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Chapter 1. Matrix multiplication

Matrix multiplication is one of the most widely used compute kernels in a broad set of 
applications in the emerging fields of machine learning and deep learning. This document 
briefly describes Matrix-Multiply Assist (MMA), which is a newly developed architecture 
concept that was first introduced in Power ISA Version 3.1.

The fundamental architecture principles are explained with detailed instruction set usage, 
register file management concepts, and various supporting facilities. The goal of this 
document is to help the user grasp the concepts behind MMA. The use of MMA is shown in 
various code examples, both in basic code versions and in fully optimized code.

1
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1.1  Matrix-multiply operation

This section shows how a matrix multiplication is performed using a simple example. In this 
example, A and B are two 8x8 matrices, as shown in Figure 1-1. When you multiply matrices 
A and B, which are both 8x8 matrices, the resultant matrix C is also 8x8 in size. 

Figure 1-1   Matrices A and B used in multiplication

To generalize this concept for any size matrix, assume the size of matrix A is MxK (M rows 
and K columns) and size of matrix B is KxN (K rows and N columns). A basic requirement of 
the matrix multiplication operation is that the number of columns in matrix A should be the 
same as the number of rows in matrix B. If the number of rows of matrix A and number of 
columns of matrix B are different, then the matrix multiplication operation cannot be 
performed. 

Figure 1-2 shows a simple example of how the matrix multiplication operation is performed. 
To generate one element of the output matrix C, which is of size 8x8, each element of the first 
row of matrix A is multiplied with corresponding element of the first column of matrix B. The 
results are accumulated, as shown in Figure 1-2.

Figure 1-2   Example of an 8x8 matrix multiplication
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The code used to perform this matrix multiplication is shown in Example 1-1. The code 
multiplies each element of ith row of A with each element of jth column of B. The result of each 
multiplication is accumulated to generate a result in the ith row and jth column of C.

Example 1-1   Basic matrix multiplication

#include <stdio.h>
#include <stdlib.h>

void printF (const char  *name, float *M, int m, int n) {
        printf ("\n**** Matrix %s****\n",name);
        for (int i=0; i< m; i++) {
                printf("|  ");
                for (int j=0; j< n; j++) printf("%-25.4f", *(M++));
                printf("   |\n");
        }
        printf("************************\n");
}

int main (int argc, char **argv ) {

    if (argc < 4) {
        printf("Usage: %s <M> <N> <K> \n", argv[0]);
        return -1;
    }

    const int M = atoi(argv[1]);
    const int N = atoi(argv[2]);
    const int K = atoi(argv[3]);

    printf("Running: %s M=%s N=%s K=%s \n", argv[0], argv[1], argv[2], argv[3]);

    float A[M][K];
    float B[K][N];
    float C[M][N];

    for (int i=0; i<M; i++) for (int j=0; j<N; j++) C[i][j] = 0;
    int x = 1;
    for (int i=0; i<M; i++) for (int j=0; j<K; j++) A[i][j] = float(x++) * 7 / 15;
    for (int i=0; i<K; i++) for (int j=0; j<N; j++) B[i][j] = float(x++) * 3 / 17;

    for (int i=0; i<M; i++) {
        for (int j=0; j<N; j++) {
            for (int k=0; k<K; k++)
                C[i][j] += A[i][k] * B[k][j];
        }
    }

    printF("C", (float *)C, M, N);
    return 0;
}

Chapter 1. Matrix multiplication 3



1.2  Vector outer product operation

In Figure 1-3, the code cannot be vectorized and it is not optimal. To optimize the matrix 
multiplication operation the vector outer product is performed. Matrix A is transposed and 
then the computation is performed in a blocked manner, as follows:

� The first 8x4 block of transposed matrix A (AT) is iterated over the two 8x4 blocks of matrix 
B, computing outer products of the corresponding rows from blocks of AT and B, to 
generate two 4x4 results. 

� The second 8x4 block of matrix A transposed is iterated over the same two blocks of 
matrix B to generate the next two 4x4 results. This operation is explained in Figure 1-3. 

Figure 1-3   Matrix multiplication through outer products

Two key benefits of this optimization are: 

� Opens up the possibility of parallelizing the entire computation. 

� Reduces the number of loads performed and improves data locality because of reuse.
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Figure 1-4 explains, in detail, how a partial matrix product is generated using the vector outer 
product operation. Each of the elements of transposed matrix A (1, 9, 17, 25) is multiplied with 
each of the elements of matrix B (aa, ab, ac, ad) to generate 16 outputs, which become the 
partial result of the resultant 4x4 output submatrix. The same operation is performed for each 
of the rows in both transposed matrix A and matrix B and the subsequent results are 
accumulated to get the final result.

Figure 1-4   Generating a partial matrix product using a vector outer product

If this operation is repeated over all the blocks of both transposed matrix A and matrix B, then 
the final 8x8 results are generated, as shown in Figure 1-5. For a more detailed discussion on 
high-performance matrix multiplication, see Anatomy of High-Performance Matrix Multiply.

Figure 1-5   Full 8x8 matrix-multiply from four 4x4 blocks
Chapter 1. Matrix multiplication 5
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1.3  Introduction to Vector Scalar Extension

Vector Scalar Extension (VSX) is the vector scalar extension capability introduced in the 
POWER ISA V2.06 and first implemented in the IBM POWER7® processor. In Figure 1-6, the 
VSX capability extends and unifies the 32 floating-point registers (FPRs) of Power ISA to 128 
bits and combines with the existing 32 128-bit Vector Multimedia Extension (VMX) registers to 
create a single register file.

Figure 1-6   VSX registers

The VSX capability allows the VSX instruction to utilize 64 x 128-bit registers to perform its 
compute operations. VSX ISA supports numerous operations in both floating point and fixed 
point. 

The key instructions that are useful in demonstrating the outer-product operations are:

� Vector loads and stores

� Splat instructions to replicate one element of the source vector register to all fields of the 
target vector register 

� Vector floating point multiply-add instruction
6 Matrix-Multiply Assist Best Practices Guide



1.4  Simple VSX code example for a vector outer product

Example 1-2 shows code that initializes matrices A, B, and C and gets a transform of matrix 
A.

Example 1-2   VSX Code example for a vector outer product

#include <stdio.h>
#include <stdlib.h>

#define KM 4
#define KN 4

extern "C" void sgemm_kernel_4x4(float*,float*,float*,int,int,int,int);

void sgemm(float *A, float *B, float *C, int M, int N, int K) {
    for (int i=0; i<M; i+=KM) {
    for (int j=0; j<N; j+=KN) {
        sgemm_kernel_4x4(A+i, B+j, C+j, K, M, N, N);
        }
    C += N*KM;
    }
}

void printF (const char  *name, float *M, int m, int n) {
        printf ("\n**** Matrix %s****\n",name);
        for (int i=0; i< m; i++) {
                printf("|  ");
                for (int j=0; j< n; j++) printf("%-25.4f", *(M++));
                printf("   |\n");
        }
        printf("************************\n");
}

int main (int    argc, char **argv ) {
    if (argc < 4) {
        printf("Usage: %s <M> <N> <K> \n", argv[0]);
        return -1;
    }

    const int M = atoi(argv[1]);
    const int N = atoi(argv[2]);
    const int K = atoi(argv[3]);

    printf("Running: %s M=%s N=%s K=%s \n", argv[0], argv[1], argv[2], argv[3]);

    float A[M][K];
    float AT[K][M];
    float B[K][N];
    float C[M][N];

    for (int i=0; i<M; i++) for (int j=0; j<N; j++) C[i][j] = 0;
    int x = 1;
    for (int i=0; i<M; i++) for (int j=0; j<K; j++) A[i][j] = float(x++) * 7 / 15;
    for (int i=0; i<K; i++) for (int j=0; j<N; j++) B[i][j] = float(x++) * 3 / 17;
    for (int i=0; i<M; i++) for (int j=0; j<K; j++) AT[j][i] = A[i][j];

    sgemm((float*)AT, (float*)B, (float*)C, M, N, K);

    printF("C", (float *)C, M, N);
    return 0;
}
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The Sgemm routine computes the result matrix C in blocks of 4x4 (Power ISA VSX register size 
is 128 bits and contains 4x32-bit floating-point (fp32) elements.) The sgemm_kernel_4x4 
routine computes one 4x4 (KM x KN) block of the resultant matrix C.

The innermost loop of the kernel shown in Example 1-3 loads four elements from matrix A 
and four elements of matrix B and performs multiply-accumulate operations. This operation is 
performed 'K' times to compute one full 4x4 block of the resultant matrix C. 

Example 1-3   Multiply-accumulate operation

.section        ".text"
        .global sgemm_kernel_4x4
        .type   sgemm_kernel_4x4, @function

sgemm_kernel_4x4:
/* adjust lda, ldb, ldc for vector size 4 */
        slwi    7, 7, 2
        slwi    8, 8, 2
        slwi    9, 9, 2
 /* Reset VSX registers */
    xxlxor 0, 0, 0
    xxlxor 1, 1, 1
    xxlxor 2, 2, 2
    xxlxor 3, 3, 3
/* LOOP for K to 0 */
    K_LOOP:
 /* Load 4 elements of A, B */
       lxv    32, 0(3)
       lxv    33, 0(4)
 /* Copy each A[i] 4 times */
       xxspltw    34, 32, 3
       xxspltw    35, 32, 2
       xxspltw    36, 32, 1
       xxspltw    37, 32, 0
 /* Multiply-Add-Accumulate */
        xvmaddasp 0, 34, 33
        xvmaddasp 1, 35, 33
        xvmaddasp 2, 36, 33
        xvmaddasp 3, 37, 33
 /* Update Loop count & A,B */
        add     3, 3, 7
        add     4, 4, 8
        addic.  6, 6, -1
    bgt    K_LOOP
 /* Offsets of 4x4 C Matrix */
        slwi    3, 9, 1
        add     4, 5, 9
        add     6, 5, 3
        add     7, 4, 3 
 /* Store the 4x4 c Matrix */
    stxv    0, 0(5)
    stxv    1, 0(4)
    stxv    2, 0(6)
    stxv    3, 0(7)
blr
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The following command demonstrates how to build this example with the main C file linked 
with a defined assembly function using the latest MMA-supported GNU Compiler Collection 
(GCC): 

>> g++ -mcpu=power10 -O2 sgemm_4x4.cc sgemm_vsx_kernel.s -o sgemm_vsx
Chapter 1. Matrix multiplication 9
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Chapter 2. Matrix-Multiply Assist 
Architecture

The Matrix-Multiply Assist (MMA) architecture is introduced in Power ISA v3.1. Several new 
concepts are described in this chapter, such as: 

� An introduction of accumulator registers
� New compute instructions for the matrix multiplication operation
� Support for lower precision arithmetic beyond single- and double-precision

2
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2.1  Data types

MMA architecture supports both floating-point and integer data types. This support was 
introduced because of the growing requirements of future AI-inferencing models. 

The following data types are floating-point:

� FP32 (IEEE single-precision)1

� FP64 (IEEE double-precision)2

� FP16 (IEEE half-precision)3

� bfloat164

The following data types are integer:

� INT16 (16-bit integer)
� INT8 (8-bit integer)
� INT4 (4-bit integer)

2.2  Data layout in accumulators and VSRs

One of the key concepts of the MMA architecture is the accumulator register. There are eight 
such registers in Power ISA v3.1 and each accumulator is 512 bits. Currently, a clear 
association exists between accumulators and VSRs. Each VSR is 128 bits and four such 
VSRs are combined and shadowed to form one accumulator register. The first 32 VSRs are 
mapped to eight accumulator registers as shown in Figure 2-1 on page 12.

When programming with MMA instructions, one of the first design decisions is how to partition 
the space of VSRs and accumulators. It is important to keep the two separated. That is, if 
accumulator ACCx is being used (where x is from 0 - 7) from the accumulators. See 2.3, 
“Instructions” on page 13 for information on how to use instructions to transfer data.

Figure 2-1   Accumulator architecture in POWER ISA v3.1

1  754-2019 - IEEE Standard for Floating-Point Arithmetic, found at: 
https://ieeexplore.ieee.org/document/8766229

2  Ibid.
3  Ibid.
4  A transprecision floating-point platform for ultra-low power computing, found at: 
https://ieeexplore.ieee.org/abstract/document/8342167
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2.3  Instructions 

MMA architecture instructions are split into the following two categories:

� Accumulator operation instructions
� Outer product instructions

2.3.1  Accumulator operation instructions

The first category of instructions is those that deal with moving values between the VSRs and 
their associated accumulator registers. The following three instructions are used to operate 
on the accumulator registers: 

� xxmfacc: Moves the contents from the accumulator to the associated VSR.
� xxmtacc: Moves the contents from the associated VSR to the accumulator.
� xxsetaccz: Zeros-out the contents of the accumulator.

When the move is done, both VSRs and accumulator registers are tied and the VSRs' content 
becomes undefined. If an instruction tries to write content to VSRs, the accumulator content 
becomes undefined. When the MMA operations are done, the xxmfacc instruction is used to 
copy the content of the accumulator back to the VSRs and the VSRs become valid. For more 
information, see Power ISA Version 3.1.

Examples are:

� xxmfacc AS

AS can be any value from 0 - 7, each referring to one accumulator register. The xxmfacc 
AS instruction moves the contents of accumulator AS to the corresponding 4 VSRs.

� xxmtacc AT

AT can be any value from 0 - 7, each referring to one accumulator register. The xxmtacc AT 
instruction moves the contents of 4 corresponding VSRs to accumulator AT.

� xxsetaccz AT

AT can be any value from 0-7, each referring to one accumulator register. The xxsetaccz 
AT instruction sets the contents of accumulator AT to zero.

Important: Do not mix instructions that use an accumulator (for example, ACC0) and the 
corresponding VSRs (for example, VSR[0:3]). You can mix instructions that use an 
accumulator (for example, ACC0) and VSRs that do not overlap it (for example, VSR[4:7]). 
VSR[32:63] should never overlap with an accumulator. This guideline is essential for both 
performance and guaranteed compatibility with future implementations.
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2.3.2  Outer product instructions

The second category of instructions is those that are used to perform the actual arithmetic. 
Both integer and floating point arithmetic are supported in the MMA architecture at different 
precision levels as described in 2.1, “Data types” on page 12. 

Instructions for 32-bit floating-point arithmetic 
Two 32-bit FP arithmetic instructions are used to discuss the functionality of MMA. The two 
instructions that are used to perform a single precision matrix multiplication operation are: 
xvf32ger and xvf32gerpp. 

The difference between the ger instruction and the gerpp instruction is as follows: 

� The gerpp instruction accumulates the results in the accumulator register. This instruction 
requires the accumulator to already have a defined content.

� The ger instruction overwrites the results in the accumulator register. This instruction 
defines the content of an accumulator, similar to the xxmtacc and xxsetaccz instructions. 

xvf32gerpp AT,XA,XB, where:

� AT refers to any of the eight accumulator registers (ACC0-ACC7). 
� XA and XB refer to VSRs. 

For the xvf32gerpp AT,XA,XB instruction, assume AT=1, XA= 32, and XB=33. The VSR 32 has 
four 32-bit single precision values and VSR 33 has four 32-bit single precision values. Each 
value in VSR 32 is multiplied with each value in VSR 33, generating a 4×4 array of 32-bit 
results (a total of 512 bits of output). The output is accumulated with the content of ACC1, as 
shown in Figure 2-2.

Figure 2-2   MMA xvf32gerpp instruction operation
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Instructions for 8-bit arithmetic 
MMA supports 8-bit integer operations. The 128-bit VSR register is split into 16 8-bit values. 
vi8ger4 and xvi8ger4pp are the two instructions that perform outer product operation on the 
8-bit values.

xvi8ger4pp AT,XA,XB, where:

� AT refers to any of the eight accumulator registers (ACC0-ACC7). 
� XA and XB refer to VSR registers. 

Assume that AT=1, XA=32, and XB=33. VSR 32 has sixteen 8-bit integer values and VSR 33 has 
sixteen 8-bit integer values. The function of the 8-bit outer product instruction is a bit different 
than the 32-bit arithmetic. Each four 8-bit value in a word of XA is multiplied with each 
corresponding four 8-bit value in a word of XB, and the four partial products are added 
together to produce a 32-bit result.

The output generated by the xvi8ger4pp instruction is shown in Figure 2-3.

Figure 2-3   MMA xvi8ger4pp instruction operation

Though there are 16 8-bit values in each input VSR, the output generated still consists of 4x4 
32-bit numbers and is 512 bits. The first four 8-bit elements are multiplied individually and the 
result of all four multiply operations is summed to generate one 32-bit value. Since there are 
16 32-bit values produced, the result is still 512 bits. To use this instruction to accomplish an 
outer product operation, the input matrix needs to be reordered. The value formatting and 
how the outer product operation is performed is explained in detail in 3.3, “Mixed and lower 
precision matrix multiplication with MMA” on page 24.
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2.3.3  Advanced feature: Lane masking

Lane masking is one of the advanced features available with the MMA architecture. The 
purpose of this feature is to perform an operation of a lower-sized input or to skip certain 
elements. For example, a 6x6 matrix multiplication as shown in Figure 2-4.

Figure 2-4   Example of a 6x6 matrix multiplication 

Figure 2-5 on page 16 shows the details of the following single precision lane-masking 
instruction: 

pmxvf32gerpp AT,XA,XB,XMSK,YMSK

Figure 2-5   Instruction word details of a prefix instruction (pmxvf32gerpp)

The instruction encoding is 64 bits. The prefix is the first 32 bits and the suffix is the next 32 
bits. The prefix architecture is a new capability introduced in the Power ISA v3.1 to extend the 
capability of the previous 32-bit fixed instruction-size architecture. This architecture is helpful 
when you represent bigger instructions with more parameters. Power ISA v3.1 uses the prefix 
architecture in several categories of instruction. 

In Figure 2-5, the MMA lane-masking instruction has a total of five input arguments in the 
prefix: 

� The first three arguments (AT, XA, and XB) are the same as the regular 32-bit 
single-precision MMA instruction.
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� The last two arguments (XMSK and YMSK) are the mask values for the input VSR XA and 
XB. 

The mask values for this instruction are of size 4 bits each. Each bit masks represents one 
32-bit value in the source register. The multiplication operation is performed only if both mask 
bits of the respective input element are set to 1. Otherwise, the respective results will be 0. 

For example, the output of the following command is shown in Figure 2-6:

pmxvf32gerpp 1,32,33,0xE,0xF

In Figure 2-6, the last 32-bit element of input register VSR[32] is skipped from the 
computation and the respective output to be accumulated in the ACC register 1 is 0.

Figure 2-6   MMA pmxvf32gerpp instruction operation

The gray output shown in Figure 2-6 is not computed and the corresponding four 32-bit 
elements in the accumulator register remain unchanged.
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Chapter 3. Programming with 
Matrix-Multiply Assist

The Matrix-Multiply Assist (MMA) implementation of various kernels at different levels of 
precision is described in this chapter. The implementations that are shown use a single 
accumulator.

3
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3.1  Single-precision GEMM using MMA

The innermost kernel of sgemm_kernel_4x4 shown in Example 3-1 loads four elements of A, 
loads four elements of B, and performs an outer product MMA operation to produce one 4x4 
partial result of C in one accumulator register.

Example 3-1   SGEMM kernel using MMA instructions

.section        ".text"
        .global sgemm_kernel_4x4
        .type   sgemm_kernel_4x4, @function

sgemm_kernel_4x4:
/* adjust lda, ldb, ldc for vector size 4 */
        slwi    7, 7, 2
        slwi    8, 8, 2
        slwi    9, 9, 2
 /* Reset accumulator */
    xxsetaccz 0
/* LOOP for K to 0 */
    K_LOOP:
 /* Load 4 elements of A, B */
       lxv    32, 0(3)
       lxv    33, 0(4)
 /* Multiply-Add-Accumulate */
       xvf32gerpp 0, 32, 33
 /* Update Loop count & A,B */
        add     3, 3, 7
        add     4, 4, 8
        addic.  6, 6, -1
    bgt    K_LOOP
 /* Unprime the accumulator 0 */
    xxmfacc 0
 /* Offsets of 4x4 C Matrix */
        slwi    3, 9, 1
        add     4, 5, 9
        add     6, 5, 3
        add     7, 4, 3 
 /* Store the 4x4 C Matrix */
    stxv    0, 0(5)
    stxv    1, 0(4)
    stxv    2, 0(6)
    stxv    3, 0(7)
blr
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3.2  Double-precision GEMM using MMA and one accumulator

Each accumulator can hold eight (4×2) double-precision values and each VSR register 
(128-bit long) can contain two double-precision values (64-bit each). To produce an outer 
product with eight 64-bit values, we need three source VSRs so that four elements from A 
matrix can be multiplied with two elements from B matrix to generate a 4x2 result C 
submatrix. MMA enables this by taking a paired VSX register as a first operand and a single 
VSX register as a second operand.

For a double-precision ger instruction, the first operand is always an even VSX register and is 
considered as being paired with the next register.

Example 3-2 shows a simple example of a double-precision gemm. The code snippet shows 
the initialization of the input matrices and how an external dgemm kernel is referenced.

Example 3-2   dgemm example using 4x2 MMA kernel

#include <stdio.h>
#include <stdlib.h>

#define KM 4
#define KN 2

extern "C" void dgemm_kernel_4x2 (double *, double *, double *, int, int, int, 
int);

void dgemm(double *A, double *B, double *C, int M, int N, int K) {
    for (int i=0; i<M; i+=KM) {
    for (int j=0; j<N; j+=KN) {
        dgemm_kernel_4x2(A+i, B+j, C+j, K, M, N, N);
        }
    C += N*KM;
    }
}

void printD (const char  *name, double *M, int m, int n) {
        printf ("\n**** Matrix %s****\n",name);
        for (int i=0; i< m; i++) {
                printf("|  ");
                for (int j=0; j< n; j++) printf("%-25.4f", *(M++));
                printf("   |\n");
        }
        printf("************************\n");
}

int main (int argc, char **argv ) {

    if (argc < 4) {
        printf("Usage: %s <M> <N> <K> \n", argv[0]);
        return -1;
    }

    const int M = atoi(argv[1]);
    const int N = atoi(argv[2]);
    const int K = atoi(argv[3]);
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    printf("Running: %s M=%s N=%s K=%s \n", argv[0], argv[1], argv[2], argv[3]);

    double A[M][K];
    double AT[K][M];
    double B[K][N];
    double C[M][N];

    for (int i=0; i<M; i++) for (int j=0; j<N; j++) C[i][j] = 0;
    int x = 1;
    for (int i=0; i<M; i++) for (int j=0; j<K; j++) A[i][j] = double(x++) * 7 / 
15;
    for (int i=0; i<K; i++) for (int j=0; j<N; j++) B[i][j] = double(x++) * 3 / 
17;
    for (int i=0; i<M; i++) for (int j=0; j<K; j++) AT[j][i] = A[i][j];

    dgemm((double*)AT, (double*)B, (double*)C, M, N, K);

    printD("C", (double *)C, M, N);
    return=0;

The code in Example 3-3 defines the full routine of the dgemm 4x2 kernel in assembly using 
MMA instructions. This example can be compiled using the following command:

>> g++ -mcpu=power10 -O2 dgemm_kernel_4x2.s dgemm_4x2.cc -o dgemm_mma

Example 3-3   A simple 4x2 dgemm kernel using MMA instructions

.section        ".text"
        .global dgemm_kernel_4x2
        .type   dgemm_kernel_4x2, @function

dgemm_kernel_4x2:
/* adjust lda, ldb, ldc for vector size 8 */
        slwi    7, 7, 3
        slwi    8, 8, 3
        slwi    9, 9, 3

/* Reset acc0  */
    xxsetaccz    0

/* LOOP for K to 0 */
    K_LOOP:

/* Load 4 elements of A, B */
       lxvp    32, 0(3)
       lxv     34, 0(4)
/* Multiply-Add-Accumulate */
        xvf64gerpp 0, 32, 34

/* Update Loop count & A,B */
        add     3, 3, 7
        add     4, 4, 8
        addic.  6, 6, -1
    bgt    K_LOOP
/* Unprime the accumulator 0 */
    xxmfacc 0
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/* Offsets of 4x2 C Matrix */
        slwi    3, 9, 1
        add     4, 5, 9
        add     6, 5, 3
        add     7, 4, 3 
/* Store the 4x2 C Matrix */
    stxv    0, 0(5)
    stxv    1, 0(4)
    stxv    2, 0(6)
    stxv    3, 0(7)
blr
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3.3  Mixed and lower precision matrix multiplication with MMA

With mixed precision matrix multiplication, the source matrices A and B are of reduced/low 
precision (either 8- or 16-bit, with the same type for A and B) and the resulting matrix C is of 
32-bit integer elements. MMA supports these mixed precision matrix multiplications with a 
broad set of instructions, as explained in the ISA.

3.3.1  Source matrix reordering with Int8 as example

Consider an example of generating a 32-bit result matrix with two 8-bit lower-precision source 
matrices. Since VSX registers are 128 bits long, you can load 16 8-bit values from the two 
source matrices at each step. As the result matrix C type is 32-bit integer, accumulators still 
contain 16 elements (4x4 sub-matrix). The MMA operates slightly differently with 
lower-precision operations. Each set of four 8-bit values in each source VSX register is 
packed and considered as single unit. As a result, one source VSX register of 16 8-bit values 
is now assumed to hold four sets of four 8-bit values. Each set in the first VSX register is 
multiplied and accumulated with each set in second VSX register. 
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Within a set, the four 8-bit values are multiplied and accumulated in a one-to-one mapping, as 
described in Figure 3-1 on page 25 and Example 3-4 on page 25.

Figure 3-1   A single xvi8ger instruction performs a 4x4 matrix-multiply

Example 3-4 shows how the four 8-bit values are multiplied and accumulated in a one-to-one 
mapping.

Example 3-4   Code showing matrix reorganization for an int-8 gemm with MMA kernel

#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>

#define KM 4
#define KN 4
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#define Q 4

extern "C" void i8gemm_mma_4x4 (int8_t *, uint8_t *, int32_t *, int, int, int, int);

void i8gemm(int8_t *A, uint8_t *B, int32_t *C, int M, int N, int K) {

    int8_t *At = (int8_t *) malloc(M*K);  //transform A[M][K] --> At[K/Q][M*Q]
    uint8_t *Bt = (uint8_t *) malloc(N*K); //transform B[K][N] --> At[K/Q][N*Q]

    for (int i=0,x=0; i<K; i+=Q) {
        for(int j=0; j<M; j++) {
             for(int l=0; l<Q; l++) At[x++] = *(A+(j*K)+l);
        }
        A = A+Q;
    }

    for (int i=0, x=0; i<K; i+=Q) {
        for(int j=0; j<N; j++) {
            for(int l=0; l<Q; l++) Bt[x++] = *(B+(l*N)+j);
        }
        B+=Q*N;
    }

    for (int i=0; i<M; i+=KM) {
    for (int j=0; j<N; j+=KN) {
        i8gemm_mma_4x4(At+(i*Q), Bt+(j*Q), C+j, K/Q, M, N, N);
        }
    C += N*KM;
    }
}

void printI (const char  *name, int32_t *M, int m, int n) {
        printf ("\n**** Matrix %s****\n",name);
        for (int i=0; i< m; i++) {
                printf("|  ");
                for (int j=0; j< n; j++) printf("%-25d", *(M++));
                printf("   |\n");
        }
        printf("************************\n");
}

int main (int    argc, char **argv ) {

    if (argc < 4) {
        printf("Usage: %s <M> <N> <K> \n", argv[0]);
        return -1;
    }

    const int M = atoi(argv[1]);
    const int N = atoi(argv[2]);
    const int K = atoi(argv[3]);

    printf("Running: %s M=%s N=%s K=%s \n", argv[0], argv[1], argv[2], argv[3]);

    int8_t A[M][K];
    uint8_t B[K][N];
    int32_t C[M][N];

    for (int i=0; i<M; i++) for (int j=0; j<N; j++) C[i][j] = 0;
    int x = 1;
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    for (int i=0; i<M; i++) for (int j=0; j<K; j++) A[i][j] = (x++)%128;
    for (int i=0; i<K; i++) for (int j=0; j<N; j++) B[i][j] = (x++)%256;

    i8gemm((int8_t *)A, (uint8_t *)B, (int32_t *)C, M, N, K);

    printI("C", (int32_t *)C, M, N);
    return 0;

The code in Example 3-5 shows a simple 4x4 int-8 gemm kernel using MMA 
instructions.

Example 3-5   A 4x4 int-8 gemm kernel with xvi8ger MMA instruction

.section        ".text"
        .global i8gemm_mma_4x4
        .type   i8gemm_mma_4x4, @function

i8gemm_mma_4x4:
/* adjust lda, ldb, ldc for vector size 4 */
        slwi    7, 7, 2
        slwi    8, 8, 2
        slwi    9, 9, 2
 /* Reset acc0 & prime */
    xxsetaccz 0
/* LOOP for K to 0 */
    K_LOOP:
 /* Load 4 elements of A, B */
       lxv    32, 0(3)
       lxv    33, 0(4)
 /* Multiply-Add-Accumulate */
       xvi8ger4pp 0, 32, 33
 /* Update Loop count & A,B */
       add     3, 3, 7
       add     4, 4, 8
       addic.  6, 6, -1
    bgt    K_LOOP
 /* Unprime the accumulator 0 */
    xxmfacc 0
 /* Offsets of 4x4 C Matrix */
        slwi    3, 9, 1
        add     4, 5, 9
        add     6, 5, 3
        add     7, 4, 3 
 /* Store the 4x4 C Matrix */
    stxv    0, 0(5)
    stxv    1, 0(4)
    stxv    2, 0(6)
    stxv    3, 0(7)
blr
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Chapter 4. Advanced programming 
concepts

This chapter describes how to optimize the matrix multiplication examples that are shown in 
this publication. It also explains some of the improved techniques for effectively using the 
compute units with load reuse and cache blocking. 

4
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4.1  Multiple accumulators SGEMM for load value reuse

Consider the example of the sgemm instruction, shown in Example 3-4 on page 25, which 
uses one accumulator to generate a 4x4 result, where two load operations are required for 
each gerpp instruction. This type of model restricts the MMA unit utilization, as it is limited by 
the number of load ports. This limitation can be overcome by using multiple accumulators to 
reuse the same loaded data multiple times, as shown in Figure 4-1 and Example 4-1. When 
you use all eight accumulators and reuse loads, the result is eight gerpp instructions for every 
six vector register loads. (The code uses the register pair load lxvp instruction, which is 
another feature of Power ISA v3.1.) This kernel generates an 8x16 submatrix of C (eight 4x4 
accumulators).

Figure 4-1   Example of an 8x16 GEMM FP32 kernel execution
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Example 4-1   GEMM FP32 kernel execution code

#define KM 8
#define KN 16

extern "C" void sgemm_mma_8x16 (float*, float*, float*, int, int, int, int);

void sgemm(float *A, float *B, float *C, int M, int N, int K) {
    for (int i=0; i<M; i+=KM) {
    for (int j=0; j<N; j+=KN) {
        sgemm_mma_8x16(A+i, B+j, C+j, K, M, N, N);
        }
    C += N*KM;
    }
}

Example 4-2 shows a code snippet for a sgemm kernel that reuses the loads and all eight 
accumulators for improved compute unit utilization. The code computes a resultant 8x16 
submatrix.

Example 4-2   An 8-accumulator version of sgemm kernel

.section        ".text"
        .global sgemm_mma_8x16
        .type   sgemm_mma_8x16, @function

sgemm_mma_8x16:
/* adjust lda, ldb, ldc for vector size 4 */
        slwi    7, 7, 2
        slwi    8, 8, 2
        slwi    9, 9, 2
 /* Reset acc0-7 & prime */
    xxsetaccz    0
    xxsetaccz    1
    xxsetaccz    2
    xxsetaccz    3
    xxsetaccz    4
    xxsetaccz    5
    xxsetaccz    6
    xxsetaccz    7
/* LOOP for K to 0 */
    K_LOOP:
 /* Load 4 elements of A, B */
       lxvp   32, 0(3)
       lxvp   34, 0(4)
       lxvp   36, 32(4)
 /* Multiply-Add-Accumulate */
       xvf32gerpp 0, 33, 35
       xvf32gerpp 1, 33, 34
       xvf32gerpp 2, 33, 37
       xvf32gerpp 3, 33, 36
       xvf32gerpp 4, 32, 35
       xvf32gerpp 5, 32, 34
       xvf32gerpp 6, 32, 37
       xvf32gerpp 7, 32, 36
 /* Update Loop count & A,B */
       add     3, 3, 7
       add     4, 4, 8
       addic.  6, 6, -1
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    bgt    K_LOOP
/* Unprime the acc0-7 */
    xxmfacc 0
    xxmfacc 1
    xxmfacc 2
    xxmfacc 3
    xxmfacc 4
    xxmfacc 5
    xxmfacc 6
    xxmfacc 7
 /* Offsets of 4x4 C Matrix */
    slwi  3, 9, 1
    add   4, 5, 9
    add   6, 5, 3
    add   7, 4, 3
 /* Store the 4x16 c Matrix */
    stxv    3,  0(5)
    stxv    2,  0(4)
    stxv    1,  0(6)
    stxv    0,  0(7)
    stxv    7,  16(5)
    stxv    6,  16(4)
    stxv    5,  16(6)
    stxv    4,  16(7)
    stxv    11, 32(5)
    stxv    10, 32(4)
    stxv    9,  32(6)
    stxv    8,  32(7)
    stxv    15, 48(5)
    stxv    14, 48(4)
    stxv    13, 48(6)
    stxv    12, 48(7)
 /* Update index of C */
    add   5, 7, 9
    add   4, 5, 9
    add   6, 5, 3
    add   7, 4, 3
 /* Store the 4x16 c Matrix */
    stxv    19, 0(5)
    stxv    18, 0(4)
    stxv    17, 0(6)
    stxv    16, 0(7)
    stxv    23, 16(5)
    stxv    22, 16(4)
    stxv    21, 16(6)
    stxv    20, 16(7)
    stxv    27, 32(5)
    stxv    26, 32(4)
    stxv    25, 32(6)
    stxv    24, 32(7)
    stxv    31, 48(5)
    stxv    30, 48(4)
    stxv    29, 48(6)
    stxv    28, 48(7)
blr
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4.2  Multiple accumulators DGEMM for load value reuse

From the DGEMM example and as specified in MMA design, a single 512-bit accumulator 
result of a double-precision instruction can hold a resultant 4x2 submatrix. To perform one 
double-precision MMA instruction, two VSR registers (two loads, four elements) from matrix A 
and one VSR register (one load, two elements) from matrix B. By using all eight 
accumulators, you can generate a resultant 8x8 result. Including the reusing of loads, a total 
of eight VSR loads (four each from matrices A and B) need to be performed. A simple 
example of an dgemm_kernel_8x8 is shown in Example 4-3.

Example 4-3   8x8 FP64 GEMM kernel code

#define DKM 8
#define DKN 8

extern "C" void dgemm_kernel_8x8 (double *, double *, double *, int, int, int, 
int);

void dgemm(double *A, double *B, double *C, int M, int N, int K) {
    for (int i=0; i<M; i+=DKM) {
    for (int j=0; j<N; j+=DKN) {
        dgemm_kernel_8x8(A+i, B+j, C+j, K, M, N, N);
        }
    C += N*DKM;
    }
}

The code snippet in Example 4-4 shows an improved dgemm kernel using eight accumulators. 
This code computes an 8x8 block of result matrix.

Example 4-4   An 8x8 dgemm kernel using 8 accumulators

.section        ".text"
        .global dgemm_kernel_8x8
        .type   dgemm_kernel_8x8, @function

dgemm_kernel_8x8:
/* adjust lda, ldb, ldc for vector size 8 */
        slwi    7, 7, 3
        slwi    8, 8, 3
        slwi    9, 9, 3
 /* Reset acc0-7 & prime */
    xxsetaccz    0
    xxsetaccz    1
    xxsetaccz    2
    xxsetaccz    3
    xxsetaccz    4
    xxsetaccz    5
    xxsetaccz    6
    xxsetaccz    7
/* LOOP for K to 0 */
    K_LOOP:
 /* Load 4 elements of A, B */
       lxvp   32, 0(3)
       lxvp   34, 32(3)
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       lxvp   36, 0(4)
       lxvp   38, 32(4)
 /* Multiply-Add-Accumulate */
       xvf64gerpp 0, 32, 37
       xvf64gerpp 1, 32, 36
       xvf64gerpp 2, 32, 39
       xvf64gerpp 3, 32, 38
       xvf64gerpp 4, 34, 37
       xvf64gerpp 5, 34, 36
       xvf64gerpp 6, 34, 39
       xvf64gerpp 7, 34, 38
 /* Update Loop count & A,B */
       add     3, 3, 7
       add     4, 4, 8
       addic.  6, 6, -1

bgt    K_LOOP
/* Unprime the acc0-7 */
    xxmfacc 0
    xxmfacc 1
    xxmfacc 2
    xxmfacc 3
    xxmfacc 4
    xxmfacc 5
    xxmfacc 6
    xxmfacc 7
 /* Offsets of 4x4 C Matrix */
    slwi  3, 9, 1
    add   4, 5, 9
    add   6, 5, 3
    add   7, 4, 3
 /* Store the 4x16 c Matrix */
    stxv    3,  0(5)
    stxv    2,  0(4)
    stxv    1,  0(6)
    stxv    0,  0(7)
    stxv    7,  16(5)
    stxv    6,  16(4)
    stxv    5,  16(6)
    stxv    4,  16(7)
    stxv    11, 32(5)
    stxv    10, 32(4)
    stxv    9,  32(6)
    stxv    8,  32(7)
    stxv    15, 48(5)
    stxv    14, 48(4)
    stxv    13, 48(6)
    stxv    12, 48(7)
 /* Update index of C */
    add   5, 7, 9
    add   4, 5, 9
    add   6, 5, 3
    add   7, 4, 3
 /* Store the 4x16 c Matrix */
    stxv    19, 0(5)
    stxv    18, 0(4)
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    stxv    17, 0(6)
    stxv    16, 0(7)
    stxv    23, 16(5)
    stxv    22, 16(4)
    stxv    21, 16(6)
    stxv    20, 16(7)
    stxv    27, 32(5)
    stxv    26, 32(4)
    stxv    25, 32(6)
    stxv    24, 32(7)
    stxv    31, 48(5)
    stxv    30, 48(4)
    stxv    29, 48(6)
    stxv    28, 48(7)

blr

4.3  SGEMM performance with advanced cache-blocking

Consider the multiplication of two float (single-precision) 256 x 256 matrices using an 
sgemm_kernel_8x16, which computes the resultant C matrix in 8x16 blocks. In this example, 
M=256, K=256, and N=256. To compute the full resultant 256 x 256 matrix C, the program 
loops over A in blocks of size 8x256 and over B in blocks of size 16x256, as shown in 
Example 4-5.

Example 4-5   Full computation of matrix C in blocks of size 8x16

#define KM 8
#define KN 16

void sgemm(float *A, float *B, float *C, int M, int N, int K) {
    for (int i=0; i<M; i+=KM) {
        for (int j=0; j<N; j+=KN) {
            sgemm_kernel_8x16(A+i, B+j, C+j, K, M, N, N);
        }
        C += N*KM;
    }
}

To carry out the computation of one 8x16 block of matrix C in a processing core (call to 
sgemm_kernel_8x16 in the innermost kernel of Example 4-5), you need one 8x256 block of 
matrix A (8x256x4 bytes = 8 KiB) and one 16x256 block of matrix B (16x256x4 bytes = 16 
KiB) to be loaded into the L1 cache. You can then compute one 8x16 block of resultant matrix 
C. In the second iteration of the innermost loop, the 8-KiB block of matrix A is retained and the 
next block of 16-KiB data of matrix B is freshly loaded onto L1 to compute the next 8x16 block 
of matrix C. 

Programming note: Instead of the resultant 8x8 submatrix shown in Example 4-4 on 
page 33, you can use an alternate approach to generate a resultant 4x16 submatrix for 
dgemm using eight accumulators. In this approach, the kernel requires ten vector loads, 
instead of eight vector loads. Though the kernel stresses the load units, there might be a 
slight advantage over the cache blocking method, which is discussed in 4.3, “SGEMM 
performance with advanced cache-blocking” on page 35.
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To improve the performance of the computation, retain the bigger block of data (from matrix 
B) in L1 cache and move through the smaller blocks (from matrix A). This is achieved by 
simply interchanging the loops, as shown in Example 4-6.

Example 4-6   Loops interchanged to keep the bigger block in L1 cache

#define KM 8
#define KN 16

void sgemm(float *A, float *B, float *C, int M, int N, int K) {
    for (int j=0; j<N; j+=KN) {
        for (int i=0; i<M; i+=KM) {
            sgemm_kernel_8x16(A+i, B+j, C+(N*KM), K, M, N, N);
        }
        C += KN;
    }
}

Assume an architecture with an L1 cache of 32 KiB. In the 256x256 matrix-multiplication 
example shown in Example 4-6, 16 KiB of matrix B and 8 KiB of matrix A are consumed by 
each execution of sgemm_kernel_8x16. The total of 24 KiB fits well within the L1 cache. Now 
consider an example of K=1024. The size of matrix B block becomes 16x1024x4 bytes = 64 
KiB and the size of matrix A block grows to 32 KiB. The total exceeds the L1 cache size by a 
factor of three. Therefore, to keep the computation well within the L1 cache, there needs to be 
a third loop to iterate over 'K' in chunks of size KS. If KS=256 in this case, you need to repeat 
the above set of iterations K/KS = 1024/256 = 4 times. 
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Chapter 5. Matrix-Multiply Assist 
programming with compiler 
built-ins

Support for Matrix-Multiply Assist (MMA) instructions and built-ins is enabled in the latest 
version of GCC and LLVM compilers, which are publicly available. You can use GCC 10 and 
later and LLVM 12.0 to build programs with MMA. Though the compiler does not yet generate 
MMA instructions from the direct existing source code, support is available to recognize inline 
MMA assembly instructions. The compilers can also generate binaries for gemm programs with 
MMA compiler built-ins. 

For MMA programming, in addition to the already supported vector data types, the new 
__vector_quad data type is introduced to represent an accumulator. This data type 
represents a set of four vector registers forming an accumulator.

The following set of built-ins is used to move values to and from vector registers to 
accumulators: 

� void __builtin_mma_xxmtacc (__vector_quad *);
� void __builtin_mma_xxmfacc (__vector_quad *);

The following built-in can be used to set the accumulator to zero:

void __builtin_mma_xxsetaccz (__vector_quad *);

The following built-ins can be used to collate and dismantle the accumulator register 
(__vector_quad) to four independent registers to be further used in the program:

� void __builtin_mma_assemble_acc (__vector_quad *, vec_t, vec_t, vec_t, vec_t);
� void __builtin_mma_disassemble_acc (void *, __vector_quad *);

The builtin_mma_xv* can be used to perform the matrix-multiply-and-accumulate operations. 
The following code is an example built-in for 32-bit floating-point ger operation:

void __builtin_mma_xvf32gerpp (__vector_quad *, vec_t, vec_t);

5

© Copyright IBM Corp. 2021. 37



5.1  Simple MMA SGEMM example using built-ins

Use the gcc compiler with the following command to compile the code example shown in 
Example 5-1. For a list of MMA compiler built-ins, see Appendix A, “List of Matrix-Multiply 
Assist compiler built-ins” on page 41. 

> gcc -o sgemm -O2 -mcpu=power10 -mtune=power10 sgemm_intrinsics.cc

Example 5-1   Sample GEMM code using MMA compiler built-ins

#define KM 4
#define KN 4

typedef vector unsigned char    vec_t;
typedef __vector_quad   acc_t;

void sgemm_kernel_4x4 (float *a, float *b, float *c, int K, int lda, int ldb, int 
ldc) {

        int i;
        vec_t vec_A, vec_B, vec_C[4];
        acc_t acc_0;

        __builtin_mma_xxsetaccz(&acc_0);

        for (i=0; i<K; i++) {
                vec_A = *((vec_t *)(a+(i*lda)));
                vec_B = *((vec_t *)(b+(i*ldb)));
                __builtin_mma_xvf32gerpp(&acc_0, vec_A, vec_B);
        }

__builtin_mma_disassemble_acc(vec_C, &acc_0);

        *((vec_t *)(c)) = vec_C[0];
        *((vec_t *)(c+ldc)) = vec_C[1];
        *((vec_t *)(c+(2*ldc))) = vec_C[2];
        *((vec_t *)(c+(3*ldc))) = vec_C[3];

}

void sgemm(float *A, float *B, float *C, int M, int N, int K) {
    for (int i=0; i<M; i+=KM) {
    for (int j=0; j<N; j+=KN) {
        sgemm_kernel_4x4(A+i, B+j, C+j, K, M, N, N);
        }
    C += N*KM;
    }
}
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Note: The following notes provide important programming information for successful use of 
the built-ins. Follow these suggestions to avoid having syntax errors reported from the front 
end:

� When passing arrays to built-ins that expect a void * pointer, there needs to be an 
explicit cast.

� When declaring vectors that are passed to built-ins, use Altivec vector syntax (such as 
vector unsigned char and vector double), rather than another generic vector syntax 
(such as __attribute__((vector_size(16)) or similar).

Performance note: Additional care should be taken to avoid Pipeline flushes while 
programming MMA. 

The following Pipeline flushes degrade gemm performance and should be avoided: 

� A VSR Conflict Flush occurs when you access a VSR associated with a primed 
accumulator.

� An Accumulator Conflict Flush occurs when you perform an MMA ger instruction 
without priming the accumulator.
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Appendix A. List of Matrix-Multiply Assist 
compiler built-ins

void __builtin_mma_xvi4ger8 (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvi8ger4 (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvi16ger2 (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvi16ger2s (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf16ger2 (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvbf16ger2 (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf32ger (__vector_quad *, vec_t, vec_t);

void __builtin_mma_xvi4ger8pp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvi8ger4pp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvi8ger4spp(__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvi16ger2pp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvi16ger2spp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf16ger2pp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf16ger2pn (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf16ger2np (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf16ger2nn (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvbf16ger2pp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvbf16ger2pn (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvbf16ger2np (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvbf16ger2nn (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf32gerpp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf32gerpn (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf32gernp (__vector_quad *, vec_t, vec_t);
void __builtin_mma_xvf32gernn (__vector_quad *, vec_t, vec_t);

void __builtin_mma_pmxvi4ger8 (__vector_quad *, vec_t, vec_t, uint4, uint4, uint8);
void __builtin_mma_pmxvi4ger8pp (__vector_quad *, vec_t, vec_t, uint4, uint4, uint8);

A

Programming note: Type vec_t is defined to be a normal vector unsigned char type. The 
uint2, uint4, and uint8 parameters are 2-bit, 4-bit, and 8-bit unsigned integer constants, 
respectively. The compiler verifies that they are constants and that their values are within 
range. 
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void __builtin_mma_pmxvi8ger4 (__vector_quad *, vec_t, vec_t, uint4, uint4, uint4);
void __builtin_mma_pmxvi8ger4pp (__vector_quad *, vec_t, vec_t, uint4, uint4, uint4);
void __builtin_mma_pmxvi8ger4spp(__vector_quad *, vec_t, vec_t, uint4, uint4, uint4);

void __builtin_mma_pmxvi16ger2 (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvi16ger2s (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvf16ger2 (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvbf16ger2 (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);

void __builtin_mma_pmxvi16ger2pp (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvi16ger2spp (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvf16ger2pp (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvf16ger2pn (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvf16ger2np (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvf16ger2nn (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvbf16ger2pp (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvbf16ger2pn (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvbf16ger2np (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);
void __builtin_mma_pmxvbf16ger2nn (__vector_quad *, vec_t, vec_t, uint4, uint4, uint2);

void __builtin_mma_pmxvf32ger (__vector_quad *, vec_t, vec_t, uint4, uint4);
void __builtin_mma_pmxvf32gerpp (__vector_quad *, vec_t, vec_t, uint4, uint4);
void __builtin_mma_pmxvf32gerpn (__vector_quad *, vec_t, vec_t, uint4, uint4);
void __builtin_mma_pmxvf32gernp (__vector_quad *, vec_t, vec_t, uint4, uint4);
void __builtin_mma_pmxvf32gernn (__vector_quad *, vec_t, vec_t, uint4, uint4);

void __builtin_mma_xvf64ger (__vector_quad *, __vector_pair, vec_t);
void __builtin_mma_xvf64gerpp (__vector_quad *, __vector_pair, vec_t);
void __builtin_mma_xvf64gerpn (__vector_quad *, __vector_pair, vec_t);
void __builtin_mma_xvf64gernp (__vector_quad *, __vector_pair, vec_t);
void __builtin_mma_xvf64gernn (__vector_quad *, __vector_pair, vec_t);

void __builtin_mma_pmxvf64ger (__vector_quad *, __vector_pair, vec_t, uint4, uint2);
void __builtin_mma_pmxvf64gerpp (__vector_quad *, __vector_pair, vec_t, uint4, uint2);
void __builtin_mma_pmxvf64gerpn (__vector_quad *, __vector_pair, vec_t, uint4, uint2);
void __builtin_mma_pmxvf64gernp (__vector_quad *, __vector_pair, vec_t, uint4, uint2);
void __builtin_mma_pmxvf64gernn (__vector_quad *, __vector_pair, vec_t, uint4, uint2);

void __builtin_mma_xxmtacc (__vector_quad *);
void __builtin_mma_xxmfacc (__vector_quad *);
void __builtin_mma_xxsetaccz (__vector_quad *);

void __builtin_mma_assemble_acc (__vector_quad *, vec_t, vec_t, vec_t, vec_t);
void __builtin_mma_disassemble_acc (void *, __vector_quad *);

void __builtin_mma_assemble_pair (__vector_pair *, vec_t, vec_t);
void __builtin_mma_disassemble_pair (void *, __vector_pair *);

vec_t __builtin_xvcvspbf16 (vec_t);
vec_t __builtin_xvcvbf16sp (vec_t);
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Appendix B. List of Matrix-Multiply Assist 
instructions in Power ISA v3.1

Table 5-1lists the available Matrix-Multiply Assist (MMA) instructions defined in Power ISA 
v3.1. For details and syntax, see Power ISA Version 3.1.

Table 5-1   MMA instructions defined in Power ISA v3.1

B

MMA instruction type Traditional instructions
32-bit encoding

Prefix instructions
64-bit encoding

Data movement xxmfacc
xxmtacc
xxsetaccz

64-bit floating-point inputs
(IEEE double-precision)

xvf64ger2
xvf64ger2nn
xvf64ger2np
xvf64ger2pn
xvf64ger2pp

pmxvf64ger2
pmxvf64ger2nn
pmxvf64ger2np
pmxvf64ger2pn
pmxvf64ger2pp

32-bit floating-point inputs
(IEEE single-precision)

xvf32ger2
xvf32ger2nn
xvf32ger2np
xvf32ger2pn
xvf32ger2pp

pmxvf32ger2
pmxvf32ger2nn
pmxvf32ger2np
pmxvf32ger2pn
pmxvf32ger2pp

16-bit floating-point inputs
(IEEE half-precision)

xvf16ger2
xvf16ger2nn
xvf16ger2np
xvf16ger2pn
xvf16ger2pp

pmxvf16ger2
pmxvf16ger2nn
pmxvf16ger2np
pmxvf16ger2pn
pmxvf16ger2pp

16-bit floating-point inputs
(bfloat16 format)

xvbf16ger2
xvbf16ger2nn
xvbf16ger2np
xvbf16ger2pn
xvbf16ger2pp

pmxvbf16ger2
pmxvbf16ger2nn
pmxvbf16ger2np
pmxvbf16ger2pn
pmxvbf16ger2pp
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16-bit integer inputs
(modulo arithmetic)

xvi16ger2
xvi16ger2pp

pmxvi16ger2
pmxvi16ger2pp

16-bit integer inputs
(saturating arithmetic)

xvi16ger2s
xvi16ger2spp

pmxvi16ger2s
pmxvi16ger2spp

8-bit integer inputs
(modulo/saturating)

xvi8ger4
xvi8ger4pp
xvi8ger4spp

pmxvi8ger4
pmxvi8ger4pp
pmxvi8ger4spp

4-bit integer inputs xvi4ger8
xvi4ger8pp

pmxvi4ger8
pmxvi4ger8pp

MMA instruction type Traditional instructions
32-bit encoding

Prefix instructions
64-bit encoding
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Related publications

The publications listed in this section are considered particularly suitable for a more detailed 
discussion of the topics covered in this paper. 

Online resources

These websites are also relevant as further information sources:

� Power ISA Version 3.1

https://wiki.raptorcs.com/w/images/f/f5/PowerISA_public.v3.1.pdf

� Anatomy of High-Performance MatrixMultiplication 

https://www.cs.utexas.edu/users/flame/pubs/GotoTOMS_final.pdf 

� 754-2019 - IEEE Standard for Floating-Point Arithmetic

https://ieeexplore.ieee.org/document/8766229

� A transprecision floating-point platform for ultra-low power computing

https://ieeexplore.ieee.org/abstract/document/8342167

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
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