
Redpaper

Front cover

Enterprise Java Monitoring 
on z/OS with OMEGAMON
A Practical Guide to Managing JVM Performance on z/OS

Christopher Walker

Nigel Williams





International Technical Support Organization

Enterprise Java Monitoring on z/OS with OMEGAMON: 
A Practical Guide to Managing JVM Performance 
on z/OS

February 2017

REDP-5429-00



© Copyright International Business Machines Corporation 2017. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (February 2017)

This document was created or updated on February 23, 2017.

Note: Before using this information and the product it supports, read the information in “Notices” on page v.



Contents

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .v
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Now you can become a published author, too!  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
Comments welcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
Stay connected to IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter 1.  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1  Objectives of this publication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2  Java on z/OS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1  Java on z/OS applications and workloads  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2  Why Java on z/OS is critical to z modernization . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3  Performance considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.4  Challenges to monitor and manage Java on z/OS . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3  IBM OMEGAMON for JVM on z/OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.1  Data provided by OMEGAMON for JVM V5.4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2  Situations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.3  Historical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4  Description of application environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.1  About the applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2.  Installation and configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1  Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2  Monitoring Agent configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3  Configuring JVMs for monitoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1  Configuring CICS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2  Configuring IMS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3  Configuring z/OS Connect Enterprise Edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 3.  Using OMEGAMON for JVM in operations management . . . . . . . . . . . . . . 19
3.1  JVM discovery and JVM environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2  High heap occupancy in CICS region  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3  Monitoring extended storage in IMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4  Using OMEGAMON history to identify memory leaks. . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5  Monitoring z/OS Connect Service Request Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Related publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Online resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Help from IBM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
© Copyright IBM Corp. 2017. All rights reserved. iii



iv Enterprise Java Monitoring on z/OS with OMEGAMON



Notices

This information was developed for products and services offered in the US. This material might be available 
from IBM in other languages. However, you may be required to own a copy of the product or product version in 
that language in order to access it. 

IBM may not offer the products, services, or features discussed in this document in other countries. Consult 
your local IBM representative for information on the products and services currently available in your area. Any 
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, 
program, or service may be used. Any functionally equivalent product, program, or service that does not 
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to 
evaluate and verify the operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter described in this document. The 
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in 
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US 

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” 
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED 
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A 
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in 
certain transactions, therefore, this statement may not apply to you. 

This information could include technical inaccuracies or typographical errors. Changes are periodically made 
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make 
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time 
without notice. 

Any references in this information to non-IBM websites are provided for convenience only and do not in any 
manner serve as an endorsement of those websites. The materials at those websites are not part of the 
materials for this IBM product and use of those websites is at your own risk. 

IBM may use or distribute any of the information you provide in any way it believes appropriate without 
incurring any obligation to you. 

The performance data and client examples cited are presented for illustrative purposes only. Actual 
performance results may vary depending on specific configurations and operating conditions. 

Information concerning non-IBM products was obtained from the suppliers of those products, their published 
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the 
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the 
capabilities of non-IBM products should be addressed to the suppliers of those products. 

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and 
represent goals and objectives only. 

This information contains examples of data and reports used in daily business operations. To illustrate them 
as completely as possible, the examples include the names of individuals, companies, brands, and products. 
All of these names are fictitious and any similarity to actual people or business enterprises is entirely 
coincidental. 

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming 
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in 
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application 
programs conforming to the application programming interface for the operating platform for which the sample 
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, 
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are 
provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use 
of the sample programs. 
© Copyright IBM Corp. 2017. All rights reserved. v



Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines 
Corporation, registered in many jurisdictions worldwide. Other product and service names might be 
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright 
and trademark information” at http://www.ibm.com/legal/copytrade.shtml 

The following terms are trademarks or registered trademarks of International Business Machines Corporation, 
and might also be trademarks or registered trademarks in other countries. 

CICS®
CICS Explorer®
Cognos®
DB2®
IBM®
IMS™
Language Environment®

MVS™
OMEGAMON®
RACF®
Redbooks®
Redpaper™
Redbooks (logo) ®
Tivoli®

UrbanCode™
VTAM®
WebSphere®
z Systems®
z/OS®
z13™

The following terms are trademarks of other companies:

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other 
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its 
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others. 
vi Enterprise Java Monitoring on z/OS with OMEGAMON

http://www.ibm.com/legal/copytrade.shtml


Preface

This IBM® Redpaper™ publication will help you install, tailor, and configure IBM 
OMEGAMON® for JVM on IBM z/OS®. You can use OMEGAMON to recognize and resolve 
problems in monitoring Java resources on z/OS, including within IBM CICS®, IBM IMS™, and 
z/OS Connect EE regions. A discussion on the growth of Java on z/OS is provided and 
explanation on the reasons why monitoring Java resources is critical to any modern z/OS 
environment. 

Authors

This paper was produced by a team of specialists from around the world.

Christopher Walker is an Offering Manager with IBM in the US. He has worked for IBM for 
over 15 years, mostly as a software developer. He initially worked in the CICS group at 
Hursley, United Kingdom, and later as part of IBM z Systems® monitoring in Research 
Triangle Park, North Carolina. He is now responsible for the coordinating the strategic 
direction of the OMEGAMON family of products on z/OS. He has a MEng in Software 
Engineering from Sheffield University, UK. 

Nigel Williams is a Senior Software Engineer with IBM in the US. He has nearly 30 years 
experience in system performance management software. He has worked at IBM for 12 years 
since IBM acquired Candle Corporation where he had worked for 17 years before that. Most 
of his career has been spent in software development on z/OS, particularly with Java, IBM 
WebSphere®, CICS, IMS, and IBM VTAM® products. However, he has also developed 
products for multiple UNIX variants and Windows, including end-to-end response time 
monitors, terminal emulators, and network management tools. He is currently the lead 
developer and architect of OMEGAMON for JVM on z/OS. He holds a BSc degree in General 
Science from Durham University, England.

Thanks to the following people for their contributions to this project:

Nigel Williams 
Matthieu Dalbin 
IBM France

Francesco Marinucci 
IBM Italy

Brennan Grusky 
IBM US
© Copyright IBM Corp. 2017. All rights reserved. vii



Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published 
author—all at the same time! Join an ITSO residency project and help write a book in your 
area of expertise, while honing your experience using leading-edge technologies. Your efforts 
will help to increase product acceptance and customer satisfaction, as you expand your 
network of technical contacts and relationships. Residencies run from two to six weeks in 
length, and you can participate either in person or as a remote resident working from your 
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our papers to be as helpful as possible. Send us your comments about this paper or 
other IBM Redbooks® publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks 
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
viii Enterprise Java Monitoring on z/OS with OMEGAMON

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html


Chapter 1. Overview 

This chapter introduces OMEGAMON for JVM on z/OS and discusses the structure of the 
book. It includes the following topics:

� Objectives of this publication
� Java on z/OS
� IBM OMEGAMON for JVM on z/OS
� Description of application environment

1

© Copyright IBM Corp. 2017. All rights reserved. 1



1.1  Objectives of this publication

This book was written to demonstrate the capabilities of IBM OMEGAMON for JVM on z/OS. 
The product was installed in a test environment on several JVMs, both stand-alone and in 
subsystems like CICS and IMS. Some of these JVMs were poorly configured or allowed to 
use inappropriate defaults in order to use OMEGAMON to expose these problematic 
configurations. Some applications were also written with flaws that might be found in Java 
programs that adversely affect performance, to the same end.

1.2  Java on z/OS

Java is now one of the world’s most important programming languages. Twenty years after it 
was first introduced, there are an estimated 9 million Java developers worldwide with 
applications deployed on everything from mobile devices to mainframes. A major reason for 
this is the portability of programs written in Java. A program written and compiled on one 
operating system hardware platform can run unchanged on any other system that runs an 
equivalent version of the Java virtual machine (JVM).

1.2.1  Java on z/OS applications and workloads

Consequently, Java has become an increasingly important component of z/OS. For data 
serving and transaction processing, which are traditional strengths of the z Systems platform, 
Java has become foundational. Subsystems like CICS, IMS, IBM DB2®, and IBM MQ now 
typically host one or more JVMs and execute Java programs as enterprises seek to extend 
and modernize their business logic (Figure 1-1). Furthermore, many new z/OS application 
service environments run entirely in dedicated stand-alone JVMs. 

Figure 1-1   Examples of Java applications available on z/OS

WebSphere Application Server is one such example that most people are familiar with. 
WebSphere Liberty Profile, an Open Service Gateway Initiative (OSGi) application server 
environment, provides a quicker, smaller, and composable application serving environment is 
now common on z/OS. 
2 Enterprise Java Monitoring on z/OS with OMEGAMON



Applications written in Java and deployed on z/OS have an inherent advantage over 
distributed applications through collocation with existing applications and databases. This 
configuration can result in better response times, greater throughput, and reduced system 
complexity when driving, for example, CICS, DB2, or IMS transactions.

IBM z/OS Connect Enterprise Edition (EE) is an example of a modern Java on z/OS 
application. Running on WebSphere Liberty, together with advanced Java tools, z/OS 
Connect EE allows programmers to easily create RESTful API interfaces to existing 
enterprise programs for use by cloud and mobile-based applications. This technique provides 
enterprises with an invaluable application modernizing capability that enables use of existing 
assets (and years of investment) while embracing the new advantages offered by cloud 
computing.

IBM Operational Decision Manager (ODM) is a family of products used by IT and business 
users to create and manage business decision logic. ODM can run in a stand-alone JVM on 
z/OS or within a WebSphere Application Server instance.

Java is also being used for batch programs, either stand-alone using UNIX System Services 
BPXBATCH and JZOS toolkit launcher; or with WebSphere Application Server using modern 
batch systems like Compute Grid. Other applications that use Java natively on z/OS you 
might be familiar with include z/OS Management Facility (z/OSMF), CICS Transaction 
Gateway, IBM Cognos® Business Intelligence, IBM UrbanCode™ Deploy, and Apache Spark.

1.2.2  Why Java on z/OS is critical to z modernization

The growth of Java of z/OS can be attributed to several factors: The number of Java 
developers, as already mentioned, is attractive to many enterprises running z/OS who are 
facing increasing challenges and costs to maintain applications developed over several years 
in languages such as COBOL. Introducing Java applications as part of a z modernization 
strategy to interact with these systems of record can complement and where appropriate, 
replace existing applications that might be difficult to maintain.

For z/OS to be a suitable platform for Java development, tooling needs to be similar to those 
found on distributed platform. IBM Developer for z Systems is an Eclipse-based integrated 
development environment (IDE) for creating and maintaining z/OS applications in many 
languages, including Java. Because it integrates with other Eclipsed-based tooling for z/OS 
(and will be familiar for application developers who have limited z/OS experience), this 
platform removes many barriers to entry for enterprises that want to use their existing 
investments in z/OS and make rapid, agile development with modern processes.

Another cost factor is the expense of running Java workloads, and here lies a major 
advantage to the adoption of Java natively on z/OS versus a migration off-platform: All Java 
code, including the JVM operation, are zIIP eligible. This gives the opportunity to invest in new 
workloads that can benefit from their proximity to existing applications and databases on 
z/OS, and can be managed by existing teams without contributing to the 4-hour rolling 
average utilization cost.

1.2.3  Performance considerations

A common misconception of Java technology is that it is slow or inefficient in comparison to 
other languages. This unwarranted reputation probably originates from the early days of Java 
when the development of compilation and runtime environments were in their infancy. The 
portability of Java code, meaning an application compiled on one operating system could be 
executed in a compatible runtime environment on any other operating system, meant initial 
performance metrics usually compared unfavorably with natively compiled applications.
Chapter 1. Overview  3



Since then, there have been a number of improvements, both in the Java compiler and 
runtime technology and with the Java language, that invalidate this negative perception of 
Java on z/OS. The following are examples of these improvements: 

� Improvements in just-in-time (JIT) compilation that enables frequently used code to be 
transformed into an optimized form that runs faster on the CPU's native instruction set.   

� Updates to Garbage Collection policy and algorithms that reduce the time during which a 
JVM must pause to reclaim heap memory.

� Exploitation of z Systems hardware improvements such as accelerators, larger page sizes 
to exploit 64-bit architecture and better runtime instrumentation.

The current IBM z13™ hardware, introduced in 2015, provides a number of technical 
improvements used by Java such as simultaneous multithreading (SMT), single-instruction, 
multiple-data (SIMD), improved CP Assist for Cryptographic Function (CPACF), and new 
native instructions. In conjunction with Java 8, performance improvements can be seen of up 
to 2X in throughput-per-core for security-enabled applications and up to 50% for other 
applications.

The result of this investment, coupled with the security and reliability advantages z Systems 
are known for, means z/OS is probably the optimum platform to run business-critical Java 
workloads.

1.2.4  Challenges to monitor and manage Java on z/OS

This increase of Java applications and workloads on z/OS presents new challenges to system 
programmers, operations staff, and subject matter experts who are responsible for the 
monitoring and management of production systems. These roles need to ensure that the 
resources are correctly allocated and problems can be identified quickly and resolved with 
minimal impact to users. They are used to tools that allow them fast detailed access to z/OS 
resources or that of subsystems such as CICS or IMS. With Java, there is a whole set of new 
resources to manage, often within an existing subsystem, and might be uncomfortable with 
the idea that a JVM represents a “black box” within their visibility. Indeed, a first question 
many might ask is “How much Java are we running on our systems?” To address this and 
other questions, OMEGAMON for JVM on z/OS was developed.

1.3  IBM OMEGAMON for JVM on z/OS

Because the Java run time is an independent, autonomous component, traditional z/OS 
monitoring tools will not tell you much about the performance of a JVM, or the resources it 
consumes. OMEGAMON for JVM on z/OS is a member of the OMEGAMON family of 
products designed specifically to collect and analyze performance metrics for z/OS-based 
JVMs. Using these metrics, OMEGAMON can warn operations staff, application owners, and 
subject matter experts if a JVM is performing suboptimally, impacting throughput, response 
time, or service availability.

It uses instrumentation that is built into every IBM J9 JVM since Java 1.5, originally intended 
for use with the Java Health Center. No byte code injection is used and no TCP/IP ports are 
required for use with OMEGAMON. The Health Center instrumentation is enabled with a JVM 
Tool Interface (JVMTI) agent using Java command line options. 

An OMEGAMON-supplied Java agent is used to connect internally to the Health Center 
agent. The role of the OMEGAMON Java agent is to transmit the performance metrics to an 
OMEGAMON Monitoring Agent by way of a common Collector. Only one OMEGAMON 
4 Enterprise Java Monitoring on z/OS with OMEGAMON



Monitoring Agent/Collector pair is required per LPAR, regardless of the number of JVMs 
being monitored. However, additional Monitoring Agent/Collectors can be started for 
organizational or administrative purposes if necessary.

The OMEGAMON Monitoring Agent/Collector pair connects into the IBM Tivoli® Monitoring 
infrastructure either through a remote Tivoli Enterprise Monitoring Server or direct to the hub 
Tivoli Enterprise Monitoring Server. As with other OMEGAMON products, OMEGAMON for 
JVM presents data on the graphical Tivoli Enterprise Portal client and the OMEGAMON 
Enhanced 3270UI (an integrated 3270 centralized management interface) with data made 
available through attribute groups providing users with workspaces and out-of-the-box 
situations to be alerted to abnormal conditions. These features enable monitoring by 
exception. Both user interfaces are fully customizable meaning users can adjust tables, 
charts, and thresholds as appropriate to their environment. See Figure 1-2.

Figure 1-2   OMEGAMON for JVM on z/OS architecture

Note: IBM OMEGAMON for JVM on z/OS is V5.4.0 available as a stand-alone offering or 
as part of any one of z Systems Service Management Suites:

� IBM Service Management Suite on z/OS
� IBM OMEGAMON Performance Management Suite on z/OS
� IBM OMEGAMON on z/OS Management Suite

Support for IBM System Automation on z/OS V3.5, allowing the provision and 
management of the OMEGAMON for JVM agent, is provided with PTF UA82383. 
Chapter 1. Overview  5



In addition to near real-time data shown on the user interface, OMEGAMON can be 
configured to periodically collect data from monitored JVMs and store this data for viewing 
later or report generation. This is known as historical data collection and is particularly useful 
for investigating problems that occurred in the recent past. Short-term history is available in 
both the Enhanced 3270UI and in the Tivoli Enterprise Portal. In addition, the Tivoli 
Enterprise Portal can be configured to produce summarized reports over longer periods by 
using the Tivoli Data Warehouse.

1.3.1  Data provided by OMEGAMON for JVM V5.4.0

OMEGAMON collects data in groups of attributes. Queries are issued from the user interface 
or on a scheduled basis to collect the latest data from one or more monitored JVMs. In 
OMEGAMON for JVM V5.4.0, attribute groups are provided for the following JVM data points:

� JVM Health Summary
� JVM Environment Data (including environment variables and CLASSPATH data)
� Garbage Collection (GC)
� Java Heap Usage
� Native Memory Usage
� Thread Details
� Lock/Synchronized Code Utilization
� CPU Usage (including zIIP offload details)

Additionally, attribute groups are provided specifically for z/OS Connect EE address spaces. 
These provide details about the services available through this z/OS Connect EE instance, 
including the average response time and data throughput size. Details of the five slowest 
responding requests for each service within the last sample period is also collected for further 
investigation.

1.3.2  Situations

Situations are a core concept in operations system management with OMEGAMON. A 
situation is a set of conditions that when met, creates an event. A condition is usually a 
performance or system metric that is compared to a threshold value. Conditions are 
examined automatically at predetermined intervals, or triggered by system events. When 
triggered, the event can generate an alert to the operator notifying that person of a problem, 
or perform an automatic action (for example, issue a log message or system command). 
Every OMEGAMON product delivers a number of predefined situations. These 
product-provided situations check for common conditions that typically cause problems in 
many enterprises. 

Users can use these product-provided situations as-is, modify the condition thresholds to 
more accurately reflect their own environment, or create brand new situations to meet unique 
needs. Examples of product-provided situations delivered in OMEGAMON for JVM V5.4.0 
capture conditions such as the following, among others:

� High GC pause times 
� High heap occupancy after GC 
� Blocked threads 
� High lock miss percentage 
� High CPU 
� High deferred zIIP utilization
6 Enterprise Java Monitoring on z/OS with OMEGAMON



Situations, including product-provided situations, must be started and distributed to one or 
more managed systems to function. This process is done with the Situation Editor in the Tivoli 
Enterprise Portal (Figure 1-3). 

Figure 1-3   Situation Editor in the Tivoli Enterprise Portal

Click a situation name in the JVM Monitor group to select it. The example in Figure 1-3 shows 
that the product provided situation “JVM_Occupancy_after_GC_Critical.” This situation 
checks the average heap occupancy after GC every five minutes. High heap occupancy 
indicates that the Java heap is constrained for memory. This warning could indicate a memory 
leak, or that the maximum heap size is too small for the workload. If the conditions are met, 
then the situation is triggered and a “Critical” alert is generated.

After the thresholds and intervals are specified, the situation needs to be distributed to one or 
more managed systems to enable testing for the situation conditions. Select the Distribution 
tab to activate the situation on individual managed systems, or use a Managed System Group 
definition. In the context of OMEGAMON for JVM, a managed system represents a collector 
deployed on an LPAR that one or more JVM instances feed data to.

Note: Situations can be viewed, modified, or defined in the Tivoli Enterprise Portal and, if 
PTF UA83356 is applied, the OMEGAMON Enhanced 3270 UI. Before this update, the 
Enhanced 3270UI provided only situation status viewing. 
Chapter 1. Overview  7



1.3.3  Historical data

Subject matter experts use OMEGAMON to examine key performance indicators (KPIs) that 
point to system configuration or application problems. A single real-time snapshot of these 
KPIs might not be enough to reveal a problem in the making. OMEGAMON collects 
short-term history of KPIs that can be used to spot trends that might lead to a critical 
performance issue or outage before they actual happen. 

Historical data collection is configured at the attribute group level. A collection requires an 
interval to be specified to tell the monitoring infrastructure how often to run queries and collect 
a snapshot of data, for example “every 5 minutes” or “every hour.” As with Situation 
configuration, you can use either the Enhanced 3270UI or Tivoli Enterprise Portal to define 
what data you want to collect and store. Figure 1-4 shows an example of configuring historical 
collection for the “JVM Garbage Collection” attribute group using the Enhanced 3270UI. We 
specified a collection interval of 5 minutes and distributed the collection to a managed system 
list that included the LPARs in our sysplex. Generally, it is a good idea to have the same 
collection interval for all attribute groups you want to collect data for. You might not want to 
collect and store data every few minutes for some attribute groups because the data is static 
and will not change.

Figure 1-4   Historical Data Collection Editor in the Enhanced 3207UI

Historical data views are available in both the Tivoli Enterprise Portal and the Enhanced 
3270UI. When viewing historical workspaces, you can navigate between views for the time 
snapshot you have chosen to view just like you would for real-time data. In the Enhanced 
3270UI, you also easily skip forward and back between snapshots.

The following chapters in this Redpaper demonstrate the value that is provided by the 
workspaces and situations that use the attributes within these attribute groups.
8 Enterprise Java Monitoring on z/OS with OMEGAMON



1.4  Description of application environment

The environment used to test and demonstrate OMEGAMON for JVM was an existing z13 
sysplex with multiple logical partitions (LPARs). The product was installed on shared DASD 
available to two of these LPARs. The application environment is shown in Table 1-1.

Table 1-1   Application environment

1.4.1  About the applications

A simple test servlet for CICS was written by using Eclipse Luna 4.4.2 with IBM CICS 
Explorer® 5.3.8. The servlet was deployed as an OSGi application in an enterprise bundle 
archive (EBA) to CICS JVM LIBSERV1. The servlet makes some JCICS calls, including 
reading and writing of items in a temporary storage queue and accessing a CICS KSDS 
VSAM file resource.

z/OS Connect EE V2.0 was configured with APIs defined to represent access to our system 
by using HTTP verbs. Multiple services were created and defined within the z/OS Connect EE 
server's server.xml file to access a CICS catalog application by using IBM WebSphere 
Optimized Local Adaptor (WOLA).

IMS v14 was configured with five Java message processing (JMP) regions running a simple 
banking application.

LPAR z/OS version Software

SYSG 2.02.00 CICS TS 5.3
z/OS Connect EE 2.0
IBM Tivoli Monitoring 6.3 FP6
OMNIMON V730
OMEGAMON for JVM V540

SP14 2.01.00 IMS/DC V14 
OMEGAMON for JVM V540
Chapter 1. Overview  9



10 Enterprise Java Monitoring on z/OS with OMEGAMON



Chapter 2. Installation and configuration

This chapter describes the installation and configuration of OMEGAMON for JVM on z/OS 
V5.4.0. It does not include the installation and configuration of the IBM Tivoli Monitoring 
framework, which is covered in other publications.

This chapter covers the following topics:

� Installation
� Monitoring Agent configuration
� Configuring JVMs for monitoring

2

© Copyright IBM Corp. 2017. All rights reserved. 11



2.1  Installation

Installation is accomplished with SMP/E. The most convenient installation method is to order 
internet delivery of the product image from shopZSeries by using FROMNETWORK or 
FROMNTS. The product FMID is HKJJ540 and the product code is 5968-ABA. The SMP/E 
product installation files need about 51 MB of DASD space. The front-end support DVD .iso 
image is about 5 MB.

We created the installation jobs by using the OMEGAMON JOBGEN tools. A new zFS file 
system was created and mounted for the UNIX System Services files required. A number of 
UNIX files are delivered with this product in the SMP/E file DKANJAR. 

In the initial release of the product, it was necessary to download a copy of the Health Center 
Agent from IBM support. This download is no longer necessary, as OMEGAMON for JVM 
V5.4.0 packages a copy of the Java Health Center Agent for z/OS (actually there are two: 
One for 31-bit JVMs and one for 64-bit JVMs). It is important to use the Health Center Agent 
that is packaged with OMEGAMON for JVM because some older versions of the Health 
Center Agent that are provided with the IBM J9 JVM have some bugs, or might not be 
compatible with OMEGAMON for JVM.

2.2  Monitoring Agent configuration

Configuration is completed using the PARMGEN tool, a set of ISPF dialogs and scripts that 
guides the user through the configuration process. We will not describe every step that is 
required to run a PARMGEN configuration because that is not the main focus of this 
publication. 

Make sure that you run the configuration jobs with a user ID that has superuser authority. The 
best practice is to use a user ID with read access to FACILITY class profile SUPERUSR. The 
user ID must also be authorized to assign extended attributes to zFS files. To allow this 
authorization, the user ID must have read access to the IBM RACF® FACILITY class profiles 
BPX.FILEATTR.APF, and BPX.FILEATTR.PROGCTL. Although it is not used by the 
OMEGAMON for JVM product installation, BPX.FILEATTR.SHARELIB rounds out these 
related profiles that allow use of the extatrr UNIX command and the pax command with -ppx 
option.

Note: You should also download any PTFs for the product from the Preventive Service 
Planning (PSP) bucket. As of this writing, two PTFs were recommended: UA83519 and 
UA83018.

PARMGEN is used to configure all OMEGAMON products and other IBM service 
management products. For more information about using PARMGEN, see IBM Knowledge 
Center.
12 Enterprise Java Monitoring on z/OS with OMEGAMON

http://www.ibm.com/support/knowledgecenter/SSAUBV/com.ibm.omegamon_share.doc_6.3.0.1/zcommonconfig/parmgen_cpcg.htm
http://www.ibm.com/support/knowledgecenter/SSAUBV/com.ibm.omegamon_share.doc_6.3.0.1/zcommonconfig/parmgen_cpcg.htm


After the product installation jobs are completed, a Runtime Environment (RTE) should be 
created, or an existing one augmented to hold the OMEGAMON for JVM configuration. We 
created new RTEs for this paper on two LPARs in our sysplex, one on LPAR SYSG called 
REDSYSG, and one on LPAR SP14 called REDSP14 (Figure 2-1).

Figure 2-1   Creating an RTE using PARMGEN 

This REDSYSG RTE constitutes a self-contained IBM Tivoli Monitoring monitoring 
environment on LPAR SYSG to support our OMEGAMON for JVM test platform. PARMGEN 
supplies a number of sample configuration templates that can be used to model RTEs. We 
chose the model $MDLHSSV “Sharing-w/-SMP RTE w/ Hub/TOM/KJJ Agent w/ variables”. 

Configuration of the OMEGAMON Agent and Collector is simple. We accepted the sample 
defaults for the few configuration variables that are specific to OMEGAMON for JVM, except 
for the Collector ID and the agent and collector started task names. The LPAR we were using 
is shared with other IBM users and another instance of the Agent/Collector was already using 
the default collector ID, which is “KJJ1”. This ID is central to the OMEGAMON for JVM 
architecture. To allow other instances of the Agent and Collector to run on the same LPAR, a 
unique four-character Collector ID must be specified in the PARMGEN configuration 
parameter KJJ_COLLECTOR_ID. For this project, we chose a collector ID of “REDB.” You 
can use the same Collector ID for OMEGAMON for Java agents on other LPARs. We 
changed the names used for the started tasks IBMJJ and IBMJT to JJD0RBJJ and 
JJD0RBJT to match the started task naming conventions on this sysplex. JJD0RBJJ is the 
OMEGAMON Monitoring Agent for JVM, and JJD0RBJT is the OMEGAMON for JVM 
Collector. Both of these started tasks need to be running in order to collect monitoring data 
from configured JVMs. The order in which they are started does not matter.

The program load libraries for the product need to be APF-authorized. Because our started 
task naming convention uses a RACF STARTED profile that assigns a user ID authorized to 
issue SETPROG APF commands, we uncommented the INCLUDE MEMBER statement in 
the started task JCL for both procedures to allow dynamic update of the APF list. 

Before we configured any JVMs for monitoring, we started the OMEGAMON for JVM 
Monitoring Agent and Collector from TSO/ISPF SDSF. It does not matter which order they are 
started (or stopped):

S JJD0RBJJ
S JJD0RBJT

We created a separate RTE on LPAR SP14 called REDSP14 containing only the 
OMEGAMON for JVM Monitoring Agent. We used the same Collector ID in REDSP14 as we 
did in REDSYSG because they are logically part of the same monitoring infrastructure.
Chapter 2. Installation and configuration 13



Figure 2-2   JVM Health Summary

2.3  Configuring JVMs for monitoring

Now we needed to configure JVMs for monitoring.

Note: As well as verifying the installation, we could also use the product to auto-discover 
what JVMs are running on the LPARs. After the OMEGAMON Monitoring Agent on an 
LPAR is up and connected to the Tivoli Enterprise Monitoring Server, log on to the 
Enhanced 3270 UI, and select one of the LPAR from the JVM Overview workspace. If there 
are JVMs online within this LPAR, we should see them listed on the “JVM Health 
Summary” workspace (Figure 2-2). We discuss this scenario in more detail in Chapter 3, 
“Using OMEGAMON for JVM in operations management” on page 19.
14 Enterprise Java Monitoring on z/OS with OMEGAMON



2.3.1  Configuring CICS

We decided to use a CICS Liberty server with a simple Java Platform, Enterprise Edition 
servlet application. The servlet makes some JCICS calls, including some temporary storage 
queue calls and reads a CICS file resource. The results are printed to the HTTP output 
stream and displayed in a browser.

Following the instructions in the PARMGEN post-config document (KJJDFINL), we located 
the profile configuration file in the zFS file system, and edited it using ISPF 3.17.

The sample profile describes the different sections. Scroll down to the section that contains 
the JVM configuration options (Figure 2-3).

Figure 2-3   Configuration of a CICS JVMSERVER for monitoring by OMEGAMON

Because we were using an SMP/E sharing RTE, we used the Health Center Agent and the 
OMEGAMON Java Agent from the SMP/E target zFS directory. These are the options that we 
added:

-javaagent:/TDJAVAT/KJJ540_TKANJAR/usr/lpp/kan/bin/IBM/kjj.jar

This option specifies the path to the OMEGAMON for JVM Java Agent:

-agentpath:/TDJAVAT/KJJ540_TKANJAR/usr/lpp/kan/hca_64/bin/libheal 
thcenter.so=path=/TDJAVAT/KJJ540_TKANJAR/usr/lpp/kan/hca_64,level=inprocess,disabl
eCH

The -agentpath option specifies the full path to a JVMTI agent (in this case, the HC agent 
provided in the OMEGAMON for JVM packaging). CICS Liberty uses a 64-bit JVM so we 
specified the path to the 64-bit HC Agent. Text following the first = sign is passed to the HC 
agent as parameters. The path= parameter specifies the path to the agent and must be the 
same as path prefix for the agent. The path prefix is the installation root for the Health Center 
Agent, which is the directory above the one containing libhealthcenter.so. The 
level=inprocess parameter tells the HC agent that only an internal connection will be used, 
and a TCP socket port will not be opened. disableCH specifies that Class Histogram data will 
not be collected. Because OMEGAMON does not use this data, disabling its collection 
provides a slight performance optimization.

-Xbootclasspath/p:/TDJAVAT/KJJ540_TKANJAR/usr/lpp/kan/hca_64/lib
/ext/healthcenter.jar

The -Xbootclasspath option adds the HC Agent JAR file to the JVM boot class path.
Chapter 2. Installation and configuration 15



These options are normally sufficient for most installations. However, because our JVM is 
running on an LPAR with multiple online instances of OMEGAMON for JVM, we could not use 
the default collector ID (KJJ1) because it was already being used. When we set up the 
OMEGAMON monitoring agent in PARMGEN, we changed the value of 
KJJ_COLLECTOR_ID from “KJJ1” to “KJRB.” In order to connect to that Collector, our JVM 
must be configured with an additional system property: 

-Dcom.ibm.tivoli.kjj.collector.id=JJRB

We saved our changes to the profile, and restarted the LIBSERV1 JVM in CICS by using the 
CEMT transaction to disable and then enable the LIBSERV1 JVM.

Returning to the e3270UI, we could now see that the CICS51G1 JVM is being monitored 
(Figure 2-4).

Figure 2-4   JVM Health Summary workspace in OMEGAMON Enhanced 3270 UI indicating which JVMs are being 
monitored, and which are not.

2.3.2  Configuring IMS

We also configured an IMS system Java message processing (JMP) region for monitoring. In 
IMS, the JCL for a JMP is stored in the IMS procedure library (IMS PROCLIB). The IMS JMP 
also uses members of the IMS PROCLIB for the JVM configuration. The JVM options 
member is specified with the JVMOPMAS= parameter in the JMP started task procedure 
JCL. We located the member used to configure our JMP and added the following options:

-Xbootclasspath/p:/TDJAVAT/KJJ540_TKANJAR/usr/lpp/kan/hca/lib/ext/healthcenter.jar
-agentpath:/TDJAVAT/KJJ540_TKANJAR/usr/lpp/kan/hca/bin/libhealthcenter.so=path=/TD
JAVAT/KJJ540_TKANJAR/usr/lpp/kan/hca,>
level=inprocess,disableCH
-javaagent:/rtehome/REDSP14/kan/bin/IBM/kjj.jar
-Dcom.ibm.tivoli.kjj.collector.id=JJRB

IMS has a slightly different syntax for specifying JVM options than other subsystems. 
Because the IMS PROCLIB is an IBM MVS™ data set with a logical record length of 80 bytes, 
parameters longer than 72 bytes must be split over multiple lines. The “>” (greater than) 
character is used as the continuation character, and the parameter continues in column 1 of 
the next line.
16 Enterprise Java Monitoring on z/OS with OMEGAMON



2.3.3  Configuring z/OS Connect Enterprise Edition

Finally, we configured an instance of z/OS Connect Enterprise Edition (EE) V2.0 to create 
JSON-based RESTful APIs into an existing CICS application. It runs in a Liberty Profile either 
stand-alone or in a CICS JVM Liberty server. To configure the z/OS Connect JVM for 
monitoring with OMEGAMON, follow the instructions for monitoring a Liberty profile. If using 
z/OS Connect in CICS, follow the instructions in 2.3.1, “Configuring CICS” on page 15. 

The configuration of a stand-alone Liberty profile can be accomplished by adding the 
enablement options to the JVM_OPTIONS environment variable. A stand-alone Liberty 
server is usually run under the UNIX batch utility BPXBATSL, so environment variables are 
supplied in the file allocated to the STDENV DD name. In our environment, STDENV was a 
zFS file. We added the following options to the JVM_OPTIONS environment variable:

JVM_OPTIONS=-javaagent:/TDJAVAT/KJJ540_TKANJAR/usr/lpp/kan/b in/IBM/kjj.jar 
-agentpath:/TDJAVAT/KJJ540_TKANJAR/usr/lpp/kan/h 
ca_64/bin/libhealthcenter.so=path=/TDJAVAT/KJJ540_TKANJAR/usr/lpp/kan/hca_64,level
=inprocess,disableCH -Xbootclasspath/p:/TDJ 
AVAT/KJJ540_TKANJAR/usr/lpp/kan/hca_64/lib/ext/healthcenter.jar:/TDJAVAT/ 
KJJ540_TKANJAR/usr/lpp/kan/bin/IBM/kjjboot.jar -Dcom.i 
bm.tivoli.kjj.collector.id=JJRB

Request monitoring requires the configuration of a z/OS Connect Interceptor supplied in the 
OMEGAMON for JVM zFS directory. We followed the instructions in IBM Knowledge Center 
to add the interceptor to the environment.

Note: Notice the addition of the file path to kjjboot.jar on the -Xbootclasspath option. 
This addition is required if you intend, as we did, to monitor service request times from your 
z/OS Connect EE instance with OMEGAMON for JVM.
Chapter 2. Installation and configuration 17

http://www.ibm.com/support/knowledgecenter/SSMTJ5_5.4.0/com.ibm.omegamon_jvm.doc/configuration/enable_zoscn_rta.html


18 Enterprise Java Monitoring on z/OS with OMEGAMON



Chapter 3. Using OMEGAMON for JVM in 
operations management

This chapter explores how OMEGAMON for JVM can be used to identify problems in JVMs 
when used in an operations management context. The scenarios that are covered here 
broadly replicate those that might be seen by an enterprise when adopting Java workloads, 
for example, creating a CICS application deployed within a Liberty server, or a JMS region 
within an IMSplex. Finally, we demonstrate the monitoring of a z/OS Connect EE instance 
deployed to expose the CICS applications through APIs. In each case, we use OMEGAMON 
for JVM to be alerted to problems before they can cause outages and identify the next steps 
in root cause analysis quickly.

We use the Tivoli Enterprise Portal and OMEGAMON Enhanced 3270UI (e3270UI) 
interchangeably throughout the scenarios to demonstrate that functionality is available in 
either user interface. 

This chapter covers the following topics:

� JVM discovery and JVM environments
� High heap occupancy in CICS region 
� Monitoring extended storage in IMS
� Using OMEGAMON history to identify memory leaks
� Monitoring z/OS Connect Service Request Times

3

© Copyright IBM Corp. 2017. All rights reserved. 19



3.1  JVM discovery and JVM environments

One of the key questions that an operator or systems administrator needs to understand 
when Java workloads are introduced to their environment is exactly how much Java is being 
run. We could refer to this as “dark Java,” or resources you are not aware are being 
consumed. With Java found in CICS, IMS, WebSphere, and countless other applications, a 
clear understanding of how much is Java is deployed helps resolve initial concerns on 
knowing what to monitor. 

In the previous chapter, while configuring our scenario environments, we knew which 
subsystems we would be using and so enabled them for monitoring. However there might be 
other subsystems and JVMs online that we are not aware of. For example, a CICS 
programmer might enable a JVM on a region to try a new application but did not notify the 
operations team. It would be good to be alerted when this happens so we can be certain we 
have all known resources covered.

OMEGAMON for JVM has an auto-discovery function that lists all online JVMs within the 
LPAR the agent is deployed on. Figure 3-1 show an example where the top workspace 
indicates the ‘known’ JVMs we have configured for full monitoring and the lower panel 
indicates the JVMs discovered but are not configured for monitoring. 

Figure 3-1   JVM Health Summary workspace showing unmonitored JVMs auto-discovered on this LPAR

Reviewing this subpanel, we can see the address space details and subsystem type. From 
there we can decide to configure that address space for full JVM monitoring, ignore it, or 
investigate further as to why this JVM is online. 
20 Enterprise Java Monitoring on z/OS with OMEGAMON



To avoid viewing this window consistently to see whether anything changed, a simple low 
severity situation can be created off the “JVM Auto Discovery” attribute group where the 
Monitored attribute is set to N. After the non-configured JVM comes online, the alert will be 
triggered. See Figure 3-2.

Figure 3-2   Situation Editor

Another example of using situations to quickly manage online JVM properties is to test the 
environment settings as provided by the JVM Environment Data and JVM Environment Data 
Details attribute groups. These groups contains details about the environment and system 
variables used by the JVM plus class path information. 

We considered a scenario where we wanted to migrate all online JVMs off an older level of 
Java (for example, Java 6) before uninstalling it. Instead of laboriously checking each JVM in 
turn (there could be dozens), we created a situation that checks the version of every online 
JVM. Alerts are generated immediately on the address spaces affected, meaning that we can 
contact the application owners to start the migration planning process. 

More detailed checks on individual build levels can also be performed by creating a situation 
off the Java full version instead.

Note: If you have multiple OMEGAMON for JVM agents/collector pairs deployed on the 
same LPAR, JVMs configured to be monitored by one agent/collector pair appear as 
unmonitored by all other agent/collector pairs. 
Chapter 3. Using OMEGAMON for JVM in operations management 21



3.2  High heap occupancy in CICS region 

In this scenario, we have developed a Java application to be deployed onto a new Liberty 
JVM we created within a CICS region. While testing the new application, we set the JVM with 
a maximum heap size of 64 MB. This server has the Java Platform, Enterprise Edition feature 
enabled and our new application, a servlet called “Parts,” was deployed in an OSGi enterprise 
bundle archive.

A simulated workload of 10 concurrent users exercising the Parts servlet was started. No 
situations were triggered. When we increased the workload users to 15, after a short time the 
Tivoli Enterprise Portal situation console showed a new situation had been triggered. Refer to 
Figure 3-3 and Figure 3-4.

Figure 3-3   Situation Event Console in the Tivoli Enterprise Portal

Figure 3-4 shows the data for High Heap Occupancy.

Figure 3-4   Situation Event Data for High Heap Occupancy in the Tivoli Enterprise Portal
22 Enterprise Java Monitoring on z/OS with OMEGAMON



Similar information is available in the enhanced 3270 UI (Figure 3-5).

Figure 3-5   Situation Event Data in the Enhanced 3270 UI

The situation event data includes expert advice for what might be causing the issue. Heap 
occupancy after GC is a measure of how much of the total available JVM heap memory is 
committed to active tasks. By default, the JVM triggers a garbage collection when the heap in 
use reaches 80% of the current heap size. 

The garbage collection process frees any storage that does not have any references to it. If 
after the garbage collection has completed, there is still more than 80% of the heap in use, 
and the heap cannot be expanded further (because it is at the maximum allowable heap size 
specified by the -Xmx JVM option), then garbage collection thrashes the JVM. 

You can see in the situation data in Figure 3-5, that the percentage of time spent in garbage 
collection was 4.74% when the situation was triggered. At 95% heap occupancy, Java stops 
dispatching new threads, and many active threads will suffer OutOfMemoryError exceptions. 
The JVM will also be consuming more CPU than it normally does because of the additional 
garbage collection going on.

Operators at the event console can then acknowledge the situation event and route it to a 
subject matter expert (SME) such as a CICS system programmer. 

3.3  Monitoring extended storage in IMS

After we configured IMS for monitoring, OMEGAMON began warning us about low extended 
region free memory when the JMP region had been running for about 12 hours. The Native 
Memory Summary workspace in the e3270UI (KJJNMEM) highlights the extended region free 
percentage if it goes below 10%. We were using IMS V14 without PTF PI64142, which meant 
we could not use a 64-bit JVM. If extended free storage went much lower, we would start to 
see OutOfMemoryErrors or abends that would crash the JMP. 

Because we had history enabled, we were able to see the free storage percentage slowly 
diminish over this time. Where was this storage going? Was it a memory leak in an 
application? A JVM component? Or was it IBM Language Environment® managed storage or 
memory used for z/OS services? 

The historical data showed no substantial increase in any JVM native memory category, nor 
in z/OS managed virtual storage used for LSQA, SWA, and subpools 229 and 230. However, 
it did reveal a continuous increase in Language Environment managed storage. The 
Language Environment heap size grew constantly throughout this period even though the 
Language Environment Heap Allocated grew only slightly. Most of the storage was Language 
Environment free heap memory. 
Chapter 3. Using OMEGAMON for JVM in operations management 23



We consulted with IMS L2 support and they suggested running the JVM with LE 
RPTSTG(ON) to create a report of memory allocation. Setting Language Environment 
runtime options can be accomplished in a couple of ways, such as setting the environment 
variable _CEE_RUNOPTS, but we elected to add a CEEOPTS DD to the JMP started task 
JCL. This DD statement specified a member of the IMS.PROCLIB in which we could place 
the Language Environment options. 

In addition to RPTSTG(ON), we added RPTOPTS(ON), which would print a report of the 
Language Environment options effective for the process. Both reports would be printed to DD 
name CEEDUMP, which we allocated to a JES SYSOUT queue.

When the IMS JMP was stopped after several hours, we found a very large number of 
fragmented free storage areas of numerous sizes. There were no memory leaks of in-use 
memory. 

Language Environment normally reuses free storage segments for memory requests of the 
same size. If none are available, Language Environment allocates segments of the correct 
size, even if there are free segments that are larger than the requested amount. The result is 
that the address space is filled with Language Environment free memory segments. At some 
point, this process can reach a dynamic equilibrium and grow no further, but because we 
needed quite a large Java heap for our application, we could not afford to waste memory. 

The solution allows Language Environment to return free segments to the operating system 
allowing them to be consolidated. This process is done by specifying HEAP(,,,,FREE) in the 
Language Environment runtime options. We added this option to the CEEOPTS file allocated 
to our JMP, and restarted the region.

The result was no further increase in extended storage utilization. Even after 48 hours, the 
free extended memory percentage remained at 72%. All Java dependent regions should 
include the HEAP(,,,,FREE) LE option because the default IMS Language Environment 
runtime options do not include this setting by default.

The product-provided workspaces for native memory do not include any summary history 
views that show the progress of memory usage over time in one workspace. However, it is 
really easy to create your own enhanced 3270UI workspaces to create custom reports. 

Start by examining the source for a workspace that contains data that you want to include in 
your custom report. You can use the View → Workspace Source menu items (or fast path 
“v.s” on the menu select field or command line).

We wanted to display Language Environment heap and region free percent values from 
history. The KJJNMEM workspace queries the KJJ.ADDRMEM table, so we created a new 
member in the library allocated to DD name UKANWENU, which is for a custom panel 
containing what is shown in Example 3-1.

Example 3-1   Enhanced 3270 UI workspace definition

<WORKSPACE>                                 
HEADER='Region History'                     
NAV1TEXT='SMF ID  '                         
NAV2TEXT='Coll ID '                         
SET ZOMEGLOCK1=YES                          
SET ZOMEGLOCK2=YES                          
IMBED=KJJNAVI                               
HISTORY=AGENT                               
/* ************************************** */
/* *  Subpanel - Request Summary        * */
24 Enterprise Java Monitoring on z/OS with OMEGAMON



/* ************************************** */
                                            
<SUBPANEL>                                  
HEADER='Jobname: &JOBNAME JVM Pid: &JVMPID' 
NAME=QRY_ONE                                
TYPE=SUMMARY                                
WHENNOTEXT="No requests"                    
/* ******************** */                  
/* *  Data Query      * */                  
/* ******************** */                  
                                            
QUERYTYPE=ROUTER                            
QUERYMODE=LIVE                              
QUERYREGTYPE=DRA                            
QUERYWHEN=RETURN                            
                                            
QUERY='SELECT WRITETIME,                    
ORIGINNODE,
SMFID,                                            
COLLID,                                           
JOBNAME,                                          
ASID,                                             
JVMPID,                                           
HEAPSIZE,                                         
HEAPALLOC,                                        
HEAPFREE,                                         
LDAALLOC,                                         
LDASIZE,                                          
LDARSRVD,                                         
LDAFREPCT,                                        
LDAALCPCT                                         
FROM KJJ.ADDRMEM HISTORY()                        
WHERE ORIGINNODE = "&KJJONODE"                    
AND JOBNAME = "&JOBNAME"                          
AND JVMPID = &JVMPID'                             
                                                  
DISPLAYCOLS='WRITETIME(DATETIME),                 
HEAPSIZE(WIDTH=8),                                
HEAPALLOC(WIDTH=8),                               
HEAPFREE(WIDTH=8),                                
LDAFREPCT(WIDTH=8,CAPTION="Region\Free")'                                                                              

STATICCOLS=1    
<WORKSPACEEND>    

The important thing to note is that the query specifies the HISTORY() modifier on the FROM 
clause so that the data is retrieved from the product history repositories. 

We called this new workspace KJJRGNH, and we invoked it from the KJJNMEM panel by 
using the shortcut “=KJJRGNH” on the command line. It is important to invoke it from the 
KJJNMEM panel because our custom workspace uses variables that are set in the 
KJJNMEM workspace. 
Chapter 3. Using OMEGAMON for JVM in operations management 25



The resulting workspace is shown in Figure 3-6.                                                     

Figure 3-6   JVM region history for selected IMS address space

3.4  Using OMEGAMON history to identify memory leaks

Memory leaks in applications can be hard to detect. Often the first symptom would be an 
unexpected abend or “Out Of Memory” error in the address space that then might require 
extensive memory dump or log analysis before determining the root cause. 

With the Java memory management model using a garbage collector process, developers 
often believe that memory leaks are difficult to create with Java. However, it is entirely 
possible for the Java heap to be slowly exhausted by a poorly written application. When 
developing new applications in Java, being able to identify any memory leaks early in testing 
increases confidence that a production-deployed version will perform to required capabilities. 

In addition to following the real-time KPIs for garbage collection frequency, JVM pause time 
and heap occupancy (the amount of free space in the Java heap after a garbage collection 
has been performed) we used the historical data collection function to analyze the trends in 
JVM behavior and trap any memory leak.
26 Enterprise Java Monitoring on z/OS with OMEGAMON



First, we enabled historical data collection for several attribute groups including “JVM 
Garbage Collection” with a 5-minute collection interval and distributed this to all our managed 
systems. Figure 3-7 shows the collections that we enabled.

Figure 3-7   Attribute groups configured for historical data collection

After running our test application for some time, the Tivoli Enterprise Portal gave us a warning 
about high average heap occupancy in one of our monitored JVM. Was this another example 
of an acute shortage of Java heap because of unconstrained workload or was it a chronic 
problem due to a memory leak? 

History views are available in both the Tivoli Enterprise Portal and the Enhanced 3270UI. 
However, the Tivoli Enterprise Portal GUI provides real-time situation awareness and also 
provides compelling charts and graphs that highlight a problem such as a memory leak more 
visually as shown in Figure 3-8.

Figure 3-8   Historical Garbage Collection Statistics Tivoli Enterprise Portal workspace indicating the growth of JVM heap 
occupancy over time due to memory leak 
Chapter 3. Using OMEGAMON for JVM in operations management 27



A quick view of Garbage Collection history sealed the analysis. The heap had been steadily 
growing since the application was started and the number of garbage collections being 
performed also increased as the JVM attempted to free heap memory. Clearly, this was a 
memory leak. 

By seeing this information quickly, we as operators can take prompt action. First, we can bring 
up new applications or application servers before the current problem causes the out of 
memory error. Second, we have identified already the root cause and can capture key 
information that can be assigned to the appropriate application developers for resolution. 

3.5  Monitoring z/OS Connect Service Request Times

Recognizing the importance of APIs in the role of application modernization, OMEGAMON for 
JVM on z/OS V5.4.0 added a feature specifically to monitor service request times. z/OS 
Connect EE defines individual RESTful API calls as services. Each service has a URL 
associated with it that clients use to make API calls. z/OS Connect then transforms these 
JSON API requests into the native application calls that CICS, or IMS or DB2 understand, and 
transforms the results back into a JSON stream that the mobile or cloud application 
understands (Figure 3-9).

Figure 3-9   z/OS Connect EE and OMEGAMON Topology

OMEGAMON for JVM examines every client interaction with z/OS Connect, and accumulates 
a summary of the worst performing (longest response time) services. Generally speaking, 
transactions that run quickly with fast response and minimal degradation are of little interest 
to operations management and application owners. Only those requests that risk breaching 
service level agreements or create bottlenecks in an application need to be exposed. 

OMEGAMON for JVM maintains a rolling 5-minute window of the top ten worst requests, with 
the total number of requests during that period, as well as the average, the longest, and the 
shortest duration requests during that period.

In our demonstration environment, a servlet makes the z/OS Connect API calls to an API 
called “catalog.” This service makes calls to CICS programs that query a database of 
stationary products. The service can also invoke programs to emulate customer orders for 
stationary products. The stand-alone z/OS Connect Liberty server uses WebSphere 
Optimized Local Adaptor (WOLA) to connect to CICS. This contrived example runs really 
quickly. 
28 Enterprise Java Monitoring on z/OS with OMEGAMON



Running on a large z13 machine with little other workload to impact it, we were able to 
demonstrate a smoothly running system with rapid response time. Refer to Figure 3-10 and 
Figure 3-11.

Figure 3-10   z/OS Connect Request Summary

Figure 3-11 shows the detailed snapshot of the system.

Figure 3-11   z/OS Connect Slowest Request Detail 

The z/OS Connect workspaces in OMEGAMON also shows requests that query the available 
services on the server (shown as a service called zOSConnectServices). 

Had there been extraordinary response time, we would have used OMEGAMON for JVM to 
determine whether the JVM was undergoing problems, and if not, use other members of the 
OMEGAMON product family to pinpoint the source of the issue.
Chapter 3. Using OMEGAMON for JVM in operations management 29



30 Enterprise Java Monitoring on z/OS with OMEGAMON



Related publications

The publications listed in this section are considered particularly suitable for a more detailed 
discussion of the topics covered in this paper.

Online resources

These websites are also relevant as further information sources:

� IBM OMEGAMON for JVM on IBM Knowledge Center

http://www.ibm.com/support/knowledgecenter/SSMTJ5

� IBM OMEGAMON for JVM on z/OS Product Home Page

http://www.ibm.com/software/products/en/omegamon-jvm-monitor

� IBM developerWorks Answers (filtered for “OMEG” tag)

https://developer.ibm.com/answers/topics/omeg/

� IBM developerWorks Service Management Connect z System Community Blog

http://www.ibm.biz/zITSMBlog

� IBM z Systems IT Service Management Operational Excellence

http://www.ibm.com/systems/z/solutions/operational-excellence/index.html

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
© Copyright IBM Corp. 2017. All rights reserved. 31

http://www.ibm.com/support/knowledgecenter/SSMTJ5
http://www.ibm.com/software/products/en/omegamon-jvm-monitor
https://developer.ibm.com/answers/topics/omeg/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.ibm.biz/zITSMBlog
http://www.ibm.com/systems/z/solutions/operational-excellence/index.html


32 Enterprise Java Monitoring on z/OS with OMEGAMON





ibm.com/redbooks

Printed in U.S.A.

Back cover

ISBN 0738456020

REDP-5429-00

®

https://www.facebook.com/IBMRedbooks
https://plus.google.com/117986870691663860381/posts
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/company/2890543?goback=.fcs_GLHD_ibm+redbooks_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2&trk=ncsrch_hits
http://www.weibo.com/ibmredbooks
http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp?Open
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Overview
	1.1 Objectives of this publication
	1.2 Java on z/OS
	1.2.1 Java on z/OS applications and workloads
	1.2.2 Why Java on z/OS is critical to z modernization
	1.2.3 Performance considerations
	1.2.4 Challenges to monitor and manage Java on z/OS

	1.3 IBM OMEGAMON for JVM on z/OS
	1.3.1 Data provided by OMEGAMON for JVM V5.4.0
	1.3.2 Situations
	1.3.3 Historical data

	1.4 Description of application environment
	1.4.1 About the applications


	Chapter 2. Installation and configuration
	2.1 Installation
	2.2 Monitoring Agent configuration
	2.3 Configuring JVMs for monitoring
	2.3.1 Configuring CICS
	2.3.2 Configuring IMS
	2.3.3 Configuring z/OS Connect Enterprise Edition


	Chapter 3. Using OMEGAMON for JVM in operations management
	3.1 JVM discovery and JVM environments
	3.2 High heap occupancy in CICS region
	3.3 Monitoring extended storage in IMS
	3.4 Using OMEGAMON history to identify memory leaks
	3.5 Monitoring z/OS Connect Service Request Times

	Related publications
	Online resources
	Help from IBM

	Back cover

