMS reference:
Exit routines.

For a DBCTL restart, the control exit is invoked as for any DBCTL connection
attempt. However, instead of returning control directly to the DRA, the control
transaction invokes the DFHDXAX module. This control exit routine checks to see
if it is being invoked for a failing connection:
v If it is not being invoked for a failing connection, it does not attempt to connect

and passes back control.
v If it is being invoked for a failing connection, it checks the input arguments to

determine whether:
– An IDENTIFY attempt failed, and
– CICS is not in the process of terminating

If an IDENTIFY failed, and CICS is not terminating, DFHDXAX selects the current
DBCTL ID, and initiates repeated attempts to reconnect to the current DBCTL, thus
avoiding operator intervention.

Retries are made every five seconds for a ten minute period, and message
DFHDB8297 is issued periodically. If reconnection is still not successful after ten
minutes, DFHDXAX abandons the attempt, and requests IMS to issue message
DFS0690A, which requires operator intervention. The IMS messages and codes
contains guidance on interpreting the messages that are displayed when you are

Licensed Materials – Property of IBM

42 CICS TS for z/OS 5.3: IMS Database Control Guide

using CDBC. If you reply CANCEL, the connection attempt is abandoned. It you
reply WAIT, the DRA attempts to connect again after the number of seconds
specified in the TIMER parameter in the DRA startup parameter table. If the
connection attempt fails again, the DRA continues to attempt to connect after the
same number of seconds. You can stop these repeated connection attempts by
using the CDBC transaction to disconnect from DBCTL. You can use either the
same instance of CDBC or run the transaction on a different terminal.
Disconnection takes effect when the DRA next tries to reconnect to DBCTL.

Deciding whether to use orderly or immediate disconnection
Use immediate disconnection only if necessary. For example, you may need to use
it if you have already issued an orderly disconnection request which has not taken
place, and you need disconnection to take place soon.

Orderly disconnection allows all existing CICS-DBCTL tasks to complete before
CICS is disconnected from DBCTL. Tasks not currently using DBCTL are prevented
from issuing further PSB schedule requests. This means that there should not be
any indoubt logical units of work (UOWs), and database records are available to
other CICS systems connected to that DBCTL.

Immediate disconnection allows only current DL/I requests to DBCTL from this
CICS system to complete before CICS is disconnected from DBCTL. Any new DL/I
or PSB schedule requests are prevented. This can cause indoubt UOWs for the task
involved and leave database records unavailable for other CICS systems connected
to that DBCTL until it is reconnected. What happens depends on the type of
request issued to DBCTL after the immediate disconnection request:
v If it is a PSB schedule request, a DHTJ abend (for a command-level program) or

a DLINA condition (for a call-level program) is issued.
v If it is a DL/I request, the UOW is backed out and an ADCA abend is issued.
v If it is a PREPARE request, the UOW is backed out and an ASP7 abend is

issued.
In all these cases, database records are available to other applications.

v If it is a COMMIT request, the task remains indoubt and DBCTL records are
unavailable. The in-doubts will not be resolved until DBCTL is reconnected to
CICS. An abend is issued when the next PSB schedule is received, as described
for PSB schedule request.
See “Two-phase commit for DBCTL” on page 71 for information on PREPARE
and COMMIT requests.

So, use immediate disconnection only if necessary. For example, you may need to
use it if you have already issued an orderly disconnection request which has not
taken place, and you need disconnection to take place soon. Orderly disconnection
may be delayed by a task that is issuing many DL/I requests, or by a
conversational task that is awaiting input from an unattended terminal. If you
think the problem is being caused by such a task, you may prefer to identify it
using CEMT INQ TASK, and then use CEMT SET TASK(n) PURGE, where “n” is
the task identifier to purge it. You can then use orderly disconnection. However, if
the problem is being caused by many tasks or by a single task that you cannot
identify, you may have to use immediate disconnection.

CDBI transaction for inquiry
You can use the CDBI transaction to inquire on the status of the DBCTL
connection.

Licensed Materials – Property of IBM

Chapter 3. Administering DBCTL 43

Typing CDBI displays a screen like the one shown in Figure 13. The CDBI screen
shows the status of the CICS-DBCTL interface (in this example, DBCTL is
connected and ready), plus the APPLID of the CICS system (DBDCCICS) and the
DBCTL identifier (SYS1). You can refresh the information by pressing PF2.

You can obtain a help screen for CDBI by pressing PF1. Figure 14 shows an
example of such a panel. The CDBI help screen tells you how to refresh the
information on the CDBI screen, and explains that information. It includes a list of
the CICS messages describing the status of the CICS-DBCTL interface that can
appear on the CDBI screen.

CDBI CICS-DBCTL INTERFACE INQUIRY 93.194
11:23:50

Status : DFHDB8293 I DBCTL connected and ready.
CICS APPLID: DBDCCICS
DBCTL ID : SYS1

PF1 = Help 2 = Refresh 3 = End

Figure 13. CDBI transaction screen

HELP : CICS-DBCTL INTERFACE INQUIRY
The CICS-DBCTL interface inquiry screen shows:

STATUS OF THE INTERFACE The status can be:
DFHDB8290I DBCTL NOT CONNECTED TO CICS.
DFHDB8291I DBCTL CONNECT PHASE 1 IN PROGRESS.
DFHDB8292I DBCTL CONNECT PHASE 2 IN PROGRESS.
DFHDB8293I DBCTL CONNECTED AND READY.
DFHDB8294I DBCTL ORDERLY DISCONNECT IN PROGRESS.
DFHDB8295I DBCTL IMMEDIATE DISCONNECT IN PROGRESS.
DFHDB8296I DBCTL CANNOT BE CONNECTED TO CICS.

CICS APPLID The application identifier of this CICS system.
Displayed when available:

DBCTL ID The identifier of the DBCTL system with which this CICS
is communicating

You can press PF2 to update (refresh) the information shown on the screen

PRESS ENTER TO RETURN TO INQUIRY SCREEN

Figure 14. CDBI transaction help screen

Licensed Materials – Property of IBM

44 CICS TS for z/OS 5.3: IMS Database Control Guide

Operator communication with DBCTL: overview
IMS operations can be done from an IMS master terminal operator console, which
is usually the primary MVS console.

This can be the primary MVS console, but it is advisable to have a secondary MVS
console that is dedicated to DBCTL. This dedicated console is called the DBCTL
console.

You can issue operator commands to DBCTL from a CICS terminal by using a
CICS-supplied transaction, CDBM, as described in “CDBM operator transaction”
on page 49.

Use the Resource Access Control Facility (RACF) to control access to IMS
resources. For further information about using RACF see IMS: System
administration.

This section covers:
v “DBCTL operator commands”
v “CDBM operator transaction” on page 49
v “Issuing DBRC commands” on page 56
v “IMS password security” on page 57
v “Controlling tracing of DBCTL events” on page 57
v “Finding out current status of DBCTL activities” on page 57
v “Specifying messages to be logged on IMS log” on page 59
v “Changing DBCTL resources online” on page 59
v “Preventing programs and transactions from updating DBCTL databases” on

page 59
v “Switching to a new OLDS” on page 60
v “Entering external subsystem commands from DBCTL” on page 60
v “Making DBCTL resources available” on page 61
v “Preventing scheduling of PSBs and use of DBCTL databases” on page 61
v “Purging a transaction that is using DBCTL” on page 62
v “Stopping DBCTL normally” on page 64
v “Stopping DBCTL abnormally” on page 65

DBCTL operator commands
The operator commands you can use to communicate with DBCTL are a subset of
IMS operator commands.

This book summarizes the ways in which you can use these commands with
DBCTL. For guidance on syntax, see IMS: Operations and automation . See also
“Summary of DBCTL operator commands” on page 47 for a list of DBCTL
operator commands and their corresponding CICS commands, and a list of valid
keywords for DBCTL users.

Format of DBCTL operator commands
The format of DBCTL operator commands is to being with a command recognition
character (CRC), followed by a verb, a password (if required), a keyword or
keywords, and optional comments.

Licensed Materials – Property of IBM

Chapter 3. Administering DBCTL 45

DBCTL commands begin with a command recognition character (CRC). A CRC of
/ is the default. (The examples of DBCTL commands in this manual use the
default CRC.) You can override it on the DBCTL job, but remember that each
DBCTL subsystem in a single MVS image must have a different CRC. This CRC
must also be different from every other subsystem in the processor (or
multiprocessor), not just DBCTL subsystems. The same applies to any test systems
you might be using. You can, if you prefer, use the subsystem ID (for example,
SYS1) of the DBCTL you are using instead of a CRC.

There must be no space between the CRC and the verb. Usually there is a space
between parameters, except as noted for specific parameters in IMS: Operations and
automation. Many verbs and keywords have abbreviations. Guidance on using them
is in IMS: Operations and automation.

Multisegment DBCTL operator commands
The DBCTL operator commands /CHANGE, /ERESTART, /RMxxxxxx, and /SSR
can be entered in multiple segments.

The format of multisegment commands varies according to the environment you
are using. For multisegment commands in a DBCTL environment, each segment
preceding the last segment requires an end-of-segment (EOS) indicator, which is
the CRC followed by the ENTER key. The last (or only) segment requires an
end-of-message (EOM) indicator, which is the ENTER key. In addition, each
segment must begin with the CRC.

Figure 15 on page 47 is an example of a multisegment command that has two
segments. The CRC is a slash (/), and appears at the beginning and end of the first
segment. The EOS of the first segment is the CRC (/) followed by the ENTER key,
which does not appear because it is not displayable. The EOM of the second (and
last) segment is the ENTER key, so this segment begins with the CRC, but does not
end with it.

DBCTL can handle single-segment commands from an unlimited number of
consoles concurrently, but the number of consoles that can concurrently issue
multisegment commands is limited to eight. A single multisegment command is
limited to 241 bytes. If either of these limits is exceeded, a message is sent to the
issuing console.

Licensed Materials – Property of IBM

46 CICS TS for z/OS 5.3: IMS Database Control Guide

For further guidance on multisegment operator commands, see IMS: Operations and
automation.

You can use null words (for example, FOR, and TO) within the operator
commands to help clarify the syntax without affecting the command itself. Because
null words are reserved, you must not use them to name system resources. For
further guidance on null words, see IMS: Operations and automation.

You might need to use a password depending on the security facility used. See
Chapter 5, “Security for DBCTL,” on page 109 for information about security
considerations with DBCTL.

Summary of DBCTL operator commands
The following tables show you the CICS operator commands, corresponding
DBCTL operator commands, and which DBCTL commands can be issued using the
CICS-supplied transaction CDBM. Also shown are the IMS operator commands
and keywords valid with DBCTL.

Chapter 3, “Administering DBCTL,” on page 37 and “Recovery and restart
operations for DBCTL” on page 66 contain information about using operator
commands with DBCTL. For further guidance on the syntax of DBCTL operator
commands, see IMS: Operations and automation.

Note: The / used in these commands is the default command recognition
character (CRC). For information about the usage of CRCs, see “Operator
communication with DBCTL: overview” on page 45.

Table 3. DBCTL operator commands and CICS equivalents

DBCTL operator command CICS equivalent Valid with
CDBM

/CHANGE None Yes

/RMI DBRC=’ic dbd(dedbdd01) area(dd01ar0) icdsn(fvt31.dedbdd01.dd01ar0
.ic.dummy1) icdsn2/
/(FVT31.DEDBDD01.DD01AR0.IC2.DUMMY1) HSSP’
DFS000I MESSAGE(S) FROM ID=SYS1 490
INIT.IC DBD(DEDBDD01) AREA(DD01AR0) -
ICDSN(FVT31.DEDBDD01.DD01AR0.IC.DUMMY1) -
ICDSN2(FVT31.DEDBDD01.DD01AR0.IC2.DUMMY1) HSSP
DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00
DSP0220I COMMAND COMPLETION TIME 89.045 16:24:58.7
DSP0211I COMMAND PROCESSING COMPLETE
DSP0211I HIGHEST CONDITION CODE = 00
DSP0058I RMI COMMAND COMPLETED
/RMI DBRC=’ic dbd(dedbdd01) area(dd01ar0) icdsn(fvt31.dedbdd01.dd01ar0
.ic.dummy2) /
/ICDSN2(FVT31.DEDBDD01.DD01AR0.IC2.DUMMY2) HSSP’
DFS000I MESSAGE(S) FROM ID=SYS1 514
INIT.IC DBD(DEDBDD01) AREA(DD01AR0) -
ICDSN(FVT31.DEDBDD01.DD01AR0.IC.DUMMY2) -
ICDSN2(FVT31.DEDBDD01.DD01AR0.IC2.DUMMY2) HSSP
DSP0203I COMMAND COMPLETED WITH CONDITION CODE 00
DSP0220I COMMAND COMPLETION TIME 89.045 16:28:10.3
DSP0211I COMMAND PROCESSING COMPLETE
DSP0211I HIGHEST CONDITION CODE = 00
DSP0058I RMI COMMAND COMPLETED

Figure 15. Example of using multisegment commands in a DBCTL environment

Licensed Materials – Property of IBM

Chapter 3. Administering DBCTL 47

Table 3. DBCTL operator commands and CICS equivalents (continued)

DBCTL operator command CICS equivalent Valid with
CDBM

/CHECKPOINT (simple form) ACTIVITY KEYPOINT Yes

/CHECKPOINT FREEZE or /CHECKPOINT
PURGE

CEMT PERFORM SHUTDOWN No

/CHECKPOINT STATISTICS CEMT PERFORM STATISTICS RECORD Yes

/DBDUMP None Yes

/DBRECOVERY None Yes

/DELETE None Yes

/DEQUEUE None Yes

/DISPLAY ACTIVE or /DISPLAY CCTL CEMT INQUIRE TASK Yes

/DISPLAY DATABASE None Yes

/DISPLAY DBD, /DISPLAY POOL, and
/DISPLAY PSB

None Yes

/ERESTART SIT with START=AUTO resulting in EMER
restart

No

/LOCK None Yes

/LOG None Yes

/MODIFY None No

/NRESTART CHECKPOINT 0 SIT START=INITIAL No

/NRESTART (without CHECKPOINT 0) SIT with START=AUTO resulting in WARM
start

No

/PSTOP None Yes

/RMCHANGE None Yes

/RMDELETE None Yes

/RMGENJCL None Yes

/RMINIT None Yes

/RMLIST None Yes

/RMNOTIFY None Yes

/SSR None No

/START DATABASE None Yes

/STOP DATABASE None Yes

/STOP THREAD CEMT SET TASK PURGE Yes

/SWITCH OLDS None Yes

/TRACE SET PI None Yes

/UNLOCK None Yes

/VUNLOAD None Yes

MVS MODIFY jobname,RECONNECT CEMT PERFORM RECONNECT N/A: MVS
command

MVS MODIFY jobname,STOP|DUMP CEMT PERFORM SHUTDOWN IMMEDIATE N/A: MVS
command

Licensed Materials – Property of IBM

48 CICS TS for z/OS 5.3: IMS Database Control Guide

Table 4. DBCTL operator commands and keywords

DBCTL operator
command

Keyword(s)

/CHANGE CCTL, PASSWORD, SUBSYS

/CHECKPOINT FREEZE, PURGE, ABDUMP, SNAPQ

/DBDUMP DATABASE

/DBRECOVERY AREA, DATABASE

/DELETE DATABASE, PASSWORD, PROGRAM

/DISPLAY ACTIVE, AREA, CCTL, DATABASE, DBD, INDOUBT, MODIFY, OASN SUBSYS, OLDS,
POOL, PROGRAM, PSB, SHUTDOWN STATUS, STATUS, TRACE

/ERESTART CHECKPOINT, COLDBASE, COLDCOMM, COLDSYS, FORMAT, NOBMP

/LOCK DATABASE, PROGRAM

/LOG None

/MODIFY ABORT, COMMIT, PREPARE

/NRESTART CHECKPOINT 0, FORMAT, NOPASSWORD, PASSWORD

/PSTOP REGION

/RMCHANGE DBRC modifier

/RMDELETE DBRC modifier

/RMGENJCL DBRC modifier

/RMINIT DBRC modifier

/RMLIST DBRC modifier

/RMNOTIFY DBRC modifier

/SSR Commands and keywords from appropriate subsystem (for example, DB2)

/START AREA, AUTOARCH, DATABASE, OLDS, PROGRAM, REGION|THREAD1, WADS

/STOP ADS, AREA, AUTOARCH, DATABASE, OLDS, PROGRAM, REGION|THREAD1, WADS

/SWITCH OLDS

/TRACE SET, MONITOR, PI, PSB, TABLE

/UNLOCK DATABASE, PROGRAM

/VUNLOAD AREA

Note: THREAD is a synonym for REGION.

CDBM operator transaction
You can use CDBM to issue most of the IMS operator commands that are valid for
DBCTL across the DRA interface to DBCTL to display and change the state of
selected resources.

CDBM also provides a means of maintaining a command file which stores
commands. You can store commands for any reason, most likely because you want
to reuse them. These stored commands can include more databases than the
operator transaction panel has space for.

When dealing with databases, you can use an asterisk (*) to refer to generic
groups; for example DB21* refers to all databases starting with the characters

Licensed Materials – Property of IBM

Chapter 3. Administering DBCTL 49

DB21. You can also use a plus (+) sign in place of a single character; for example,
DB+2 displays databases DB12, DB22, DB32, and so on.

You can issue DBCTL commands via a menu panel, as shown in Figure 16. This
panel is obtained by starting the CDBM transaction.

On this panel you can enter a DBCTL command, for example:
/DISPLAY DB ALL

or a group command, for example:
/GROUP SAMPLE STA

There is also a help screen, as shown in Figure 17 on page 51.

CDBM CICS-DBCTL Operator Transaction 98.135
13:24:20

Type IMS command.
__
__
__
__

For /DBDUMP or /DBRECOVER commands

Choose one. 1 1. Do not force end of volume
2. Force end of volume

Press enter to display responses.

CICS APPLID DBDCCICS
DBCTL ID SYS3

F1=Help F2=Maintenance F3=Exit F5=Refresh F12=Cancel

Figure 16. CDBM CICS-DBCTL operator transaction panel

Licensed Materials – Property of IBM

50 CICS TS for z/OS 5.3: IMS Database Control Guide

An example of the use of a /GROUP command from the CICS-DBCTL Operator
Transaction screen is shown in Figure 18.

Responses to commands issued from the CDBM screen are returned on a screen
like the one in Figure 19 on page 52, which shows the first of a number of screens
resulting from a /DISPLAY DB ALL command.

CDBM Help: CICS-DBCTL Operator Transaction

CDBM Use the transaction to send an IMS command to a DBCTL system.

Command Type the command recognition character / followed by an IMS
command and press enter to display responses.

Responses Use the PF keys to page IMS responses.

Wildcards * or + can be used within one database name.

End of volume For /DBDUMP or /DBRECOVER commands only
Choose one.

1. Do not force end of volume
2. Force end of volume

CICS APPLID
These are shown for information.

DBCTL ID
Enter the group common maintenance screen.

Example /DIS DB DEPT* displays the status of several databases.

F3=Exit F12=Cancel

Figure 17. CDBM CICS-DBCTL operator transaction help panel

CDBM CICS-DBCTL Operator Transaction 98.135
13:24:20

Type IMS command.
/GROUP SAMPLE STA__
__
__
__

For /DBDUMP or /DBRECOVER commands

Choose one. 1 1. Do not force end of volume
2. Force end of volume

Press enter to display responses.

CICS APPLID DBDCCICS
DBCTL ID SYS3

F1=Help F2=Maintenance F3=Exit F5=Refresh F12=Cancel

Figure 18. CICS-DBCTL operator transaction panel showing a GROUP command

Licensed Materials – Property of IBM

Chapter 3. Administering DBCTL 51

Alternatively, you can issue CDBM and the DBCTL command directly, as follows:
CDBM /xxxxxxxx

where / is the default CRC and xxxxxxxx is an IMS operator command that is
valid for use with DBCTL and CDBM.

Note: IMS requires that each command is prefixed with the default CRC. The CRC
is present only for syntax checking; it does not determine to which DBCTL the
command is sent. You cannot use a CRC value to route a command to a particular
DBCTL system through CDBM. It can be sent only to the one currently connected
to CICS. This DBCTL can have its own CRC value which is different from the
default one of '/'. However, this does not matter to CDBM, because the '/'
character is used only for syntax checking, and the command is presented to the
connected DBCTL without a CRC, using the AIB interface.

The /GROUP can also be entered in this way, for example:
CDBM /GROUP SAMPLE DIS.

The following IMS operator commands are valid with CDBM:
v /CHANGE
v /CHECKPOINT (simple form) and /CHECKPOINT STATISTICS
v /DBDUMP
v /DBRECOVERY
v /DELETE
v /DEQUEUE
v /DISPLAY
v /LOCK
v /LOG
v /PSTOP
v /RMCHANGE
v /RMDELETE

CDBM CICS-DBCTL IMS Responses Screen 1
Responses 1 to 18

More: +
DATABASE TYPE TOTAL UNUSED TOTAL UNUSED ACC CONDITIONS
ACCOUNDB UP STOPPED, NOTOPEN, NOTINIT
ADMIDX1 UP STOPPED, NOTOPEN, NOTINIT
ADMOBJ1 UP STOPPED, NOTOPEN, NOTINIT
ADMOBJ2 UP STOPPED, NOTOPEN, NOTINIT
ADMOBJ3 UP STOPPED, NOTOPEN, NOTINIT
ADMSYSDF UP STOPPED, NOTOPEN, NOTINIT
BE1CHKPT DL/I UP NOTOPEN
BE1PARTA UP STOPPED, NOTOPEN, NOTINIT
BE1PARTB UP STOPPED, NOTOPEN, NOTINIT
BE1PARTC UP STOPPED, NOTOPEN, NOTINIT
BE1PARTS UP STOPPED, NOTOPEN, NOTINIT
BE2ORDER DL/I UP NOTOPEN
BE2ORDRX DL/I UP NOTOPEN
BE2PARTS DL/I UP NOTOPEN
BE2PCUST DL/I UP NOTOPEN
BE3ORDER DL/I UP NOTOPEN
BE3ORDRX DL/I UP NOTOPEN

More...

F1=Help F3=Exit F4=Top F6=Bottom F7=Bkwd F8=Fwd F9=Retrieve F12=Cancel

Figure 19. CDBM CICS-DBCTL IMS responses panel

Licensed Materials – Property of IBM

52 CICS TS for z/OS 5.3: IMS Database Control Guide

v /RMGENJCL
v /RMINIT
v /RMLIST
v /RMNOTIFY
v /START
v /STOP
v /SWITCH OLDS
v /TRACE SET PI
v /UNLOCK
v /VUNLOAD

The following IMS operator commands are not valid with CDBM and must be
issued via the MVS console:
v /CHECKPOINT FREEZE and /CHECKPOINT PURGE
v /MODIFY
v /ERESTART
v /NRESTART
v /SSR

DFHDBFK - The CDBM GROUP command file
Before you can use the /GROUP command CDBM requires a file in which all your
predefined commands can be stored. This file, DFHDBFK, is the CDBM GROUP
command file. It is a VSAM KSDS.

Note: The DFHDBFK file must be defined as a local file to each region that uses
the CDBM transaction. It cannot be shared by multiple regions. If the file is remote,
the CDBM transaction receives an error when it attempts to open the file.

The DFHDBFK file is not required until you first attempt to use the /GROUP
command.

Table 5. Record layout in the CDBM GROUP command file

Field Length Content Description

1 12 Group A 12-character field containing your chosen name for
this group. The acceptable characters are A-Z 0-9 $ @
and #. Leading or embedded blanks are not allowed,
but trailing blanks are acceptable.

2 10 IMS
Command

A 10-character field containing any of the IMS
command verbs that are valid for CDBM (see
Commands valid with CDBM for details). Leading or
embedded blanks are not allowed, but trailing blanks
are acceptable.
Note: The validity of the IMS command verb is not
checked by CDBM. Invalid values will be reported by
IMS when the command is attempted.

Licensed Materials – Property of IBM

Chapter 3. Administering DBCTL 53

Table 5. Record layout in the CDBM GROUP command file (continued)

Field Length Content Description

3 1406 IMS
Command
parameters

Up to 1406 characters of parameters appropriate to
the chosen IMS command verb. (This will often
consist of lists of databases.)
Note: Wildcard characters may not be used in the
parameters stored in the CDBM Group command file.
This is unlike the other functions of the CDBM
transaction which permit the use of wildcard
characters to describe multiple similarly named
databases.

Record layout in the CDBM GROUP command file
Each record in the DFHDBFK file contains one field which can be up to 1428
characters long.

The MAINTENANCE panel for DFHDBFK
If you press the Maintenance key (PF2) on the main CDBM panel, you get the
panel shown in Figure 20.

Input fields
The input fields are:
v Action
v Group
v IMS Command
v IMS Command parameters

(between the > < marks).

Group, IMS Command and IMS Command parameters are described in “Record
layout in the CDBM GROUP command file”

CDBM CICS/DBCTL COMMAND GROUP MAINTENANCE
_ ACTION A add B browse D delete R read U update
____________ GROUP __________ IMS COMMAND
> <
> <
> <
> <
> <
> <
> <
> <
> <
> <
> <
> <
> <
> <
> <
> <
> <
> <
> <
F1=Help F3=Exit F12=Cancel

Figure 20. CICS-DBCTL Group Maintenance Panel

Licensed Materials – Property of IBM

54 CICS TS for z/OS 5.3: IMS Database Control Guide

The Action field will accept one of the following:

A Add

Add a new record to the DFHDBFK file. If the key already exists, the Add
fails.

Note: To Add a record that is very similar to an existing record, but which has
a different key, you may find it helpful to Read the existing record, modify the
displayed fields, and then Add this new record.

B Browse

Displays the contents of the command file, record by record. Specify any key
(or none) to indicate where you want the browse to start. Each time you press
ENTER, Browse moves on to the next record. At the end of the file you will be
prompted to wrap around to the start of the file. You can accept this or not as
you prefer. Incomplete keys, and unknown keys are also acceptable as start
points. If no key is provided, the browse starts at the first record in the file.

If you have used Browse to locate a specific record for deletion or for update,
remember to use Read before either Delete or Update.

D Delete

Delete a record from the DFHDBFK file. A Delete must be immediately
preceded by a Read to lock the required record.

R Read

Read displays a specific record. Unlike Browse it does not operate on partial,
or absent keys, and does not present the next record when you press ENTER.

Read is required before those actions (Delete and Update) which change an
existing record. It locks that record against the possibility of being changed by
another operator. This action also serves to help you confirm that the correct
record has been selected.

A lock is released by ending CDBM, or by your next CDBM Maintenance
action (whether that is the Update or Delete you had contemplated, or
something different entirely).

U Update

Update a record in the DFHDBFK file. An Update must be immediately
preceded by a Read to lock the required record.

You cannot update the key fields (GROUP and IMS COMMAND).

Reminder:: Use Add to create a new key.

Note: In these descriptions, Key refers to the 22 characters at the beginning of
each record in the DFHDBFK file (namely the GROUP and IMS COMMAND).

If you press the help key (PF1) from the CICS-DBCTL Maintenance panel, you get
the panel shown in Figure 21 on page 56.

Licensed Materials – Property of IBM

Chapter 3. Administering DBCTL 55

Issuing DBRC commands
With DBCTL, you must issue DBRC commands via DBCTL console commands
(/RMxxxxxx) because DBRC runs outside the CICS address space. You can issue
the /RMxxxxxx commands via the CICS-supplied transaction CDBM.

You can use the following /RMxxxxxx commands online:
v /RMCHANGE: to change or modify information in the RECON
v /RMDELETE: to delete information from the RECON
v /RMGENJCL: to generate JCL for a specified utility
v /RMINIT: to create records in the RECON
v /RMLIST: to list the contents of the RECON
v /RMNOTIFY: to add information to the RECON.

For example:
/RMINIT DBRC=’DB DBD(IVPDB2) SHARELVL(3)’.

See IMS: Operations and automation for further guidance on the syntax of these
commands.

You can also enter DBRC commands in batch, but the syntax is slightly different,
as shown in Figure 22 on page 57.

CDBM Help: CICS-DBCTL Operator Transaction

Maintenance Store commands for issuing from the CDBM screen.

GROUP Enter the group you want to store a command in.

IMS COMMAND Enter a valid IMS command to execute with the supplied data

ACTION A - Add a command to the command file.
B - Browse the contents of the command file.
D - Delete a command, only after it has been read.
R - Read a command from the file.
U - Update a command, only after it has been read.

Issue commands from the main screen in the format
/GROUP group command.

Example /GROUP SAMPLE DIS shows information for the databases in

F3=Exit F12=Cancel

Figure 21. CICS-DBCTL Maintenance help panel

Licensed Materials – Property of IBM

56 CICS TS for z/OS 5.3: IMS Database Control Guide

IMS password security
Use the Resource Access Control Facility (RACF) to protect your databases and
program specification blocks (PSBs).

RACF is part of the z/OS Security Server and can be used to control access to IMS
resources. RACF has superseded the IMS Security Maintenance Utility (SMU),
which was last supported in IMS version 9. For further information about
password security, see IMS: System administration.

Controlling tracing of DBCTL events
To start and stop tracing of internal DBCTL events dynamically, and define
activities to be monitored by the IMS monitor, use the /TRACE command.

About this task
v The PI keyword specifies that program isolation (PI) trace data be written to a

trace table. PI trace entries contain information about program isolation
ENQ/DEQ calls and DL/I calls.

v The PSB keyword requests a trace of all DL/I calls issued for a specified PSB.
v The TABLE keyword specifies that online tracing into the specified trace tables

be started or stopped.

Use the CICS-supplied transaction CETR to trace DL/I activity. For DBCTL, CETR
traces a DL/I request until it leaves DFHDBAT.

See “Trace entries produced by DBCTL” on page 124 for information on obtaining
DBCTL trace entries. See IMS: Operations and automation for guidance on the syntax
of /TRACE commands and keywords, and IMS: System administration for guidance
on the effects using /TRACE commands can have on your system.

Finding out current status of DBCTL activities
To find out the status of particular DBCTL activities, use the /DISPLAY command.

About this task
v The /DISPLAY command with the ACTIVE keyword gives you an overview of

activity in the entire DBCTL subsystem including processing for BMPs and for
threads processing scheduled CICS transactions. For each thread that is currently
active (has a PSB scheduled) from a CICS transaction, there is an entry “DBT” in
the column headed “TYPE”, as shown in the /DISPLAY command examples in

//INITDB JOB 1,PGMERID,CLASS=Q,MSGCLASS=A
//*
//RECON EXEC PGM=DSPURX00,REGION=1000K
//STEPLIB DD DSN=IMS.RESLIB,DISP=SHR
//DFSRESLB DD DSN=IMS.RESLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//RECON1 DD DSN=IMS.RECON1,DISP=SHR
//RECON2 DD DSN=IMS.RECON2,DISP=SHR
//SYSIN DD *
INIT.DB DBD(IVPDB2) SHARELVL(3)

/*

Figure 22. Example JCL to register a database with DBRC

Licensed Materials – Property of IBM

Chapter 3. Administering DBCTL 57

IMS: Operations and automation . (The TYPE column shows the thread type and
DBT stands for DBCTL thread.) The display may show fewer DBT threads than
the number specified by MINTHRD in the DRA startup parameter table.

v The /DISPLAY command with the CCTL keyword displays all (or specified)
CICS systems currently connected to DBCTL. To specify a CICS system, add a
CCTLNAME, which is the APPLID of the connected CICS system. The
/DISPLAY command with the CCTL keyword also displays the following items
for all or specified CICS systems:
– All in-doubts for a given CICS or for all CICS systems (when you enter

/DISPLAY CCTL INDOUBT).
– Pseudo recovery token (only when status is INDOUBT). See “Resolving

indoubt CICS DBCTL units of work manually” on page 75 for information on
using the pseudo recovery token in a /CHANGE command.

– Recovery token.
– Thread number (displayed as REGID) for all threads.
– PSB name.
– Status of thread(s).
– All threads for a given CICS or all CICS systems.

Note: The /DISPLAY command uses the CCTL ID (which, in the case of a CICS
system, is the APPLID). However, many IMS messages use the jobname of the
CICS system. Therefore, it is advisable to have a naming convention that enables
operators to immediately identify a corresponding CICS APPLID and CICS
JOBNAME. For example, if you use the APPLID DBDCICA, your job name
could also contain the characters CICA.

v The /DISPLAY command with the OLDS keyword displays the system logging
status. You can use it to determine how many OLDS data sets are available for
use or require archiving.

v The /DISPLAY command with the POOL keyword displays main storage
utilization statistics for IMS storage pools.

v The /DISPLAY command with the AREA keyword displays the status of DEDB
data sets in an area.

v The /DISPLAY command with the DATABASE keyword displays the status (for
example, NOTOPEN or STOPPED) of specified databases. If the database you
specify is a DEDB, the associated DEDB areas are also displayed.

v The /DISPLAY command with the DBD keyword displays, for databases that
are being accessed, their type, the PSBs accessing them, and the type of access.
(You can use the DBD keyword only if you have DEDB support installed.)

v The /DISPLAY command with the MODIFY keyword displays the status of
resources to be deleted or changed using the /MODIFY command. See
“Changing DBCTL resources online” on page 59 for information on the
/MODIFY command.

v The /DISPLAY command with the PSB keyword displays the status of PSBs, the
databases being accessed, and the type of access. (You can use the PSB keyword
only if you have DEDB support installed.)

v The /DISPLAY command with the PROGRAM keyword displays the status of
PSBs; for example, NOTINIT or STOPPED.

v The /DISPLAY command with the SHUTDOWN STATUS keywords displays
system activity during a shutdown type of checkpoint; for example, the number
of regions still active.

Licensed Materials – Property of IBM

58 CICS TS for z/OS 5.3: IMS Database Control Guide

v The /DISPLAY command with the STATUS keyword displays the status of
DBCTL resources, such as databases and PSBs.

v The /DISPLAY command with the TRACE keyword displays status and options
for IMS traces and the IMS monitor, and whether restart should occur without
backout of BMP updates. (You can restart without using backout or recovery of
databases: see the description of the COLDBASE keyword of the /ERESTART
command in “Emergency restart” on page 68.)

Specifying messages to be logged on IMS log
Use the /LOG command to specify any alphanumeric character message to be
logged on the IMS log.

Changing DBCTL resources online
The /MODIFY command is a part of the online change process used to control the
modification of DBCTL resources online.

About this task

An online change for DBCTL is different from CICS resource definition online
(RDO). You first use the offline process for doing a generation (whether it is an
ACBGEN, or a partial MODBLKS generation for the DATABASE and APPLCTN
macros). Guidance information about doing these generations is in IMS: System
definition or IMS: System definition and IMS reference: Database utilities. To bring the
new libraries online, use the /MODIFY command. First use the /MODIFY
command with the PREPARE keyword to indicate the type of system definitions
that must be replaced. Depending on the parameters entered, the system initiates
quiescing of the appropriate resources. Then use the /MODIFY command with the
COMMIT keyword to bring all newly defined resources online, update the
changed resources, and invalidate the deleted resources. If the /MODIFY
command deletes a database, the database is closed and made unavailable to
programs. You cannot use the /MODIFY command on DEDBs.

If a failure occurs before a COMMIT completes, the changes defined by the
/MODIFY command with the PREPARE keyword are not recovered across an
emergency restart and you must reenter them. When a commit is successful,
changes persist across all DBCTL restarts.

You can use the /MODIFY command with the ABORT keyword to reset the status
that was set by the /MODIFY command with the PREPARE keyword. You can also
use the /MODIFY command with the ABORT keyword if you have previously
used the /MODIFY command with the COMMIT keyword, but it was not
successful and you decide not to continue with the change. See also “Finding out
current status of DBCTL activities” on page 57 for details of using the /DISPLAY
command with the MODIFY keyword.

Preventing programs and transactions from updating DBCTL
databases

You can use the /DBDUMP command with the DATABASE keyword to prevent
programs from updating DL/I full function databases.

Licensed Materials – Property of IBM

Chapter 3. Administering DBCTL 59

About this task

You can use the /DBRECOVERY command to prevent transactions or programs
from accessing a database (with the DATABASE keyword) or a DEDB area (with
the AREA keyword, which is valid with DEDBs only). The command closes and
deallocates the database(s) or area(s), so that they are not authorized to DBRC.

If a specified database is being used when you enter either /DBDUMP or
/DBRECOVERY, the thread currently using the database is allowed to complete,
but no further PSB schedules are allowed.

If a database specified in either of these commands is being used by a BMP, an
error message is issued, and the command is ignored for that database. You reenter
the /DBDUMP or /DBRECOVERY command when the database is no longer being
used by a BMP. If you need to recover the database immediately, use the /STOP
command with the THREAD keyword (or its synonym, REGION) to terminate any
BMPs using the database before you reenter the /DBDUMP or /DBRECOVERY
command.

For a whole DEDB, the PSB is not scheduled. For a DEDB area, programs are not
allowed access to data in that area. For a DL/I database, programs are not allowed
access to the database.

Note: Issuing the /DBRECOVERY and /DBDUMP commands causes the OLDS to
switch; an archive job may be generated to archive the previous OLDS. (This is
controlled by the ARC=xx startup parameter.) Use the NOFEOV keyword to
prevent the OLDS switching when you issue these commands.

The /START command reverses the effects of a /DBDUMP or /DBRECOVERY
command. The /START command allocates the database or area. A database is
authorized on the first schedule request it receives, and is opened at the first DL/I
request. An area is authorized and opened on receipt of the first DL/I request.

Switching to a new OLDS
Specifying /SWITCH OLDS causes the IMS log to switch to the next OLDS. This
switch to the next OLDS is marked as a recovery point for log archiving purposes.
If you also specify the (optional) CHECKPOINT keyword, IMS issues a simple
checkpoint after the active log data set has been switched to the next OLDS.

About this task

This switch capability is identical to that provided with the DBRECOVERY
command, as described in “Preventing programs and transactions from updating
DBCTL databases” on page 59 and “Log control with DBRC” on page 25.

Entering external subsystem commands from DBCTL
If you are using DBCTL to access DB2 databases via BMPs, you can use certain
DBCTL operator commands to enter external subsystem commands (where DB2 is
the external subsystem).

To display the status of all or specified external subsystems, use the /DISPLAY
command with the SUBSYS keyword. (This is similar to using the /DISPLAY
command with the CCTL keyword to display the status of CICS systems connected
to DBCTL.)

Licensed Materials – Property of IBM

60 CICS TS for z/OS 5.3: IMS Database Control Guide

To display the status of origin application schedule numbers (OASNs), which are
IMS recovery elements in a DB2 subsystem, use the /DISPLAY command with the
OASN and SUBSYS keywords. If you then need to purge any incomplete UOWs in
the external subsystem, use the /CHANGE command with the SUBSYS, OASN,
and RESET keywords.

To enter an external subsystem command from the DBCTL console or a program
authorized do so, use the /SSR command. For example:
/SSR -DISPLAY THREAD

displays information about DB2 threads. The command is processed in DB2 and
the response is sent back to the terminal from which you issued the /SSR
command.

Making DBCTL resources available
To make DBCTL resources available to refer to and use, enter the /START
command.

About this task
v Specify that the stopped status of particular DEDB areas be reset (AREA

keyword).
v Change the automatic archiving option selected at system initialization or

specified in a previous /STOP command (AUTOARCH keyword).
v Specify databases to be started so that they can be referenced by PSB schedule

commands (DATABASE keyword).
Add the NOBACKOUT keyword to the DATABASE keyword for databases that
are not registered in DBRC and were backed out using standard batch backout.
If your databases are registered with DBRC, the /START process inquires with
DBRC whether backout needs to be done before starting a database.

v Specify that a previously stopped online log data set (OLDS) is to be started or
that DBCTL is to add a new OLDS (OLDS keyword). (See “IMS online log data
set (OLDS)” on page 24 for more information on this data set.)

v Specify a PSB to be started (PROGRAM keyword). DBCTL stops a PSB after
most pseudo abend codes that can occur. If this happens, you must use a
/START PROGRAM command before that PSB can be scheduled again.

v Start BMPs from a JCL partitioned data set (REGION keyword). Using /START
REGION in this way enables you to keep all your BMP JCL in one place.

v Specify that a write-ahead data set (WADS) is to be added to the pool of WADS
(WADS keyword).

Preventing scheduling of PSBs and use of DBCTL databases
You can use the /STOP command to stop the scheduling of specific PSBs and the
use of a given database.

About this task

The /STOP command works as follows:
v The ADS keyword specifies that a DEDB area data set (ADS) is to be stopped

and deallocated. Note that this command stops only the ADS, not the entire
area. The area is stopped only if there is no ADS allocated. This command is

Licensed Materials – Property of IBM

Chapter 3. Administering DBCTL 61

rejected if the ADS you specified is the last data set available in the area because
ADSs are invalidated when they are stopped. ADSs are reestablished by running
the DEDB area data set create utility.

v The AREA keyword specifies that all the data sets associated with an area are to
be stopped and deallocated. The status of this area is set to STOP, as displayed
with a /DISPLAY DATABASE command. (See “Finding out current status of
DBCTL activities” on page 57.) If the area is already stopped, the /STOP
command just deallocates the data sets.

v The AUTOARCH keyword specifies that automatic archiving is to be stopped.
v The DATABASE keyword stops the use of the specified database.
v The OLDS keyword specifies that DBCTL is to stop using an OLDS.
v The PROGRAM keyword specifies that a PSB is to be stopped.
v The REGION or THREAD keywords specify a region or thread that is to be

stopped. This can be a region or thread shown by the /DISPLAY CCTL
command. (See “Finding out current status of DBCTL activities” on page 57.)

v The WADS keyword indicates that a WADS is to be removed from the pool of
WADS.

Purging a transaction that is using DBCTL
You can query and purge tasks that use DBCTL using the CICS CEMT transaction
as for any CICS task.

About this task

However, if a transaction has “hung” in DBCTL, and you need to purge it, you
must use the DBCTL command /STOP THREAD.

To find out what is happening to a task:
1. Issue CEMT INQ TASK to find out what tasks are active.
2. Expand the information on individual tasks by typing a ? to the left of the task

you want to see. You will get a display like the one in Figure 23 on page 63.

Licensed Materials – Property of IBM

62 CICS TS for z/OS 5.3: IMS Database Control Guide

Figure 23 includes the following useful information:
v Tas(0000110): task identifier
v Tra(DLID): transaction name of the task
v Fac(D2D3): identifier of the terminal or queue that initiated the task
v Sus: the task is suspended
v Ter: the task was initiated from a terminal
v Pri(001): the task is running with a priority of 1
v Hty(DBCTL): the task is currently issuing a DL/I request to DBCTL
v Hva(DLSUSPND): the task is suspended in DBCTL
v Hti(000007): how long, in seconds, the task has been sus pended
v Sta(TO): how the task was started; TO means from a terminal by an operator

entering a transaction
v Use(CICSUSER): is the userid of the user who initiated the task
v Rec(X’9EDA1F61E11CFA02’) shows the recovery token associated with the task
v The screen also contains a reminder of the syntax of the CEMT SET TASK

command, which you may need to use; for example, if you want to purge
the suspended task.

v SYSID=CIC1: CICS system identifier, as specified in the system initialization
parameter SYSIDNT.

v APPLID=DBDCCICS: APPLID for the CICS system.
3. Issue CEMT INQ TASK again.
v If the response indicates that the task is no longer suspended in DBCTL, you

can purge it using CEMT SET TASK(n) PURGE as for any CICS task. The
purge takes place after the DL/I request to DBCTL has completed.

v If the response indicates that the task is still suspended in DBCTL, the task
has “hung” in DBCTL, and you must use DBCTL operator commands to
purge it.

To do this:

I TA
SYNTAX OF SET COMMAND
Tas(0000110) Tra(DLID) Fac(D2D3) Sus Ter Iso Pri(001)

Hty(DBCTL) Hva(DLSUSPND) Hti(000007) Sta(TO)
Use(CICSUSER) Rec(X’9EDA1F61E11CFA02’)

CEMT Set TAsk() | < All >
< PRiority() >
< PUrge | FOrcepurge >

SYSID=CIC1 APPLID=DBDCCICS

PF 1 HELP 3 END 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 23. CEMT INQ TASK (expanded)

Licensed Materials – Property of IBM

Chapter 3. Administering DBCTL 63

1. From the CEMT INQ TASK display, make a note of the CICS APPLID and the
16-digit recovery token. (You can use a recovery token to find the thread
number of a CICS task in DBCTL. For a fuller definition, see “CICS DBCTL
recovery tokens” on page 74.)

2. At the DBCTL console, enter /DISPLAY CCTL cctlname, where cctlname is the
CICS APPLID (in this example, it is DBDCCICS). This causes the current status
of DL/I activity to be displayed, as shown in Figure 24.

3. Find the recovery token (9EDA1F61E11CFA02 in this example) that matches the
one you noted from the CEMT INQ TASK display, and then note the thread
number that is next to it in the REGID column (6 in this example).

4. Issue the command:
/STOP THREAD n ABDUMP

where n is the thread number.
This causes the thread and transaction to terminate when it has finished
processing the current request, and causes a dump to be taken.
If the thread does not stop, use:
/STOP THREAD n CANCEL

Do not use /STOP THREAD CANCEL if you do not need to, because it may
cause DBCTL to terminate with a U113 abend.

Stopping DBCTL normally
To stop DBCTL normally and disconnect it from CICS, use the /CHECKPOINT
command with the FREEZE or PURGE keywords.

About this task

Active threads are terminated, CICS threads are terminated when they reach a sync
point, and BMPs are processed until they reach a checkpoint, a SYNC call, or the
end of a program. Shutdown then completes and the system status is saved in a
system checkpoint on the log, and in the checkpoint ID table on the restart data
set.

The difference between the FREEZE and PURGE keywords applies to BMPs.
FREEZE stops them after the next checkpoint, or at program completion,
whichever is the sooner, and PURGE allows them to complete.

When you have stopped DBCTL using /CHECKPOINT FREEZE or
/CHECKPOINT PURGE, you can warm start it using /NRESTART, as described in
“Warm start” on page 68.

0080 /DIS CCTL DBDCCICS
0080 DFS000I MESSAGE(S) FROM ID=SYS1 047
0080 CCTL PSEUDO-RTKN RECOVERY-TOKEN REGID PSBNAME STATUS
0080 DBDCCICS ATTACHED
0080 9EDA1F61E11CFA02 6 PC3COCHD ACTIVE
0080 9EDA1F4E9B571B02 5 PC3COCHD ACTIVE
0080 *88204/101241*

Figure 24. Output from /DISPLAY CCTL cctlname

Licensed Materials – Property of IBM

64 CICS TS for z/OS 5.3: IMS Database Control Guide

Stopping DBCTL abnormally
There is no equivalent of a CICS immediate shutdown in DBCTL. If you need to
force termination of DBCTL, the MVS console operator has to issue an MVS
MODIFY jobname STOP command.

About this task

This causes an abnormal termination without a dump. If you want a dump to be
taken, use an MVS MODIFY jobname DUMP command. For guidance on using
MVS commands with IMS, see IMS: Operations and automation .

Dealing with messages from DBCTL and CICS
Messages from DBCTL (in the form DFSnnnn) are sent to one or more consoles as
specified in the MCS parameter of the IMSCTRL macro in the IMS generation.
These messages include notification of change in status and of abnormal events.

About this task

There are many additional messages in the DBCTL environment. You can direct
them to the console from which DBCTL commands are entered. However, if the
volume of messages is such that it is impractical to view them “live” at the
console, you can direct them to the console log and process them with the tool that
your installation uses to review console output.

The DFS554 message is a notification of the abnormal termination of a BMP region
or a thread from a CICS transaction. If this message is caused by an abnormal
termination of a thread that originated from CICS, the message text contains the
CICS job name or CICS started procedure name. The text also contains the abend
code in the form SSS, UUU where SSS is a system abend code and UUU is an IMS
user abend code. See “Return codes in DBCTL” on page 129. The message might
contain the characters PSB. If it does, the PSB contained in the message has been
stopped. All attempts to schedule that PSB will fail until a /START PROGRAM
command is issued for that PSB. For guidance on interpreting DFSnnnn messages,
see IMS messages and codes .

Messages from CICS that relate to DBCTL (for example, those relating to the CDBC
transaction) are sent to the transient data destination CDBC so that they are located
in one place. You can reroute these messages from CDBC, as you can with CSMT.

You can suppress or reroute messages sent to transient data queues such as CDBC.
You can reroute from CDBC to a list of consoles, from CDBC to a different
transient data queue, or reroute console messages from their transient data queues
to CDBC. For programming information about coding the CICS-supplied user exit
used to reroute messages and the example user exit provided to help you do so,
see Global user exit points in Developing system programs.

Messages DFHDB8103 and DFHDB8104 are issued if there is a failure to connect to
DBCTL. They contain the DBCTL reason codes for the connection failure.

Message DFHDB8109 is issued in the following situations:
v A schedule request has failed.
v DBCTL has abnormally terminated a thread and, as a result, CICS abnormally

terminates the transaction.

Licensed Materials – Property of IBM

Chapter 3. Administering DBCTL 65

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfha3/topics/dfha331.html

Message DFHDB8109 is not issued when an error type status code is returned to
the application program.

You can use message DFHDB8109 to identify the IMS reason for which this CICS
transaction has failed. For guidance on interpreting the IMS abend and reason
codes, see IMS messages and codes.

Recovery and restart operations for DBCTL
Covers recovery and restart, commit protocols and resolving indoubt units of
work.

Overview of CICS and IMS recovery and restart
CICS and IMS perform similar recovery functions, but there are differences in
terminology and in implementation.

See IMS: Operations and automation for background information on recovery in IMS.
If you are familiar with CICS or IMS, but not both, read this overview and then
read the manual for the product that you are not familiar with.

CICS startup and shutdown
CICS has different types of startup and shutdown and these affect the DBCTL
connection.

CICS has the following types of initialization or restart depending on the START
system initialization parameter and on how CICS was last terminated:
v Initial start
v Cold start
v Warm start
v Emergency restart.

You cannot specify warm start or emergency restart explicitly. Instead, you specify
the START=AUTO system initialization parameter, and CICS determines which of
these two kinds of start to use.

If CICS performs a warm start or an emergency restart on a system to which
DBCTL was connected and DBCTLCON=YES is specified as a system initialization
parameter, the same DRA startup table suffix is automatically used when DBCTL is
reconnected. The suffix might change if you have used the INITPARM system
initialization parameter, as described in “Reviewing CICS system initialization
parameters” on page 14, to override the suffix previously used. For information on
methods of connecting to the same, or a different, DBCTL see “Connecting DBCTL
to CICS automatically” on page 38.

CICS initialization begins when the job is submitted and, in almost all cases,
continues until completion of the specified type of restart. Error conditions might
require operator replies or might cause abnormal termination.

CICS has three types of termination:
v Normal
v Immediate
v Abnormal, due to abend or an MVS CANCEL

Licensed Materials – Property of IBM

66 CICS TS for z/OS 5.3: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.sysdefinition.doc/parameters/dfha2_start.html

The CICS master terminal command to shut down CICS has two options: normal
and immediate. A normal shutdown allows transactions to complete before
shutting down and saves the system status in the CICS catalog. You can do a
warm start after a normal shutdown. An immediate shutdown does not allow
transactions to complete. It is equivalent to an abnormal termination, and you
must restart CICS using emergency restart.

There are special considerations for canceling CICS when it is connected to
DBCTL. See the information on causing an abnormal termination of CICS, in
“CICS failure” on page 79.

Restarting DBCTL
DBCTL has three types of (re)start:
v Cold (/NRESTART CHECKPOINT 0)
v Warm (/NRESTART)
v Emergency (/ERESTART)

The startup process has two distinct phases: initialization and restart. You can use
AUTO restart to do either a warm start or an emergency restart.

With an AUTO restart, (DBCTL startup parameter AUTO=Y), DBCTL decides
whether warm start or emergency restart is required, based on the contents of the
IMS restart data set (RDS), and proceeds with the restart without your needing to
enter any further restart command.

If you need to enter your own restart command (for example, to perform a cold
start), use a non-AUTO restart (DBCTL startup parameter AUTO=N). Non-AUTO
restart stops after initialization, at which point you must manually enter a restart
command.

AUTO=N will have been specified, or defaulted to, for the first startup of DBCTL.
For subsequent restarts, use warm start or emergency restart, which means that
you will need to change the parameter to AUTO=Y. For guidance on specifying
AUTO=Y and AUTO=N, see IMS: System definition or IMS: System definition.

During restart processing, the log and RECON are opened.

The sections that follow state how you use these types of (re)start with DBCTL.

Cold start:

With this type of start, DBCTL is brought up in the state it was in at system
generation.

Do not use cold start after a DBCTL failure. Instead, use an emergency restart. See
“Emergency restart” on page 68 for more information.

To request a cold start of DBCTL, use the /NRESTART command with the
CHECKPOINT 0 keyword. Additional keywords with /NRESTART CHECKPOINT
0 enable you to:
v Specify whether you want the RDS, or the WADS (or both) formatted as part of

restart process (the RDS, WADS, or ALL keywords). Format the RDS and the
WADS if there has been a data set I/O error, if you need to reallocate a data set
or change its size, or if you are starting DBCTL for the first time.

Licensed Materials – Property of IBM

Chapter 3. Administering DBCTL 67

v Specify whether the IMS system definition password security option is to be in
effect: provided your system definition enables operators to change password
security (the PASSWORD keyword).
Before you do a cold start, you must ensure that the IMS you intend to start
does not have a subsystem record in the RECON. This will be the case if it is a
new subsystem, if it was shut down normally the last time it was used, or if it
was not shut down normally but the appropriate DBRC commands (including
DELETE.SUBSYS) and other actions needed to ensure database integrity were
performed.

Warm start:

With this type of start, DBCTL is brought up in the environment it was in when it
terminated normally using a /CHECKPOINT FREEZE or /CHECKPOINT PURGE
command.

This is described in “Stopping DBCTL normally” on page 64. After a warm start,
resources are in the same state they were in at the time the system was shut down.

The difference between the FREEZE and PURGE keywords applies to BMPs.
FREEZE stops them after the next checkpoint, or at program completion,
whichever is the sooner, and PURGE allows them to complete. See IMS: Operations
and automation for a list giving guidance on the differences between these options.

To request a warm start of DBCTL, use the /NRESTART command without
CHECKPOINT 0.

Any indoubt UOWs are re-created for this type of start. (An indoubt UOW is a
piece of work that is pending during commit processing. If commit processing fails
between DBCTL’s response to CICS’s request to prepare for commit and CICS’s
decision to execute the commit, recovery processing must resolve the status of any
work that is indoubt.) See “Resolving indoubt CICS DBCTL units of work
manually” on page 75 for information on using operator commands to resolve
indoubt UOWs.

You can use the following optional keywords on /NRESTART:
v If the WADSs have been reallocated, specify whether you want them to be

formatted as part of the restart process. Format the RDS and the WADS if there
has been a data set I/O error or if you need to reallocate a data set or change its
size.

v Specify whether the IMS system definition password security option is to be in
effect: provided your system definition enables operators to override password
security.

Emergency restart:

With this type of start, DBCTL is restarted in the environment it was in before a
DBCTL failure.

To perform an emergency restart of DBCTL, use the /ERESTART command. DL/I
in-flight UOWs (that is, those that were still being processed when the failure
occurred) are backed out. Committed but unwritten DEDB changes are applied to
the database. Units of work that were indoubt are retained and are resolved
automatically when CICS and DBCTL are reconnected. For further guidance on
how this is done, see IMS: Operations and automation. If the UOWs fail to be

Licensed Materials – Property of IBM

68 CICS TS for z/OS 5.3: IMS Database Control Guide

resolved automatically, you can use DBCTL operator commands to do so, as
described in “Resolving indoubt CICS DBCTL units of work manually” on page 75.

If a failure in emergency restart prevents backout being completed, instead of
using a COLD start, you can reattempt the emergency restart using the
COLDBASE keyword on the emergency restart command. Full function DL/I
databases and DEDB areas that have indoubt data or that need backout or
recovery are identified and stopped. Database backout and committed DEDB
updates are not done. You must then use the appropriate IMS utilities to backout
or forward recover these databases. (See IMS reference: Database utilities for
guidance on using the utilities.)

You can also specify whether the restart or write ahead data sets should be
formatted as part of the restart process. Format the RDS and the WADS if there has
been a data set I/O error or if you need to reallocate a data set or change its size.

CICS keypoints and IMS checkpoints
This section discusses system-level keypoint and checkpoint information. Both
CICS and IMS also have task or program (thread) level synchronization
information.

CICS keypoints and IMS checkpoints both contain system status information that is
modified during online operation. The concepts are basically the same, but they are
implemented differently.

A CICS warm start uses a warm keypoint that was written to the CICS catalog by
the previous normal CICS shutdown.

A CICS emergency restart reads the CICS system log backwards until it has located
an activity keypoint. The keypoint contains a record of incomplete UOW chains
which CICS reads directly. These chains can reside on the primary and secondary
system logs.

An IMS warm start reads the checkpoint ID table on the RDS to find the shutdown
checkpoint on the log. The RDS is a data set that IMS uses to record system
checkpoint ID information during the logging process. IMS finds the information it
needs and uses it automatically. If the RDS is not available at restart, you can
obtain the checkpoint information needed from the log, but this may lengthen the
restart process. Generally, you do not need to know the content of the RDS.
However, if you are faced with a particularly complex recovery problem, you may
need to examine the RDS. You can find guidance on its contents in IMS: Operations
and automation.

An IMS emergency restart reads the checkpoint ID table on the RDS and selects
the checkpoint that precedes the last synchronization point of each program that
was active at the time of the failure. It then reads the IMS log forward from the
selected checkpoint.

To take a simple checkpoint of DBCTL, use the /CHECKPOINT command.

Backing out uncommitted updates after a failure: The meaning of the term
dynamic backout differs slightly between CICS and IMS.

In CICS, dynamic backout means backout as a result of a transaction (or
application program) failure. The term transaction backout is used for backout
done during CICS emergency restart.

Licensed Materials – Property of IBM

Chapter 3. Administering DBCTL 69

In IMS, dynamic backout means backout as a result of a program failure. In a
DBCTL environment, program failures include CICS transaction abends and BMP
failures. The IMS /ERESTART command also performs emergency restart backout.
IMS provides a batch backout utility, DFSBBO00, which you can use if dynamic
backout or emergency restart fails. See IMS: Operations and automation for guidance
on when to run this utility, and IMS reference: Database utilities for guidance on how
to run it.

Because IMS does the backing out of database updates in a DBCTL environment,
we concentrate on IMS backout in this section.

For IMS full function databases, database changes are placed in the log buffers and
the database buffers as they are made. Depending on system activity, they may be
written before they are committed and so, after a program failure or an IMS
system failure, databases may require backout. The IMS log data sets (OLDS) are
used for dynamic backout. (See “IMS online log data set (OLDS)” on page 24 for
more information.) Additionally, if dynamic backout or /ERESTART backout fails,
for a database, that database is stopped. The backout is automatically reattempted
when the database is restarted.

For DEDBs, no changes are placed in the log buffers until syncpoint processing
begins, and no changes are written to the database until a commit has been
received. This means that they do not need backout if there is a failure during
phase 1 of the syncpoint process. The system can undo the changes by releasing
the database buffers that have been modified but not yet written.

Log records
The IMS log is a record of activities and database changes. Among the log records
written to the IMS log are those that record both phases of the commit for each
unit of work.

These log records contain the information necessary for database recovery and
system restart. The IMS: Diagnosis contains, for guidance, a list of the types of log
records and tells you how to obtain a listing of these DSECTs. The IMS reference:
Database utilities gives guidance on using the file select and formatting print utility,
DFSERA10, to print the IMS log records.

Database recovery control (DBRC)
Database recovery control (DBRC) assists you in controlling DBCTL logs, and in
managing recovery of databases.

With DBCTL, you must use DBRC to control your logs, and you may optionally
use it to control batch logs and database recovery. DBCTL requires DBRC to be at
SHARECTL level; if it is not, DBCTL will not start.

You may optionally use DBRC to control the data sharing environment by allowing
(or preventing) access to databases by various subsystems sharing those databases.

If you use DBRC to control database recovery, you must register your databases
with DBRC, so that it can record the relevant information in the RECON, and then
use that information to control the recovery of your databases. See IMS: Operations
and automation for general guidance on registering databases. You can register your
databases using either of the following:
v The recovery control utility, DSPURX00. See IMS reference: Database utilities for

guidance on using DSPURX00.

Licensed Materials – Property of IBM

70 CICS TS for z/OS 5.3: IMS Database Control Guide

v The /RMINIT.db and /RMINIT.dbds commands. See IMS: Operations and
automation for guidance on the syntax of these commands.

To recover a database that is registered with DBRC, use the /RMGENJCL.RECOV
command. DBRC recovers the database using a combination of available input; for
example, image copy data set, change accumulation data sets, log data sets, and
archived log data sets.

Recovery control (RECON) data sets
DBRC automatically records information in dual recovery control (RECON) data
sets. Both data sets contain identical information, and so are usually referred to as
one: the RECON. The information from the RECON is needed during warm and
emergency restarts. DBRC selects the correct data sets to be used by a recovery
utility when you enter a GENJCL command. For a restart, the RECON shows
which data set, the OLDS or the SLDS, contains the most recent log data for each
database data set (DBDS) you have registered with DBRC. For the OLDS, the
RECON shows whether the OLDS has been closed and whether it has been
archived. The RECON contains timestamp information for each log data set and
volume. IMS uses this information to determine which data set and volume
contain the checkpoint information needed to restart DBCTL.

Commit protocols and units of recovery for DBCTL
This section describes what happens when a transaction has updated DBCTL
databases, and is issuing a syncpoint, or a TERM request, or is terminating. If a
failure occurs at any of these stages, DBCTL might not be able to determine
whether CICS intended these updates to be backed out or committed and must
request this information from CICS when it has been reconnected.

Two-phase commit for DBCTL
DBCTL uses a two-phase commit to record a syncpoint. At the completion of a
two-phase commit, the requested processing is committed and if a failure occurs,
DBCTL does not ABORT committed changes.

Two-phase commit consists of the PREPARE and COMMIT phases. Within the
PREPARE phase, CICS issues a PREPARE request to DBCTL. DBCTL writes to the
log and issues its response to the PREPARE request to CICS. Within the COMMIT
phase, there are two possible actions: COMMIT and ABORT. The ABORT action for
data belonging to full function DL/I databases is backout. There is no backout for
data belonging to DEDBs because it is not written to the database before the
COMMIT phase. The effect of an ABORT for DEDBs is also referred to as undo.
Because a CICS thread may be accessing data belonging to both full function DL/I
databases and DEDBs, we use the term ABORT to refer to both backout and undo.

When updates are written to databases:

The DEDB terms UNDO and REDO are analogous to the DL/I full function terms
BACKOUT and COMMIT respectively. However, although the processes that these
terms refer to have the similar end results, the processes themselves differ.

The difference is in the stage at which updates are written to the database. This is
shown in Figure 25 on page 72.

Licensed Materials – Property of IBM

Chapter 3. Administering DBCTL 71

This difference in timing of writing updates dictates the action taken during the
second phase of two-phase commit.

For full function DL/I databases:
v If the phase 2 action is COMMIT, no action is needed to commit updates

because DL/I wrote them to the database during phase 1.
v If phase 2 action is ABORT, a BACKOUT of the updates is required because

DL/I wrote them to the database during phase 1.

For DEDBs:
v If phase 2 action is COMMIT, the changes must be REDOne to the database

because they have only been made in main storage. (They are written
(committed) to the database on DASD by the output threads, which are
generated by the IMS system generation parameter OTHREADS. See IMS:
System definition or IMS: System definition for guidance on this parameter.)

v If phase 2 action is ABORT, no changes have to be made to the database,
because the changes are still in main storage, and can be UNDOne from there.

REDO is also used to refer to the action required for committed DEDBs during
emergency restart of IMS. IMS can determine from the log that a COMMIT was
initiated, but that phase 2 is not indicated as complete. In this case, DEDB updates
must be REDOne. The two phases are:
1. Phase 1, in which CICS directs syncpoint preparation and asks whether or not

the updates to DBCTL databases can be committed.
2. Phase 2, in which CICS tells DBCTL that it must either COMMIT or ABORT the

resources. (CICS can request an ABORT without first issuing a PREPARE
request. That is, CICS can bypass the first phase of two-phase commit when an
update is being backed out.)

Figure 26 on page 73 shows two-phase commit and describes the activities taking
place.

PREPARE COMMIT
phase 1 in-doubt phase 2

..................
DL/I updates DEDB updates

Figure 25. When updates are written to databases

Licensed Materials – Property of IBM

72 CICS TS for z/OS 5.3: IMS Database Control Guide

Note:

1. The syncpoint request can be EXEC CICS SYNCPOINT, a DL/I TERM call, or a
CICS task termination.

2. If DBCTL indicates that it cannot commit the updates, CICS aborts the unit of
recovery and the rest of the Figure 26 does not apply.

3. If CICS tells DBCTL to commit the updates, DBCTL must commit.
4. At this stage, units of recovery are in-flight and, if DBCTL fails, all database

updates are aborted.
5. At this stage, from the time that DBCTL issues its response to the PREPARE

request to the time it receives a COMMIT request from CICS, units of recovery
are indoubt. DBCTL retains the indoubt information. When DBCTL is restarted
after a failure, it inquires with CICS about the status of the in-doubts. This is
part of resynchronization.

UOWs and resources belonging to multiple resource managers: The two-phase
commit process also applies if a UOW is updating resources that belong to more
than one resource manager; for example, any of the following: DBCTL databases
(DL/I full function or DEDBs, or both), local VSAM files, and DB2 databases. CICS
is the coordinator of the two-phase commit process; DBCTL is a participant. CICS
must ensure that all the resource managers, including DBCTL, are in
synchronization. To do this, at phase 1 of two-phase commit, it issues a PREPARE
request to all the resource managers involved to find out if a COMMIT can be
done. This is as shown in Figure 26, in which CICS is communicating with DBCTL
only. If all the other resource managers indicate that a COMMIT is possible, CICS
tells them all to COMMIT. If not, CICS tells them all to ABORT. The COMMIT or

CICS Task-related user exit DBCTL
interface

CICS receives
syncpoint
request (1) In-flight (4)

P Begins phase 1
r PREPARE request
e Enters phase 1
p
a DBCTL writes to log
r DBCTL retains locks
e Response to

(2)
CICS writes PREPARE request
to log In-doubt (5)

Begins phase 2 (3)
COMMIT request

Enters phase 2
C
o DBCTL writes to log
m DBCTL releases locks
m
i OK Committed
t

CICS writes
end-of-syncpoint
record to log

Figure 26. Two-phase commit

Licensed Materials – Property of IBM

Chapter 3. Administering DBCTL 73

ABORT must now be carried out in all the resource managers. For this reason,
CICS considers the COMMIT or ABORT to be completed at this stage, even if it is
slightly delayed.

DBCTL unit of recovery
A DBCTL unit of recovery is created for each processing request when the first
schedule request is made by the transaction, and is kept until the two-phase
commit is complete. As described in “Resolving indoubt CICS DBCTL units of
work manually” on page 75, commands are available to display the units of
recovery and take appropriate actions for committing or ending them.

In-flight unit of recovery: If DBCTL fails and is subsequently restarted, all
in-flight units of recovery are backed out.

Indoubt unit of recovery: When a failure occurs, a recoverable indoubt structure
(RIS) is constructed for each indoubt unit of recovery and is also written to the
IMS log. The RIS contains:
v Residual recovery element (RRE), which contains the recovery token.
v Indoubt extended error queue element (IEEQE), which contains the changed

data records.
v Buffer extended error queue element (BEEQE), which indicates a data block that

cannot be accessed because of unresolved in-doubts.
v Extended error queue element link (EEQEL), which links the basic portion of the

RIS (the RRE) with the IEEQE and the BEEQE, which are used to protect
indoubt data.

The IMS batch backout utility, DFSBBO00, and the IMS database recovery utility,
DFSURDB0, process the indoubt units of recovery.

CICS units of work (UOWs): CICS UOWs and DBCTL units of recovery are more
or less synonymous, except that from CICS’s point of view, a UOW begins at the
beginning of a task, and a unit of recovery begins when that task issues its first
DL/I request. For simplicity, in the rest of this book, we use the CICS term UOW
to refer to both. The IMS publications use the term “unit of recovery”.

CICS DBCTL recovery tokens
Recovery tokens are created by CICS and passed to DBCTL. They are unique
identifiers for each UOW. The lifetime of a recovery token is the same as for a
UOW.

You can use them to correlate work done between CICS and DBCTL in the same
UOW. Each recovery token is 16 bytes long; the first 8 bytes are the CICS APPLID
(passed to DBCTL when CICS is first connected) and the second 8 bytes are a
UOW identifier. CICS creates an identifier like this for every UOW. DBCTL
validates the recovery token to protect against duplication of UOWs. You can use
the recovery token in certain operator commands. For example, you can display it
as part of the output of the /DISP CCTL and CEMT INQ TASK commands, and
you can enter it in /CHANGE commands, in the form of a pseudo recovery token.
The recovery token is included in certain messages (for example, the CICS message
DFHDB8109, which is issued when a DL/I request has failed). Recovery tokens can
be useful in problem determination, because they are displayed in dumps
produced by CICS and DBCTL and in trace entries produced by CICS. See
Chapter 6, “Troubleshooting DBCTL,” on page 111 for more information.

Licensed Materials – Property of IBM

74 CICS TS for z/OS 5.3: IMS Database Control Guide

The pseudo recovery token is an 8-character decimal token, which can be used in
place of the 8-byte hexadecimal recovery token and is displayed when the status of
a thread is indoubt. It is made shorter than the recovery token so that it is easier to
make note of (for example, from /DISPLAY commands) and enter (for example, in
/CHANGE commands).

Figure 27 shows a pseudo recovery token (00010040 in the column headed
PSEUDO-RTKN) and a recovery token (F0F58879641002C2) for thread number 4 (in
the column headed REGID) for PSBNAME PC3COCHD, whose STATUS is
INDOUBT.

Resolving indoubt CICS DBCTL units of work manually
Normally, an emergency restart of DBCTL followed by reconnection of CICS and
DBCTL after a failure should resolve in-doubts automatically.

About this task

However, you may sometimes need to do this yourself. For example, if a CICS
system using DBCTL disconnects abnormally from DBCTL (for instance, if CICS or
DBCTL abends, or CDBC DISCONNECT IMMEDIATE is issued), there may be
some incomplete updates about which DBCTL is in doubt. Even if CICS then
needs to perform a cold start for some reason, it normally recovers enough
information to resolve indoubts automatically. However, if CICS is started with the
START=INITIAL system initialization parameter, it loses its record of the indoubt
updates and they must be resolved manually. You are strongly advised not to start
CICS with START=INITIAL specified when there are indoubt units of work
outstanding.

The DFS2283I message, issued during the resynchronization process, indicates that
there are UOWs that have not received a COMMIT or ABORT request, and are
therefore indoubt.

In this situation you must use DBCTL operator commands (described in “Using
DBCTL operator commands to resolve in-doubts”) to resolve the in-doubts.

Using DBCTL operator commands to resolve in-doubts
Use the following DBCTL operator commands to commit or backout a unit of
work.
1. Use /DISPLAY CCTL cctlname INDOUBT, as shown in Figure 28 on page 76 to

obtain the pseudo recovery token that identifies the indoubt work. (Pseudo
recovery tokens are defined in “CICS DBCTL recovery tokens” on page 74.)

0080 /DIS CCTL DBDCCICS
0080 DFS000I MESSAGE(S) FROM ID=SYS1 047
0080 CCTL PSEUDO-RTKN RECOVERY-TOKEN REGID PSBNAME STATUS
0080 DBDCCICS ATTACHED
0080 9EDA1F61E11CFA02 6 PC3COCHD ACTIVE
0080 9EDA1F4E9B571B02 5 PC3COCHD ACTIVE
0080 00010040 F0F58879641002C2 4 PC3COCHD INDOUBT

Figure 27. /DISPLAY CCTL cctlname command showing pseudo recovery token

Licensed Materials – Property of IBM

Chapter 3. Administering DBCTL 75

2. Use /CHANGE CCTL cctlname PRTKN token command to abort or commit
the indoubt. The cctlname is the APPLID of the CICS system. The PRTKN
keyword specifies the pseudo recovery token of the element to be processed.
The command is either:
v ABORT to backout changes for a unit of recovery, or COMMIT to commit

changes for recovery. For example:
/CHANGE CCTL DBDCCICS PRTKN 00010040 COMMIT

would commit the indoubt shown in Figure 28.

When the action you specified has been completed, the recoverable indoubt
structure (RIS) for the indoubt UOW is removed.

IMS database utilities
DBCTL enables you to use utilities that IMS provides to help with the backup and
recovery of your databases.

Note: Because database change records are written to the IMS log, you do not
need to retain the CICS system log for use by IMS database recovery utilities in a
DBCTL-exclusive environment.

The IMS utilities that you can use are as follows:
v Database image copy utility, DFSUDMP0

The database image copy utility, DFSUDMP0 is a batch utility that creates a
copy of data sets within a database. For DEDBs, you can copy an area
concurrently with DBCTL activity. You can also use concurrent image copy for
full function DL/I databases.
If the databases are updated while the utility is running, all logs including the
one that was being used when DFSUDMP0 was started, are needed for use with
DFSURDB0. You need both the log and the image copy to give a complete
“picture” of the database for recovery purposes.
If you have not created an image copy, the data set to be recovered is used as
input to DFSURDB0.

v Online database image copy utility, DFSUICP0
The online database image copy utility, DFSUICP0, is a BMP that creates an
output copy of a data set within a full function DL/I database while the
database is allocated and being used by DBCTL.
If the databases are updated while the utility is running, all logs including the
one that was being used when DFSUICP0 was started, are needed for use with
DFSURDB0. You need both the log and the image copy to give a complete
“picture” of the database for recovery purposes.
If you have not created an image copy, the data set to be recovered is used as
input to DFSURDB0.

v Database change accumulation utility, DFSUCUM0

0080 /DIS CCTL DBDCCICS INDOUBT
0080 DFS000I MESSAGE(S) FROM ID=SYS1 047
0080 CCTL PSEUDO-RTKN RECOVERY-TOKEN REGID PSBNAME STATUS
0080 DBDCCICS ATTACHED
0080 00010040 F0F58879641002C2 4 PC3COCHD INDOUBT

Figure 28. /DISPLAY CCTL cctlname command showing indoubt

Licensed Materials – Property of IBM

76 CICS TS for z/OS 5.3: IMS Database Control Guide

If system availability is a major concern for your installation, you will probably
want to use this utility. It collects the changes from the other log data sets onto a
single log, thus helping to speed recovery. Balance the benefits of using it
against the overhead it incurs, and the fact that you may not need to use its
output.

v Database recovery utility, DFSURDB0
The database recovery utility uses a backup copy of your database together with
either (or both) the change accumulation utility or the logs, and reapplies
changes made since the backup copy to create a new, reconstructed, database.
The database recovery utility performs recovery at the data set level, or at the
track level. Often, only a single data set of the database requires recovery.
However, if more than one data set has been lost or damaged, you need to
recover each one separately. If an I/O error caused the problem, you might need
to recover only a single track instead of reconstructing the entire data set.

You can use these utilities together to perform recovery by updating a copy of the
database with the changes logged since the copy was made, as shown in Figure 29
on page 78. See IMS reference: Database utilities and IMS: Operations and automation
in Information Management Software for z/OS product documentation for further
guidance on using the utilities, including any restrictions that might apply.

Licensed Materials – Property of IBM

Chapter 3. Administering DBCTL 77

http://www.ibm.com/support/knowledgecenter/SSEPH2/welcome

Note: Input from the image copy and change accumulation utilities is optional.

Figure 29. Database recovery utility, DFSURDB0, showing inputs and outputs

Licensed Materials – Property of IBM

78 CICS TS for z/OS 5.3: IMS Database Control Guide

IMS log utilities
DBCTL enables you to use the following IMS log utilities: the log archive utility,
the log recovery utility, and the file select and print formatting utility.

The IMS log utilities are as follows:
v The log archive utility, DFSUARC0 produces a system log data set (SLDS) from a

filled OLDS. DBCTL can automatically invoke DFSUARC0 to archive the OLDS
when an OLDS switch occurs. You use the ARC= parameter in the DBC
procedure to control automatic archiving. See IMS: System definition or IMS:
System definition for further guidance on specifying ARC, and IMS reference:
Database utilities for guidance on setting up the skeleton JCL needed.
Alternatively, you can use the DBRC command GENJCL.ARCHIVE to initiate
manually an archive if you did not specify the automatic archive option, or if an
automatic archive fails. See IMS: Operations and automation for further guidance
about automatic archiving. The log archive utility runs as a batch job, and you
can run multiple log archive jobs concurrently. The SLDS it creates can be on
DASD, MSS, or tape. DFSUARC0 is the preferred utility for archiving logs in a
CICS-IMS environment.

v The log recovery utility, DFSULTR0 produces a usable log data set from one that
contains read errors or could not be closed properly. You can recover both
system log data sets (SLDSs) and online log data sets (OLDSs) with this utility.

v The file select and print formatting utility, DFSERA10 enables you to display and
examine data from the IMS log data set in the following ways:
– Print or copy a whole log data set
– Print or copy from multiple log data sets based on control statement input
– Select and print log records according to their sequential position in the data

set
– Select and print log records based upon data contained within the record

itself, such as the contents of a time, date or identification field
– Enable your exit routines to do special processing on selected log records.

See IMS reference: Database utilities for further guidance on using these utilities.

Component failures in the CICS DBCTL environment
This section discusses the impact of failures of different components of a
CICS-DBCTL environment and of transaction and thread failures.

CICS failure
If CICS fails, DBCTL retains locks on database records updated by indoubt UOWs.
These records remain unavailable until in-doubts are resolved. CICS records
information about the disposition of UOWs on its log.

A CICS warm start or emergency restart reconstructs information describing UOWs
that may be indoubt. When CICS reconnects to DBCTL, DBCTL returns a list of
any indoubt UOWs. CICS notifies DBCTL of the resolution of all in-doubts, so
DBCTL can commit or backout as appropriate.

If CICS fails, or if you need to cause an immediate shutdown, CICS attempts to
disconnect from DBCTL. At this time, CICS gives the requests in progress time to
complete before shutdown occurs. The time is specified in the DRA startup table
parameter, TIMEOUT. (For information on this parameter, see “Defining the IMS
DRA startup parameter table” on page 29.) If TIMEOUT is exceeded and CICS

Licensed Materials – Property of IBM

Chapter 3. Administering DBCTL 79

terminates while threads are still active in DBCTL, a U113 abend of DBCTL will
occur. If this happens, you will have to restart DBCTL (IMS).

Choosing a value for TIMEOUT involves a trade-off between the length of restart
process, which might be delayed if the value you specify is too high, and the risk
of causing U113 abends, which might increase if you specify to low a value. One
possible solution is to specify a TIMEOUT value that is about equal to the average
length of time between BMP checkpoints. If a BMP checkpoint has been taken,
there is less likelihood that CICS resources are waiting. This lessens the likelihood
of U113 abends without lengthening the restart process too much.

If you want an abnormal termination of CICS and CICS does not respond to an
immediate shutdown, use an MVS CANCEL command. This command, and CICS
abends with different causes, should not result in an IMS U113 abend because
DBCTL “traps” the CANCEL and an MVS system abend code of 08E is issued
instead. Changing the effect of an MVS CANCEL from a U113 abend to an MVS
system abend of 08E makes the effects of a CANCEL more like the effects of a
CICS immediate shutdown. If you have been obliged to cancel CICS in this way,
do not start CICS with the START=INITIAL system initialization parameter unless
absolutely necessary, especially if there is a possibility of indoubt units of work for
DBCTL, because CICS will lose its record of the indoubt units of work.

For further information on the effects of a CICS failure in a DBCTL environment,
see the section on CCTL termination in the appropriate IMS reference: Database
manager exit routines .

Database resource adapter (DRA) failure
If the DRA fails:
v DBCTL notifies CICS that the DRA is terminating abnormally, and message

DFHDB8106 is issued.
v CICS cleans up the storage associated with the CICS-DBCTL interface and

disconnects from DBCTL.
v When it has done this, CICS issues message DFHDB8102.
v You must then reconnect DBCTL using the CDBC CONNECT command.

DBCTL failure
A termination of DBCTL should not cause CICS to terminate, it leaves CICS
without DBCTL services. The DRA remains partially initialized to help reduce the
restart time.

If any of the DBCTL address spaces (DBC, DBRC, or DLISAS) fails, all of these
address spaces are terminated and you must restart the system using an
/ERESTART command.

If you are using the IRLM as your lock manager, and it has failed as well as
DBCTL, you must restart it before restarting DBCTL. See “IRLM failure” on page
81.

Normally, you terminate DBCTL with a /CHECKPOINT FREEZE or a
/CHECKPOINT PURGE command, but an MVS MODIFY command can be used
to force the termination of DBCTL. The STOP option used with the MODIFY
command forces termination without a dump and the DUMP option forces
termination with a dump. The DBCTL address space terminates with a U0020
abend. The messages received at the system console are:

Licensed Materials – Property of IBM

80 CICS TS for z/OS 5.3: IMS Database Control Guide

DFS628I ABNORMAL TERMINATION SCHEDULED DFS629I IMS DBC REGION ABEND
jobname 0020

If DL/I is processing a request and the thread that is doing the processing abends
is active in DL/I or is waiting on a lock, DBCTL abends with a U113 after the
following message has been sent to the system console:
DFS613I DBC RCN U113 DUE TO Sxxx Uyyyy DURING DL/I CALL IN CCTL

zzzzzzzz dddd

where:

xxx is the system abend code. This is S000 if it is a user abend.

yyyy is the user abend code. This is U0000 if it is a system abend.

zzzzzzzz
is the job name of the abending CICS system or BMP.

dddd is the DBCTL system identifier.

For example, for a user abend:
DFS613I DBC RCN U113 DUE TO S000 U0474 DURING DL/I CALL IN CCTL

DBDCCICS IMSA

CICS is isolated from such abends because, in DBCTL, each thread TCB has its
own extended subtask ABEND exit (ESTAE).

The threads are then terminated and the DRA attempts to reconnect to DBCTL.
Any requests made by the subsystem during this period result in a return code of
40, which indicates that no active communications exist with DBCTL, or a return
code 28, which indicates that the specified thread does not exist. These return
codes are included in messages DFHDB8104, DFHDB8109, DFHDB8111, and
DFHDB8130. Guidance on interpreting them is in the DBCTL DRA return codes
appendix of IMS messages and codes .

The DRA attempts to reconnect to DBCTL. After the first failing attempt, you are
given the opportunity to reply to message DFS690A. You can reply either WAIT, in
which case the DRA continues trying to reconnect, or CANCEL, in which case the
DRA stops trying to reconnect. If you reply CANCEL, you must use the CDBC
transaction to reconnect DBCTL.

If you reply WAIT, the time interval between each attempt to reconnect is as
specified in the DRA startup parameter TIMER (described in “Defining the IMS
DRA startup parameter table” on page 29).

If you reply WAIT and later want to prevent further attempts to reconnect, use the
CDBC DISCONNECT transaction. (See “Deciding whether to use orderly or
immediate disconnection” on page 43.)

IRLM failure
When the IRLM fails, DBCTL subsystems using it cannot continue normal
operations.

DBCTL terminates active programs that are using the IRLM with a U3303 abend
and forces any PSB schedule requests to wait until it has been reconnected to the
IRLM. You reconnect DBCTL to the IRLM by first restarting the IRLM using an
MVS START command, and then issuing an MVS MODIFY RECONNECT

Licensed Materials – Property of IBM

Chapter 3. Administering DBCTL 81

command to DBCTL. For guidance on using MVS commands with the IRLM and
DBCTL, see IMS: Operations and automation .

Transaction and thread failures
If a transaction fails in DBCTL, the CICS transaction is abended.

If a transaction fails in CICS when a DL/I request it has issued is being processed
in DBCTL, the error is passed to the DBCTL thread. When a transaction terminates,
the thread allocated to it is released and a record is written to the IMS log. If there
is an error, a return code is returned to the application in the usual form:
v For command level requests, this is to the DL/I interface block (DIB) as a status

code, or transaction abend. (Definitive Programming Interface and Associated
Guidance Information on what is returned to the DIB is in IMS: Application
programming for EXEC DLI .)

v For call level requests, it is to the user interface block (UIB) as a PCB status code
or a transaction abend. (Definitive Programming Interface and Associated
Guidance Information on what is returned to the UIB is in IMS Application
programming: DL/I calls reference .)
(Response codes for a DBCTL environment are in “Summary of DBCTL abends
and return codes” on page 105.)

Where the transaction has been abended, the thread is also terminated, and all
recoverable resources, including DL/I, are backed out. (DL/I backout is assumed
on all thread and transaction failures.)

In some cases, other resources may not have been backed out, but DL/I backout
has taken place. In these cases, one of the following status codes will be returned:
BB, FD, FR, FS. You can also receive the FD status code on a call to a full function
database if the PSB for the program (BMP) has a DEDB PCB. See “Status codes
and backout” on page 97 for actions you should take if this happens.

Deadlocks and interactions with automatic restart:

DBCTL detects transaction deadlocks, which can occur when two transactions are
waiting for the same two resources to become available; that is, both resources are
needed by both transactions.

For a description of transaction deadlocks, see Possibility of transaction deadlock
in Developing applications.

Licensed Materials – Property of IBM

82 CICS TS for z/OS 5.3: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfht2/topics/dfht23k.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfht2/topics/dfht23k.html

In Figure 30, transaction A requests and gets a lock on DBCTL resource D. Then
transaction B requests and gets a lock on CICS resource C. Transaction A needs
CICS resource C and requests it, but must wait because transaction B has a lock on
it. Transaction B needs DBCTL resource D and requests it, but must wait because
transaction A has a lock on it. At the end of the sequence, both transactions are
waiting for the other to free up a resource, so neither transaction can complete.
This situation is transaction deadlock.

If the resources involved in a transaction deadlock are a DBCTL database and a
CICS resource, the task that is waiting for the CICS resource is abended after its
DTIMOUT period elapses, if you have specified a DTMOUT period. In the
example in Figure 30, transaction A is waiting in an enqueue until transaction B
frees the lock held for CICS resource C, so it is transaction A that is abended when
DTIMOUT expires.

If you do not specify DTIMOUT for the task that is using the CICS resource, both
tasks remain suspended indefinitely, unless one of them is canceled by the CICS
master terminal operator (as described in “Purging a transaction that is using
DBCTL” on page 62).

If the resources involved in a transaction deadlock are both DBCTL databases,
DBCTL detects the potential deadlock when the database requests that create the
deadlocks are attempted. DBCTL then causes the task with less update activity to
be abended. The abend (ADCD) causes all resources to be backed out. If a
deadlock is detected when you are using DEDBs, an FD status code is issued
instead of an ADCD abend. See “Status codes and backout” on page 97 for details.

For DL/I full function databases and DEDBs, if you have specified automatic
restart, the task can be restarted at this point. See Automatic restart management in
Administering . However, this can take place only if the transaction abended in the
first (or only) UOW, and there has been no terminal input or output since the
initial terminal input was read.

BMP failures
If a BMP fails, DBCTL backs out any changes made by that BMP following the
latest successful syncpoint. You must restart BMPs, because DBCTL does not restart
them automatically.

Time

1 Transaction A DBCTL resource D

2 Transaction B CICS resource C

3 Transaction A CICS resource C

4 Transaction B DBCTL resource D

Figure 30. Transaction deadlock

Licensed Materials – Property of IBM

Chapter 3. Administering DBCTL 83

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfht2/topics/dfht2kj.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfht2/topics/dfht2kj.html

The JCL used to restart BMPs depends on whether the checkpoint for the BMP is
still on an OLDS available to DBCTL. If the BMP’s last checkpoint records are not
in the OLDS, they will be in the SLDS, and you must add an IMSLOGR DD
statement for the SLDS(s) containing the log records required to the BMP JCL.
Guidance on the JCL needed to do this is in IMS reference: Database utilities .

There is an option to defer changes made to databases by backout of BMPs at
emergency restart. If you specify NOBMP on the /ERESTART command, changes
made to databases by BMPs are not backed out and all PSBs affected are stopped.
Databases that were being updated by BMPs when the failure occurred are also
stopped. You must then do batch backout for the databases that are stopped.
(Batch backout will also backout the databases that were affected.) Be aware that
using NOBMP may mean that the online DBCTL is restarted sooner, but it also
delays data availability for the databases that were stopped by the BMP failure.

MVS, processor, or power failures
If an MVS, processor, or power failure occurs, DBRC is unable to mark the
subsystem (SSYS) records in the RECON as having terminated abnormally. This
means that you cannot use automatic restart. Instead, you must use the
/ERESTART command with the OVERRIDE keyword to override the RECON
subsystem record. Alternatively, use the DBRC command CHANGE.SUBSYS to
mark the subsystem record as abnormally terminated. You will need to do this if
you want to run any utilities (such as database recovery or log utilities). This is
because these utilities will fail if the subsystem record is still marked as active. For
information on doing this, see IMS reference: Database utilities . Backout of in-flight
updates should then occur. You can then restart CICS with an AUTO (emergency)
restart. When CICS has reconnected to DBCTL, CICS decides whether any indoubt
UOWs exist, and resolves them in the same way as for other failures.

Licensed Materials – Property of IBM

84 CICS TS for z/OS 5.3: IMS Database Control Guide

Chapter 4. Application programming for DBCTL

Application programming considerations in a DBCTL environment include:
facilities available to application programmers with DBCTL, and abends and return
codes that might be issued with DBCTL.

Programming information on DL/I requests is in IMS: Application programming for
EXEC DLI and IMS Application programming: DL/I calls reference.

In most cases, existing DL/I application programs do not need any changes to
access databases controlled by DBCTL. However, consider the following:
v Your application programs must deal with a number of abend and response

codes that might be issued with DBCTL. See “Summary of DBCTL abends and
return codes” on page 105.

v Enhanced scheduling with DBCTL enables a PSB to be scheduled even if some
of the full function databases or DEDB areas it requires are not available. See
“Enhanced scheduling” on page 94.

v You can use the DL/I LOG request instead of the EXEC CICS WRITE
JOURNALNAME command so that all DBCTL logging information is on the
IMS log instead of the CICS system log. (See “LOG command and call” on page
102.

CICS provides the following sample programs in the SDFHSAMP library to show
you how to use the CALL DL/I and EXEC DLI interfaces:

Table 6. Sample programs for DL/I

Language CALL DL/I EXEC DLI PSBs used

Assembler DFH$DLAC DFH$DLAE DFHSAM04, DFHSAM05

COBOL DFH0DLCC DFH0DLCE DFHSAM24, DFHSAM25

PL/I DFH$DLPC DFH$DLPE DFHSAM14, DFHSAM15

Other product information

The information given about IMS commands is intended to help you understand
the facilities available to your CICS system when you use DBCTL. The information
is not part of the CICS Programming Interface and Associated Guidance
Information.

Programming languages and environments for DL/I
You can write your programs in COBOL, C, PL/I, or assembler. The examples of
DL/I requests in this section are in COBOL.

You have a choice of two interfaces: the command level interface (EXEC DLI) and
the call level interface (using DL/I CALLs). The IMS: Application programming
design contains guidance on comparing the two interfaces. For programming
information on the functions of EXEC DLI commands and DL/I CALLs, see IMS:
Application programming for EXEC DLI or IMS Application programming: DL/I calls
reference s, respectively.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1989, 2015 85

Issue IMS AIB call format
CICS supports IMS requests with the AIBTDLI interface and the PCB format. In
addition, IMS supports application interface block (AIB) format for issuing GMSG,
ICMD, and RCMD calls.

GMSG, ICMD, and RCMD calls enable DBCTL operator commands to be sent in a
CICS transaction, CDBM. See “CDBM operator transaction” on page 49.

The following calls are supported:
v DELETE
v DEQUEUE
v GET UNIQUE/GET NEXT/GET NEXT IN PARENT
v GET HOLD UNIQUE/GET HOLD NEXT/GET HOLD NEXT IN PARENT
v GETMESSAGE
v ICOMMAND
v INIT
v INQY
v INSERT
v LOG
v POSITION
v RCOMMAND
v REPLACE
v ROLS
v SETS
v STAT

CICS has the following restrictions when function shipping AIB requests:
v The AIB length must be defined as 128 to 256 bytes. IMS suggests 128, but CICS

enforces this range by abend code AXF7.
v Only CICS Transaction Server systems can be in a function-shipping chain if AIB

requests are being issued.
v Do not specify LIST=NO on the PCB statement in the PSB if you intend to

function ship AIB requests for that PCBNAME.
v When using the AIBTDLI interface with the INQY function and the FIND

sub-function, an IOPCB must be specified on the PSB schedule request. Failing
to do this will result in an ADLG abend.

See IMS Application Programming: DL/I Calls for programming interface information
about these calls, plus information about defining AIB format instead of PCB
format, and on the AIBTDLI entry point for link edit.

The following table compares the AIB and PCB formats for EXEC DLI calls.

Table 7. Comparison of AIB and PCB formats for EXEC DLI calls

AIB format PCB format

EXEC DLI GU AIB(aibname) EXEC DLI GU USING PCB(n)

EXEC DLI GN AIB(aibname) EXEC DLI GN USING PCB(n)

EXEC DLI GNP AIB(aibname) EXEC DLI GNP USING PCB(n)

EXEC DLI ISRT AIB(aibname) EXEC DLI ISRT USING PCB(n)

Licensed Materials – Property of IBM

86 CICS TS for z/OS 5.3: IMS Database Control Guide

Table 7. Comparison of AIB and PCB formats for EXEC DLI calls (continued)

AIB format PCB format

EXEC DLI DLET AIB(aibname) EXEC DLI DLET USING PCB(n)

EXEC DLI REPL AIB(aibname) EXEC DLI REPL USING PCB(n)

EXEC DLI POS AIB(aibname) EXEC DLI POS USING PCB(n)

EXEC DLI STAT AIB(aibname) EXEC DLI STAT USING PCB(n)

EXEC DLI QUERY AIB(aibname) EXEC DLI QUERY USING PCB(n)

EXEC DLI DEQ AIB(aibname) EXEC DLI DEQ1

EXEC DLI LOG AIB(aibname) EXEC DLI LOG1

EXEC DLI REFRESH AIB(aibname) EXEC DLI REFRESH1

EXEC DLI ACCEPT AIB(aibname) EXEC DLI ACCEPT1

EXEC DLI SETS AIB(aibname) EXEC DLI SETS1

EXEC DLI ROLS AIB(aibname) EXEC DLI ROLS1

EXEC DLI GMSG AIB(aibname) ---

EXEC DLI ICMD AIB(aibname) ---

EXEC DLI RCMD AIB(aibname) ---

Note:

1. USING PCB is not required because these commands assume the IOPCB.
2. You cannot use both the AIB and the PCB in a single EXEC DLI command, but

you can choose either of them for each EXEC DLI command in an application
program.

For more information about these commands, see IMS: Application programming for
EXEC DLI.

Enabling CICS IMS applications to use the open transaction
environment (OTE) through threadsafe programming

The CICS IMS attachment facility includes a CICS IMS database adapter,
DFHDBAT, that is invoked when an application program makes an IMS request. It
manages the process of acquiring a thread connection into IMS, and of returning
control to the application program when the IMS processing is complete.

About this task

The CICS IMS attachment facility uses the OTE to enable the CICS IMS
task-related user exit (TRUE) to invoke and return from IMS without switching
TCBs. In the OTE, the CICS IMS TRUE operates as a threadsafe and open API
TRUE program—it is automatically enabled using the OPENAPI option on the
ENABLE PROGRAM command during connection processing. This enables it to
receive control on an open L8 mode TCB. Requests to IMS are also issued on the
L8 TCB, so it acts as the thread TCB, and no switch to a subtask TCB is needed.

In the OTE, if the user application program that invoked the TRUE conforms to
threadsafe coding conventions and is defined to CICS as threadsafe, it can also run
on the L8 TCB. Before its first IMS request, the application program runs on the
CICS main TCB, the QR TCB. When it makes an IMS request and invokes the

Licensed Materials – Property of IBM

Chapter 4. Application programming for DBCTL 87

TRUE, control passes to the L8 TCB, and IMS processing is carried out. On return
from IMS, if the application program is threadsafe, it now continues to run on the
L8 TCB.

Programs defined with CONCURRENCY(REQUIRED) run on an open TCB from
the start of the program. For CICSAPI programs, CICS uses an L8 open TCB
regardless of the execution key of the program. For OPENAPI programs, CICS uses
an L9 TCB if EXECKEY(USER) is set and an L8 TCB if EXECKEY(CICS) is set.

Where the correct conditions are met, the use of open TCBs for CICS IMS
applications decreases usage of the QR TCB, and avoids TCB switching. An ideal
CICS IMS application program for the OTE is a threadsafe program, containing
only threadsafe EXEC CICS commands, and using only threadsafe user exit
programs. An application like this moves to an L8 TCB when it makes its first IMS
request, and then continues to run on the L8 TCB through any amount of IMS
requests and application code, requiring no TCB. This situation produces a
significant performance improvement where an application program issues
multiple IMS calls. If the application program does not issue many IMS calls, the
performance benefits might not be as significant.

If the execution of the program involves any actions that are not threadsafe, CICS
switches back to the QR TCB at that point. Such actions are non-threadsafe CICS
requests issued by the program, the use of non-threadsafe TRUEs, and the
involvement of non-threadsafe global user exits (GLUEs). Switching back and forth
between the open TCB and the QR TCB is detrimental to the performance of the
application.

In order to gain the performance benefits of the OTE for CICS IMS applications,
you must meet the following conditions:
v CICS must be connected to IMS Version 12 or later.
v The system initialization parameter FORCEQR must not be set to YES.

FORCEQR forces programs that are defined as threadsafe to run on the QR TCB,
and it might be set to YES as a temporary measure while problems that are
connected with threadsafe-defined programs are investigated and resolved.

v The CICS IMS application must have threadsafe application logic (that is, the
native language code in between the EXEC CICS commands must be
threadsafe), use only threadsafe EXEC CICS commands, and be defined to CICS
as threadsafe. Only code that has been identified as threadsafe is permitted to
execute on open TCBs. If your CICS IMS application is not defined as
threadsafe, or if it uses EXEC CICS commands that are not threadsafe, TCB
switching takes place and some or all of the performance benefits of OTE
exploitation are lost.

v Any GLUEs on the execution path used by the application must be coded to
threadsafe standards and defined to CICS as threadsafe (for CICS IMS
applications. In particular the GLUEs XRMIIN and XRMIOUT).

v Any other TRUEs used by the application must be defined to CICS as
threadsafe, or as OPENAPI.

See the CICS Application Programming Guide for information about how to make
application programs and user exit programs threadsafe. By defining a program to
CICS as threadsafe, you are only specifying that the application logic is threadsafe,
not that all the EXEC CICS commands included in the program are threadsafe.
CICS can ensure that EXEC CICS commands are processed safely by switching to
the QR TCB for those commands not yet converted that still rely on

Licensed Materials – Property of IBM

88 CICS TS for z/OS 5.3: IMS Database Control Guide

quasi-reentrancy. In order to permit your program to run on an open TCB, CICS
needs you to guarantee that your application logic is threadsafe.

The EXEC CICS commands that are threadsafe, and so do not involve TCB
switching, are indicated in the command syntax diagrams in the description of the
API and SPI commands.

If a user application program in the OTE is not defined as threadsafe, the CICS
IMS TRUE still runs on an L8 TCB, but the application program runs on the QR
TCB throughout the task. Every time the program makes an IMS request, CICS
switches from the QR TCB to the L8 TCB and back again, so the performance
benefits of the OTE are negated. The maximum TCB switching for a CICS IMS
application would occur if your program used a non-threadsafe user exit program
and a non-threadsafe EXEC CICS command after every IMS request. In particular,
the use of a non-threadsafe exit program on the CICS-IMS mainline path (for
example, a program that is enabled at XRMIIN or XRMIOUT) causes more TCB
switching than the level that is experienced when CICS is connected to earlier
versions of IMS.

The table shows what happens when application programs with different
concurrency attributes invoke the CICS IMS TRUE when CICS is connected to
different versions of IMS.

Table 8. Combinations of application programs and the CICS IMS TRUE

Program's
concurrency attribute

CICS IMS TRUE
operation Effect

QUASIRENT Threadsafe and open
API

Application program runs under the
CICS QR TCB. TRUE runs under an L8
TCB, and IMS requests are executed
under the L8 TCB. CICS switches to and
from the CICS QR TCB and the L8 TCB
for each IMS request.

THREADSAFE Threadsafe and open
API

OTE exploitation. TRUE runs under an
L8 TCB, and IMS requests are executed
under the L8 TCB. The application
program also runs on the L8 TCB when
control is returned to it. No TCB
switches are needed until the task
terminates, or if it issues a
non-threadsafe CICS request which
forces a switch back to the QR TCB.

REQUIRED with
API(CICSAPI)

Threadsafe and open
API

OTE exploitation. TRUE runs under an
L8 TCB, and IMS requests are executed
under the L8 TCB. The application
program runs on the L8 TCB from the
start. The program always uses an L8
irrespective of the execution key of the
program. No TCB switches are needed
until the task terminates, or if it issues a
non-threadsafe CICS request which
forces a switch back to the QR TCB and
then a switch back afterward to the L8
TCB.

Licensed Materials – Property of IBM

Chapter 4. Application programming for DBCTL 89

Table 8. Combinations of application programs and the CICS IMS TRUE (continued)

Program's
concurrency attribute

CICS IMS TRUE
operation Effect

REQUIRED with
API(OPENAPI)

Threadsafe and open
API

OTE exploitation. Not preferred for user
key CICS-IMS applications (and when
storage protection is active), as it causes
switching from the L9 TCB to the L8
TCB and back again for every IMS
request.

In summary, to gain the performance benefits of the OTE:
v CICS must be connected to IMS Version 12 or later.
v FORCEQR must not be set to YES.
v The CICS IMS application must have threadsafe application logic (that is, the

native language code in between the EXEC CICS commands must be
threadsafe). If the application logic is not threadsafe, the program must be
defined as CONCURRENCY(QUASIRENT), and so must operate on the CICS
QR TCB. In this case TCB switching occurs for every IMS request, even if the
TRUE is running on an open TCB.

v A threadsafe application can be defined to CICS as
CONCURRENCY(THREADSAFE) API(CICSAPI) or
CONCURRENCY(REQUIRED) API(CICSAPI). The setting to use depends on
how many non-threadsafe EXEC commands the program uses. If there are many
non-threadsafe CICS commands the program is best defined as
CONCURRENCY(THREADSAFE). If the program has few or no non-threadsafe
CICS commands, then CONCURRENCY(REQUIRED) can be used. Programs
defined with CONCURRENCY(REQUIRED) have the benefit of starting on an
L8 open TCB, but every non-threadsafe CICS command results in two TCB
switches.

v The CICS IMS application must use only threadsafe TRUEs or GLUEs. If any
non-threadsafe exits are used, this forces a switch back to the QR TCB.

If all these conditions are met, you can gain the performance benefits of the OTE.

Facilities available with DBCTL
Facilities available with DBCTL include application program access to DEDBs,
additional commands, calls, and keywords, increased data availability, and the
ability to use BMPs.

Application program access to DEDBs
With DBCTL, your EXEC DLI and CALL DL/I application programs can access
DEDBs. For an overview of the benefits of using DEDBs (including subset
pointers), see “Access to data entry databases (DEDBs)” on page 9.

For programming information on using subset pointers and EXEC DL/I keywords,
see IMS: Application programming for EXEC DLI and IMS Application programming:
DL/I calls reference s.

Command codes to manage subset pointers in DEDBs
With DEDBs, you can set and use up to eight subset pointers for each direct
dependent segment type in the database description (DBD).

Licensed Materials – Property of IBM

90 CICS TS for z/OS 5.3: IMS Database Control Guide

You must also define in the PSB, using the SENSEG statement, which subset
pointers your program will use. You can then use subset pointers from within the
application program together with certain command codes. “Keywords and
corresponding command codes” on page 92 tells you which subset pointers you
can use with which command codes.

Additional EXEC DLI keywords
You can use a number of additional EXEC DLI keywords in a CICS-DBCTL
environment; they are described in the headings that follow. Each of these
keywords has a corresponding CALL DL/I command code. These are shown in
“Keywords and corresponding command codes” on page 92.

LOCKCLASS
The LOCKED keyword corresponds to the Q command code. You use either of
these to reserve a segment so that other programs cannot update until after you
have finished with it. You can associate the Q command code with a 1-character
field, from A through J, but the LOCKED keyword cannot take an argument. The
LOCKCLASS keyword enables you to make full use of the DEQ command.

You use the LOCKCLASS keyword, with retrieve requests only, in the same
situations that the LOCKED keyword can be used. However, the LOCKCLASS
keyword can take a 1-character argument, in the range B to J inclusive. You cannot
use LOCKED and LOCKCLASS for the same segment.

MOVENEXT
The MOVENEXT keyword sets the subset pointer to the segment following the
current segment. You can only use it with a DEDB that uses subset pointers. You
can use it when retrieving, inserting, or replacing a segment. You cannot use it
with a SETZERO keyword for which you have specified subset pointer values, or
with the LOCKED or LOCKCLASS keywords.

MOVENEXT, which corresponds to the M command code, can take an argument,
which can be a constant of up to 8 bytes or a variable of exactly 8 bytes. Each byte
indicates a subset pointer and should be a single number from 1 through 8. If you
use a variable that is longer than the number of subset pointers to be referenced,
you should justify the data to the left and set the rest of the variable to blanks (for
example, X'F1F3404040').

GETFIRST
The GETFIRST keyword, which corresponds to the R command code, causes the
first segment in a subset to be retrieved or inserted. You can only use it when
retrieving or inserting a segment in a DEDB that uses subset pointers. You can
only use one GETFIRST keyword with each parent or object segment. You cannot
use the GETFIRST keyword with the FIRST, LOCKED, or LOCKCLASS keywords.

GETFIRST can take a single argument, which can be a constant or a 1-byte
variable. The value of the argument must be a number from 1 through 8, in
character form, that indicates a subset pointer.

SET
The SET keyword, which corresponds to the S command code, causes the
appropriate subset pointer to be set unconditionally to the current position, in a
DEDB with subset pointers. Use the SET keyword when retrieving, inserting or
replacing a segment. You cannot use it with a SETZERO keyword that has the
same subset pointer value, or with the LOCKED or LOCKCLASS keywords.

Licensed Materials – Property of IBM

Chapter 4. Application programming for DBCTL 91

SET can take an argument, which can be a constant of up to 8 bytes, or a variable
of exactly 8 bytes. Each byte indicates a subset pointer and must be a single
integer, in character form, from 1 through 8. If you use a variable that is longer
than the number of subset pointers to be referenced, you should justify the data to
the left and set the rest of the variable to blanks (for example, X'F1F3404040').

SETCOND
The SETCOND keyword, which corresponds to the W command code, causes the
appropriate subset pointer to be set only if it is not already set to a segment. You
can only use it when processing a DEDB with subset pointers. You can use
SETCOND when retrieving, inserting, or replacing a segment. You cannot use it
with the SETZERO keyword that has the same subset pointer value, or with the
LOCKED or LOCKCLASS keywords.

SETCOND can take an argument, which can be a constant of up to 8 bytes or a
variable of exactly 8 bytes. Each byte indicates a subset pointer and must be a
single number, in character form, from 1 through 8. If you use a variable that is
longer than the number of subset pointers to be referenced, you should justify the
data to the left and set the rest of the variable to blanks (for example,
X'F1F3404040').

SETZERO
The SETZERO keyword, which corresponds to the Z command code, causes the
appropriate segment subset pointer to be set to zero. You can only use it with
DEDBs that use subset pointers. You can use SETZERO when retrieving, inserting,
replacing, or deleting a segment. You cannot use it with SET, SETCOND, or
MOVENEXT keywords that have the same subset pointer values. You cannot use it
with the LOCKED or LOCKCLASS keywords.

SETZERO can take an argument, which can be a constant of up to 8 bytes or a
variable of exactly 8 bytes. Each byte indicates a subset pointer and must be a
single number, in character form, from 1 through 8. If you use a variable that is
longer than the number of subset pointers to be referenced, you should justify the
data to the left, and set the rest of the variable to blanks (for example,
X'F1F3404040').

System service (SYSSERVE)
If your application program issues a system service request in an EXEC DLI
environment, you do not need to specify the PCB number, because the IOPCB is
assumed for this type of request. However, if you are using one of the following
EXEC DLI system service requests:
v LOG command
v REFRESH command
v ACCEPT command
v SETS command
v ROLS command (without the USING PCB(1) option)

first issue a PSB schedule command specifying the SYSSERVE keyword. See “PSB
schedule command and call” on page 101 for the format of the schedule request.

Keywords and corresponding command codes
Table 9 on page 93 lists EXEC DLI keywords and corresponding DL/I CALL
command codes that are valid in a DBCTL environment.

Licensed Materials – Property of IBM

92 CICS TS for z/OS 5.3: IMS Database Control Guide

Table 9. Keywords and corresponding command codes

EXEC DLI keyword DL/I CALL command code Purpose

KEYS C Using the concatenated key of a segment to identify the
segment.

INTO or FROM specified on
segment level to be
retrieved or inserted

D Retrieving or inserting a sequence of segments in a
hierarchic path using only one request, instead of
having to use a separate request for each segment (path
call or command).

FIRST F Backing up to the first occurrence of a segment under its
parent when searching for a particular segment
occurrence. Disregarded for a root segment.

LAST L Retrieving the last occurrence of a segment under its
parent.

MOVENEXT 1 M 1 Moving a subset pointer to the next segment occurrence
after your current position.

Leaving out the SEGMENT
option for segments you do
not want replaced

N Designating segments you do not want replaced, when
replacing segments after a get hold request. Used when
replacing part of a path of segments.

SETPARENT P Setting parentage at a higher level than usual. (It is
usually the lowest SSA level of the call.)

LOCKED 2 LOCKCLASS 2 Q 2 Reserving a segment so that other programs will not be
able to update it until after you have finished processing
and updating it.

GETFIRST 1 R 1 Starting search with the first segment occurrence in a
subset.

SET 1 S 1 Unconditionally setting a subset pointer to the current
position.

No EXEC equivalent U Limiting the search for a segment to the dependents of
the segment occurrence on which position is established.

CURRENT V Using the current position at this hierarchic level and
above as qualification for the segment.

SETCOND 1 W 1 Setting a subset pointer to your current position, if the
subset pointer is not already set.

SETZERO 1 Z 1 Setting a subset pointer to zero.

Note:

1. DEDB subset pointer operations only. These command codes are new for CICS
users who are new to DBCTL.

2. Cannot be used with DEDBs.

POS command and call
With DEDBs, you can use the position (POS) command and call to retrieve the
location of a specific sequential dependent segment or the location of the last
inserted sequential dependent segment. The POS command and call also provides
information about unused space.

You can specify only one SSA with the POS request; that is, either the root
segment, or a sequential dependent segment. You can use POS to locate a specific
sequential dependent segment when you already have a valid position of a root

Licensed Materials – Property of IBM

Chapter 4. Application programming for DBCTL 93

segment. If you do not already have one, you must first issue a separate POS
request, or other request, to establish the position of a root segment.

The format of the POS command is:

The format of the POS call is:
CALL ’CBLTDLI’ USING POS,dedb_pcb,i/o_area[,ssa]

See “Keywords and corresponding command codes” on page 92 and “Comparing
EXEC DLI commands and DL/I calls” on page 103 for brief comparisons of
commands and calls. For further guidance on the differences between commands
and calls, see IMS: Application programming design.

Addressing and residency mode
Addressing mode (AMODE) refers to the address length that a program is
prepared to handle: 24-bit addresses, 31-bit addresses, or both (ANY). Programs
with an addressing mode of ANY must have been designed to receive control in
either 24-bit or 31-bit addressing mode.

Residency mode (RMODE) specifies where a program is expected to reside in
virtual storage. RMODE 24 indicates that a program is coded to reside in virtual
storage below 16 MB. RMODE ANY indicates that a program is coded to reside in
24-bit virtual storage (below 16 MB) or 31-bit virtual storage (above 16 MB but
below 2 GB).

For more information about AMODE and RMODE, see z/OS MVS Programming:
Extended Addressability Guide. See also the appropriate programming guides for
COBOL and PL/I for guidance about placing parameters above or below the 16
MB line.

With remote DL/I and DBCTL, programs can be AMODE(31) RMODE(ANY) with
parameters above the 16 MB line, for both DL/I call and command level.

Enhanced scheduling
DBCTL supports enhanced scheduling. That is, PSB scheduling completes
successfully, even if some of the full function databases or DEDB areas it requires
are not available.

Full function databases that have been stopped or locked by the commands /STOP,
/DBRECOVERY, or /LOCK, or that are unavailable for update because a
/DBDUMP command has been issued, do not cause scheduling failures. Instead,
the application program is prevented from accessing only the unavailable
database(s) or area(s). Application programs can have read access to databases that
have been made unavailable for update by the /DBDUMP command. If a program
issues a call to an unavailable database or area, a transaction abend is issued. To
avoid this happening, you can issue requests, after a PSB has been scheduled, to
obtain information regarding the availability of each database and to indicate that

EXEC DLI POS|POSITION
USING PCB(n)
INTO(data-area)
[KEYFEEDBACK(area)[FEEDBACKLEN(expression)]]
[SEGMENT(name)|SEGMENT((area))]
[WHERE(qualification_statement)[FIELDLENGTH(expression)]]

Figure 31. EXEC DLI POS command

Licensed Materials – Property of IBM

94 CICS TS for z/OS 5.3: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSLTBW_1.13.0/com.ibm.zos.r13.ieaa500/toc.htm
http://www.ibm.com/support/knowledgecenter/SSLTBW_1.13.0/com.ibm.zos.r13.ieaa500/toc.htm

your program will handle data availability status codes. These requests are
described in “Obtaining information about database availability” and “Accepting
database availability status codes” on page 96.

Obtaining information about database availability
A PSB scheduling request places data availability status codes in each of the DB
PCBs.

About this task

You can use DL/I requests to obtain and refresh this information.

QUERY and REFRESH DBQUERY commands
In a command-level environment, issue the following command after a PSB
schedule request for each PCB:
EXEC DLI QUERY PCB(n)

where n is the number of a PCB.

This obtains the status code and other information in the DL/I interface block
(DIB). You should get one of the following values in the DIB:
v TH, which means that a PSB has not yet been scheduled and results in a DHTH

abend.
v NA, which means that at least one of the databases that can be accessed using

this PCB is unavailable, but does not result in an abend.
v NU, which means that at least one of the databases that can be updated using

this PCB is unavailable and does not result in an abend.
v (blanks), mean that the data accessible using this PCB is available for all

functions that the PCB sensitivity allows.

DIBDBORG, which is returned when DIBSTAT has been set to NA, NU or ��
(blanks). DIBDBORG contains one of the following values describing the database
organization:
v DEDB
v GSAM
v HDAM
v HIDAM
v HISAM
v INDEX
v HSAM
v SHISAM
v SHSAM.

DIBDBDNM, which is returned when DIBSTAT has been set to NA, NU or blanks,
and contains the DBDNAME. You can refresh these status codes using the
command:
EXEC DLI REFRESH DBQUERY

INIT call: format for refreshing status code information
Application programs using the DL/I CALL interface can access the PCB status
codes directly.

Licensed Materials – Property of IBM

Chapter 4. Application programming for DBCTL 95

You can refresh these status codes using the INIT call as follows:
CALL ’CBLTDLI’ USING INIT,i/o pcb,i/o_area

where i/o_area contains a string in the format LLZZcharacter_string.
v LL is a halfword containing the length of the character_string including LLZZ.
v ZZ contains binary zeros
v character_string contains DBQUERY.

The data availability status codes used in this context are:
v (blanks), which means that all of the databases are available.
v NA, which means that at least one of the databases that can be accessed using

this PCB is unavailable.
v NU, which means that at least one of the databases that can be updated using

this PCB is unavailable for update.

Accepting database availability status codes
You can use DL/I requests to indicate that your application program is prepared to
accept and handle database availability status codes for DL/I calls.

This is described in “ACCEPT STATUSGROUP command” and “INIT call: format
for accepting status codes.” These status codes may have been issued because PSB
scheduling has completed without all of the referenced databases being available.

ACCEPT STATUSGROUP command
For command level application programs, use:
EXEC DLI ACCEPT STATUSGROUP(’A’)

INIT call: format for accepting status codes
For call level application programs, use:
CALL ’CBLTDLI’ USING INIT,i/o pcb,i/o_area

where i/o_area contains a string in the format LLZZcharacter_string.
v LL is a halfword containing the length of the character_string including LLZZ
v ZZ contains binary zeros
v Character_string contains STATUSGROUPA.

If you have used ACCEPT STATUSGROUP, and a DL/I request tries to access a
database or a DEDB area that is not available after PSB schedule, DBCTL returns a
status code instead of abending the transaction. If you have not used ACCEPT
STATUSGROUP, the transaction will be abnormally terminated with ADCI if it
tries to access unavailable data. (See “Summary of DBCTL abends and return
codes” on page 105 for details of accompanying return codes.)

The status codes used are:
v (blanks), which means that the request completed successfully.
v BA, which means that the request could not be completed because a database

was not available. In this case, only the updates done for the current DL/I call
are backed out.

v BB, which means that the request could not be completed because a database
was not available. In this case, all DL/I updates are backed out to the last
commit point.

Licensed Materials – Property of IBM

96 CICS TS for z/OS 5.3: IMS Database Control Guide

v BC, which means that the request could not be completed because of a deadlock.

Note: Only DL/I resources are backed out because the transaction has not
abended. Therefore, ensure that you keep DL/I and other resources in
synchronization.

See IMS: Application programming for EXEC DLI or IMS Application programming:
DL/I calls reference s for programming information on status codes.

Although a PSB can contain PCBs for GSAM and MSDB databases, and the PSB
can be scheduled, programs using DBCTL (or any other kind of CICS-DL/I
program) cannot access those GSAM or MSDB databases online from CICS. Access
to such databases is by means of batch and BMPs only. See “I/O PCB” on page 99
for information on the option SCHD, which you can use to state whether you
require an input/output PCB (I/O PCB).

Status codes and backout
The following DEDB status codes are returned when DL/I backout has taken
place: BB, FD, FR, FS.

If you receive one of these status codes, it is as if any update requests you issued
to full function databases or to DEDBs in the same UOW had not taken place.

If you are using EXEC DLI, these status codes are, as usual, accompanied by a
DHBB, DHFD, DHFR, or DHFS abend.

If you are using CALL DL/I and if you want any other resources you may have
been updating in the same UOW to be backed out, issue an EXEC CICS ABEND
request or a SYNCPOINT ROLLBACK command.

Batch message processing programs (BMPs)
Batch message processing programs (BMPs) are application programs that perform
batch type processing online and can access databases controlled by DBCTL.

You can run the same program as a BMP or as a batch program. Figure 32 on page
98 shows the kind of data BMPs can access. See IMS: Application programming
design for further guidance on using BMPs.

Licensed Materials – Property of IBM

Chapter 4. Application programming for DBCTL 97

Figure 32. BMP access

Licensed Materials – Property of IBM

98 CICS TS for z/OS 5.3: IMS Database Control Guide

System service requests

I/O PCB
A PSB used in a DBCTL environment can contain any of these PCB types.
v I/O PCB. In a CICS-DBCTL environment, an input/output PCB (I/O PCB) is

needed to issue DBCTL service requests. Unlike other types of PCB, it is not
defined with PSB generation. If the application program is using an I/O PCB,
this has to be indicated in the PSB scheduling request, as explained in “Format
of a PSB.”

v Alternate TP PCB(s). An alternate TP PCB defines a logical terminal and can be
used instead of the I/O PCB when it is necessary to direct a response to a
terminal. Alternate TP PCBs appear in PSBs used in a CICS-DBCTL
environment, but are used only in an IMS/VS DC or IMS TM environment.
CICS applications using DBCTL cannot successfully issue requests that specify
an alternate TP PCB, an MSDB PCB, or a GSAM PCB, but PSBs that contain this
kind of PCB can be scheduled successfully in a CICS-DBCTL environment.
Alternate PCBs are included in the PCB address list returned to a call level
application program. The existence of alternate PCBs in the PSB can affect the
PCB number used in the PCB keyword in an EXEC DLI application program,
depending on whether you are using CICS online, batch programs, or BMPs. For
more information, see “PCB summary” on page 100.

v DB PCB(s). A database PCB (DB PCB) is the PCB that defines an application
program’s interface to a database. One DB PCB is needed for each database view
used by the application program. It can be a full function PCB, or a DEDB PCB.

v GSAM PCB(s). A GSAM PCB defines an application program’s interface for
GSAM operations.

With DBCTL, a CICS online application program receives, by default, a DB PCB as
the first PCB in the parameter list passed to it after scheduling.

With the EXEC DLI interface, in order to use system service requests, you specify
the SYSSERVE keyword on the SCHD command to indicate that your application
program can handle an I/O PCB. In an EXEC DLI environment, the SYSSERVE
keyword does not change the PCB numbering, which means that your first PCB is
still the DB PCB, and you do not need to specify a PCB number when you issue a
system service request.

With the DL/I CALL interface, in order to use system service requests, you use the
IOPCB parameter on the PCB to indicate that your application program can handle
an I/O PCB. The I/O PCB will then be the first PCB in the parameter address list
passed back to your application program.

Format of a PSB
PSBs used in a DBCTL environment will be of the following form:

Each PSB must contain at least one PCB. A DB PCB can be a full function PCB, or
a DEDB PCB.

[IOPCB]
[Alternate TP PCB ... Alternate TP PCB]
[DBPCB ... DBPCB]
[GSAMPCB ... GSAMPCB]

Figure 33. General format of a PSB in a DBCTL environment

Licensed Materials – Property of IBM

Chapter 4. Application programming for DBCTL 99

PCB summary
This section summarizes information concerning I/O PCBs and alternate PCBs in
the supported environments.

Read it if you intend to issue system service requests.

CICS online programs:

v EXEC DLI
The first PCB in your PCB address list always refers to the first database PCB
(DB PCB) whether or not you specify the SYSSERVE keyword.

v CALL DL/I
If you specify the IOPCB option on the PCB call, the first PCB in your PCB
address list will be the I/O PCB, followed by any alternate PCBs, followed by
the DB PCBs.
If you do not specify the IOPCB option, the first PCB in your PCB address list
will be the first DB PCB.

BMPs:

v EXEC DLI and CALL DL/I
The PCB list always contains the address of the I/O PCB, followed by the
addresses of any alternate PCBs, followed by the addresses of the DB PCBs.

Batch programs:
Alternate PCBs are always returned to batch programs irrespective of whether you
have specified CMPAT=Y. The I/O PCB is returned depending on the CMPAT
option, as follows:
v EXEC DLI and CALL DL/I

If you specify CMPAT=Y, the PCB list contains the address of the I/O PCB,
followed by any alternate PCBs, and then the DB PCBs.
If you do not specify CMPAT=Y, the PCB list contains the addresses of any
alternate PCBs followed by the addresses of the DB PCBs.

Table 10 summarizes the I/O PCB and alternate PCB information.

Table 10. PCB summary

Environment EXEC
DLI: I/O

PCB
count

included
in PCB(n)

EXEC
DLI:

Alternate
PCB

count
included
in PCB(n)

CALL
DLI: I/O

PCB
address
returned

CALL
DLI:

Alternate
PCB

address
returned

CICS DBCTL: SCHD request issued
without the IOPCB or SYSSERVE option

No No No No

CICS DBCTL: SCHD request issued with
the IOPCB or SYSSERVE for a CICS
DBCTL request or for a function shipped
request which is satisfied by a CICS
system using DBCTL

No No Yes Yes

BMP Yes Yes Yes Yes

Batch: CMPAT=N specified No Yes No Yes

Batch: CMPAT=Y specified Yes Yes Yes Yes

Licensed Materials – Property of IBM

100 CICS TS for z/OS 5.3: IMS Database Control Guide

PSB schedule command and call
The format of the schedule command is:
EXEC DLI SCHD PSB(name)[SYSSERVE]

Specifying SYSSERVE does not affect the PCB number you specify in the USING
PCB keyword because PCB(1) will always refer to the first DB PCB. The
application program must establish addressability to the I/O PCB. See IMS:
Application programming design for further guidance on doing this.

The format of the schedule call is:
CALL ’CBLTDLI’ USING PCB�,psbname,uibptr[,sysserve]

where sysserve is an optional 8-byte variable, set to either IOPCB or NOIOPCB.

Almost all the new DL/I calls supported in the CICS-DBCTL environment require
an I/O PCB. The two exceptions are the ROLS call, which can use a DB PCB, and
the POS call, which uses a DEDB PCB.

Preventing DHxx abends after EXEC DLI SCHD PSB failure:

When a PSB schedule request fails (for example, because a database is
unavailable), CICS abends the transaction with a DHxx abend code.

In a production system, PSB schedule request failures are more likely to be caused
by unavailability of a database than by application coding errors, which means
that users may see DHxx abends unnecessarily.

To prevent this happening, you can use the EXEC DLI SCHD PSB keyword,
NODHABEND, which specifies that no DHxx abends are issued for that PSB
schedule request. Instead, the xx value is returned to the application program in
DIBSTAT, enabling the application to deal with the situation in a more
user-friendly way, and avoiding the need to code global HANDLE ABENDs (EXEC
DLI does not support HANDLE CONDITION). When you use this keyword, CICS
also informs z/OS Workload Manager that the request has failed, in order to avoid
the storm drain effect. For more information, see Avoiding the storm drain effect in
Developing applications.

DEQ command and call
The DEQ (dequeue) request releases segments that were retrieved using the
LOCKCLASS keyword or the Q command code.

The LOCKED keyword cannot take an argument, and cannot be used with DEQ.
(Segments locked using the LOCKED keyword are released when a SYNCPOINT is
taken.) Instead, you use LOCKCLASS with DEQ, which can take a 1-character
argument in the range B to J inclusive. (These keywords correspond to the Q
command code, which you can associate with a 1-character field in the range A to
J.) You cannot use LOCKED and LOCKCLASS for the same segment. Using
LOCKCLASS or Q on retrieval requests enables you to reserve segments for
exclusive use by your transaction. No other transaction is allowed to update these
reserved segments until your transaction reaches a syncpoint, or the DEQ request
has been issued, when the reserved segments are released. This means that your
application can leave these segments and retrieve them later without them being
changed in the meantime.

The format of the DEQ command is:

Licensed Materials – Property of IBM

Chapter 4. Application programming for DBCTL 101

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp3_stormdrain.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp3_stormdrain.html

EXEC DLI DEQ LOCKCLASS(data_value)

where data_value is a 1-byte alphabetic character in the range B to J.

The format of the DEQ call is:

CALL ’CBLTDLI’ USING function,i/o pcb,i/o_area

where function is the address of a 4-byte area that contains the value of the DEQb
function, i/o pcb is the name of the I/O PCB (mandatory), and i/o_area is a 1-byte
alphabetic character in the range A to J.

LOG command and call
You can use the LOG request online when you want a record to be written from an
application program to the IMS log.

Your program can specify whatever information you want to be on the log. You
may prefer to use it instead of EXEC CICS journal commands so that all your
DBCTL information will be on the IMS log instead of the CICS log. IMS uses
different log codes to distinguish different types of log record. All user log records
in the IMS log have the same code. Records logged using the LOG request will not
be backed out if synchronization fails and the UOW is canceled.

The format of the LOG command is:
EXEC DLI LOG FROM(area) LENGTH(expression)

The format of the LOG call is:
CALL ’CBLTDLI’ USING LOG�,i/o-pcb,data-area

where LOG� is the address of a 4-byte area that contains the value of the LOG�
function.

Defining intermediate backout points for DBCTL resources
About this task

The SETS and ROLS requests enable you to define multiple points at which to
preserve the state of DL/I full function databases and to return to these points
later. The backout points are not CICS syncpoints, they are intermediate backout
points that apply only to DBCTL resources. For example, you can use them to
allow your program to handle the consequences of PSB scheduling having
completed without all of the referenced DL/I databases being available.

The SETS and ROLS requests apply to DL/I full function databases only. If an
UOW is updating recoverable resources other than full function databases, for
example, DEDBs and VSAM files, the SETS and ROLS requests have no effect on
the non-DL/I resources. Therefore, take steps to ensure the consistency of other
resources involved, if any. See “Summary of DBCTL abends and return codes” on
page 105 for explanations of relevant return codes.

SETS command and call:
You can use a SETS request to define points in your application at which to
preserve the state of DL/I databases before initiating a set of DL/I calls to perform
a function. Your application can issue a ROLS request later if it cannot complete
that function.

The format of the SETS command is:

Licensed Materials – Property of IBM

102 CICS TS for z/OS 5.3: IMS Database Control Guide

EXEC DLI SETS [TOKEN(mytoken) AREA(data-area)]

where mytoken is a 4-byte token associated with the current processing point.

data-area is an area to be restored to the program when a ROLS request is issued.
The first two bytes of the data-area field contain the length of the data-area,
including the length itself. The second two bytes must be set to X'0000'.

The format of the SETS call is:

CALL ’CBLTDLI’ USING SETS,i/o_pcb[,i/o_area,token]

TOKEN(mytoken) AREA(data-area) in the command version and i/o_area,token in
the call version are optional, but if you do omit them, this cancels any intermediate
backout points set in previous SETS requests and ROLS backs out to the last
commit point.

ROLS command and call:
You can use the ROLS request to backout to the state all full function databases
were in before: (a) a specific SETS request or (b) the most recent commit point.

The format of the ROLS command is:

EXEC DLI ROLS [TOKEN(mytoken) AREA(data-area)]

The format of the ROLS call is:

CALL ’CBLTDLI’ USING ROLS,pcb[,i/o_area,token]

i/o_area and token on the call, and TOKEN(mytoken) AREA(data-area) on the
command are optional. If you include them, ROLS backs out to the SETS you
specified. If you omit them, ROLS backs out to the most recent SETS.

The ROLS command has a second format, the purpose of which is to backout to
before an ACCEPT STATUSGROUPA request:

EXEC DLI ROLS [USING(PCB(n)]

where n is the name of a database PCB that has received a “data” unavailable
status code. This causes the same action to take place that would have occurred
had the program not issued an ACCEPT STATUSGROUPA request. (See
“Accepting database availability status codes” on page 96.)

Comparing EXEC DLI commands and DL/I calls
Use the following table to compare corresponding EXEC DLI and CALL DL/I
requests and their functions.

These commands and calls are threadsafe.

Table 11. EXEC commands and DL/I calls

EXEC DLI CALL DL/I Function

GU, GN, and GNP GU, GN, and GNP Retrieving segments from the database

GU, GN, and GNP GHU, GHN, and GHNP Retrieving segments from database for updating

DLET DLET Deleting segments from a database

Licensed Materials – Property of IBM

Chapter 4. Application programming for DBCTL 103

Table 11. EXEC commands and DL/I calls (continued)

EXEC DLI CALL DL/I Function

REPL REPL Replacing segments in a database

ISRT ISRT Adding segments to a database

LOAD ISRT Initially loading a database

SCHD PCB Scheduling a PSB

TERM TERM Terminating a PSB

CHKP CHKP (basic) Issuing a basic checkpoint

SYMCHKP CHKP (extended) Issuing a symbolic checkpoint

XRST RETRIEVE XRST Issuing an extended restart

-----1 SYNC Requesting sync point processing

DEQ DEQ Releasing segments retrieved using Q command
code

-----1 GSCD Retrieving system addresses

LOG LOG Writing a message to the system log

ROLL or ROLB ROLL or ROLB Dynamically backing out changes

STAT STAT Obtaining system and buffer pool statistics (see
also Table 12)

REFRESH ACCEPT QUERY2 INIT Refreshing, accepting, and querying data
availability status codes

SETS SETS Setting a backout point

ROLS ROLS Backing out to a previously set backout point

-----1 GSAM Issuing requests to GSAM databases

POS POS Retrieving positioning or space usage
information in a DEDB area

Note:

1. No EXEC DLI equivalent. Use a DL/I CALL, but note that you cannot mix
EXEC and CALL in the same UOW.

2. Status codes are available directly to CALL DL/I applications. EXEC DLI
QUERY corresponds to code in the CALL DL/I program instructing it to
examine the PCB.

DL/I requests supported
This table summarizes the DL/I requests you can use and the environments in
which they apply.

Table 12. DL/I requests supported

Request type CICS and DBCTL1 Batch BMP

Get commands and calls (GU, GHU, GN,
GHN, GNP, GHNP)

Yes Yes Yes

DLET command and call Yes Yes Yes

REPL command and call Yes Yes Yes

ISRT command and call Yes Yes Yes

ISRT call (initial load) No Yes No

Licensed Materials – Property of IBM

104 CICS TS for z/OS 5.3: IMS Database Control Guide

Table 12. DL/I requests supported (continued)

Request type CICS and DBCTL1 Batch BMP

LOAD command No Yes No

PCB call Yes No No

SCHD command Yes No No

TERM command and call Yes No No

CHKP command and call (basic) No Yes Yes

CHKP call (extended) No Yes Yes

SYMCHKP command No Yes Yes

XRST command and call No Yes Yes

RETRIEVE command No Yes Yes

SYNC call No No Yes

DEQ command and call Yes Yes Yes

GSCD call No Yes No

LOG call Yes Yes Yes

LOG command Yes Yes Yes

ROLL call No Yes Yes

ROLL command No Yes Yes

ROLB command and call No Yes Yes

STAT command and call Yes2 Yes2 Yes2

INIT call Yes Yes Yes

REFRESH command Yes Yes Yes

ACCEPT command Yes Yes Yes

QUERY command Yes Yes Yes

SETS command and call Yes Yes Yes

ROLS command and call Yes Yes Yes

GSAM calls No Yes Yes

POS command and call Yes No Yes

Note:

1. Requests are also supported with function shipping to a remote CICS that uses
DBCTL.

2. For programming information on keywords used to request the enhanced
statistics, see IMS Application programming: DL/I calls reference .

Summary of DBCTL abends and return codes
The schedule failure codes and abends in a DBCTL environment are listed,
together with the conditions that can arise on a PSB schedule request because
DBCTL is not available or the PSB cannot be found.

With DBCTL, your program specification block (PSB) scheduling request might fail
either because DBCTL is not available, or because the PSB cannot be found.
However, after a successful PSB schedule, CICS might be disconnected from
DBCTL for some reason, and subsequent DBCTL requests will fail. This situation,

Licensed Materials – Property of IBM

Chapter 4. Application programming for DBCTL 105

which is unique to a DBCTL environment, causes an ADCJ abend to be issued.
Table 13 summarizes the schedule failure codes and abends in a DBCTL
environment, and the conditions that can arise on a PSB schedule request because
DBCTL is not available or the PSB cannot be found.

Table 13. Summary of abends and return codes

Request EXEC
abend

CALL UIBDLTR CALL UIBFCTR CALL
abend

Explanation

PSB schedule or
DL/I request

ADCA ---- ---- ADCA Error detected in DBCTL.

DL/I request ADCB ---- ---- ADCB PSB not scheduled.

PSB schedule
request

ADCC ---- ---- ADCC PSB already scheduled
detected in DBCTL.

DL/I request ADCD ---- ---- ADCD Deadlock detected.

PSB schedule or
DL/I request

ADCE ---- ---- ADCE Bad response code has been
returned from DFHDBAT.

DL/I request ADCI ---- ---- ADCI Lock outstanding.

DL/I request ADCJ ---- ---- ADCJ DBCTL not available on
DL/I request1.

PSB schedule or
DL/I request

ADCN ---- ---- ADCN FORCEPURGE issued while
running in DBCTL.

PSB schedule
request

ADCP ---- ---- ADCP The user is not authorized to
use the PSB.

PSB schedule
request

ADCQ ---- ---- ADCQ The SYSSERVE keyword or
the I/O PCB option was not
specified, and the PSB does
not contain any DB PCBs.

DL/I request ADCR ---- ---- ADCR DL/I request (other than PSB
schedule) issued when
DBCTL not connected.

PSB schedule
request

ADDA ---- ---- ADDA An error response from the
storage domain.

PSB schedule or
DL/I request

ADDK ---- ---- ADDK CICS Lock manager call
failed.

Terminate request ASPR ---- ---- ASPR Single-phase commit request
issued but CICS unable to
report outcome. IMS updates
are either backed out, or
committed. IMS is not
indoubt about the UOW.

Terminate request ASP7 ---- ---- ASP7 Single-phase commit request
failed. IMS backed out any
updates in the UOW.

PSB schedule
request

DHTA X'01' (PSBNF) X'08' (INVREQ) ---- PSB not found2.

PSB schedule
request

DHTC X'03' (PSBSCH) X'08' (INVREQ) ---- PSB already scheduled
detected in CICS.

PSB schedule
request

DHTE X'05' (PSBFAIL) X'08' (INVREQ) ---- PSB initialization failed.

Terminate request DHTG X'07' (TERMNS) X'08' (INVREQ) ---- PSB not scheduled.

Licensed Materials – Property of IBM

106 CICS TS for z/OS 5.3: IMS Database Control Guide

Table 13. Summary of abends and return codes (continued)

Request EXEC
abend

CALL UIBDLTR CALL UIBFCTR CALL
abend

Explanation

DL/I request DHTH X'08' (FUNCNS) X'08' (INVREQ) ---- PSB not scheduled, detected
by CICS.

PSB schedule
request

DHTJ X'FF' (DLINA) X'08' (INVREQ) ---- DBCTL not available on PSB
scheduling3.

PSB schedule,
DL/I, and
terminate requests

DHxx ---- ---- ---- Many reasons. xx is the PCB
status code. (See also
“Preventing DHxx abends
after EXEC DLI SCHD PSB
failure” on page 101.)

PSB schedule or
DL/I request

---- X'00' (INVARG) X'08' (INVREQ) ---- Invalid argument.

PSB schedule or
DL/I request

---- TR
status
code in
DIB-
STAT

X'14' (NOTDONE) X'08' (INVREQ) ---- Global user exit XDLIPRE
indicates that DL/I request
should not be run.

Note:

1. DBCTL is in use, and a PSB has been scheduled. However, the connection
between CICS and DBCTL has since been broken.

2. The PSB was not found in PDIR and DBCTL was not ready. Alternatively, the
PSB was not found in PDIR and DBCTL was ready but the PSB was not found
in DBCTL APPLCTN.

3. DBCTL was not ready at the time of the DL/I request.

If you use remote DL/I with DBCTL, you might also receive Axxx and DHxx
abends that are not listed here.

For details of DL/I status codes, and information about DHxx abends (where xx
indicates the DL/I status code), see IMS Application Programming: EXEC DLI
Commands in Information Management Software for z/OS product documentation.

Licensed Materials – Property of IBM

Chapter 4. Application programming for DBCTL 107

http://www.ibm.com/support/knowledgecenter/SSEPH2/welcome

Licensed Materials – Property of IBM

108 CICS TS for z/OS 5.3: IMS Database Control Guide

Chapter 5. Security for DBCTL

When you use CICS with DBCTL, several security facilities are available.

You can use one or more of the following optional security facilities:
v “PSB authorization checking by CICS”
v Resource access security checking by DBCTL
v DBCTL password security checking

For details on resource access security checking by DBCTL and DBCTL password
security checking see IMS: System administration.

Of the resources you can protect using IMS security, you need be concerned only
with PSBs, databases, and commands.

PSB authorization checking by CICS
At PSB scheduling time, CICS invokes security checking to determine whether the
terminal user is authorized to access the PSB. The actual check is carried out by an
external security manager, which can be RACF or your own security program.

Although PSB scheduling requests are sent to DBCTL for processing, CICS does
PSB authorization checking. For programming information about writing your own
security program, see Invoking an external security manager in Securing.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1989, 2015 109

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfha3/topics/dfha378.html

Licensed Materials – Property of IBM

110 CICS TS for z/OS 5.3: IMS Database Control Guide

Chapter 6. Troubleshooting DBCTL

In a CICS-DBCTL environment, you need to correlate information produced by the
CICS system with information produced by the DBCTL system. This information
includes trace entries produced by CICS and DBCTL, dumps produced by CICS,
the DRA, and DBCTL, and messages produced by CICS, the DRA, and DBCTL.

The link between CICS and DBCTL in all these cases is the recovery token. It
appears in trace entries, in dumps (including the dump header), and in messages
issued by CICS and DBCTL.

For more detailed help on dealing with problems, beginning from symptoms
through to identification and solution, see Approaches to problem determination in
Troubleshooting. For detailed component descriptions of DBCTL, which can be
useful in debugging, see Diagnosis reference overview in Reference -> Diagnostics.
For similar guidance on messages and abend codes issued by the DRA and by
DBCTL, see IMS messages and codes.

Interactions between CICS and DBCTL
Errors can occur during interactions between CICS and DBCTL at the interface
level or during interactions between CICS and DBCTL caused by requests.

Interactions between CICS and DBCTL at the interface level
v Connection to DBCTL.

See “Connection to DBCTL has failed to complete” on page 112.
v Disconnection from DBCTL. (This includes intentional operator-requested

disconnection, and unintentional disconnections caused by failures of the system,
or parts of the CICS-DBCTL interface.)
See “Disconnection from DBCTL failed to complete” on page 112.

Interactions between CICS and DBCTL caused by requests
v Requests that are issued by applications:

– Waits or failures during PSB scheduling.
See “Failures during PSB scheduling” on page 113.

– Waits or failures during the processing of a DL/I request.
See “Failures during DL/I request processing” on page 113.

v Requests that are issued as a result of task termination, including syncpoint
processing:
– Failures during PREPARE processing
– Failures during COMMIT processing (TERM call or task termination)
– Failures during resynchronization of UOWs
In all these cases, see “Thread termination” on page 123.

DBCTL error scenarios
DBCTL errors can occur in a variety of ways, such as during connection to DBCTL,
or during PSB scheduling. Use dumps and trace messages to help diagnose the
error for fixing.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1989, 2015 111

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfhs1/topics/dfhs115.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfhs1/topics/dfhs115.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.diagnosisref.doc/topics/dfhs3_overview.html

Connection to DBCTL has failed to complete
In this situation, the DRA may be in a “wait” state because you attempted to
connect CICS to DBCTL using the CDBC transaction, but the connection process
failed to complete.

Connection to DBCTL using the CICS-supplied transaction CDBC takes place in
two phases. In phase 1, CDBC passes the request for connection to IMS and
returns. In phase 2, IMS processes the request asynchronously and returns to CICS
when connection is complete. To discover where the problem occurred, try to find
out how far the connection attempt has progressed by:
v Pressing PF2 on the CDBC menu panel to refresh this display, as described in

“CDBC transaction for connect and disconnect” on page 39; or
v Using the CDBI inquiry panel, as described in “CDBI transaction for inquiry” on

page 43.

If connection is in phase 1, the following message is issued:
DFHDB8291 I DBCTL CONNECT PHASE 1 IN PROGRESS

It is very unlikely that a wait will occur during this phase, unless there is a
problem with the CICS transaction.

If connection is in phase 2, the following message is issued:
DFHDB8292 I DBCTL CONNECT PHASE 2 IN PROGRESS

If phase 2 fails to complete, the failure is associated with IMS. This may be
because:
v The DRA startup table is pointing to the wrong system because the DBCTL

subsystem ID is incorrect. If this is so, CICS issues a WTO message saying:
SUBSYSTEM xxxx NOT ACTIVE. REPLY WAIT OR CANCEL

where xxxx is the subsystem ID indicated on the CDBC panel.
See “Defining the IMS DRA startup parameter table” on page 29 for information
on specifying the DBCTL subsystem ID.

v DBCTL has been initialized, but no restart command has been issued. Remember
that DBCTL needs a restart command unless you are using AUTO start. See
“Connecting to DBCTL: overview” on page 37 and “Restarting DBCTL” on page
67 for information on restarting DBCTL and on the implications of different
restart options.

If neither of these situations applies, the problem is in IMS; see IMS: Diagnosis for
further guidance.

For an example of the trace entries produced by CICS for a successful connection
to DBCTL, see “Connection to DBCTL” on page 115.

Disconnection from DBCTL failed to complete
The DRA might be in a wait state because you attempted to disconnect CICS from
DBCTL using the CDBC transaction, but the disconnection process failed to
complete.

For an example of the trace entries produced by CICS for a successful
disconnection from DBCTL, see “Disconnection from DBCTL” on page 118.

Licensed Materials – Property of IBM

112 CICS TS for z/OS 5.3: IMS Database Control Guide

When you use CDBC to disconnect from DBCTL, it invokes another CICS
transaction, CDBT. CDBT makes the disconnection request to DBCTL, and is
suspended by CICS while DBCTL services the request asynchronously.

If disconnection fails to complete, you can inquire on CDBT by using CEMT INQ
TASK to see how far disconnection has progressed. You might find that CDBT is
waiting on resource name DLSUSPND and resource type DBCTL, which means the
request is being processed by DBCTL. For an illustrated example, see the
description of CEMT INQ TASK in “Purging a transaction that is using DBCTL” on
page 62.
v If CDBT is waiting on DLSUSPND, the next step depends on whether the

disconnection requested was orderly or immediate. To find out, you can use the
CDBI inquiry panel, as described in “CDBI transaction for inquiry” on page 43.
– If you requested orderly disconnection, DBCTL is probably waiting for a task

that is issuing many DL/I requests, or for a conversational task, perhaps one
that is waiting for input from an unattended terminal.
If necessary, you can override an orderly disconnection by requesting
immediate disconnection, in which case the process should conclude at once.
However, be aware that immediate disconnection can cause indoubt UOWs,
and leave database records unavailable to other CICS systems using that
DBCTL until it is reconnected, as described in “Deciding whether to use
orderly or immediate disconnection” on page 43.

– If you requested immediate disconnection, and it has not taken place, an
unexpected wait in IMS has probably occurred. For further guidance, see IMS:
Diagnosis .

v If CDBT is not waiting on DLSUSPND, this indicates a problem in CICS. For
information about dealing with it, see Approaches to problem determination in
Troubleshooting.

Failures during PSB scheduling
For examples of trace entries produced by CICS during PSB scheduling (both
successful and failed), see “PSB schedule” on page 120 and “PSB scheduling
failure” on page 121.

Use the DBCTL operator command /DISPLAY as follows:
v /DISPLAY PROGRAM psbname to check that the ACB is valid. A status of

“invalid” means that the PSB was not defined during IMS system generation. A
status of “notinit” means that the ACB is not in the ACBLIB. A status of
“stopped” means an error has caused DBCTL to stop the PSB, or that a /STOP
command has been issued for the PSB. Investigate the cause of this error. When
resolved, use /START PROGRAM psbname to start the PSB again.

v /DISPLAY DATABASE dbname to check that the databases are valid.

Failures during DL/I request processing
The DRA might enter a wait state because you have a CICS task in a wait state.

For an example of the trace entries produced by CICS during DL/I request
processing, see “CICS task issuing DL/I requests to be processed by DBCTL” on
page 122. For an example of the trace entries produced by DBCTL during DL/I
request processing, see “Trace entries produced by DBCTL” on page 124.

If a task appears to hang, query it using CEMT INQ TASK, as for any CICS task. If
a task is waiting on a resource name of DLSUSPND and resource type DBCTL, the

Licensed Materials – Property of IBM

Chapter 6. Troubleshooting DBCTL 113

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfhs1/topics/dfhs115.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfhs1/topics/dfhs115.html

task has made a DL/I request and has been suspended in CICS while DBCTL
services that request. If repeated use of CEMT INQ TASK shows the task still
waiting on DLSUSPND, it has hung in DBCTL. If you want to purge the task, you
must use DBCTL operator commands to do so. See “Purging a transaction that is
using DBCTL” on page 62 for an illustrated example of using CEMT INQ TASK
and the relevant DBCTL operator commands in this way.

If the task is not waiting on DLSUSPND, this might indicate a problem in CICS.
See Approaches to problem determination in Troubleshooting.

Correlating activity in DBCTL and CICS
Using the /DISPLAY command to display DBCTL activity and the CEMT INQ
TASK to display CICS activity are useful means of correlating what is happening
on each side of the interface.

Check to see that the recovery token matches in CICS and DBCTL. If it does not,
this may indicate a thread hanging. /DISPLAY CCTL ALL displays all the threads
associated with CICS tasks in DBCTL. If you enter /DISPLAY ACTIVE ALL, region
and DC activity is also displayed, enabling you to find out if a BMP is waiting in
DBCTL.

Trace for CICS DBCTL
When examining traces entries produced by CICS and DBCTL, you must relate
them according to whether they are produced at the same time in CICS and in
DBCTL, or at different times. You must also know how to find the relevant parts of
each trace and use them to correlate what is happening in CICS and in DBCTL.

Trace entries produced by CICS
Use the CICS-supplied transaction CETR to trace DBCTL activity. CETR traces
DL/I requests until they leave DFHDBAT.

The following information gives examples of CICS trace entries produced at the
following points:
v “Connection to DBCTL” on page 115
v “Disconnection from DBCTL” on page 118
v “PSB schedule” on page 120
v “PSB scheduling failure” on page 121
v “CICS task issuing DL/I requests to be processed by DBCTL” on page 122
v “Thread termination” on page 123

For details of the general format of CICS trace entries, how to select trace options
for component and task tracing, whether to use “standard” or “special” tracing,
and how to start and stop tracing selectively, see Using traces in problem
determination in Troubleshooting. For information about formatting and printing
trace entries, including a sample job you can use to do this, see Sample monitoring
data print program (DFH$MOLS) in Reference -> Utilities.

In the example traces, numbers in the margin indicate things that might be useful
to correlate CICS and DBCTL activity. These additional numbers are not part of the
trace output. Also, some trace entries are omitted for brevity, as indicated by the
following symbol:

.

.

Licensed Materials – Property of IBM

114 CICS TS for z/OS 5.3: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfhs1/topics/dfhs115.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfhs1/topics/dfhs13o.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfhs1/topics/dfhs13o.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfha6/topics/dfha61u.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfha6/topics/dfha61u.html

Connection to DBCTL

Figure 34 on page 116 shows an example of the CICS trace entries produced when
CICS connects to DBCTL.

Licensed Materials – Property of IBM

Chapter 6. Troubleshooting DBCTL 115

1 .
.

2 00028 1 AP 00E1 EIP ENTRY LINK 0004,07301464,08000E02
00028 1 PG 1101 PGLE ENTRY LINK_EXEC DFHDBCON,07301088 , 00000014
00028 1 DD 0301 DDLO ENTRY LOCATE 06D08F80,07301698,PPT,DFHDBCON
00028 1 DD 0302 DDLO EXIT LOCATE/OK D7D7E3C5 , 06D89858
00028 1 LD 0001 LDLD ENTRY ACQUIRE_PROGRAM 06D8BF50

.

.
3 00028 1 XM 1101 XMAT ENTRY ATTACH CDBO,07302E38 , 00000004,0,NONE,C,NO,YES,NO,0

00028 1 XM 0401 XMLD ENTRY LOCATE_AND_LOCK_TRANDEF CDBO
00028 1 DD 0301 DDLO ENTRY LOCATE 06D00040,07303314,TXD,CDBO
00028 1 DD 0302 DDLO EXIT LOCATE/OK 06D86B78 , D7000000

.

.
4 00028 1 LD 0001 LDLD ENTRY ACQUIRE_PROGRAM DFHDBSPX,YES

00028 1 LD 0002 LDLD EXIT ACQUIRE_PROGRAM/OK 870A0020,070A0000
.
.

5 00028 1 AP 00E1 EIP ENTRY ENABLE 0004,07302AD4 ...M,08002202
.

6 1CICS/ESA - AUXILIARY TRACE FROM 07/20/95 - APPLID CICSKPG1 - TIME OF FIRST ENTRY ON THIS PAGE 11:26:58.7144860002
.

7 00028 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)
00028 1 AP 0310 DBAT ENTRY APPLICATION REQUEST

8 00028 1 AP 0314 DBAT EVENT DRA-ROUTER-LOAD , LOAD-RESPONSE-CODE (00000000)
9 00028 1 AP 0315 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR INTERFACE REQUEST , 0100
10 00028 1 AP 0316 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR INTERFACE REQUEST , 00000000

00028 1 AP 0313 DBAT EXIT DBAT-RESPONSE-CODE (00000000)
11 00028 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)

00028 1 AP 2521 ERM EXIT APPLICATION-CALL-TO-TRUE(DBCTL)
12 00028 1 ME 0301 MEME ENTRY SEND_MESSAGE 1FB4,073D642C , 00000004,073D5060 , 00000002,DB

00028 1 ME 0501 MEIN ENTRY INQUIRE_MESSAGE_DATA 86BB5AE0,DFHMET1E,1FB4,073039CD , 00000000 , 0000001C,07303967 , 00000000
00028 1 KE 0101 KETI ENTRY INQ_LOCAL_DATETIME_DECIMAL
00028 1 KE 0102 KETI EXIT INQ_LOCAL_DATETIME_DECIMAL/OK 07201995,095757,097993,MMDDYYYY
00028 1 KE 0401 KEGD ENTRY INQUIRE_KERNEL
00028 1 KE 0402 KEGD EXIT INQUIRE_KERNEL/OK CICSKPG1,CIA1
00028 1 ME 0502 MEIN EXIT INQUIRE_MESSAGE_DATA/OK 06BB5D7C,06BC5E07,06BC5E1D,06BC5E7C,,I,095757,20071995,M,CIA1,CICSKPG1
00028 1 ME 0312 MEME EVENT ISSUE-MVS-GETMAIN
00028 1 ME 0313 MEME EVENT MVS-GETMAIN-COMPLETE

13 00028 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8116
00028 1 DU 0600 DUTM ENTRY INQUIRE_SYSTEM_DUMPCODE DB8116
00028 1 DU 0601 DUTM EXIT INQUIRE_SYSTEM_DUMPCODE/EXCEPTION DUMPCODE_NOT_FOUND,0,0,,,,
00028 1 DU 0501 DUDT EXIT INQUIRE_SYSTEM_DUMPCODE/EXCEPTION DUMPCODE_NOT_FOUND,0,0,,,,
00028 1 ME 0401 MEBU ENTRY BUILD_MESSAGE 06BC5E07,06BB5D7C,20071995,M,095757,CIA1,CICSKPG1,0730369D , 00000009,073
00028 1 ME 0402 MEBU EXIT BUILD_MESSAGE/OK 0
00028 1 ME FF35 MEFO ENTRY -FUNCTION(FORMAT_MESSAGE) 0698B390 , 0000006F,1,78,073039EB , 00000001,YES
00028 1 ME FF36 MEFO EXIT -FUNCTION(FORMAT_MESSAGE) OK

14 00028 1 AP F600 TDA ENTRY WRITE_TRANSIENT_DATA CDBC,073039FB , 00000001,NO
.
.

15 00028 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8210
.
.

16 00028 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8292
.

17 .
00038 1 DS 0005 DSSR EXIT WAIT_MVS/OK

18 00038 1 AP 0306 DBCT EVENT POSTED FOR CONNECTION COMPLETE
19 00038 1 ME 0301 MEME ENTRY SEND_MESSAGE 1FA5,0698B240 , 00000004,073D5060 , 00000002,DB

.

.
00038 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8101

.

.
20 00038 1 GC 2010 CCCC ENTRY WRITE 00108194 , 00000008,DBCTL,STATUS

.

.
00038 1 GC 2050 CCCC EXIT WRITE/OK

21 00038 1 PG 0A01 PGLU ENTRY LINK_URM DFHDBUEX,001081F0 , 0000000B,NO
00038 1 DD 0301 DDLO ENTRY LOCATE 06D08F80,00108220,PPT,DFHDBUEX
00038 1 DD 0302 DDLO EXIT LOCATE/OK D7D7E3C5 , 06D89A50

.

.
22 00038 1 AP 0064 USER EVENT APPLICATION-PROGRAM-ENTRY CONNECT DBCTL HAS JUST BEEN CONNECTED

.

.
00038 1 AP 1941 APLI EXIT START_PROGRAM/OK,DFHDBUEX
00038 1 LD 0001 LDLD ENTRY RELEASE_PROGRAM 0732B450,86D5B028
00038 1 LD 0002 LDLD EXIT RELEASE_PROGRAM/OK 06D5B000,3A8,ECDSA
00038 1 PG 0A02 PGLU EXIT LINK_URM/OK
00038 1 AP 00E1 EIP ENTRY RESYNC 0004,001087C4 ..gD,08001604

Figure 34. CICS trace entries produced during connection to DBCTL 1 of 2

Licensed Materials – Property of IBM

116 CICS TS for z/OS 5.3: IMS Database Control Guide

Note:

1. Phase 1 of connection begins.
2. Locating DFHDBCON and loading if not already loaded. (In this example,

CICS and DBCTL have already been connected during this CICS session, so
DFHDBCON has already been loaded.)

3. The control transaction, CDBO, is attached. CDBO enables the DRA to pass
information from itself and DBCTL independently of CICS. It is invoked
whenever the DRA needs to determine whether to continue processing, which
is when:
v The DRA has successfully connected to DBCTL
v DBCTL has been terminated normally using /CHECKPOINT FREEZE or

/CHECKPOINT PURGE
v Connection to DBCTL has failed
v A CICS request to connect to DBCTL has been canceled
v The DRA fails
v DBCTL fails

4. Loading programs needed: DFHDBSPX (shown in example), plus DFHDBCX,
DFHDBMOX, DFHDBREX, DFHDBSTX, DFHDBSSX, DFHDBTOX, and
DFHDBAT.

5. DFHDBCON enables DFHDBAT.
6. A timestamp is included in the header line of every page of CICS abbreviated

auxiliary trace output to help you match trace entries with external events.
7. DFHERM invokes DFHDBAT for connection request.
8. DRA router module DFSPRRC0 loaded.
9. DRA is invoked for interface request. The type of interface request is indicated

by request type from the PAPL: 0100 is a CONNECT request. (See “PAPL
request and return codes” on page 130.)

10. DBCTL return code (00000000). See “Return codes in DBCTL” on page 129.
11. Control is passed back to DFHERM.

22 00038 1 AP 0064 USER EVENT APPLICATION-PROGRAM-ENTRY CONNECT DBCTL HAS JUST BEEN CONNECTED
.
.

00038 1 AP 1941 APLI EXIT START_PROGRAM/OK,DFHDBUEX
00038 1 LD 0001 LDLD ENTRY RELEASE_PROGRAM 0732B450,86D5B028
00038 1 LD 0002 LDLD EXIT RELEASE_PROGRAM/OK 06D5B000,3A8,ECDSA
00038 1 PG 0A02 PGLU EXIT LINK_URM/OK
00038 1 AP 00E1 EIP ENTRY RESYNC 0004,001087C4 ..gD,08001604

.

.
23 00038 1 AP E161 EXEC EXIT RESYNC ’DBCTL ’ AT X’0713F062’,’JB1A ’ AT X’8698B270’,AT X’00000000’,0 AT X

00038 1 AP E111 EISR EXIT TRACE_EXIT/OK
00038 1 AP 00E1 EIP EXIT RESYNC OK 00F4,00000000,00001604
00038 1 AP 00E1 EIP ENTRY SYNCPOINT 0004,001087C4 ..gD,08001602

.

.
00038 1 AP E161 EXEC EXIT SYNCPOINT 0,0,ASM,09490000

.

.
24 00028 1 ME 0301 MEME ENTRY RETRIEVE_MESSAGE 2065,000550A7 , 00000000 , 00000033,E,DB

00028 1 ME 0501 MEIN ENTRY INQUIRE_MESSAGE_DATA 86BB5AE0,DFHMET1E,2065,07301F95 , 00000000 , 0000001C,07301F2F , 00000000
.
.

00028 1 ME 0502 MEIN EXIT INQUIRE_MESSAGE_DATA/OK 06BB5D7C,06BC7416,06BC742C,06BC744D,I,,095759,20071995,M,CIA1,CICSKPG1
00028 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8293

Figure 35. CICS trace entries produced during connection to DBCTL 2 of 2

Licensed Materials – Property of IBM

Chapter 6. Troubleshooting DBCTL 117

12. Phase 1 of connection has ended at this point. Message DFHDB8116 is issued
confirming that connection is proceeding. The message includes the DBCTL
identifier and the DRA suffix used.

13. When a message has been issued, the CICS dump domain checks to see if the
user has requested any action for that message (using the CEMT SET
SYDUMPCODE, or the EXEC CICS SET SYSDUMPCODE commands, (In this
case, no dump has been requested, as indicated by
DUMPCODE_NOT_FOUND.) However, when you are using abbreviated
trace, entries such as INQUIRE_SYSTEM_DUMPCODE DB8116 (in which the
system dump code is the message number without the characters “DFH”) are
useful in indicating which messages have been issued. (Complete message
numbers are included in full trace.)

14. Message DFHDB8116 is sent to transient data destination CDBC.
15. Message DFHDB8210 is issued confirming that connection to DBCTL is

proceeding.
16. Message DFHDB8292 is issued indicating that CICS is in phase 2 of

connecting to DBCTL.
17. At this point, DBCTL exits are loaded, which causes I/O activity. The task is

suspended, and the control transaction, CDBO, starts. This is indicated by the
task number changing (from 00031 to 00032). Control transaction enters a
series of waits. CDBO invokes the CICS-DBCTL interface control program
(DFHDBCT).

18. DBCTL notifies CICS that CICS-DBCTL connection is complete.
19. Message DFHDB8101 is issued.
20. A record is written to the global catalog, indicating which DBCTL should be

reconnected to if there is a CICS failure. (See “Program list table (PLT)” on
page 18 and “Connecting DBCTL to CICS automatically” on page 38.)

21. DFHDBUEX, the CICS-supplied user replaceable program for use with
DBCTL, is linked. Trace entries following invocation of DFHDBUEX depend
on what you have coded in your own version. (See “DFHDBUEX” on page
33.)

22. In this example, the user has coded DFHDBUEX to issue a trace entry stating
that DBCTL has just been connected.

23. CICS issues an EXEC CICS RESYNC command to resynchronize any
outstanding DBCTL indoubt UOWs. (See “Recovery and restart operations for
DBCTL” on page 66.)

24. Control transaction waits have ended: task number changes back again (from
00032 to 00031). Message DFHDB8293 is issued confirming that DBCTL is
connected and ready.

Disconnection from DBCTL
This table shows some examples of CICS trace entries produced at disconnection
from DBCTL.

Licensed Materials – Property of IBM

118 CICS TS for z/OS 5.3: IMS Database Control Guide

Note:

1 1CICS/ESA - AUXILIARY TRACE FROM 07/20/95 - APPLID CICSKPG1 - TIME OF FIRST ENTRY ON THIS PAGE 11:26:58.7144860002
.

2 .
00047 1 AP 00E1 EIP ENTRY START 0004,07301464,08001008

3 00047 1 XM 0401 XMLD ENTRY LOCATE_AND_LOCK_TRANDEF CDBT
00047 1 DD 0301 DDLO ENTRY LOCATE 06D00040,07301820,TXD,CDBT
00047 1 DD 0302 DDLO EXIT LOCATE/OK 06D86C10 , D7000000

.

.
4 00047 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8211

.

.
5 00047 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8294

.

.
6 00048 1 PG 0901 PGPG ENTRY INITIAL_LINK DFHDBDSC

.

.
7 00048 1 AP 00E1 EIP ENTRY ADDRESS 0004,0005B010,08000202

.

.
8 00048 1 PG 0A01 PGLU ENTRY LINK_URM DFHDBUEX,0005B0C4 , 0000000B,NO

00048 1 DD 0301 DDLO ENTRY LOCATE 06D08F80,0005B3A4,PPT,DFHDBUEX
00048 1 DD 0302 DDLO EXIT LOCATE/OK D7D7E3C5 , 06D89A50
00048 1 LD 0001 LDLD ENTRY ACQUIRE_PROGRAM 0732B450
00048 1 LD 0002 LDLD EXIT ACQUIRE_PROGRAM/OK 86D5B028,06D5B000,3A8,0,REUSABLE,ECDSA,OLD_COPY

9 00048 1 AP 1940 APLI ENTRY START_PROGRAM DFHDBUEX,NOCEDF,FULLAPI,URM,NO,07309828,0005B0C4 , 0000000B,2
.
.

00048 1 AP 0065 USER EVENT APPLICATION-PROGRAM-ENTRY DISCONN DBCTL HAS JUST BEEN DISCONNECTED
.
.

10 00048 1 LD 0001 LDLD ENTRY RELEASE_PROGRAM 0732B450,86D5B028
00048 1 LD 0002 LDLD EXIT RELEASE_PROGRAM/OK 06D5B000,3A8,ECDSA
00048 1 PG 0A02 PGLU EXIT LINK_URM/OK
00048 1 AP 2520 ERM ENTRY APPLICATION-CALL-TO-TRUE(DBCTL)

.

.
00048 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)
00048 1 AP 0310 DBAT ENTRY APPLICATION REQUEST

11 00048 1 AP 0315 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR INTERFACE REQUEST , 0400
12 00048 1 AP 0304 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR DISCONNECTION REQUEST

00048 1 DS 0004 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,0005B444,NO,OTHER_PRODUCT
00048 1 DS 0005 DSSR EXIT WAIT_MVS/OK
00048 1 AP 0305 DBSPX EVENT POSTED FOR DISCONNECTION REQUEST

13 00048 1 AP 0316 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR INTERFACE REQUEST , 00000000
.
.

14 00048 1 ST 0003 STST ENTRY RECORD_STATISTICS 072F7618 , 00000054,USS
.
.

00048 1 ST 0004 STST EXIT RECORD_STATISTICS/OK
00048 1 AP 0313 DBAT EXIT DBAT-RESPONSE-CODE (00000000)
00048 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)
00048 1 AP 2521 ERM EXIT APPLICATION-CALL-TO-TRUE(DBCTL)

15 00048 1 GC 2010 CCCC ENTRY WRITE 0005B0BC , 00000008,DBCTL,STATUS
16 .

.
00048 1 DS 0004 DSSR ENTRY WAIT_MVS ASYNRESP,CCVSAMWT,06C8D5C0,NO,IO
00038 1 DS 0005 DSSR EXIT WAIT_MVS/OK

17 00038 1 AP 0306 DBCT *EXC* EVENT POSTED FOR DFHDBCT SHOULD TERMINATE
00038 1 AP 00E1 EIP ENTRY START 0004,001087C4 ..gD,08001008

.

.
00038 1 XM 0401 XMLD ENTRY LOCATE_AND_LOCK_TRANDEF CDBD
00038 1 DD 0301 DDLO ENTRY LOCATE 06D00040,0730C078,TXD,CDBD
00038 1 DD 0302 DDLO EXIT LOCATE/OK 06D86918 , D7000000

.

.
00038 1 AP 00F3 ICP ENTRY INITIATE CDBD 4003,0000000C,00000000,CDBD

.

.
18 00049 1 LD 0001 LDLD ENTRY RELEASE_PROGRAM DFHDBSSX,8711A910

00049 1 LD 0002 LDLD EXIT RELEASE_PROGRAM/OK
.
.

00049 1 ME 0502 MEIN EXIT INQUIRE_MESSAGE_DATA/OK 06BB5D7C,06BC56B8,06BC56CE,06BC5710,,I,100011,20071995,M,CIA1,CICSKPG1
19 00049 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8102

Figure 36. CICS trace entries produced during disconnection from DBCTL

Licensed Materials – Property of IBM

Chapter 6. Troubleshooting DBCTL 119

1. Timestamp, as mentioned in “Connection to DBCTL” on page 115.
2. Phase 1 of disconnection begins at this stage.
3. The CICS-DBCTL interface disconnection transaction, CDBT, is attached.
4. Message DFHDB8211 is issued to confirm that orderly disconnection is

proceeding. This message is issued in response to the user pressing PF5 on the
CDBC screen. (For an immediate disconnection, message DFHDB8212 is
issued.)

5. Message DFHDB8294 is issued confirming that orderly disconnection is in
progress. (If immediate disconnection had been requested, message
DFHDB8295 would have been issued.)

6. CDBT invokes CICS-DBCTL interface disconnection program, DFHDBDSC. A
wait is entered (task number changes, from 00034 to 00035).

7. The EXEC interface program, DFHEIP, links to the CICS-DBCTL
user-replaceable program, DFHDBUEX.

8. DFHDBUEX is loaded.
9. Trace entries at this point depend on what, if anything, you have coded in

your own version of DFHDBUEX. (See “DFHDBUEX” on page 33.) In this
example, DFHDBUEX has been coded to issue a trace entry stating that
DBCTL has just been disconnected.

10. DFHDBUEX is released and control is passed back to DFHDBDSC.
11. The DRA is invoked for an interface request. (PAPL request type 0400

indicates the request is a DISCONNECT. See “PAPL request and return codes”
on page 130.)
If there is DL/I activity at the time of the disconnect, and the disconnect is
orderly (not immediate) DFHDBAT links to DFHDBSPX (the CICS-DBCTL
suspend exit) to wait for all DL/I activity to complete. In this example, there
was no DL/I activity at the time the disconnect was issued.

12. The DRA links to DFHDBSPX to cause the CICS task to wait while the DRA
processes the disconnect request.

13. DBCTL return code (00000000). (See “Return codes in DBCTL” on page 129.)
14. Statistics for this session are recorded. (See “DBCTL statistics” on page 134.)
15. DFHDBDSC writes a record to the CICS global catalog, to indicate that CICS

is no longer connected to DBCTL.
16. Phase 2 of disconnection begins.
17. DFHDBDI’s associated transaction, CDBD, runs and disables DFHDBAT to

make it unavailable. (The transaction number changes from 00035 to 00032.)
18. Programs loaded at startup are disabled. This example shows DFHDBSPX. A

complete trace should also include similar entries for other programs loaded
at startup, as listed in “Connection to DBCTL” on page 115.

19. Message DFHDB8102 is issued confirming that disconnection from DBCTL is
complete.

PSB schedule
This table shows an example of some CICS trace entries produced at PSB schedule
time.

Licensed Materials – Property of IBM

120 CICS TS for z/OS 5.3: IMS Database Control Guide

Note:

1. Timestamp, as mentioned in “Connection to DBCTL” on page 115.
2. DL/I command or call type: PCB indicates a schedule request using the DL/I

call interface.
3. PSB name (TDLRA1).
4. Recovery token (C3C9C3E2D2D7C7F1AB6538123994CA01).
5. The DRA is invoked for a thread request: 0301 is a PSB schedule request. (See

“PAPL request and return codes” on page 130.)
6. DFHDBAT must wait, because the request has entered IMS code.
7. The DFHDBAT wait ends and DBCTL return code (00000000) is issued. The

DBCTL return code is 00000000 because the PSB was successfully scheduled.
See Figure 38 on page 122 for an example of the DBCTL return code in the case
of a PSB scheduling failure. See “Return codes in DBCTL” on page 129 for an
explanation of DBCTL return codes.

8. 00 in the UIBFCTR, and 00 in the UIBDLTR (underscored in this example)
indicate that the PSB was scheduled successfully. See “PSB scheduling failure”
for an example of the contents of these fields, PSB scheduling fails. See
“Summary of DBCTL abends and return codes” on page 105 for information on
the UIBFCTR and UIBDLTR.

PSB scheduling failure
An example of the trace entries produced if PSB scheduling fails.

.

.
1 1CICS/ESA - AUXILIARY TRACE FROM 07/20/95 - APPLID CICSKPG1 - TIME OF FIRST ENTRY ON THIS PAGE 11:26:58.7144860002

.

.
00039 1 AP 00E1 EIP ENTRY CALLDLI 0004,00182718,00004000 .. .

2,3 00039 1 AP 0328 DLI ENTRY FUNCTION_CODE(PCB) 000C7526,TDLRA1
.
.

00039 1 AP 0330 DLIDP ENTRY DBCTL
.
.

00039 1 AP 2520 ERM ENTRY APPLICATION-CALL-TO-TRUE(DBCTL)
.
.

00039 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)
00039 1 AP 0310 DBAT ENTRY APPLICATION REQUEST

4,5 00039 1 AP 0311 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CA01,0301
6 00039 1 AP 0304 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR THREAD REQUEST

00039 1 DS 0004 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,0732001C,NO,OTHER_PRODUCT
00039 1 DS 0005 DSSR EXIT WAIT_MVS/OK
00039 1 AP 0305 DBSPX EVENT POSTED FOR THREAD REQUEST

4,7 00039 1 AP 0312 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CA01,00000000
00039 1 AP 0313 DBAT EXIT DBAT-RESPONSE-CODE (00000000)
00039 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)

.

.
00039 1 AP 2521 ERM EXIT APPLICATION-CALL-TO-TRUE(DBCTL)
00039 1 AP 0331 DLIDP EXIT DBCTL
00039 1 AP 0329 DLI EXIT IMS_PCB_FORMAT 0000,0000,PCB

8 00039 1 AP 00E1 EIP EXIT CALLDLI OK 00F4,00000000,00004000 .. .

Figure 37. CICS trace entries produced for successful PSB schedule

Licensed Materials – Property of IBM

Chapter 6. Troubleshooting DBCTL 121

Note:

1. Timestamp, as explained in “Connection to DBCTL” on page 115.
2. DL/I command or call: PCB indicates a schedule request using the DL/I call

interface.
3. PSB name (TXLRA1).
4. Recovery token (C3C9C3E2D2D7C7F1AB654BD5E4F07E04).
5. The DRA is invoked for a thread request: 0301 is a PSB schedule request. (See

“PAPL request and return codes” on page 130.)
6. The reason for the PSB scheduling failure is in the DBCTL return code

(880001AC). In this case, it is X'1AC', indicating an IMS user abend U0428
(decimal), which was issued because the PSB was not defined to DBCTL.

7. Message DFHDB8109 is issued. It contains the IMS user abend, the recovery
token, and the DBCTL ID. (For an example and explanation of how messages
are displayed in abbreviated trace, see “Connection to DBCTL” on page 115.)

8. 0805 (underscored in this example) indicates that a PSB scheduling failure has
occurred. 08 is in the UIBFCTR, and 05 in the UIBDLTR. (See “Summary of
DBCTL abends and return codes” on page 105 for information on the UIBFCTR
and UIBDLTR.)

CICS task issuing DL/I requests to be processed by DBCTL
An example of CICS trace entries produced when a DL/I request is issued.

For an example of trace entries produced by DBCTL for processing of a DL/I
request, see “Trace entries produced by DBCTL” on page 124.

1 1CICS/ESA - AUXILIARY TRACE FROM 07/20/95 - APPLID CICSKPG1 - TIME OF FIRST ENTRY ON THIS PAGE 11:26:58.7144860002
.
.

00064 1 AP 00E1 EIP ENTRY CALLDLI 0004,00182718,00004000 .. .
2,3 00064 1 AP 0328 DLI ENTRY FUNCTION_CODE(PCB) 000C8946,TXLRA1

.

.
00064 1 AP 0330 DLIDP ENTRY DBCTL

.

.
00064 1 AP 2520 ERM ENTRY APPLICATION-CALL-TO-TRUE(DBCTL)

.

.
00064 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)
00064 1 AP 0310 DBAT ENTRY APPLICATION REQUEST

4,5 00064 1 AP 0311 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB654BD5E4F07E04,0301
6 00064 1 AP 0304 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR THREAD REQUEST

00064 1 DS 0004 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,0732001C,NO,OTHER_PRODUCT
00064 1 DS 0005 DSSR EXIT WAIT_MVS/OK
00064 1 AP 0305 DBSPX EVENT POSTED FOR THREAD REQUEST
00064 1 AP 0312 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB654BD5E4F07E04,880001AC
00064 1 AP 0313 DBAT EXIT DBAT-RESPONSE-CODE (00000000)
00064 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)
00064 1 AP 2521 ERM EXIT APPLICATION-CALL-TO-TRUE(DBCTL)
00064 1 ME 0301 MEME ENTRY SEND_MESSAGE 1FAD,00051230 , 00000004,0011F5D0 , 00000005,0011F5D5 , 00000008,0011F3CC
00064 1 ME 0501 MEIN ENTRY INQUIRE_MESSAGE_DATA 86BB5AE0,DFHMET1E,1FAD,073017ED , 00000000 , 0000001C,07301787 , 00000000

.

.
7 00064 1 DU 0500 DUDT ENTRY INQUIRE_SYSTEM_DUMPCODE DB8109

.

.
00064 1 AP 0331 DLIDP EXIT DBCTL

8 00064 1 AP 0329 DLI EXIT IMS_PCB_FORMAT 0805,0000,PCB
00064 1 AP 00E1 EIP EXIT CALLDLI OK 00F4,00000000,00004000 .. .

Figure 38. CICS trace entries produced for failed PSB schedule

Licensed Materials – Property of IBM

122 CICS TS for z/OS 5.3: IMS Database Control Guide

Note:

1. Timestamp, as mentioned in “Connection to DBCTL” on page 115.
2. DL/I command or call: GU indicates a GET UNIQUE request. (See “Comparing

EXEC DLI commands and DL/I calls” on page 103 and “DL/I requests
supported” on page 104.)

3. DBD name (DLIDBDR).
4. Recovery token (C3C9C3E2D2D7C7F1AB653817A31F9000). 3
5. The DRA is invoked for a thread request: 0303 is a DL/I request. (See “PAPL

request and return codes” on page 130.)
6. DBCTL return code (00000000). (See “Return codes in DBCTL” on page 129.)
7. Status code in the DIBSTAT (underscored in this example) is 0000, indicating

that the request was successful. See “Summary of DBCTL abends and return
codes” on page 105 for the contents of DIBSTAT in the case of an unsuccessful
request.

Thread termination
Example trace entries produced during PREPARE, COMMIT, and TERMINATE
request processing.

See “Two-phase commit for DBCTL” on page 71 for a description of PREPARE and
COMMIT request processing.

1 1CICS/ESA - AUXILIARY TRACE FROM 07/20/95 - APPLID CICSKPG1 - TIME OF FIRST ENTRY ON THIS PAGE 11:26:58.7144860002
00040 1 AP 00E1 EIP ENTRY CALLDLI 0004,00183718,00004000 .. .

2,3 00040 1 AP 0328 DLI ENTRY FUNCTION_CODE(GU) 0001A8AC,DLIDBDR
00040 1 AP 0330 DLIDP ENTRY DBCTL
00040 1 AP 2520 ERM ENTRY APPLICATION-CALL-TO-TRUE(DBCTL)
00040 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)
00040 1 AP 0310 DBAT ENTRY APPLICATION REQUEST

4,5 00040 1 AP 0311 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB653817A31F9000,0303
00040 1 AP 0304 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR THREAD REQUEST
00040 1 DS 0004 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,0739501C,NO,OTHER_PRODUCT
00041 1 DS 0005 DSSR EXIT WAIT_MVS/OK
00041 1 AP 0305 DBSPX EVENT POSTED FOR THREAD REQUEST

4,6 00041 1 AP 0312 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB653817A6C96600,00000000
00041 1 AP 0313 DBAT EXIT DBAT-RESPONSE-CODE (00000000)
00041 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)
00041 1 RM 0301 RMLN ENTRY SET_LINK 01050000,073D69D4 , 00000000 , 00000008,NECESSARY,
00041 1 RM 0302 RMLN EXIT SET_LINK/OK
00041 1 AP 2521 ERM EXIT APPLICATION-CALL-TO-TRUE(DBCTL)
00041 1 AP 0331 DLIDP EXIT DBCTL

7 00041 1 AP 0329 DLI EXIT IMS_PCB_FORMAT 0000,0000,PCB
00041 1 AP 00E1 EIP EXIT CALLDLI OK 00F4,00000000,0 0004000 .. .

Figure 39. CICS trace entries produced for a DL/I request

Licensed Materials – Property of IBM

Chapter 6. Troubleshooting DBCTL 123

Note:

1. Timestamp, as mentioned in “Connection to DBCTL” on page 115.
2. Enters syncpoint manager.
3. Recovery token (C3C9C3E2D2D7C7F1AB6538123994CA01).
4. The DRA is invoked for a thread request: 0304 is a PREPARE request. See

“PAPL request and return codes” on page 130.
5. DBCTL return code (00000000), one for each of the requests PREPARE,

COMMIT, and TERMINATE THREAD.
6. The DRA is invoked for a thread request: 0307 is a COMMIT request. See

“PAPL request and return codes” on page 130.
7. The DRA is invoked for a thread request: 030F is a TERMINATE THREAD

request. See “PAPL request and return codes” on page 130.
8. Leaves syncpoint manager. (See “Return codes in DBCTL” on page 129.)

Trace entries produced by DBCTL
In DBCTL, tracing is started by specifying an option in member DFSVSMxx in the
IMS.PROCLIB (where xx is the suffix specified by VSPEC= in the DBCTL startup
JCL).

See IMS: System definition or IMS: System definition for guidance on the DFSVSMxx
member. Alternatively, you can start tracing dynamically with the /TRACE
command. (See IMS: Operations and automation for guidance on the /TRACE
command and its keywords.)

.

.
1 1CICS/ESA - AUXILIARY TRACE FROM 07/20/95 - APPLID CICSKPG1 - TIME OF FIRST ENTRY ON THIS PAGE 09:59:09.1299476250
2 00039 1 AP 2520 ERM ENTRY SYNCPOINT-MANAGER-CALL-TO-TRUE(DBCTL)

00039 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)
00039 1 AP 0310 DBAT ENTRY SYNCPOINT-MANAGER REQUEST

3,4 00039 1 AP 0311 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CA01,0304
00039 1 AP 0304 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR THREAD REQUEST
00039 1 DS 0004 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,0732001C,NO,OTHER_PRODUCT
00039 1 DS 0005 DSSR EXIT WAIT_MVS/OK
00039 1 AP 0305 DBSPX EVENT POSTED FOR THREAD REQUEST

3,5 00039 1 AP 0312 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CA01,00000000
00039 1 AP 0313 DBAT EXIT DBAT-RESPONSE-CODE (00000004)
00039 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)
00039 1 AP 2521 ERM EXIT SYNCPOINT-MANAGER-CALL-TO-TRUE(DBCTL)

.

.
00039 1 AP 2520 ERM ENTRY SYNCPOINT-MANAGER-CALL-TO-TRUE(DBCTL)
00039 1 AP 2522 ERM EVENT PASSING-CONTROL-TO-TRUE(DBCTL)
00039 1 AP 0310 DBAT ENTRY SYNCPOINT-MANAGER REQUEST

3,6 00039 1 AP 0311 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CA01,0307
00039 1 AP 0304 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR THREAD REQUEST
00039 1 DS 0004 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,0732001C,NO,OTHER_PRODUCT

.

.
00039 1 DS 0005 DSSR EXIT WAIT_MVS/OK
00039 1 AP 0305 DBSPX EVENT POSTED FOR THREAD REQUEST

3,5 00039 1 AP 0312 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CA01,00000000
00039 1 MN 0201 MNMN ENTRY MONITOR 1,DBCTL,7320090,100
00039 1 MN 0202 MNMN EXIT MONITOR/OK

3,7 00039 1 AP 0311 DBAT EVENT ABOUT-TO-INVOKE-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CA01,030F
00039 1 AP 0304 DBSPX EVENT ABOUT-TO-ISSUE-WAIT FOR THREAD REQUEST
00039 1 DS 0004 DSSR ENTRY WAIT_MVS DLSUSPND,DBCTL,0732001C,NO,OTHER_PRODUCT

.

.
00039 1 DS 0005 DSSR EXIT WAIT_MVS/OK
00039 1 AP 0305 DBSPX EVENT POSTED FOR THREAD REQUEST

3,5 00039 1 AP 0312 DBAT EVENT RECEIVES-CONTROL-FROM-DRA FOR THREAD REQUEST , C3C9C3E2D2D7C7F1AB6538123994CA01,00000000
00039 1 AP 2523 ERM EVENT REGAINING-CONTROL-FROM-TRUE(DBCTL)

8 00039 1 AP 2521 ERM EXIT SYNCPOINT-MANAGER-CALL-TO-TRUE(DBCTL)

Figure 40. CICS trace entries produced during thread termination after DL/I request

Licensed Materials – Property of IBM

124 CICS TS for z/OS 5.3: IMS Database Control Guide

In DBCTL, you can start PI tracing in the DFSVSMxx member of the
IMS.PROCLIB, as explained here. Alternatively, you can start PI tracing in DBCTL
by issuing the command:
/TRACE SET ON PI

DBCTL produces an external trace when DL/I requests are issued to be processed
by DBCTL. This trace corresponds to the CICS trace for a DL/I request being
processed by DBCTL, as shown in Figure 39 on page 123. (DBCTL does not
produce any external traces that correspond with the other CICS trace examples
given.)

Figure 41 shows an example of the trace records produced when you use the DL/I
trace table. To start the DL/I trace table, DLI=ON must have been specified in the
DFSVSMxx member of IMS.PROCLIB. Specifying DLI=ON also enables program
isolation and lock trace. For guidance on specifying DLI=ON, see IMS: System
definition or IMS: System definition. Alternatively, you can start DL/I tracing
dynamically using the /TRACE command, as follows:
/TRACE SET ON TABLE DL/I

For a more detailed example, see IMS: Operations and automation , example 8.

The DBCTL trace entry shown in Figure 41 includes:
v X'AC': the database call analyzer entry, which is only present for DBCTL.
v The partition specification table (PST) number. The PST number is equivalent to

a particular DL/I thread number, as displayed using the /DISPLAY command,
and can be used to find all DBCTL trace records for a particular thread. (For an
example of a thread number being displayed, see “Purging a transaction that is
using DBCTL” on page 62.)

v The trace sequence number.
v An “eyecatcher” recovery token. This is the actual characters “RTKN”, used to

draw attention to the recovery token in the same line, and is the same in every
X'AC' entry.

v The recovery token that is passed from CICS via DFHDBAT.

You can print and format this data using the IMS file select and formatting print
utility, DFSERA10. You would typically print and format several log types, plus the
X'AC' records to enable you to correlate the DBCTL activity with your CICS trace
for a DL/I request.

AC070E87 D9E3D2D5 00000000 00000000 C3C9C3E2 E6D2D8F1 A031BB3E D5863000

Recovery token
Not used

Eyecatcher RTKN

Trace sequence number

PST number

x'AC' database call analyzer entry

Figure 41. X'AC' trace entry

Licensed Materials – Property of IBM

Chapter 6. Troubleshooting DBCTL 125

Printing and formatting IMS X'67FA' log records
About this task

Figure 42 shows an example of JCL and DD statements that you can use to print
and format IMS X'67FA' log records. For further examples, see IMS reference:
Database utilities .

The output should contain the following:
v The request type.
v The recovery token, plus an eyecatcher (GRTKN) to indicate presence of the

recovery token, which includes the CICS APPLID.
v The database name.

See IMS reference: Database utilities for examples of formatted DL/I trace tables.

Dumps for CICS DBCTL
CICS, DBCTL, and the database resource adapter (DRA), produce a variety of
dumps. Examining these dumps, particularly the CICS transaction or system
dump, can help you determine whether a problem occurred in CICS or in DBCTL.

CICS transaction dump
A CICS transaction dump is produced whenever a CICS task terminates
abnormally.

For a CICS-DBCTL task, that is, a task that issued a DFHRMCAL request to
DFHDBAT, this dump includes the following:
v The CICS-DBCTL global and task local areas
v The global and task local areas for DFHDBAT
v PCBs

The recovery token for the task at the point of abnormal termination appears in the
TCA (TCARTKN).

The EXEC CICS SET TRANDUMPCODE command and the CEMT SET
TRANDUMPCODE transaction enable you to change some of the values recorded
in entries in the transaction dump code table, to add new entries to the table, and
to remove existing entries from the table. For example, you can specify an action
for a particular CICS message, as mentioned in Figure 34 on page 116.

//LOGPRINT JOB 1,PGMERID,MSGCLASS=A,MSGLEVEL=(1,1),
// CLASS=A
//ERA10 EXEC PGM=DFSERA10,REGION=4096K
//STEPLIB DD DISP=SHR,DSN=IMS.RESLIB
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//LOGIN DD DISP=SHR,DSN=IMS.SLDS.OLDS00
//SYSIN DD *
CONTROL CNTL DDNAME=LOGIN
OPTION PRINT OFFSET=5,FLDLEN=2,VALUE=67FA,COND=E,EXITR=DFSERA60
END
/*
//

Figure 42. Example JCL to print and format IMS '67FA' log records

Licensed Materials – Property of IBM

126 CICS TS for z/OS 5.3: IMS Database Control Guide

For information about transaction dump codes and interpreting CICS dumps, see
Using dumps in problem determination in Troubleshooting.

CICS system dump
This dump is produced when a CEMT PERFORM DUMP|SNAP or an EXEC CICS
DUMP SYSTEM command is issued, or when CICS abends.

CICS specifies all options when issuing this type of dump, for example, CSA and
NUC. All MVS control blocks appear in this type of dump, including those
corresponding to any subordinate TCBs. You can format and analyze this type of
dump using the interactive problem control system (IPCS). For guidance on using
IPCS, see z/OS MVS Interactive Problem Control System IPCS) User's Guide.

The EXEC CICS SET SYSDUMPCODE command and the CEMT SET SYSDUMPCODE
transaction enable you to change some of the values recorded in entries in the
transaction dump code table, to add new entries to the table, and to remove
existing entries from the table. For example, you can specify an action for a
particular CICS message, as mentioned in Figure 34 on page 116.

For information about system dump codes, and interpreting CICS dumps, see the
CICS Problem Determination Guide.

Determining whether a problem is occurring in CICS or
DBCTL

To help you determine whether a problem is occurring in DBCTL or CICS,
examine the CICS transaction or system dump. These dumps include indications of
the point at which DFHDBAT passes control to DBCTL and the point at which
DBCTL returns control to DFHDBAT. Correlating this with the time at which the
problem occurred should tell you whether it was in CICS or DBCTL.

Each page of auxiliary trace output also includes a timestamp, as mentioned in
“Connection to DBCTL” on page 115. These timestamps should also help you
correlate events in CICS with events in DBCTL.

DRA snap data set
The DRA’s snap data set is dynamically allocated to the CICS address space when
DBCTL is connected.

The SYSOUT class used is determined by a parameter in the DRA startup table.
The DRA dumps its control blocks (those associated with its own work unit and
that of DBCTL) to this data set whenever a high order bit is set in PAPLRETC.
(The participant adapter parameter list (PAPL) is a part of the DRA. For guidance
on the PAPL and its contents, see the appropriate IMS reference: Exit routines.) The
high order bit is set on if a thread is terminating. It then closes the snap file. The
recovery token appears in the dump produced.

What is provided in a CICS dump
When a transaction abends or requests a dump, the following areas are written to
the CICS dump data set(s).
v The TCA representing the task.
v The CSA and CSA optional feature list (CSAOPFL) table. The CSAOPFL points

to DFHDLPDS, the CICS-DL/I interface parameter block.
v The internal trace table, if CICS trace was active.

Licensed Materials – Property of IBM

Chapter 6. Troubleshooting DBCTL 127

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfhs1/topics/dfhs148.html

v Any areas acquired.

Dumps produced by the DRA
The DRA produces an SDUMP in these situations.

DBCTL creates an SDUMP containing diagnostic information for a DL/I request
failure from CICS using the system dump data sets from the CICS job.
v If the DRA fails
v If a thread fails
v If DL/I set a high order bit in PAPLRETC for a thread request

However, the DRA does not always take a dump if DL/I sets the high order bit
in PAPLRETC. If it does not, it sets the second high order bit on to indicate this.
For example:
– If PAPLRETC is 1000 0000 3 2 4 0 0 0, a dump was taken
– If PAPLRETC is 1000 1000 3 2 4 0 0 0, a dump was not taken
(See “Return codes in DBCTL” on page 129, “Using return codes to find out
what kind of dump has been produced” on page 130 and “PAPL request and
return codes” on page 130 for information on interpreting these return codes.)

An SDUMP is created in a terminate address space request or a terminate thread
request while running in DBCTL and under the DRA TCB.

An SDUMP contains:
v DBCTL address space
v DLISAS address space
v A storage list for the DRA area on the request
v Key 0 CSA storage for the request processing
v MVS storage blocks: address space control block (ASCB), TCB, and RBS for the

failing DRA TCB
v The local system queue area (LSQA)

If the SDUMP request fails, a SNAP dump (which contains a subset of the
information in an SDUMP) is produced instead. (See “Return codes in DBCTL” on
page 129.) The SNAP contains the following subset of the information produced in
an SDUMP:
v MVS storage blocks: address space control block (ASCB), TCB, and RBS for the

failing DRA TCB
v A storage list for the DRA area on the request

Because the DRA runs in problem state, it cannot access other storage areas, such
as CSA or DBCTL storage. This may mean that the SNAP does not contain enough
information, and you may have to re-create the failure and use the DBCTL address
space dump.

See IMS: Diagnosis for a further comparison of the information produced in
SDUMPs and SNAP dumps, which you may find useful in diagnosis. The IMS:
Diagnosis also contains information on the IMS offline dump formatter (ODF)
which you can use to show the layout of IMS blocks referred to in these dumps.

Dumps produced by DBCTL
The formatted dump feature of IMS is available with DBCTL. This feature formats
the system, database, and data communication areas of IMS.

Licensed Materials – Property of IBM

128 CICS TS for z/OS 5.3: IMS Database Control Guide

It formats the control blocks and data areas in an IMS region.

See IMS: Diagnosis for guidance information on the areas that are dumped.

Control blocks generated by DBCTL have an “eyecatcher” for visual identification.
For example:
v **SCD : system contents directory area
v **SSA : SAP and save area
v **DSP : dispatcher area.

The recovery token is included in dumps produced by DBCTL. Output is to the
IMS log.

Messages for CICS DBCTL
DBCTL-related messages fall into these categories.
v Messages issued by the CDBC transaction and displayed on your screen. These

messages relate to the user's interaction with the transaction and they do not
appear on CSMT. Any CDBC type messages issued from the initialization
transaction, when it is running from the PLT during CICS startup, are issued as
writes-to-operator (WTOs).

v Messages that appear on the status line of the CDBC and CDBI transaction
screens.

CICS and IMS messages relating to CICS tasks that issue DL/I requests include the
recovery token. See also “Dealing with messages from DBCTL and CICS” on page
65.

CICS messages relating to DBCTL begin with DFHDB81 or DFHDB82.

All DBCTL-related messages are routed to a separate destination called CDBC. If
you prefer, you can direct them elsewhere (for example to CSMT).

You can suppress or reroute messages sent to transient data queues such as CDBC.
You can reroute from CDBC to a list of consoles, from CDBC to a different
transient data queue, or reroute console messages to CDBC. For programming
information on coding the CICS-supplied user exit used to reroute messages and
on the sample user exit provided to help you do so, see the CICS Customization
Guide.

Messages produced with DBCTL dumps and traces are sent to the DBCTL master
terminal operator. IMS messages begin with “DFS”. See IMS messages and codes for
guidance on interpreting, and responding to, IMS messages.

Return codes in DBCTL
When DBCTL responds to CICS with a return code, this can be an MVS system
abend code, an IMS user abend code, or a DBCTL return code.

The return code includes an indicator to help you determine what kind of abend it
is. The DBCTL return code (also known as the PAPLRETC) displayed in the CICS
trace can contain:
v An MVS system abend code
v A user abend code (also known as a pseudo abend code)

Licensed Materials – Property of IBM

Chapter 6. Troubleshooting DBCTL 129

v A DBCTL return code (also known as a DBCTL DRA return code)

The return code is 4 bytes long and is in the following form:

H H S S S U U U

If the top bit (bit 0 of the HH byte) is set:
v either SSS is a nonzero hexadecimal return code, for example:

1000 0000 3 2 4 0 0 0 324 (hex) system abend code = 804 (decimal)
MVS system abend

which indicates an MVS system abend code (as explained in z/OS MVS System
Codes),
v or UUU is a nonzero hexadecimal, for example:

1000 0000 0 0 0 3 4 D 34D (hex) IMS user abend code = 845 (decimal)

IMS user abend

which indicates a user abend code (as explained, for guidance, in the section on
user abend codes in IMS messages and codes).

If the top bit (bit 0 of the HH byte) is not set, and the DBCTL return code in the
CICS trace is nonzero, then UUU is a DBCTL nonzero return code, for example:

0000 0000 0 0 0 0 3 0 30 (hex) DBCTL return code = 48 (decimal) DBCTL

return code

as explained, for guidance, in the DBCTL return codes section of IMS messages and
codes .

Using return codes to find out what kind of dump has been
produced
The top byte of the return codes indicates whether a dump has been produced
and, if so, whether it is an SDUMP or a SNAP dump.
v X'80' means that an SDUMP or SNAP dump will be produced. (A SNAP dump

is produced if the SDUMP request fails.)
v X'84' means that a SNAP dump only is produced.
v X'88' and X'00' both mean that neither an SDUMP nor a SNAP dump is

produced.

See IMS messages and codes for guidance on interpreting IMS return codes and
DBCTL return codes (also known as DRA return codes). Messages issued by CICS
also distinguish the kind of return code you are receiving.

PAPL request and return codes
The trace examples given contain a number of 4-digit hexadecimal request codes
issued by the participant adapter parameter list (PAPL). These request codes are a
concatenation of a 2-digit PAPL function code and a 2-digit PAPL subfunction
code. For further guidance on the contents of the PAPL, see the appropriate IMS
reference: Exit routines.

Licensed Materials – Property of IBM

130 CICS TS for z/OS 5.3: IMS Database Control Guide

Table 14 summarizes the PAPL request codes that are sent from CICS to the DRA,
and are displayed in CICS trace output as 4-digit request codes. See “Trace entries
produced by CICS” on page 114 for examples of traces containing these request
codes.

Table 14. PAPL request codes

Event Request
code

Connection 0100

Disconnection 0400

Disconnection due to CICS failure 0404

PSB schedule 0301

DL/I request 0303

COMMIT request 0307

PREPARE request 0304

Single-phase SYNCPOINT request 030A

ABORT request 030D

Terminate thread 030F

COMMIT request during resynchronization 0201

ABORT request during resynchronization 0202

Lost because CICS was initial started before resynchronization 0203

DBCTL should not be indoubt 0204

Table 15 summarizes the PAPL return codes that are sent from the DRA to CICS.
CICS intercepts these return codes and displays them as explanatory text in trace
output.

Table 15. PAPL return codes

Event Return code

Connection complete 0500

Identify failure 0501

Connection request (DRA INIT) canceled in reply to DFS690 message 0502

DBCTL has terminated abnormally 0503

The DRA has terminated abnormally 0504

/CHECKPOINT FREEZE or /CHECKPOINT PURGE command was issued
to terminate DBCTL normally

0505

Using CICS EDF to debug application programs in DBCTL
You can use the CICS execution (command-level) diagnostic facility (EDF), with
local and remote application programs that access databases controlled by DBCTL.

EDF supports the additional EXEC DLI commands and keywords that you can use
with DBCTL, and the additions to the DL/I interface block (DIB) mentioned in
“QUERY and REFRESH DBQUERY commands” on page 95.

However, a number of storage areas that resided in the CICS address space with
local DL/I are outside the CICS address space with DBCTL. These areas include

Licensed Materials – Property of IBM

Chapter 6. Troubleshooting DBCTL 131

the PDIR, DDIR, the PSB pool, and the DMB pool. You cannot access these areas
using the WORKING STORAGE option of the CEDF transaction that invokes EDF.
Instead, you use the DBCTL operator command /DISPLAY (with the keywords
PSB, DBD, or POOL) to display the corresponding DBCTL information.

For information on using EDF, see Execution diagnostic facility (EDF)the CICS
Application Programming Guide.

Licensed Materials – Property of IBM

132 CICS TS for z/OS 5.3: IMS Database Control Guide

Chapter 7. Monitoring DBCTL

As with your CICS or IMS system, observing the performance of DBCTL involves
collecting and interpreting data gathered by various CICS and IMS performance
tools.

In CICS and IMS, the term statistics refers to data that is produced concerning
timing and resources used by the system as a whole over a specified period.
Additionally, in CICS, monitoring refers to data that is produced concerning timing
and resources used by a task or a logical unit of work (UOW).

IMS does not make this distinction: all data returned is referred to as statistics. In
this information, the terms statistics and monitoring are used in the CICS sense.

For information about CICS statistics and monitoring, see CICS statistics in
Monitoring and Measuring, tuning, and monitoring: the basics in Improving
performance.

For information about IMS performance and tuning, see IMS: System administration.

Data available for a CICS-DBCTL system
As with your CICS or IMS system, observing the performance of DBCTL involves
collecting and interpreting data gathered by various CICS and IMS performance
tools.

The difference with DBCTL is that you need to keep an eye on events taking place
in separate address spaces. Figure 43 on page 134 gives an overview of where
DBCTL monitoring and statistics data is sent to and the tools you can use to
produce output from this data. The data and tools mentioned are described in the
sections that follow.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1989, 2015 133

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/dfht3_stats_intro.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/dfht3_stats_intro.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/dfht32a.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/dfht32a.html

DBCTL statistics
DBCTL supplies CICS with statistics information when CICS disconnects from
DBCTL. These statistics are known as unsolicited statistics, because they are not

Figure 43. Overview of DBCTL statistics and monitoring data

Licensed Materials – Property of IBM

134 CICS TS for z/OS 5.3: IMS Database Control Guide

produced as part of normal internal processing, but are produced as a z/OS UNIX
System Services statistics record. The statistics are written to SMF regardless of the
status of statistics recording.

CICS-DBCTL statistics are collected whenever DBCTL is disconnected as a result
of:
v An orderly or immediate disconnection of DBCTL
v An orderly termination of CICS

CICS-DBCTL statistics are not collected if there is an immediate shutdown or
abend of CICS.

When statistics are collected, the following actions occur:
1. The DRA returns statistics for the CICS-DBCTL session that has ended to

DFHDBAT.
2. DFHDBAT invokes the CICS statistics exit for DBCTL statistics (DFHDBSTX).
3. DFHDBSTX invokes the CICS statistics domain.
4. The CICS statistics domain writes the statistics to the SMF data set.

CICS-DBCTL session statistics are contained in the DFHDBUDS DSECT, which you
can generate from the copybook DFHDBUDS. DFHDBUDS includes the following
information, which is returned from the DRA for that CICS session:
v DBCTL identifier for the CICS-DBCTL session (STATDBID).
v DBCTL recoverable service element (RSE) name (STARSEN). For more

information about RSEs, see “Recovery and restart operations for DBCTL” on
page 66.

v Time CICS connected to DBCTL (STACTIME).
v Time CICS disconnected from DBCTL (STADTIME).
v Minimum number of threads specified in the DRA startup table (STAMITHD).
v Maximum number of threads specified in the DRA startup table (STAMATHD).
v Number of times that the CICS-DBCTL session “collapsed” threads down to the

minimum thread value specified in the DRA startup table (STANOMITHD).
v Number of times that the CICS-DBCTL session reached the maximum thread

value specified in the DRA startup table (STANOMATHD).
v Elapsed time, expressed in hours, minutes, and seconds, for which the

CICS-DBCTL session ran at the maximum thread value (STAELMAX).
v Peak number (also known as the “high-water mark”) of thread TCBs created

throughout the CICS-DBCTL session (STAHIWAT).
v Total number of times this CICS-DBCTL session successfully scheduled a PSB

(STAPSBSU).

For information about DBCTL statistics, see DBCTL session termination statistics in
Reference -> Monitoring.

To extract and print a report from these statistics, run the CICS-supplied statistics
utility program (DFHSTUP), specifying the specific APPLID of the relevant CICS
system. The output includes CICS-DBCTL session statistics provided DBCTL was
connected to CICS when the statistics were collected. For information about other
parameters needed to run DFHSTUP, and a sample job stream you can use, see
Monitoring dictionary utility program (DFHMNDUP) in Reference -> Utilities.
Figure 44 on page 136 shows an example of a report produced by running

Licensed Materials – Property of IBM

Chapter 7. Monitoring DBCTL 135

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/dfht3_stats_dbctl.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/dfht3_stats_dbctl.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfha6/topics/dfha61r.html

DFHSTUP.

Note: The statistics report produced by running DFHSTUP (shown in Figure 44)
displays the times when CICS connected to and disconnected from DBCTL in
hours, minutes, and seconds (hhmmss) format in local time. The DBCTL z/OS
UNIX System Services record that is mapped by the DFHDBUDS DSECT contains
the connect and disconnect times as four 8-byte store clock (STCK) values. These
values are as follows:
v Connect and disconnect time expressed in local time.
v Connect and disconnect time expressed in Greenwich Mean Time (GMT).

CICS statistics that contain the number of DL/I requests by type that are issued
against each DL/I database are not produced by CICS in the DBCTL environment.
Instead, DBCTL produces this type of information. You can obtain DBCTL buffer
pool utilization information from the DBCTL /DISPLAY command, or from the
IMS log records of type X'45'.

Monitoring DBCTL: transaction level data
Monitoring data for DBCTL is passed to CICS and IMS components.

For information about switching monitoring on, and on printing and formatting
the data, see Monitoring dictionary utility program (DFHMNDUP) in Reference ->
Utilities.

DBCTL monitoring data returned to CICS
Monitoring data at the transaction level is passed back to CICS by DBCTL
whenever a TERM request occurs, either explicitly, or implicitly at the end of task
termination. The data is appended to the CICS monitoring facility performance
record of the issuing task.

The data returned is as follows:
v PSB name.
v Elapsed wait time for pool space. In a PSB schedule, when the pool space is

insufficient for PSB/DMB blocks, the schedule request is put on a wait queue.
The total wait time for it is in this field.

Unsolicited Statistics Report Collection Date-Time 09/16/93-15:16:18 Last Reset 15:06:46
--
DBCTL SESSION TERMINATION STATISTICS

CICS DBCTL Session Number : 2
DBCTL identifier : SYS2
DBCTL RSE name : DBCTLSY2
Time CICS connected to DBCTL : 15:14:02.8506
Time CICS disconnected from DBCTL : 15:16:18.3689
Minimum number of threads : 1
Maximum number of threads : 3
Times minimum threads hit : 1
Times maximum threads hit : 1
Elapsed time at maximum threads : 00:00:09.4371
Peak number of thread TCBs : 3
Successful PSB schedules : 9

Figure 44. Example of CICS-DBCTL session statistics output

Licensed Materials – Property of IBM

136 CICS TS for z/OS 5.3: IMS Database Control Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfha6/topics/dfha61r.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfha6/topics/dfha61r.html

v Elapsed wait time for intent conflict. In a PSB schedule, when an intent conflict
is detected, the schedule request is put on a wait queue. The total wait time for
it is in this field.

v Elapsed time for the schedule request.
v Elapsed wait time for database I/O.
v Elapsed wait time for locking. The total wait time to get the PI locks which are

local segment level locks.
v Total number of database I/O counts.
v Number of DL/I requests for each of the following:

– Get unique
– Get next
– Get next within parent
– Get hold unique
– Get hold next
– Get hold next within parent
– Insert requests
– Delete requests
– Replace requests

v Total number of DL/I database requests.
v Number of test enqueues.
v Number of times requesting the PI locks on segments.
v Number of waits on test enqueues.
v Number of times requesting the PI locks on segments.
v Number of dequeues.
v Number of times PI locks are released.
v Number of update enqueues.
v Number of times the update locks are not available for a request and requires a

wait.
v Number of update dequeues.
v Number of times requesting the exclusive lock.
v Number of waits on exclusive enqueues.
v Number of times the exclusive locks are released.
v Number of exclusive dequeues.
v Number of times the exclusive locks are released.
v DEDB statistics:

– Number of DEDB requests
– Number of DEDB I/Os
– Number of overflow buffers used
– Number of waits for DEDB buffer
– Number of unit of work contentions

v Date of schedule start.
v Time of schedule start.
v Date of schedule end.
v Time of schedule end.
v Elapsed UOW CPUTIME for DRA thread (see note).

Licensed Materials – Property of IBM

Chapter 7. Monitoring DBCTL 137

Note: The elapsed CPUTIME field was introduced by IMS APAR PL83370. The
CPUTIME represents the time spent in the DRA Thread TCB from the time the PSB
is scheduled, to the time the PSB is terminated. CICS always terminates the PSB at
the end of the Unit of work (UOW). The CPUTIME does not include any time
spent in the DBCTL region.

Calculating CICS and IMS processor times for IMS Version 12 or
later

When CICS is connected to IMS Version 12 or later, and is using the open
transaction environment (OTE), the CICS-DBCTL database adapter transformer
DFHDBAT, uses CICS-managed L8 open TCBs rather than CICS IMS subtask TCBs.
This means that the CICS monitoring facility can measure activity that was
previously only reported in the IMS data that was returned whenever a TERM
request occurred. For example, CICS can now measure the processor time
consumed on the IMS thread. When CICS is using L8 open TCBs, the CPU time
reported for these TCBs by the CICS monitoring facility includes the IMS elapsed
UOW CPUTIME for the DRA thread.

When CICS is connected to IMS Version 12 or later, do not add the processor time
from the CICS records (SMF type 110 records) and the IMS elapsed UOW
CPUTIME when calculating the total processor time for a single transaction,
because the IMS processor time would then be included twice. The total processor
time for a single transaction is recorded in the USRCPUT field in the CICS records
(performance class data field 008 from group DFHTASK). This field includes all
processor time used by the transaction when it was executing on any TCB
managed by the CICS dispatcher. CICS-managed TCBs include the QR, RO, CO,
and L8 mode TCBs.

Note: The DRA startup table (DFSPZP) option TIMETHREADCPU=NO can be
specified so that the IMS elapsed UOW CPUTIME for the DRA thread is not
calculated and hence returns zero to avoid counting the IMS processor time twice.

In the OTE, the CICS L8 task processor time can also include the cost of creating
an IMS DRA thread.

Also take the capture ratio for CICS and IMS into account. Capture ratio is the
ratio of reported CPU time to total used CPU time. For more information, see the
z/OS Resource Measurement Facility Performance Management Guide.

Obtaining DBCTL monitoring data sent to CICS
DBCTL supplies CICS with monitoring data, which can then be output to the CICS
monitoring domain.

Monitoring data is output to the CICS monitoring domain in the following
situations:
v When CICS receives the response to a PSB schedule request from DBCTL, it

checks whether this task has already been scheduled successfully to DBCTL. If it
has, CICS forces the monitoring data from the previous PSB schedule out; that
is, it writes the performance class record for the task and resumes monitoring
that task. If it has not been scheduled before, no monitoring processing is done.

v When CICS receives a response from the DBCTL as a result of a COMMIT or
ABORT request, CICS outputs the monitoring data, but does not write it.

v In the case of the final PSB schedule for a task, the monitoring data is
automatically written at the end of a task.

Licensed Materials – Property of IBM

138 CICS TS for z/OS 5.3: IMS Database Control Guide

To obtain the monitoring data that DBCTL returns to CICS, code two additional
event monitoring points (EMPs) in your CICS monitoring control table (MCT).
DBCTL EMPs can be found in CICSTS53.CICS.SDFHSAMP member DFH$MCTD.

For programming information on EMPs and CICS monitoring, see Collecting and
processing data for CICS monitoring in Monitoring.

After you obtain the monitoring data, you can use monitoring tools such as the
CICS monitoring facilitywith the data supplied to tune your CICS-DBCTL
environment.

IMS monitor reports with DBCTL
A summary of the DBCTL-related data in IMS monitor reports. This information
also applies if your CICS system is connected to an IMS DM/TM system to obtain
DBCTL support.

IMS monitor reports that apply to DBCTL
v Call summary
v Program I/O
v DB buffer pool
v VSAM buffer pool
v Program summary

Note: In a DBCTL environment, interpret the terms “program” and “transaction”
in these reports as “PSB” and “PSB scheduling”, respectively.

IMS monitor reports that apply partially to DBCTL
v Region summary
v Region IWAIT

(An IWAIT occurs when a DBCTL request causes I/O activity. IWAIT time
denotes the time DBCTL spends waiting for IMS resources, in addition to the
number of I/Os.)

v Any other region-based reports.

Note: In a DBCTL environment, interpret the term “region” in these reports as the
representation of a CICS thread or a BMP region in DBCTL, but beware that a
DBCTL region can represent different CICS threads or BMP regions during a
monitor run.

IMS monitor reports that do not apply to DBCTL

The following reports, related to transaction management and communication, do
not apply to DBCTL, and either do not appear, or are shown as headings without
any data:
v Communication wait
v Communication summary
v Line functions
v Message format buffer pool
v Message queue pool
v MSC queuing summary
v MSC summaries

Licensed Materials – Property of IBM

Chapter 7. Monitoring DBCTL 139

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/dfht3_mon_oview.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/dfht3_mon_oview.html

v MSC traffic

Data contained in relevant IMS monitor reports
This topic shows you what data you can find in the IMS monitor reports that
apply to DBCTL.

General wait time events

All threads built for a CICS system have the same job name as that CICS system.
They are shown in the jobnames for regions in the “General reports”.

General reports

The “general reports” include the “Regions and jobname” report and the “Region
summary report”.

Regions and jobname report
Within a trace interval, a thread can be assigned to multiple CICS systems but it
can only be assigned to one CICS at any one time.

Depending on the number of CICS systems connected to DBCTL, the regions and
jobname report can show:
v One region with only one jobname.
v One region with multiple jobnames.
v Multiple regions with multiple jobnames where some regions have the same

jobname, and some have multiple jobnames.
v Multiple regions with only one jobname.

Any monitor report for a region is a summary for all connected CICS systems that
a thread has served during the trace interval. For example, the elapsed time of
schedule end to first call means the sum of this elapsed time for all CICS systems
that a thread has been assigned to during the trace interval.

Depending on the workload of a CICS system, a trace interval may be a relatively
short period of time, and thread switching between depending regions may not
occur very often. However, the more the workload fluctuates, the more frequently
threads are likely to be assigned among connected CICS systems.

Region summary and transaction queuing report
A region summary report and a transaction queuing report can be used to show
you the information about DBCTL.

Region summary report

A region summary report can include the following information about DBCTL:
scheduling and termination, schedule to first call, elapsed execution, region
occupancy, and DL/I calls.
v Scheduling and termination, including:

– The time from PSB schedule request being received by DBCTL to when the
request is completed by DBCTL. This includes the time spent by DBCTL
allocating IMS resources and does not include any schedule time spent in
CICS or being processed by the DRA.

Licensed Materials – Property of IBM

140 CICS TS for z/OS 5.3: IMS Database Control Guide

– The time from when a PSB unschedule request is received by DBCTL to when
the request is completed by DBCTL. This request could be an unschedule PSB
request, or a request embedded in any synchronization type terminate
request, or a terminate thread request.

v Schedule to first call is the time from when DBCTL completed the PSB schedule
to when DBCTL received the first DL/I request. This time includes all time
spent processing in CICS, including application program, CICS itself, and DRA
processing. (Because CICS is the transaction manager, how and when its own
applications are loaded or scheduled cannot be interpreted by DBCTL in the IMS
monitor reports.)

v Elapsed execution is the time between the completion of the DBCTL PSB
schedule request and when DBCTL receives the PSB unschedule request. It
indicates the amount of time IMS resources were allocated to a CICS thread.

v Region occupancy is the ratio of the elapsed time when a thread is active (that
is, with IMS resources allocated) to the trace interval.

v DL/I calls is the time between DBCTL receiving the DL/I request and the
request being completed in DBCTL.

Program summary

DBCTL does not process any messages. For the purpose of using the DC monitor
report, it counts each PSB schedule as one message dequeued. Because DBCTL is
not the transaction manager, it must assume a one-to-one relation between a CICS
transaction and a PSB schedule. This relationship is shown in program summary,
where the number of transactions dequeued is the same as the number of
scheduled requests. “Per transaction” means requests per schedule, and “elapsed
time per transaction” means elapsed time per schedule.

Run profile

In run profile, the number of messages dequeued means the number of scheduled
PSBs and transactions per second means PSB schedules per second.

Transaction queuing report

The transaction queuing report can include a list of transactions for DBCTL. Each
transaction name is an 8-byte transaction ID specified by CICS on the schedule
request. A transaction ID from CICS consists of a 4 byte CICS transaction name,
plus a 4 byte CICS identifier. If CICS does not specify a transaction ID, DBCTL
takes the CICS region ID, obtained at connection time. In this report, for DBCTL,
the transaction “number dequeued” means number of PSB schedules. The “on
queue when scheduled” in this report is always zero because the IMS message
queues do not apply to DBCTL.

For examples of IMS monitor reports and detailed guidance on interpreting their
contents, see IMS reference: Database utilities.

Using the IMS monitor
DBCTL enables CICS users who do not have an IMS/VS DB/DC or IMS/DM/TM
system to use the IMS monitor online. The IMS monitor is the main tool provided
by IMS for monitoring. It collects data from the system while it is running. It
formats and records significant events during execution, and is useful in tuning
constrained systems.

Licensed Materials – Property of IBM

Chapter 7. Monitoring DBCTL 141

Monitoring data is written to a separate data set or tape defined by the IMSMON
DD statement in the DBCTL JCL. To define this data set or tape and to run the IMS
monitor with DBCTL, add an IMSMON DD statement to your DBCTL JCL. For
further guidance on doing so, see IMS: System definition or IMS: System definition.

To allocate an IMSMON data set, use the IEFBR14 utility to allocate a data set
without any DCB parameters; for example:
//ALLOC EXEC PGM IEFBR14
//IMSMON DD DISP=(NEW,CATLG),UNIT=3380,VOL=SER=xxxxxx,SPACE=(CYL,(5,5))

You can start and stop the IMS monitor dynamically using the /TRACE command
with the MON keyword. For example:
/TRACE SET ON MON ALL

gives you all the activity that the monitor collects. For guidance on using the
/TRACE command and its keywords more selectively, see IMS: Operations and
automation.

The IMS monitor has two phases:
v During the first phase, the monitor programs collect the data and store it on

either disk or tape.
v During the second, the data is retrieved from the data set, and is organized and

printed.

The data collected by the monitor (also known as DFSMNTR0) is organized and
printed by the IMS monitor report print program, DFSUTR20. See IMS reference:
Database utilities for guidance on using the IMS monitor report print utility,
DFSUTR20, and for information about using the IMS monitor to identify
constraints.

DBCTL data returned to IMS log
In addition to the information returned to the monitor, IMS writes monitoring
information to the log records. This information is always recorded; you do not
have to request it.

For further information about the data returned to the monitor see “IMS monitor
reports with DBCTL” on page 139.

IMS appends the following information to the X'08' log records during scheduling.
v Total elapsed wait time due to intent conflict
v Total elapsed wait time due to pool space not being available
v Total elapsed time for a schedule request

IMS appends the following information to the X'07' log records at PSB termination:
v Total number of databases used involved in I/O
v Total number of DL/I database requests
v Total elapsed wait time due to databases involved in I/O
v Total elapsed wait time due to locking
v Total number of gets
v Total number of inserts
v Total number of replace
v Total number of deletes

Licensed Materials – Property of IBM

142 CICS TS for z/OS 5.3: IMS Database Control Guide

Program isolation trace

For full function DL/I databases, you can use the program isolation (PI) trace to
get records that indicate queueing activity taking place for program isolation. The
PI trace records are written to the IMS log. You can then print them using the IMS
file select and formatting utility. See IMS: System administration for further guidance
on using PI trace.

DL/I trace
For full function databases, you can use DL/I trace with DBCTL by enabling the
DL/I trace table in the DFSVSMxx member or by issuing the /TRACE command.

The /TRACE command is described in “Controlling tracing of DBCTL events” on
page 57. Using the /TRACE command enables you to turn DL/I trace on and off
while the system is running. Output is to the IMS log as type X'67FA' records. See
IMS: Diagnosis for guidance on using DL/I trace for diagnosis, IMS: Operations and
automation for guidance on the commands needed to invoke it, and IMS reference:
Database utilities for guidance on printing its output.

Using the IMS log statistics utilities

You can use these IMS log statistics utilities to process the information from the
IMS log. See “DBCTL data returned to IMS log” on page 142 for a list of the data
returned to the IMS log.
v File select and formatting print utility, DFSERA10, formats, and prints selected

records from the IMS log data set. The active OLDS must have been archived
before you can access the log data. You normally specify the SLDS to
DFSERA10. You can also use DFSERA10 with the program isolation trace record
format and print module, DFSERA40, to format PI trace.

v DEDB log analysis utility, DBFULTA0, prepares statistical reports for DEDBs
based on data recorded on the IMS system log.

v IMS program isolation trace report utility, DFSPIRP0. If you use program
isolation (PI), you can use DFSPIRP0 with the IMS log to obtain information
about deadlocked tasks. DFSPIRP0 prints a report that shows only those
enqueue requests that required a wait because the resource was not immediately
available.

See IMS reference: Database utilities for guidance on using these utilities.

Trace facilities
CICS trace facilities are intended primarily as debugging tools. However, because
they record all requests for CICS, you can use them to analyze the performance of
individual transactions.

For information about trace entries produced in a DBCTL environment see
Chapter 6, “Troubleshooting DBCTL,” on page 111. For information about
specifying CICS trace parameters, see Using traces in problem determination in
Troubleshooting.

CICS auxiliary trace facility

You can use the CICS auxiliary trace facility to record trace entries on a separate
data set to be analyzed later. Trace entries are time-stamped and they can provide

Licensed Materials – Property of IBM

Chapter 7. Monitoring DBCTL 143

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfhs1/topics/dfhs13o.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfhs1/topics/dfhs13o.html

detailed information for analyzing constraints or other problems that can occur
while CICS is running. For examples of CICS auxiliary trace output, see “Trace
entries produced by CICS” on page 114.

However, consider carefully how often you use CICS auxiliary trace because it
generates a large volume of entries, which means that there might be a
considerable overhead if you run it all the time. Also, you might find it difficult to
use too large a volume of such data effectively.

Additional performance tools
The following are additional performance tools that you may want to consider
using with DBCTL if you already have them or are considering adding them to
your system.

Generalized trace facility (GTF)
If you use the IRLM as your locking manager, you can use the generalized trace
facility (GTF) to provide a trace of its activity. It traces request handler request
completions, the PTB input/output buffers, and statistical data relevant to the
IRLM.

You can print the records GTF produces offline. Output is collected in a data set
specified by its user in the GTF job. For guidance on using GTF, which you may
find of use in debugging, see IMS: Diagnosis .

Resource Measurement Facility (RMF)
The Resource Measurement Facility (RMF™) is a measurement tool designed to
meet the needs of performance management in the large systems environment that
MVS supports.

Its primary purpose is to reduce the amount of system programmer time and
expertise required to identify and to diagnose system tuning problems. It is
designed to monitor selected areas of system activity and present the data collected
in the form of SMF records or formatted reports. Display reports are also available
for some system activities. For more details, see Resource measurement facility
(RMF)the CICS Performance Guide, and Resource Measurement Facility User’s Guide.

Licensed Materials – Property of IBM

144 CICS TS for z/OS 5.3: IMS Database Control Guide

Chapter 8. Improving DBCTL performance

You can tune your CICS-DBCTL setup to make efficient use of resources to help
you reach performance objectives.

Performance parameters in CICS
System design considerations for CICS with DBCTL are similar to the design
considerations that applied to local DL/I. For example, do not allow excessive
database accesses or updates in a single UOW. However, some system design
considerations are specific to CICS with DBCTL.

The fact that DBCTL is structured to have one TCB per thread is an additional
consideration for CICS. This allows more concurrent processing, but you need to
specify minimum and maximum numbers of threads that are consistent with the
needs of your system. For more information, see “Specifying numbers of threads”
on page 146.

The storage specified in CICS system initialization parameters DSALIM and
EDSALIM is used for different resources in a CICS-DBCTL environment.
v DSALIM is used to specify the upper limit of the total amount of storage within

which CICS can allocate the individual DSAs below the 16 MB line.
v EDSALIM is used to specify the upper limit of the total amount of storage

within which CICS can allocate the individual EDSAs above 16 MB but below 2
GB.

Local uses DSA storage for PSB and DMB pools, but with DBCTL, these blocks are
stored outside CICS. Instead, you need to allow for the storage DBCTL needs in
CICS for DRA code when specifying DSALIM and EDSALIM. This storage is
allocated in the CICS region, but not from DSA or EDSA storage. For information
about specifying DSALIM and EDSALIM, see CICS dynamic storage areas in
Improving performance. For guidance on DBCTL storage estimates, see IMS:
System administration.

Using single-phase commit

CICS can use single-phase commit instead of two-phase commit when, for a
specific UOW, DBCTL is the only recoverable resource used. Using single-phase
commit in these circumstances improves CICS performance with DBCTL by
eliminating unnecessary logging, cutting restart time, decreasing transaction cost,
and improving response time in both CICS and DBCTL. For information on using
single-phase commit, see Increasing efficiency: single-update and read-only
protocols in Developing system programs.

Performance parameters in IMS
From an IMS point of view, tuning DBCTL is much like tuning an IMS system.

Additional considerations are DRA threads, described in “Specifying numbers of
threads” on page 146, and DEDBs, described in “DEDB performance and tuning
considerations” on page 148.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1989, 2015 145

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/dfht367.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.performance.doc/topics/dfht367.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfha3/topics/dfha33l.html
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.3.0/com.ibm.cics.ts.doc/dfha3/topics/dfha33l.html

Response time: assigning job dispatching priorities
To minimize response times, assign a higher dispatching priority to the CICS
address space than to the DBCTL address spaces (DBCTL, DLISAS, and DBRC).

Although CICS can be regarded as a “front end” to DBCTL, you must be aware
that CICS must also manage the network and the application environment for
non-DLI transactions such as DB2 or VSAM. This means that CICS has different
CPU requirements from other front ends to DBCTL, such as a BMP or an MPP. For
example, when a CICS transaction is waiting for a response to a DBCTL request,
CICS dispatches other CICS transactions.

If IRLM is assigned a priority of n, CICS should have a priority of n-1, DBRC a
priority of n-2, and DBCTL and DLISAS a priority of n-3.

For further guidance on assigning priorities, see IMS: System administration.

Specifying numbers of threads
The DRA startup parameters, MINTHRD and MAXTHRD, specify the minimum
and maximum numbers of threads that can process DBCTL DL/I or DEDB
requests. The MINTHRD and MAXTHRD parameters are specified in the DRA
startup table (DFSPZP).

See “Defining the IMS DRA startup parameter table” on page 29 for more
information on DRA startup parameters.

The IMS system generation parameter, MAXREGN, specifies the number of regions
(or threads), to be allocated at startup, that DBCTL can handle for all connected
CICS systems and BMPs. The number can increase dynamically, to a limit of 999,
as required. See “Generating DBCTL” on page 19 for information on system
generation parameters.

The number you specify for MAXREGN should be no less than the sum of the
MINTHRD parameters specified for active CICS systems, and for BMPs.

In Figure 45 on page 147, the following threads are in use: one from BMPA, one
from BMPB, five from CICSA and three from CICSB, making a total of 10 threads.
A MAXREGN of 10 has therefore been specified for DBCTLA.

Licensed Materials – Property of IBM

146 CICS TS for z/OS 5.3: IMS Database Control Guide

MAXTHRD can be used in DBCTL systems to ensure that, at peak loads,
additional threads can be built in addition to those already allocated as a result of
MINTHRD, thus avoiding waiting for threads. The maximum number of threads
you can specify in DBCTL is 999. The default is 1 or the number defined by
MINTHRD, whichever is the highest. MAXTHRD controls the maximum number
of tasks for which this CICS system can have PSBs scheduled in DBCTL. Any
requests to schedule a PSB when the MAXTHRD limit is reached is queued by the
DRA. One thread is equivalent to one MVS TCB, thus giving more concurrency on
multiprocessors. There is a storage allocation of about 9 KB per thread in the local
system queue area (LSQA) below the 16 MB line. Because these threads are
available for the duration of the DBCTL connection, there is no pathlength
overhead for collapsing and reallocating thread related storage, and throughput
should, therefore, be faster. The number of threads that you specify must be large
enough for your system's needs, but if you specify a number that exceeds those
needs, this will have an adverse effect on the performance of the DRA. If you
specify a minimum thread value that is higher than your system's actual minimum
activity, this will tie up threads unnecessarily, preventing DBCTL from allocating
them to other CICS systems or BMPs. If you specify a minimum thread value that
is too low, this can also affect performance; if the level of thread activity falls, this
could cause the DRA to release threads down to the minimum value. These
threads would then have to be reestablished if the thread requests increased again.

The number you specify for MAXTHRD should reflect what you consider to be the
peak load of DBCTL threads needed. The number of threads you specify will affect
performance. The larger the number you have preallocated, the more storage is
needed. However, if threads are preallocated, the time needed to allocate them on
demand is saved, thus improving response time and throughput. So, if your
system is storage constrained, specify a lower value for MINTHRD, and use
MAXTHRD as a “safety valve”. If response time and throughput are more
important than storage requirements, specify a higher number for MINTHRD so
that more threads are ready to be used.

After the MINTHRD limit is exceeded, threads continue to be built up to the
MAXTHRD limit but, because each thread's control blocks are allocated during PSB
scheduling, the pathlength is greater for the tasks running after the MINTHRD
limit has been reached.

CICSA 1

MINTHRD=5 2 1 BMPA

MAXTHRD=10 3 DBCTLA

4 MAXREGN=10

5

1

2 1 BMPB

CICSB 3

MINTHRD=3

MAXTHRD=10

Figure 45. Interaction of MAXREGN, MINTHRD, and MAXTHRD

Licensed Materials – Property of IBM

Chapter 8. Improving DBCTL performance 147

Also bear DBCTL thread activity in mind when specifying the MXT system
initialization parameter. You use MXT to specify the maximum number of tasks
that CICS will allow to exist at any time. With DBCTL, MXT should be enough to
allow for the number specified in MINTHRD, plus the number you need for
“standard” CICS tasks. With DB2, there is no minimum number of threads. See
Setting the maximum task specification (MXT)the CICS Performance Guide for
general help on MXT.

To help you decide on the optimum values for minimum and maximum numbers
of DBCTL threads, monitor thread usage and IMS task throughput (to see if tasks
are being delayed), and IMS I/O rates. For details of thread statistics produced,
including maximum and minimum thread usage, see “DBCTL statistics” on page
134. See “DBCTL data returned to IMS log” on page 142 for details of data
produced for monitoring IMS I/O rates. You can also use CICS auxiliary trace to
check for queueing for threads and PSBs.

DEDB performance and tuning considerations
If you use DEDBs, you must define the characteristics and usage of the IMS DEDB
buffer pool. You do this by specifying parameters both in the CICS region and the
IMS (DBCTL) region. The DBCTL DEDB parameters are useful when tuning a
CICS/DBCTL DEDB fastpath environment. DBBF and DBFX are parameters
defined during DBCTL system generation or at DBCTL initialization. CNBA,
FPBUF, and FPBOF are defined in the DRA startup table (DFSPZP).

All parameters that you need to during IMS system definition or execution,
including DRA startup parameters, are described in “Defining the IMS DRA
startup parameter table” on page 29) .

The main concerns in defining DEDB buffer pools are the total number of buffers
in the IMS region, and how they are shared by CICS threads. You use the
following IMS FPCTRL parameters to define the number of buffers:
v DBBF: total number of buffers
v DBFX: number of buffers used exclusively by the DEDB system.

The number remaining when you subtract the value specified for DBFX from the
value specified for DBBF is the number of buffers available for the needs of CICS
threads; for this example, It is a fixed number is assumed for DBFX. DBBF must,
therefore, be large enough to accommodate all batch message processing programs
(BMPs) and CICS systems that you want to connect to this DBCTL system.

When a CICS thread connects to IMS, its DEDB buffer requirements are specified
using a normal buffer allocation (NBA) parameter. For a CICS system, there are
two NBA parameters in the DRA startup table:
1. CNBA buffers needed for the CICS system. This is taken from the total

specified in DBBF.
2. FPBUF buffers to be given to each CICS thread. This is taken from the number

specified in CNBA. FPBUF is used for each thread that requests DEDB
resources, and so should be large enough to handle the requirements of any
application that can run in the CICS system.

A CICS system might fail to connect to DBCTL if its CNBA value is more than that
available from DBBF. An application might receive schedule failure if the FPBUF
value is more than that available from CNBA. The FPBUF value is used when an
application tries to schedule a PSB that contains DEDBs.

Licensed Materials – Property of IBM

148 CICS TS for z/OS 5.3: IMS Database Control Guide

When a CICS system has successfully connected to DBCTL, and the application
has successfully scheduled a PSB containing DEDBs, the DRA startup parameter
FPBOF becomes relevant. FPBOF specifies the number of overflow buffers each
thread will get if it exceeds FPBUF. These buffers are not taken from CNBA.
Instead, they are buffers that are serially shared by all CICS applications or other
dependent regions that are currently exceeding their NBA allocation.

Because overflow buffer allocation (OBA) usage is serialized, thread performance
can be affected by NBA and OBA specifications. If FPBUF is too small, more
applications need to use OBA, which may cause delays due to contention. If both
NBA and OBA are too small, the application fails. If FPBUF is too large, this affects
the number of threads that can concurrently access DEDB resources, and increases
the number of schedule failures.

In a CICS-DBCTL environment, the main performance concern is the trade-off
between speed and concurrent access. The size of this trade-off is dictated by the
kind of applications you are running in the CICS system. If the applications have
approximately the same NBA requirements, there is no trade-off. You can specify a
FPBUF large enough to never need OBA. This speeds access and there is no waste
of buffers in CNBA, thus enabling a larger number of concurrent threads using
DEDBs. The more the buffer requirements of your applications vary, the greater the
trade-off. If you want to maintain speed of access (because OBAs are not being
used) but decrease concurrent access, you should increase the value of FPBUF. If
you prefer to maintain concurrent access, do not increase the value of FPBUF.
However, speed of access will decrease because this and possibly other threads
will need to use the OBA function.

For information on specifying the parameters CNBA, FPBOF, and FPBUF, see
“Defining the IMS DRA startup parameter table” on page 29. For further guidance
on DEDB buffer specification and tuning, see sections on DEDBs in IMS: Database
administration and IMS: System administration.

Monitoring data at the transaction level is returned to CICS by DBCTL at schedule
end and transaction termination. This data includes DEDB statistics. To obtain the
monitoring data, two event monitoring points (EMPs) must be added to your CICS
monitoring control table (MCT).

Exploiting Open Transaction Environment (OTE)
The CICS-DBCTL interface can be defined as threadsafe and CICS can run the
CICS-DBCTL task-related user exit (TRUE) on an L8 open task control block (open
TCB).

The open transaction environment (OTE) is supported in IMS version 12 with PTFs
for APAR PM29194 applied and in IMS version 13 with PTFs for APAR PM29195
applied. Later releases of IMS require no PTFs. To activate IMS to use OTE,
parameter OPENTHRD=CCTL needs to be specified in the DRA startup table
(DFSPZP). If specified, then during connect processing CICS enables the
CICS-DBCTL TRUE as an OPENAPI TRUE.

An open API TRUE is run on an L8 open TCB, which is dedicated for use by the
calling CICS task. Running an application on an open TCB improves throughput
and performance by reducing the use of the QR TCB. Threadsafe CICS applications
that run on an L8 open TCB and use threadsafe CICS-DBCTL commands now
avoid up to four TCB switches for each call to IMS. For more information about

Licensed Materials – Property of IBM

Chapter 8. Improving DBCTL performance 149

CICS IMS applications and the OTE, see “Enabling CICS IMS applications to use
the open transaction environment (OTE) through threadsafe programming” on
page 87.

If you do not specify OPENTHRD=CCTL, then CICS runs the CICS-DBCTL TRUE
on the QR TCB and IMSDRA TCBs will be utilised.

When using IMS Version 12 or later with OPENTHRD=CCTL, you must change
the way you calculate CICS and IMSprocessor times, for more information see,
“DBCTL monitoring data returned to CICS” on page 136.

Using DEDBs
Using DEDBs can provide performance improvements in a number of areas,
including a reduction in path length, parallel processing capability, less I/O
processing, and a reduced logging overhead.
v Reduced path length

– DEDBs use Media Manager for more efficient control interval (CI) processing,
which can reduce pathlength.

– DEDBs have their own resource manager, which means:
- Less interaction with whichever lock manager you are using (PI or the

IRLM), provided you are not using block level sharing.
- Simplified buffer handling (and reduced pathlength) because DEDBs have

their own buffer pool.
v Parallel processing

DEDB writes are not done during the life of the transactions but are kept in
buffers. Actual update operations are delayed until a synchronization point and
are done by asynchronous processing using output threads in the control region.
The output thread runs as a service request block (SRB): a separate dispatchable
MVS task. You can specify up to 255 output threads. This means that:
– The CICS task can be freed earlier
– Parallel processing is increased and throughput on multiprocessors is

improved.
v Less I/O

The cost of I/O per SDEP segment inserted can be very low because SDEP
segments are gathered in one buffer and are written out only when it is full.
This means that many transactions can “share the cost” of SDEP CI writes to a
DEDB. SDEPs should have larger CIs to reduce I/Os.

v Reduced logging overhead
DEDB log buffers are written to OLDS only when they are full. This means less
I/O than would be needed with full function databases.

High speed sequential processing (HSSP)
Using DBCTL enables you to use high speed sequential processing (HSSP). HSSP is
useful with applications that do large scale sequential updates to DEDBs, which
may require an image copy after the DEDBs are updated. Using HSSP provides the
following major benefits:
v DEDB processing time can be improved by using the IBM 3990 Storage Control

Model 3 Fast Write capability and the IBM 3990 Storage Control Model 3
Sequential Mode for both READs and WRITEs.

Licensed Materials – Property of IBM

150 CICS TS for z/OS 5.3: IMS Database Control Guide

v You can take an HSSP image copy during a sequential update job. This avoids
having to make a subsequent sequential pass through the DEDB areas to take an
image copy.

v HSSP reduces elapsed DEDB processing time by using private buffer pools and
optimizing locking.

v Only a minimum amount of log data is written to the IMS system log when you
request an HSSP image copy. This reduces the large amount of logging that such
large scale sequential runs usually involve.

For further guidance on HSSP, see IMS: Release planning.

IMS asynchronous database buffer purge facility
IMS includes the asynchronous database buffer purge facility.

At syncpoint time, when database buffers are to be flushed, buffers that are to be
written to different devices are written concurrently, rather than serially, as in
earlier releases of IMS. For further guidance, see IMS Administration > System
administration in Information Management Software for z/OS product
documentation.

The asynchronous database buffer purge facility should improve response time for
transactions that update databases on multiple devices in a single UOW.

Virtual storage usage
CICS regions that previously used local DL/I can obtain considerable virtual
storage constraint relief because the following storage areas reside in the DBCTL
address spaces: all DL/I and DBRC code and control blocks, OSAM and VSAM
buffer pools and related control blocks, PSB, DMB, and ENQ pools.

However, DBCTL requires some MVS CSA storage, which can lower the maximum
available region size in the MVS system. See IMS: System administration for details
of CSA and other DBCTL storage requirements.

Improved throughput on multiprocessors
You can obtain throughput improvements on multiprocessors when using IMS
Version 12 or later by using the CICS open transaction environment (OTE),
providing that the application code is threadsafe.

You can obtain further performance improvements by using DEDBs instead of
full-function databases. See “Access to data entry databases (DEDBs)” on page 9
for introductory guidance on DEDBs, and “Using DEDBs” on page 150 for
information about the performance aspects.

Licensed Materials – Property of IBM

Chapter 8. Improving DBCTL performance 151

http://www.ibm.com/support/knowledgecenter/SSEPH2/welcome
http://www.ibm.com/support/knowledgecenter/SSEPH2/welcome

Licensed Materials – Property of IBM

152 CICS TS for z/OS 5.3: IMS Database Control Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply in the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM United Kingdom
Laboratories, MP151, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1989, 2015 153

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Privacy Policy Considerations

IBM Software products, including software as a service solutions, ("Software
Offerings") may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

CICSPlex® SM Web User Interface :

For the WUI main interface: Depending upon the configurations deployed, this
Software Offering may use session and persistent cookies that collect each user’s
user name and other personally identifiable information for purposes of session
management, authentication, enhanced user usability, or other usage tracking or
functional purposes. These cookies cannot be disabled.

For the WUI Data Interface: Depending upon the configurations deployed, this
Software Offering may use session cookies that collect each user’s user name and
other personally identifiable information for purposes of session management,
authentication, or other usage tracking or functional purposes. These cookies
cannot be disabled.

For the WUI Hello World page: Depending upon the configurations deployed, this
Software Offering may use session cookies that collect no personally identifiable
information. These cookies cannot be disabled.

For CICS Explorer®: Depending upon the configurations deployed, this Software
Offering may use session and persistent preferences that collect each user’s user
name and password, for purposes of session management, authentication, and
single sign-on configuration. These preferences cannot be disabled, although
storing a user's password on disk in encrypted form can only be enabled by the
user's explicit action to check a check box during sign-on.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www-01.ibm.com/software/info/product-privacy/.

Licensed Materials – Property of IBM

154 CICS TS for z/OS 5.3: IMS Database Control Guide

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www-01.ibm.com/software/info/product-privacy/

Programming Interface Information
This book is intended to help you evaluate, install, and use the CICS-IMS Database
Control (DBCTL) interface.

This book also documents Product-sensitive Programming Interface and Associated
Guidance Information and Diagnosis, Modification or Tuning Information provided
by CICS.

Product-sensitive programming interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of CICS. Use of such interfaces creates dependencies on the detailed design
or implementation of the IBM software product. Product-sensitive programming
interfaces should be used only for these specialized purposes. Because of their
dependencies on detailed design and implementation, it is to be expected that
programs written to such interfaces may need to be changed in order to run with
new product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, by an introductory statement to a chapter or section.

Diagnosis, Modification or Tuning Information is provided to help you diagnose
problems with your CICS system.

Attention: Do not use this Diagnosis, Modification or Tuning Information as a
programming interface.

Diagnosis, Modification or Tuning Information is identified where it occurs, by an
introductory statement to a chapter or section.

This book contains sample programs. Permission is hereby granted to copy and
store the sample programs into a data processing machine and to use the stored
copies for study and instruction only. No permission is granted to use the sample
programs for any other purpose.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Licensed Materials – Property of IBM

Notices 155

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Licensed Materials – Property of IBM

156 CICS TS for z/OS 5.3: IMS Database Control Guide

Bibliography

CICS books for CICS Transaction Server for z/OS
General

CICS Transaction Server for z/OS Program Directory - base, GI13-3375
CICS Transaction Server for z/OS Program Directory activation module - base,
GI13-3376
CICS Transaction Server for z/OS Program Directory activation module - Developer
Trial, GI13-3377
CICS Transaction Server for z/OS Program Directory activation module - Value Unit
Edition, GI13-3378
CICS Transaction Server for z/OS What's New, GC34-7437
CICS Transaction Server for z/OS Upgrading to CICS TS Version 5.3, GC34-7436
CICS Transaction Server for z/OS Installation Guide, GC34-7414

Access to CICS
CICS Internet Guide, SC34-7416
CICS Web Services Guide, SC34-7452

Administration
CICS System Definition Guide, SC34-7428
CICS Customization Guide, SC34-7404
CICS Resource Definition Guide, SC34-7425
CICS Operations and Utilities Guide, SC34-7420
CICS RACF Security Guide, SC34-7423
CICS Supplied Transactions, SC34-7427

Programming
CICS Application Programming Guide, SC34-7401
CICS Application Programming Reference, SC34-7402
CICS System Programming Reference, SC34-7429
CICS Front End Programming Interface User's Guide, SC34-7412
CICS C++ OO Class Libraries, SC34-7405
CICS Distributed Transaction Programming Guide, SC34-7410
CICS Business Transaction Services, SC34-7403
Java Applications in CICS, SC34-7417

Diagnosis
CICS Problem Determination Guide, GC34-7422
CICS Performance Guide, SC34-7421
CICS Messages and Codes Vol 1, GC34-7418
CICS Messages and Codes Vol 2, GC34-7419
CICS Diagnosis Reference, GC34-7409
CICS Recovery and Restart Guide, SC34-7424
CICS Data Areas, GC34-7406
CICS Trace Entries, SC34-7430
CICS Debugging Tools Interfaces Reference,GC34-7408

Communication
CICS Intercommunication Guide, SC34-7415
CICS External Interfaces Guide, SC34-7411

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1989, 2015 157

Databases
CICS DB2 Guide, SC34-7407
CICS IMS Database Control Guide, SC34-7413
CICS Shared Data Tables Guide, SC34-7426

CICSPlex SM books for CICS Transaction Server for z/OS
General

CICSPlex SM Concepts and Planning, SC34-7441
CICSPlex SM Web User Interface Guide, SC34-7451

Administration and Management
CICSPlex SM Administration, SC34-7438
CICSPlex SM Operations Views Reference, SC34-7447
CICSPlex SM Monitor Views Reference, SC34-7446
CICSPlex SM Managing Workloads, SC34-7444
CICSPlex SM Managing Resource Usage, SC34-7443
CICSPlex SM Managing Business Applications, SC34-7442

Programming
CICSPlex SM Application Programming Guide, SC34-7439
CICSPlex SM Application Programming Reference, SC34-7440

Diagnosis
CICSPlex SM Resource Tables Reference Vol 1, SC34-7449
CICSPlex SM Resource Tables Reference Vol 2, SC34-7450
CICSPlex SM Messages and Codes, GC34-7445
CICSPlex SM Problem Determination, GC34-7448

Other CICS publications
The following publications contain further information about CICS, but are not
provided as part of CICS Transaction Server for z/OS, Version 5 Release 3 .

Designing and Programming CICS Applications, SR23-9692
CICS Application Migration Aid Guide, SC33-0768
CICS Family: API Structure, SC33-1007
CICS Family: Client/Server Programming, SC33-1435
CICS Family: Interproduct Communication, SC34-6853
CICS Family: Communicating from CICS on System/390, SC34-6854
CICS Transaction Gateway for z/OS Administration, SC34-5528
CICS Family: General Information, GC33-0155
CICS 4.1 Sample Applications Guide, SC33-1173
CICS/ESA 3.3 XRF Guide , SC33-0661

Licensed Materials – Property of IBM

158 CICS TS for z/OS 5.3: IMS Database Control Guide

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

You can perform most tasks required to set up, run, and maintain your CICS
system in one of these ways:
v using a 3270 emulator logged on to CICS
v using a 3270 emulator logged on to TSO
v using a 3270 emulator as an MVS system console

IBM Personal Communications provides 3270 emulation with accessibility features
for people with disabilities. You can use this product to provide the accessibility
features you need in your CICS system.

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1989, 2015 159

Licensed Materials – Property of IBM

160 CICS TS for z/OS 5.3: IMS Database Control Guide

Index

Special characters
/CHANGE CCTL, DBCTL operator

command 75
/CHECKPOINT command, DBCTL

operator command 80
/CHECKPOINT FREEZE, DBCTL

operator command 64
/CHECKPOINT PURGE, DBCTL

operator command 64
/CHECKPOINT, DBCTL operator

command 69
/DBDUMP, DBCTL operator

command 60
/DBRECOVERY, DBCTL operator

command 60
/DISPLAY, DBCTL operator

command 57
/ERESTART, DBCTL operator

command 68
/LOG, DBCTL operator command 59
/MODIFY, DBCTL operator

command 59
/NRESTART, DBCTL operator

command 67
/RMINIT.dbds, DBCTL operator

command 70
/RMxxxxxx, DBCTL operator commands,

for DBRC 56
/SSR, DBCTL operator command 61
/START, DBCTL operator command 61
/STOP, DBCTL operator command 61
/SWITCH OLDS, DBCTL operator

command 26, 60
/TRACE, DBCTL operator command 57,

140, 142, 143

Numerics
24-bit addressing 94
31-bit addressing 94

A
abend U113, IMS 81
abends, DL/I CALL

ADCA 105
ADCB 105
ADCC 105
ADCD 105
ADCE 105
ADCI 105
ADCJ 105
ADCN 105
ADCP 105
ADCQ 105
ADCR 105
ADDA 105
ADDK 105
UIB (user interface block) 82
UIBDLTR 105

abends, DL/I CALL (continued)
UIBFCTR 105

abends, EXEC DLI
ADCA 105
ADCB 105
ADCC 105
ADCD 105
ADCE 105
ADCI 105
ADCJ 105
ADCN 105
ADCP 105
ADCQ 105
ADCR 105
ADDA 105
ADDK 105
ASP7 105
ASPR 105
DHTA 105
DHTC 105
DHTE 105
DHTG 105
DHTH 105
DHTJ 105
DHxx 105
DL/I interface block (DIB) 82
preventing after PSB schedule

failure 101
UIBDLTR 105

abnormal termination of DBCTL 81
ACCEPT STATUSGROUP command 96
ACTIVE keyword 57
address spaces 6
addressing mode (AMODE) 94
addressing, 24-bit 94
addressing, 31-bit 94
AGN, DRA startup parameter 29
AIB (application interface block) 86
alternate PCB, summary 100
alternate TP PCB 99
AMODE (addressing mode) 94
APPLCTN macro 15, 20
application design

making application programs
threadsafe 87

application interface block (AIB) 86
application programming, DL/I

access to DEDBs 90
additional facilities with DBCTL 90
comparison, command codes and

keywords 92
I/O PCB 99
return codes and abends 105
subset pointers 91
system service requests 99
with BMPs 97

APPLID, system initialization
parameter 15

archiving an OLDS 27
asynchronous database buffer purge

facility, IMS 151

automating connection to DBCTL 38

B
backout, status codes 97
batch backout for indoubt units of

recovery 74
BEEQE (buffer extended error queue

element) 74
benefits of DBCTL

access to DEDBs 9
system service requests 9

BMP (batch message processing
program) 97

buffer extended error queue element
(BEEQE) 74

BUFPOOLS macro 20

C
CALL DL/I application programming

interface
calls supported 104
comparison, commands and calls 103
DBCTL support 85
DEQ 9, 101
IMS AIB call format 86
INIT 96
LOG 9, 102
ROLS 103
schedule PSB 101
SETS 103
subset pointers 91
UIB (user interface block) 82

CANCEL command, response to
DFS690A 81

CBRC transaction 56
CCTL (coordinator control subsystem) 7
CCTL keyword with /DISPLAY

command 58
CCTLDD, DD name 17
CDBC transaction

functions 39
help screen 40
immediate disconnection 43
menu screen 39
orderly disconnection 43
to connect to DBCTL 37
using 39

CDBC, transient data queue 19
CDBI transaction

help screen 45
inquiring on status of interface 44
inquiry screen 44
using 39

CDBM Group command
DFHBFK file 53
maintenance panel for DFHBFK

file 54
record layout 54

Licensed Materials – Property of IBM

© Copyright IBM Corp. 1989, 2015 161

CDBM transaction
example help screen 50
example screen 49
implementing 21
issuing IMS operator commands 49

CDBT transaction 112
CEMT INQ TASK command 43, 62, 112
CEMT PERFORM DUMP|SNAP

command 127
CEMT SET TASK purge command 43
CICS system definition (CSD) file 18
CNBA, DRA startup parameter 29
cold starting DBCTL 67
command codes, DL/I CALL 92
command recognition character

(CRC) 46
COMMIT request, trace 123
communicating with DBCTL 45
components of DBCTL

adapter 5
CCTL (coordinator control

subsystem) 7
CICS 5
DBCTL 6
DBRC 6
DFHDBAT 5
DFHDLI 5
DLISAS 6
DRA 5
DRA startup parameter table 5, 29
IRLM 6
major components 6
PI (program isolation) 6
resources DBCTL can access 7
task-related user exit interface 5

connection to DBCTL
after CICS COLD start 38
after CICS INITIAL start 38
after CICS WARM or EMERGENCY

start 38
automating 18, 38
CDBC transaction 39
connection fails 112
DBCTL not available 42
INIT request 39
INITPARM and DBCTLID 38
introduction 2
messages issued 42
requesting 37
trace 115
using CDBC from CRLP-type

terminal 41
using CDBC menu 39
using CDBC without menu 41

console, DBCTL 45
content type mapping v
content types v
control information for startup 19
coordinator control subsystem (CCTL) 7
CRC (command recognition

character) 46
CSAPSB, IMS system generation

parameter 20
CSD (CICS system definition) file 18
customizing DBCTL 33

D
data set level recovery 77
database change accumulation utility,

DFSUCUM0 76
DATABASE macro 20
database PCB (DB PCB) 99
database recovery utility, DFSURDB0 77

to process indoubt units of
recovery 74

DB PCB (database PCB) 99
DBC procedure library member 28
DBCTLCON, system initialization

parameter 15
DBCTLID, DRA startup parameter 29
DBFULTA0, DEDB log analysis

utility 143
DBRC (Database Recovery Control)

/RMxxxxxx commands 56
archiving 27
CBRC transaction 56
commands used to register

databases 70
functions 6
log control 25, 70
procedure 28
RECON 70

DD statements in CICS
for DBCTL 16
removed with DBCTL 17

DDNAME, DRA startup parameter 29
DEDB (data entry database) 149

application program access to 90
area data set compare utility 10
area data set create utility 10
benefits 9
direct reorganization utility 9
FPCTRL macro 20
HSSP (high speed sequential

processing) 150
initialization utility 10
log analysis utility 143
parameters, tuning 148
performance 150
POS command 93
sequential dependent delete

utility 10
sequential dependent scan utility 10
subset pointers 11, 91
using command codes 93

defining DBCTL 19
DEQ call 9, 101
DEQ command 9, 101
DFHDBAT (database

adapter/transformer)
DRA parameter lists 5
functions 5

DFHDBCON program, DBCTL
connection 18

DFHDBFK
CDBM Group command 53

DFHDBnnnn messages 42
DFHDBnnnn, CICS 42
DFHDBSTX exit, DBCTL statistics 135
DFHDBUEX, user-replaceable program

for DBCTL 33
DFHDLI, CICS-DL/I router 5
DFHDLPSB macro 16

DFHDXAX 42
DFHSTUP, statistics utility program 135
DFS989I message 28
DFSERA10, file select and formatting

print utility 70, 79, 125, 142, 143
DFSMDA, IMS dynamic allocation

macro 27
DFSPBDBC member 28
DFSPIRP0, program isolation trace report

utility 143
DFSPRP macro

AGN 29
CNBA 29
DBCTLID 29
DDNAME 29
DSECT 29
DSNAME 29
FPBOF 29
FPBUF 29
FUNCLV 29
MAXTHRD 29
MINTHRD 29
SOD 29
TIMEOUT 29
TIMER 29
USERID 29

DFSPRRC0, DRA startup router
program 16

DFSPZPxx, DRA startup parameter table
module 16

DFSUARC0, log archive utility 79
DFSUCUM0, database change

accumulation utility 76
DFSULTR0, log recovery utility 79
DFSURDB0 database recovery utility 77
DFSUTR20, IMS monitor report print

program 140, 142
DFSVSMxx member

contents 17
for DL/I trace 143
starting DBCTL trace 124

DIB (DL/I interface block) 82
contents for successful DL/I

request 123
status after PSB schedule 95
TR status code in 105

disconnecting DBCTL
CDBC transaction 39
disconnection fails 112
immediate 39, 43
long running tasks 43
orderly 39, 43
reconnection attempts 81
trace 118
using CDBC 43

DL/I (Data Language/I)
CALL abends 105
comparison, keywords and command

codes 92
contents of DIBSTAT for successful

DL/I request 123
interface block (DIB) 82, 95
procedure 28
request handling 1
requests supported 104
specifying in CICS system

initialization parameters 14

Licensed Materials – Property of IBM

162 CICS TS for z/OS 5.3: IMS Database Control Guide

DL/I (Data Language/I) (continued)
support available 1
trace of DL/I request 122

DLIPSB, IMS system generation
parameter 20

DLISAS (DL/I separate address space)
contents 6

DMB (data management block)
IMS macros to define 16

DRA (database resource adapter)
CCTLDD 17
creating 29
DD statements 16
DFSPRP macro 29
DFSPRRC0, startup router

program 16
DFSPZPxx module 29
DFSPZPxx, startup parameter

table 16
DRA startup router program,

DFSPRRC0 16
example JCL to generate 31
failure 80
functions 5
INIT request 39
parameter lists 5
recovery 80
snap data set 127
specification of number of

threads 146
startup table parameters 29
TERM request 39

DSALIM, system initialization
parameter 15

DSECT, DRA startup parameter 29
DSNAME, DRA startup parameter 29
dumps, CICS

problem occurring in CICS or
DBCTL 127

system 127
transaction 126
what is provided for DBCTL 127

dumps, DBCTL
description 129
produced by DBCTL 129

dumps, DRA
return codes 130
SDUMP, contents 128
SDUMP, when produced 128
snap data set 127
SNAP, contents 128
when produced 128

dynamic backout
meaning in CICS 69
meaning in IMS 69

E
EDF (execution diagnostic facility) with

DBCTL 131
EDSALIM, system initialization

parameter 15
EEQEL (extended error queue element

link) 74
emergency restart, DBCTL

description 68
status of in-flight UOWs 68

enhanced scheduling
accepting status codes 96
increased 94
obtaining information about 95
QUERY command 95
REFRESH command 95
refreshing PCB status codes 96

environment of DBCTL 3
error scenarios, DBCTL

connection fails 112
connection to DBCTL not

complete 112
disconnection fails 112
DLSUSPND 113
immediate disconnection 112
orderly disconnection 112
PSB scheduling failures 113
trace of COMMIT request 123
trace of connection to DBCTL 115
trace of disconnection from

DBCTL 118
trace of DL/I request 122
trace of failed PSB schedule 121
trace of PREPARE request 123
trace of successful PSB schedule 120
trace of TERMINATE thread

request 123
waits 111

EXEC CICS DUMP SYSTEM
command 127

EXEC DLI application programming
interface

abends 105
ACCEPT command 96
additional keywords 91
commands supported 104
comparison, commands and calls 103
comparison, keywords and command

codes 92
DBCTL support 85
DEQ 9, 101
DHxx abends 101
DIB (DL/I interface block) 82
GETFIRST keyword 91
LOCKCLASS keyword 91
LOG 9, 102
MOVENEXT keyword 91
NODHABEND keyword 101
obtaining information in DIB 95
QUERY command 95
REFRESH command 95
ROLS command 103
SCHD PSB 101
SCHD PSB failure 101
SET keyword 91
SETCOND keyword 92
SETS and ROLS commands 102
SETS command 102
SETZERO keyword 92
subset pointers 91
SYSSERVE keyword 92

execution diagnostic facility (EDF) with
DBCTL 131

extended error queue element link
(EEQEL) 74

external subsystem commands 61

F
file select and formatting print utility,

DFSERA10 70, 79, 125, 142, 143
FPBOF, DRA startup parameter 29
FPBUF, DRA startup parameter 29
FPCTRL macro 20
FUNCLV, DRA startup parameter 29
function shipping AIB requests 86

G
generalized trace facility (GTF) 144
generating DBCTL

checklist 13
database buffers 27
example JCL 22
IMS INSTALL/IVP 22
introduction 19
naming convention 28
overriding DBCTL generation

parameters 27
GETFIRST keyword 91
global user exits

XDLIPOST 33
XDLIPRE

function 33
XRMIIN 34
XRMIOUT 34

GSAM PCB 99
GTF (generalized trace facility) 144

H
high speed sequential processing

(HSSP) 150
HSSP (high speed sequential

processing) 150

I
I/O PCB (input/output PCB) 99

summary 100
IEEQE (indoubt extended error queue

element) 74
IMS dynamic allocation macro,

DFSMDA 27
IMS INSTALL/IVP 22
IMS log statistics 143
IMS logging 24
IMS monitor 140, 142

allocating IMSMON data set 140, 142
first phase 140, 142
general reports 140
general wait time events 140
program summary 140
region summary report 140
regions and jobname report 140
report print program,

DFSUTR20 140, 142
reports not used with DBCTL 139
reports used with DBCTL 139
run profile 140
running 140, 142
second phase 140, 142

Licensed Materials – Property of IBM

Index 163

IMS monitor (continued)
starting and stopping

dynamically 140, 142
transaction queuing report 140

IMS system data sets, modifying 22
IMS.RESLIB library 16, 17
IMSCTF macro 20
IMSCTRL macro 20
IMSGEN macro 20
indoubt extended error queue element

(IEEQE) 74
INIT call 96

accept status codes 96
refresh PCB status codes 96

INIT request 39
INITPARM, system initialization

parameter 15, 38
inquiring on status of DBCTL

interface 44
inquiry transaction, CDBI 39, 44
installing DBCTL

checklist 13
DBC procedure library member 28
DBRC procedure 28
DLI procedure 28

IRLM (internal resource lock manager)
functions 6
tracing activity with GTF 144

J
JCL example to generate DBCTL 22

K
keywords, EXEC DLI 92
Knowledge Center v
Knowledge Center content types v

L
L8 mode open TCB 87
local DL/I

AMODE/RMODE support 94
APPLID parameter 15
DBCTLCON parameter 15
definition 1
directory lists 16
DSALIM parameter 15
EDSALIM parameter 15
partial system generation 13

LOCKCLASS keyword 9, 91
log analysis utility, DEDB 143
log archive utility, DFSUARC0 79
LOG call 9, 102
LOG command 9, 102
log management

CICS system log not needed with
DBCTL 18

with DBCTL 18
log records 70

X'07' 142
X'08' 142

log recovery utility, DFSULTR0 79
log, IMS

defined by IMSCTF 20

log, IMS (continued)
IMS statistics 143
log records written during two-phase

commit 70
PI trace records 142

logging with DBCTL
/SWITCH OLDS command 26
archiving 27
DBRC 25
defining IMS parameters 26
OLDS 24
single-phase commit 145
switching OLDS 60
WADS 25

M
macros, IMS system generation

APPLCTN 15, 20
BUFPOOLS 20
creating control information for

startup 19
DATABASE 20
DFHDLPSB 16
FPCTRL 20
IMSCTF 20
IMSCTRL 20

MAXREGN 20
IMSGEN 20
SECURITY 20

main storage buffer pool sizes 20
MAXREGN parameter, IMSCTRL system

generation macro
in system definition 20
tuning 146

MAXTHRD, DRA startup table parameter
in DRA startup table 29
tuning 146

MCT (monitoring control table)
additional entries DBCTL 18
DFH$MCTD 18

messages, CICS-DBCTL
categories 129
dealing with 65
DFHDB8101 118
DFHDB8102 80, 120
DFHDB8103 65
DFHDB8104 65, 81
DFHDB8106 80
DFHDB8109 65, 74, 81, 122
DFHDB8111 81
DFHDB8116 118
DFHDB8117 38
DFHDB8130 81
DFHDB8209 39, 40
DFHDB8210 42
DFHDB8211 120
DFHDB8212 120
DFHDB8225 42
DFHDB8290 45
DFHDB8291 45, 112
DFHDB8292 42, 45, 112
DFHDB8293 39, 44, 45, 118
DFHDB8294 45
DFHDB8295 45
DFHDB8296 45
on menu and inquiry screens 129

messages, CICS-DBCTL (continued)
rerouting 129
routed to CDBC 129
suppressing 129
user interaction 129

messages, DBCTL
categories 129
dealing with 65
DFS613I 81
DFS628I 81
DFS629I 81
DFS690A 81
DFS989I 28
DFS994I 37
user interaction 129

MINTHRD, DRA startup table parameter
tuning 146

MODIFY command, MVS
STOP option 80

monitoring, DBCTL data
obtaining 138
program isolation trace 142
returned to CICS 136
returned to IMS log 142
statistics 135

MOVENEXT keyword 91
MTO (master terminal operator)

CDBC transaction 5, 37, 39
CDBI transaction 39
connection to DBCTL 5
disconnection from DBCTL 5

multisegment operator commands,
DBCTL 46

MVS console, for DBCTL operations 45
MVS MODIFY command 65, 81

DFSnnnn messages 65
MXT, system initialization parameter,

tuning 148

N
NODHABEND keyword 101
null words in DBCTL operator

commands 46

O
OLDS (online log data set) 24

recovery with log recovery utility 79
online change utility 11
online change, to modify IMS system

data sets 22
online image copy utility 11
online reorganization 11
open TCBs

application programs on 87
open transaction environment (OTE)

and application programs 87
CICS IMS task-related user exit 87
threadsafe applications 87

operations, DBCTL
CDBM 21
command summary 47
using MVS console 45

operator commands, DBCTL 57
/CHANGE CCTL 75

Licensed Materials – Property of IBM

164 CICS TS for z/OS 5.3: IMS Database Control Guide

operator commands, DBCTL (continued)
/CHECKPOINT 69
/CHECKPOINT command 69, 80
/DISPLAY 57
/ERESTART 68
/LOG 59
/NRESTART 67
/RMINIT.db 70
/RMxxxxxx, for DBRC 56
/SWITCH OLDS 26
/TRACE 57, 140, 142, 143
CICS and DBCTL, comparison 47
CRC 46
DBCTL commands valid with

CDBM 47
DBCTL operator, summary 47
DBRC 56
external subsystem 61
format of 46
multisegment 46
null words 46
passwords with 46
status of RIS 76
to start CICS 37
to start DBCTL 37
to start IMS 37
used for termination of DBCTL 80

operator commands, MVS
F jobname,RECONNECT 81
F jobname,STOP|DUMP 65
MODIFY 20
MVS MODIFY 65, 81
used for termination of DBCTL 80

operator communication with
DBCTL 45

P
PAPL (participant adapter parameter list)

description of request codes 130
description of return codes 130
PAPLRETC 127
return codes from CICS to DRA 131
return codes from DRA to CICS 131

passwords with operator commands 46
PCB (program control block)

alternate TP PCB 99
batch programs 100
BMPs 100
CICS online programs 100
comparison with AIB for EXEC DLI

calls 86
DB PCB 99
GSAM PCB 99
I/O PCB 99
summary 100

PDIR, system initialization parameter 15
performance tools, DBCTL

CICS auxiliary trace facility 143
GTF (generalized trace facility) 144
Resource Measurement Facility 144

performance, DBCTL
asynchronous database buffer

purge 151
auxiliary trace 143
DEDB parameters, tuning 148
DEDBs 150

performance, DBCTL (continued)
exploiting open transaction

environment (OTE) 149
HSSP (high speed sequential

processing) 150
job dispatching priorities 146
monitoring 133
multiprocessor throughput 151
numbers of threads 146
parameters in CICS 145
parameters in IMS 145
single-phase commit 145
statistics 133, 135
tuning 145
virtual storage 151

PI (program isolation)
functions 6
trace 142
trace report utility, DFSPIRP0 143

PLT (program list table) 18
PLTPI, connecting to DBCTL at CICS

startup 18
POS command and call with DEDBs 93
PREPARE request, trace 123
problem determination 111

CICS trace entries 114
connection fails 112
connection to DBCTL not

complete 112
correlating activity in DBCTL and

CICS 114
DBCTL dumps 129
DBCTL error scenarios 112
DBCTL return codes 129
disconnection fails 112
DLSUSPND 112, 113
immediate disconnection 112
IMS X'67FA' log records 126
interactions at interface level 111
interactions at request level 111
interactions between CICS and

DBCTL 111
kind of dump produced 130
orderly disconnection 112
PAPL request codes 130
PAPL return codes 130
problem occurring in CICS or

DBCTL 127
PSB scheduling failures 113
starting tracing in DBCTL 124
trace 114
trace of COMMIT request 123
trace of connection to DBCTL 115
trace of disconnection from

DBCTL 118
trace of DL/I request 122
trace of failed PSB schedule 121
trace of PREPARE request 123
trace of successful PSB schedule 120
trace of TERMINATE thread

request 123
waits 111

procedure library member DBC 28
program list table (PLT) 18
PSB (program specification block)

containing PCBs for GSAM and
MSDB 97

PSB (program specification block)
(continued)

defining when generating DBCTL 20
enhanced scheduling 94
format 99
IMS macros to define 16
in APPLCTN macro statement 20
PDIR list 15
preventing abends after schedule

failure 101
schedule failed, contents of

UIBDLTR 122
schedule failed, contents of

UIBFCTR 122
schedule requests during

disconnect 43
schedule successful, contents of

UIBDLTR 121
schedule successful, contents of

UIBFCTR 121
status in DIB 95
trace of schedule failure 121
trace of successful schedule 120
XPSB parameter 16

pseudo recovery tokens 74
purging a transaction 62

Q
Q command code 9
QUERY command 95

R
RACF 57
RACF (resource access control facility)

definition of PSBs 16
RECON (recovery control data sets)

DBCTL operator commands 56
example JCL to initialize 25
information 71
information included 25
specified in DFSMDA 17

reconnecting DBCTL, with MVS MODIFY
command 81

reconnecting to DBCTL 42
recovery and restart with DBCTL

/CHECKPOINT command 69
/CHECKPOINT FREEZE 68
/CHECKPOINT PURGE 68
/ERESTART command 68
/SWITCH OLDS command 26
ABORT 71
archiving 27
backing out uncommitted updates 69
backout 71
BEEQE 74
BMP failure 83
CICS failure 79
CICS keypoints 69
CICS units of work (UOWs) 74
cold start 67
COMMIT 71
commit protocols 71
data set level 77

Licensed Materials – Property of IBM

Index 165

recovery and restart with DBCTL
(continued)

database change accumulation
utility 76

database recovery utility 77
database utilities 76
DBCTL failure 80
DBCTL unit of recovery 74
DBRC 25
deadlocks and automatic restart 82
DEDB UNDO 71
defining IMS logging parameters 26
description of CICS initialization 66
description of CICS termination 66
DRA failure 80
EEQEL 74
emergency restart 68
IEEQE 74
IMS checkpoints 69
IMS logging 24
in-flight unit of recovery 74
indoubt units of recovery 74
IRLM failure 81
log archive utility 79
log records 70
log recovery utility 79
log utilities 79
multiple resource managers 73
MVS failure 84
OLDS 24
online log data set (see OLDS) 24
overview of CICS procedures 66
overview of IMS procedures 66
power failure 84
PREPARE 71
processor failure 84
pseudo recovery tokens 74
RECON 71
recovery tokens 74
restarting DBCTL 67
RIS 74
RRE 74
switching OLDS 60
thread failure 82
TIMEOUT 79
track level 77
transaction failure 82
two-phase commit 71
units of recovery 71
WADS 25
warm start 68
when updates are written to

databases 71
write-ahead data set (see WADS) 25

recovery tokens 74, 124
REFRESH command 95
remote DL/I

AMODE/RMODE support 94
APPLID parameter 15
DBCTLCON parameter 15
DSALIM parameter 15
EDSALIM parameter 15
partial system generation 13
PDIR list 15
support available 1

request handling 1
residency mode (RMODE) 94

residual recovery element (RRE) 74
resource definition, DBCTL 14
Resource Measurement Facility 144
resources accessed in DBCTL 7
restarting DBCTL 67
return codes for programs 105
return codes, DBCTL 129

PAPL 130
to indicate type of dump 130

RGSUF= keyword 28
RIS (recoverable indoubt structure)

contents of 74
status with emergency restart 68

RMODE (residency mode) 94
ROLS call 103
ROLS command 103
RRE (residual recovery element) 74

S
SCHD PSB command 101
schedule PSB call 101
security class name 16
SECURITY macro 20
security, DBCTL

PSB authorization checking by
CICS 109

SET keyword 91
SETCOND keyword 92
SETS call 103
SETS command 102
SETZERO keyword 92
single-phase commit 145
SLDS (system log data set) 79
SOD, DRA startup parameter 29
startup parameters 19
startup parameters, illustration 34
statistics

DEDB 149
statistics utility program, DFHSTUP 135
statistics, unsolicited 135
status codes

accepting 96
BA 96
BB 96
BC 96
DL/I interface block (DIB) 82
UIB (user interface block) 82
with backout 97

stopping DBCTL
abnormally 65
normally 64

subordinate TCBs 127
subset pointers 11, 91
SYSSERVE keyword 92
system definition parameters

APPLID 15
CICS system initialization parameters,

reviewing 14
CSAPSB 20
DBCTL startup 19
DBCTLCON 15
DLIPSB 20
DSALIM 15
EDSALIM 15
for DBCTL startup, illustration 34
INITPARM 15, 38

system definition parameters (continued)
PDIR 15
PSBCHK 16
system initialization 14
XPSB 16

system definition, IMS 19
stage 1 19
stage 2 19
using to define DBCTL 19

system dumps, CICS 127
system initialization parameters

APPLID 15
DBCTLCON 15
DSALIM 15
EDSALIM 15
INITPARM 15, 38
parameters 14
PDIR 15
PSBCHK 16
specifying DL/I support 14
XPSB 16

system log data set (SLDS) 79
system service requests 9, 99

T
TERM request 39
TERMINATE thread request, trace 123
terminating DBCTL 80

DUMP option 80
with /CHECKPOINT command 69
with MVS MODIFY command 65

termination, abnormal 81
threads

definition 5
specification in DRA startup

table 146
trace of termination 123

TIMEOUT parameter 79
TIMEOUT, DRA startup parameter 29
TIMER, DRA startup parameter 29
trace, CICS-DBCTL

as debugging tool 114
auxiliary 143
connection to DBCTL 115
contents of UIBDLTR 121
contents of UIBFCTR 121
disconnection from DBCTL 118
DL/I request 122
entries produced 114
PSB schedule, successful 120
PSB scheduling failure 121
thread termination 123

trace, DBCTL
as debugging tool 114
DL/I trace 143
entries produced 124
IMS X'67FA' log records 126
starting 124
using /TRACE command 57

track level recovery 77
trademarks 155
transaction dumps, CICS 126
transaction level monitoring data 136
transaction using DBCTL, purging 62
transactions for DBCTL

CDBC 39

Licensed Materials – Property of IBM

166 CICS TS for z/OS 5.3: IMS Database Control Guide

transactions for DBCTL (continued)
CDBI 39

transient data queues, entry for
CDBC 19

tuning, CICS-DBCTL 145
two-phase commit, DBCTL

ABORT 71
COMMIT 71
DEDB REDO 71
log records 70
phase 1 72
phase 2 72
PREPARE 71
unit of recovery 74
when updates are written to

databases 71

U
U113, IMS abend 81
UIB (user interface block)

description 82
UIBDLTR, after PSB schedule 122
UIBDLTR, contents 105
UIBFCTR, after PSB schedule 122
UIBFCTR, contents 105

unit of recovery
during two-phase commit 74
in-flight 74
indoubt 74
status with emergency restart 68

unsolicited statistics 135
UOW (unit of work)

definition 74
in-flight during two-phase

commit 74
indoubt during two-phase

commit 74
indoubt, resolving manually 75

user-replaceable programs 33
DFHDBUEX 33

USERID, DRA startup parameter 29
utilities, IMS

batch backout 74
database change accumulation 76
database recovery 74, 77
DEDB area data set compare

utility 10
DEDB area data set create utility 10
DEDB direct reorganization utility 9
DEDB initialization utility 10
DEDB log analysis utility 143
DEDB sequential dependent delete

utility 10
DEDB sequential dependent scan

utility 10
file select and formatting print 79,

142
file select and formatting print utility,

DFSERA10 70, 143
IMS monitor 140, 142
log archive 79
log recovery 79
online change utility 11
online image copy utility 11
online reorganization for DEDBs 11
program isolation trace report 143

utilities, IMS (continued)
security maintenance 46

utility programs, CICS
DFHSTUP 135

V
VSCR (virtual storage constraint relief)

tuning a DBCTL system 151

W
WADS (write-ahead data set) 25
WAIT command, response to

DFS690A 81
waits, DBCTL 111
warm restart, DBCTL

after /CHECKPOINT FREEZE 68
after /CHECKPOINT PURGE 68
state of resources 68

write-ahead data set (WADS) 25

X
XDLIPOST, global user exit 33
XDLIPRE, global user exit

function 33
XPSB, system initialization parameter 16
XRMIIN, global user exit 34
XRMIOUT, global user exit 34

Licensed Materials – Property of IBM

Index 167

Licensed Materials – Property of IBM

168 CICS TS for z/OS 5.3: IMS Database Control Guide

Readers’ Comments — We'd Like to Hear from You

CICS Transaction Server for z/OS
Version 5 Release 3
IMS Database Control Guide

Publication No. SC34-7413-00

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: +44 1962 816151
v Send your comments via email to: idrcf@uk.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC34-7413-00

SC34-7413-00

IBM®
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM United Kingdom Limited
User Technologies Department (MP189)
Hursley Park
Winchester
Hampshire
United Kingdom
SO21 2JN

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBM®

Licensed Materials – Property of IBM

SC34-7413-00

	Contents
	Preface
	Who this manual is for
	What this manual is about
	What you need to know before reading this manual
	How to use this manual
	Terms used
	Location of topics in the Knowledge Center

	Changes in CICS Transaction Server for z/OS, Version 5 Release 3
	Chapter 1. Overview of Database Control (DBCTL)
	Connecting to DBCTL
	CICS-IMS DBCTL environment
	CICS-DBCTL interface control components in CICS address space
	Components of DBCTL in IMS address spaces

	Coordinator control subsystem (CCTL)
	Resources you can access from a CICS environment that includes DBCTL
	System service requests
	Access to data entry databases (DEDBs)
	Online image copy utility
	Online change utility
	Online reorganization for DEDBs

	Chapter 2. Installing DBCTL, and defining CICS and IMS system resources
	Installing and generating DBCTL
	Defining CICS system resources for DBCTL
	System initialization parameters
	Specifying DL/I support in system initialization parameters
	Reviewing CICS system initialization parameters

	PSB directories (PDIRs)
	DD statements
	DD statements removed from CICS JCL in a DBCTL-exclusive environment

	CICS-supplied groups within CICS system definition
	Log management
	Monitoring control table (MCT)
	Program list table (PLT)
	Transient data queues

	Generating DBCTL
	Defining the DBCTL subsystem
	IMS system generation macros used by DBCTL
	Implementing CICS-supplied transaction CDBM
	Modifying IMS system data sets using online change
	Example of JCL required to generate a basic DBCTL subsystem

	IMS logging
	IMS online log data set (OLDS)
	IMS write-ahead data set (WADS)
	Log control with DBRC
	Defining IMS logging parameters
	Archiving

	IMS dynamic allocation macro (DFSMDA)
	Database buffer specifications and option parameters
	Overriding DBCTL generation parameters at execution time
	Naming convention

	Starting DBCTL, DLISAS, and DBRC
	Defining the IMS DRA startup parameter table
	Example JCL to generate a DRA startup table

	Customizing DBCTL
	DFHDBUEX
	Global user exits XDLIPRE and XDLIPOST
	Global user exits XRMIIN and XRMIOUT

	Illustration of DBCTL startup parameter creation and selection

	Chapter 3. Administering DBCTL
	Connecting to DBCTL: overview
	Connecting DBCTL to CICS automatically
	Connection, disconnection, and inquiry transactions for the CICS DBCTL interface
	CDBC transaction for connect and disconnect
	Using CDBC without the menu screen

	What happens when you have requested connection to DBCTL
	Deciding whether to use orderly or immediate disconnection
	CDBI transaction for inquiry

	Operator communication with DBCTL: overview
	DBCTL operator commands
	Format of DBCTL operator commands
	Multisegment DBCTL operator commands

	Summary of DBCTL operator commands
	CDBM operator transaction
	DFHDBFK - The CDBM GROUP command file
	Record layout in the CDBM GROUP command file

	The MAINTENANCE panel for DFHDBFK
	Input fields

	Issuing DBRC commands
	IMS password security
	Controlling tracing of DBCTL events
	Finding out current status of DBCTL activities
	Specifying messages to be logged on IMS log
	Changing DBCTL resources online
	Preventing programs and transactions from updating DBCTL databases
	Switching to a new OLDS
	Entering external subsystem commands from DBCTL
	Making DBCTL resources available
	Preventing scheduling of PSBs and use of DBCTL databases
	Purging a transaction that is using DBCTL
	Stopping DBCTL normally
	Stopping DBCTL abnormally
	Dealing with messages from DBCTL and CICS
	Recovery and restart operations for DBCTL
	Overview of CICS and IMS recovery and restart
	CICS startup and shutdown
	Restarting DBCTL
	CICS keypoints and IMS checkpoints
	Log records
	Database recovery control (DBRC)
	Recovery control (RECON) data sets

	Commit protocols and units of recovery for DBCTL
	Two-phase commit for DBCTL
	DBCTL unit of recovery
	CICS DBCTL recovery tokens
	Resolving indoubt CICS DBCTL units of work manually
	Using DBCTL operator commands to resolve in-doubts

	IMS database utilities
	IMS log utilities
	Component failures in the CICS DBCTL environment
	CICS failure
	Database resource adapter (DRA) failure
	DBCTL failure
	IRLM failure
	Transaction and thread failures
	BMP failures
	MVS, processor, or power failures

	Chapter 4. Application programming for DBCTL
	Programming languages and environments for DL/I
	Issue IMS AIB call format

	Enabling CICS IMS applications to use the open transaction environment (OTE) through threadsafe programming
	Facilities available with DBCTL
	Application program access to DEDBs
	Command codes to manage subset pointers in DEDBs

	Additional EXEC DLI keywords
	LOCKCLASS
	MOVENEXT
	GETFIRST
	SET
	SETCOND
	SETZERO
	System service (SYSSERVE)

	Keywords and corresponding command codes
	POS command and call
	Addressing and residency mode
	Enhanced scheduling
	Obtaining information about database availability
	QUERY and REFRESH DBQUERY commands
	INIT call: format for refreshing status code information

	Accepting database availability status codes
	ACCEPT STATUSGROUP command
	INIT call: format for accepting status codes

	Status codes and backout
	Batch message processing programs (BMPs)
	System service requests
	I/O PCB
	Format of a PSB
	PCB summary
	PSB schedule command and call
	DEQ command and call
	LOG command and call
	Defining intermediate backout points for DBCTL resources

	Comparing EXEC DLI commands and DL/I calls
	DL/I requests supported

	Summary of DBCTL abends and return codes

	Chapter 5. Security for DBCTL
	PSB authorization checking by CICS

	Chapter 6. Troubleshooting DBCTL
	Interactions between CICS and DBCTL
	DBCTL error scenarios
	Connection to DBCTL has failed to complete
	Disconnection from DBCTL failed to complete
	Failures during PSB scheduling
	Failures during DL/I request processing
	Correlating activity in DBCTL and CICS

	Trace for CICS DBCTL
	Trace entries produced by CICS
	Connection to DBCTL
	Disconnection from DBCTL
	PSB schedule
	PSB scheduling failure
	CICS task issuing DL/I requests to be processed by DBCTL
	Thread termination
	Trace entries produced by DBCTL
	Printing and formatting IMS X'67FA' log records

	Dumps for CICS DBCTL
	CICS transaction dump
	CICS system dump
	Determining whether a problem is occurring in CICS or DBCTL
	DRA snap data set
	What is provided in a CICS dump
	Dumps produced by the DRA
	Dumps produced by DBCTL

	Messages for CICS DBCTL
	Return codes in DBCTL
	Using return codes to find out what kind of dump has been produced

	PAPL request and return codes

	Using CICS EDF to debug application programs in DBCTL

	Chapter 7. Monitoring DBCTL
	Data available for a CICS-DBCTL system
	DBCTL statistics

	Monitoring DBCTL: transaction level data
	DBCTL monitoring data returned to CICS
	Obtaining DBCTL monitoring data sent to CICS

	IMS monitor reports with DBCTL
	Data contained in relevant IMS monitor reports
	Regions and jobname report
	Region summary and transaction queuing report
	Using the IMS monitor

	DBCTL data returned to IMS log
	DL/I trace
	Trace facilities
	Additional performance tools
	Generalized trace facility (GTF)
	Resource Measurement Facility (RMF)

	Chapter 8. Improving DBCTL performance
	Performance parameters in CICS
	Performance parameters in IMS
	Response time: assigning job dispatching priorities
	Specifying numbers of threads
	DEDB performance and tuning considerations
	Exploiting Open Transaction Environment (OTE)

	Using DEDBs
	High speed sequential processing (HSSP)

	IMS asynchronous database buffer purge facility
	Virtual storage usage
	Improved throughput on multiprocessors

	Notices
	Programming Interface Information
	Trademarks

	Bibliography
	CICS books for CICS Transaction Server for z/OS
	CICSPlex SM books for CICS Transaction Server for z/OS
	Other CICS publications

	Accessibility
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Readers’ Comments — We'd Like to Hear from You

