

ibm.com/redbooks

MySQL to DB2
Conversion Guide

Whei-Jen Chen
Angela Carlson

Guides you through a MySQL database
and application conversion to DB2

Enriches applications through
advanced DB2 features

Converts an application
with detailed examples

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

MySQL to DB2 Conversion Guide

December 2009

International Technical Support Organization

SG24-7093-01

© Copyright International Business Machines Corporation 2009. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Second Edition (December 2009)

This edition applies to DB2 9.7 for Linux, UNIX, and Windows and MySQL 5.1.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xiii
The team who wrote this book . xiii
Become a published author . xiv
Comments welcome. xv

Summary of changes . xvii
December 2009, Second Edition . xvii

Executive summary . xix

Chapter 1. DB2 for Linux, UNIX, and Windows. 1
1.1 Introduction . 2
1.2 Product overview. 3

1.2.1 DB2 Data Server Editions for the production environment 3
1.2.2 Products for accessing System z and System i host data 7
1.2.3 DB2 for pervasive platforms . 8
1.2.4 Additional DB2 data server features . 8

1.3 DB2 for Linux, UNIX, and Windows architecture. 9
1.3.1 DB2 9.7 threaded architecture and process model. 9
1.3.2 DB2 database objects . 10
1.3.3 DB2 catalog. 18

1.4 DB2 utilities . 18
1.5 DB2 database access . 21

1.5.1 DB2 clients and drivers . 21
1.5.2 Application access . 25
1.5.3 DB2 application programming interfaces . 26

Chapter 2. MySQL database . 35
2.1 MySQL licensing overview . 36
2.2 MySQL architecture overview . 36

2.2.1 Database client and non-client utilities . 37
2.2.2 Database server . 38

2.3 MySQL design and SQL compliance . 41
2.3.1 MySQL directory structure . 41
2.3.2 MySQL storage engines . 45
2.3.3 MySQL standard SQL compliance . 48

© Copyright IBM Corp. 2009. All rights reserved. iii

2.4 MySQL utilities . 49
2.4.1 Overview of the MySQL server-side programs and utilities 50
2.4.2 Overview of the MySQL client-side programs and utilities 50

2.5 MySQL application programming interfaces . 51

Chapter 3. Planning the conversion from MySQL to DB2 55
3.1 Conversion project planning overview. 56

3.1.1 Benefits of converting to DB2 . 57
3.1.2 IBM conversion support . 60
3.1.3 Education . 61

3.2 Application assessment. 62
3.3 System planning . 63

3.3.1 Software . 64
3.3.2 Hardware. 64
3.3.3 Conversion tools . 65

3.4 The conversion process . 66
3.4.1 Preparing for the installation . 67
3.4.2 Porting the database structure . 67
3.4.3 Data porting. 68
3.4.4 Application porting. 70
3.4.5 Basic administration . 72
3.4.6 Testing and tuning. 72

Chapter 4. Conversion scenario . 75
4.1 Application structure . 76

4.1.1 Application flow . 76
4.2 Database structure . 84
4.3 System environment . 85

Chapter 5. Installation . 87
5.1 DB2 Express-C 9.7 on Linux . 88

5.1.1 System requirements . 88
5.1.2 Installation procedure . 92
5.1.3 Instance creation. 102
5.1.4 Client setup on Linux. 103

5.2 Other software products . 105
5.2.1 Apache2 installation with DB2 support . 105
5.2.2 PHP installation with DB2 support . 107

5.3 IBM Data Movement Tool installation and usage 112
5.3.1 IBM Data Movement Tool prerequisites . 112
5.3.2 IBM Data Movement Tool installation . 113

Chapter 6. Database conversion . 115
6.1 Data type mapping . 116

iv MySQL to DB2 Conversion Guide

6.2 Data definition language differences . 122
6.2.1 Database manipulation . 123
6.2.2 Table manipulation . 128
6.2.3 Index manipulation . 136
6.2.4 Trigger manipulation . 137
6.2.5 Procedures and function manipulation . 138

6.3 Other considerations . 138
6.4 Converting the database . 142

6.4.1 Automatic conversion using porting tools . 143
6.4.2 Manual conversion . 144
6.4.3 Metadata transport . 147

6.5 Sample database conversion . 148
6.5.1 Converting database objects with the IBM Data Movement Tool . . 148
6.5.2 Manual database object conversion and enhancements 158

Chapter 7. Data conversion . 167
7.1 Data porting considerations. 168

7.1.1 Data porting commands and tools . 168
7.1.2 Differences in data formats . 175
7.1.3 Differences in the user account management. 177

7.2 Sample project: Data porting. 192
7.2.1 Export user data from MySQL. 192
7.2.2 Map MySQL user data to DB2 user data . 193
7.2.3 Create DB2 user . 194
7.2.4 Export MySQL application data. 195
7.2.5 Convert MySQL application data to DB2 format 197
7.2.6 Import application data into DB2 . 197
7.2.7 Basic data checking . 199

Chapter 8. Application conversion . 205
8.1 Data Manipulation Language differences and similarities 206

8.1.1 SELECT syntax. 206
8.1.2 JOIN syntax. 207
8.1.3 UNION syntax . 208
8.1.4 Subquery syntax . 209
8.1.5 Grouping, having, and ordering. 209
8.1.6 Strings . 210
8.1.7 Implicit casting of data types . 213
8.1.8 String concatenation and NULL values. 216
8.1.9 Record deletion . 218
8.1.10 Built-in functions and operators. 221

8.2 Application source conversion. 222
8.2.1 Converting MySQL Perl applications to DB2 222

 Contents v

8.2.2 Converting MySQL PHP applications to DB2 225
8.2.3 Converting MySQL Ruby on Rails applications to DB2 237
8.2.4 Converting MySQL Java applications to DB2 240
8.2.5 Converting MySQL C/C++ applications to DB2 247
8.2.6 Converting Connector/ODBC applications to DB2 256
8.2.7 Condition handling in DB2. 259
8.2.8 Special conversions . 266

8.3 Additional application considerations . 271
8.3.1 The purpose of locking . 271
8.3.2 Concurrency control and transaction isolation 272
8.3.3 DB2 isolation levels. 272
8.3.4 Locking . 274
8.3.5 Specifying the isolation level in DB2 . 276

Chapter 9. Database administration . 279
9.1 Database configuration . 280

9.1.1 DB2 configuration . 280
9.2 Database recovery . 286

9.2.1 DB2 database recovery. 286
9.3 Database replication . 296
9.4 Data movement . 298

9.4.1 DB2 data movement . 298
9.5 High availability . 304
9.6 Autonomics . 306
9.7 Workload management . 311
9.8 Database management tools . 312

9.8.1 DB2 Control Center. 312
9.8.2 IBM Optim and Data Studio tool suite overview 314

Chapter 10. Testing and tuning . 321
10.1 Test planning. 322

10.1.1 Principles of software tests . 322
10.1.2 Test documentation. 322
10.1.3 Test phases. 322
10.1.4 Time planning and time exposure . 323

10.2 Data checking techniques . 324
10.2.1 IMPORT/LOAD messages . 324
10.2.2 Data checking . 328

10.3 Code and application testing . 330
10.3.1 Checking the application code . 331
10.3.2 Security testing . 331

10.4 Troubleshooting. 332
10.4.1 Interpreting DB2 informational messages 332

vi MySQL to DB2 Conversion Guide

10.4.2 DB2 tools for troubleshooting . 334
10.4.3 DB2 diagnostic logs . 335
10.4.4 DB2 support information . 339
10.4.5 Monitoring tools. 342
10.4.6 Visual Explain . 354

10.5 Initial tuning . 356
10.5.1 Table space design . 356
10.5.2 Physical placement of database objects . 357
10.5.3 Buffer pools . 360
10.5.4 Large transactions. 363
10.5.5 SQL execution plan. 366
10.5.6 Configuration Advisor . 371
10.5.7 Design Advisor . 375

Chapter 11. Advanced DB2 features . 381
11.1 DB2 pureXML . 382
11.2 Data compression . 386
11.3 Partitioning features . 388

11.3.1 Database partitioning feature . 388
11.3.2 Table partitioning. 389
11.3.3 Multidimensional clustering . 392

11.4 Materialized query tables . 394
11.5 User-defined data types . 396

Appendix A. Mapping MySQL built-in functions and operators 399
A.1 Grouping related functions . 400
A.2 String functions . 402
A.3 Numeric functions . 408
A.4 Date and time functions . 409
A.5 Comparing operators and other functions. 410

Appendix B. Sample code for user-defined functions 413
B.1 Sample code for BIT_AND . 414
B.2 Sample code for FORMAT function . 415
B.3 Sample code for RPAD and LPAD functions . 416
B.4 Sample code for GREATEST function . 422
B.5 Sample code for LEAST . 427
B.6 Sample code for BIT_COUNT . 431
B.7 Sample code for SUBSTRING_INDEX. 432
B.8 Sample code for UNIX_TIMESTAMP . 433

Related publications . 435
IBM Redbooks publications . 435
Other publications . 435

 Contents vii

Online resources . 436
How to get IBM Redbooks publications . 439
Help from IBM . 439

Index . 441

viii MySQL to DB2 Conversion Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2009. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

1-2-3®
AIX®
AS/400®
ClearCase®
DB2 Connect™
DB2 Universal Database™
DB2®
developerWorks®
Distributed Relational Database

Architecture™
DRDA®
eServer™
Everyplace®
HACMP™

i5/OS®
IBM®
IMS™
Informix®
InfoSphere™
iSeries®
OpenPower®
Optim™
OS/390®
PartnerWorld®
POWER®
pSeries®
pureXML®
Rational Rose®

Rational®
Redbooks®
Redbooks (logo) ®
System i®
System p®
System z9®
System z®
Tivoli®
UniData®
WebSphere®
z/OS®
z9®
zSeries®

The following terms are trademarks of other companies:

AMD, the AMD Arrow logo, and combinations thereof, are trademarks of Advanced Micro Devices, Inc.

Snapshot, and the NetApp logo are trademarks or registered trademarks of NetApp, Inc. in the U.S. and
other countries.

SUSE, the Novell logo, and the N logo are registered trademarks of Novell, Inc. in the United States and
other countries.

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation
and/or its affiliates.

Red Hat, and the Shadowman logo are trademarks or registered trademarks of Red Hat, Inc. in the U.S. and
other countries.

VMware, the VMware "boxes" logo and design are registered trademarks or trademarks of VMware, Inc. in
the United States and/or other jurisdictions.

EJB, Enterprise JavaBeans, J2EE, Java, Java runtime environment, JavaBeans, JavaServer, JDBC, JSP,
MySQL, Solaris, Sun, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Access, ActiveX, Expression, Microsoft, MS, SQL Server, Visual Basic, Visual Studio, Windows Mobile,
Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

x MySQL to DB2 Conversion Guide

http://www.ibm.com/legal/copytrade.shtml

Intel Pentium, Intel Xeon, Intel, Itanium-based, Itanium, Pentium, Intel logo, Intel Inside logo, and Intel
Centrino logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

 Notices xi

xii MySQL to DB2 Conversion Guide

Preface

Switching database vendors is often considered an exhausting challenge for
database administrators and developers. Complexity, total cost, and the risk of
downtime are often the reasons that restrain IT decision makers from starting the
conversion project. The primary goal of this book is to show that, with the proper
planning and guidance, converting from MySQL™ to IBM DB2® for Linux, UNIX,
and Windows is not only feasible but straightforward.

If you picked up this book, you are most likely considering converting to DB2 and
are probably aware of several of the advantages of converting to DB2 data
server. In this IBM® Redbooks® publication, we discuss in detail how you can
take advantage of this industry leading database server.

This book is an informative guide that describes how to convert the database
system from MySQL 5.1 to DB2 9.7 on Linux®, and the steps involved in
enabling the applications to use DB2 instead of MySQL.

This MySQL to DB2 migration guide also presents the best practices in
conversion strategy and planning, conversion tools, porting steps, and practical
conversion examples. It is intended for technical staff involved in a MySQL to
DB2 conversion project.

The team who wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, San Jose Center.

Whei-Jen Chen is a Project Leader at the International Technical Support
Organization, San Jose Center. She has extensive experience in application
development, database design and modeling, and DB2 system administration.
Whei-Jen is an IBM Certified Solutions Expert in Database Administration and
Application Development, as well as an IBM Certified IT Specialist.

© Copyright IBM Corp. 2009. All rights reserved. xiii

Angela Carlson is a Software Engineer with IBM Canada. She
has four years of technical experience working in the IT industry,
focusing on relational database technology and application
development. She has experience in developing relational
database applications with PHP, Perl, and Java™. In Angela’s
current position, she works closely with IBM Business Partners
and their database needs to enable their solutions with DB2. She
also researches and develops competitive material on DB2 and
MySQL. Angela holds a Bachelor’s degree of Software
Engineering Science from the University of Western Ontario.

Thanks to the following people for their contributions to this project:

Boris Bialek
Program Director, Information Management Partner Technologies, IBM Canada

Irina Delidjakova
Information Management Emerging Partnerships and Technologies, IBM
Canada

Vlad Barshai
Information Management Emerging Partnerships and Technologies, IBM
Canada

Martin Schlegel
Information Management Partner Technologies, IBM Canada

Daniel Krook
Cloud Engineering and Experience, IBM U.S.

Emma Jacob
International Technical Support Organization, San Jose Center

Thanks to the authors of the previous edition of this book:

Authors of the first edition, MySQL to DB2 UDB Conversion Guide, SG24-7093,
published in May 2004, were Whei-Jen Chen, Andreas Blank, Michael Hoeller,
Rakesh Midha, and Klaus Subtil

Become a published author

Join us for a two- to six-week residency program. Help write a book dealing with
specific products or solutions, while getting hands-on experience with

xiv MySQL to DB2 Conversion Guide

leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, IBM Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us.

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review IBM Redbooks publication form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xvi MySQL to DB2 Conversion Guide

Summary of changes

This section describes the technical changes made in this edition of the book and
in previous editions. This edition might also include minor corrections and
editorial changes that are not identified.

Summary of Changes
for SG24-7093-01
for MySQL to DB2 Conversion Guide
as created or updated on December 1, 2009.

December 2009, Second Edition

This revision reflects the addition, deletion, or modification of new and changed
information described below.

New information
� DB2 features and functions of DB2 for Linux, UNIX®, and Windows® Version

9, 9.5, and 9.7

� IBM Data Movement Tool

� MySQL 5.1 features

Changed information
� DB2 and MySQL features and functions
� Conversion scenarios and examples

© Copyright IBM Corp. 2009. All rights reserved. xvii

xviii MySQL to DB2 Conversion Guide

Executive summary

This book describes how to migrate MySQL 5.1 to DB2 Version 9.7 on Linux and
enable your applications on DB2. To further ease your migration, this informative
guide will cover best practices in migration strategy and planning, as well as the
step-by-step directions, tools, and practical conversion. After completing this book, it
will be clear to the technical reader that a MySQL to DB2 migration is easy and
straightforward.

Potential IBM clients seek migration information because DB2 offers performance
and functional capabilities that the competition can't compare with. DB2 Express C,
our lightweight community edition, is free to develop, deploy and redistribute, and is
designed to give the IT community a powerful alternative to the open source or free
databases currently available.

DB2 Express C offers the same high quality, reliable, scalable features that you would
expect from an IBM enterprise database at no charge. Fixed Term License support is
available as well, at a lower price than the competition. The decision to migrate
becomes simple when you consider that DB2 can be easily deployed in the
development stack, while offering many additional features and ease of use.

Enterprise class features aimed to lower the total cost of ownership can be found in
every edition of DB2. DB2 has powerful autonomics which make installation,
configuration, maintenance and administration virtually hands free. DB2 9.7's
compression features help companies manage rising energy costs and reduce
datacenter sprawl by reducing storage requirements and improving I/O efficiency.

IBM is committed to providing products to our clients that are powerful and
affordable. DB2 provides industry leading features, such as pureXML, Workload
Management, and Granular Security. Using DB2 pureXML® makes XML data
processing even faster, more flexible, and more reliable. Manage workloads with new
threshold, priority and OS integration features in DB2 9.7. Keep data secure from
internal and external threats using the unparalleled security control in DB2 9.7.

Start taking advantage of these exciting new features and help your business
manage costs and simplify application development. Migrate your database systems
and applications today and discover why DB2 9.7 is a smarter product for a smarter
planet.

Arvind Krishna
General Manager
IBM Information Management

 Executive summary xix

xx MySQL to DB2 Conversion Guide

Chapter 1. DB2 for Linux, UNIX, and
Windows

The goal of this chapter is to give an overview of the DB2 database server, its
architecture, and the tools and utilities that are available with the server and
application programming interfaces.

In this chapter, we cover these topics:

� DB2 product overview
� DB2 for Linux, UNIX, and Windows architecture
� DB2 utilities
� DB2 database access

1

© Copyright IBM Corp. 2009. All rights reserved. 1

1.1 Introduction

IBM has an extremely strong history of database innovation and has developed a
number of highly advanced data servers. It started in the 60s when IBM
developed the Information Management System (IMS™), which is a hierarchical
database management system. IMS was used to maintained inventory for the
Saturn V moon rocket and the Apollo space vehicle. In the 70s, IBM invented the
Relational Model and the Structured Query Language (SQL). In the 80s, IBM
introduced DB2 for the mainframe (DB2 for z/OS®), which was the first database
that used relational modeling and SQL. DB2 for distributed platforms (DB2 for
Linux, UNIX, and Windows) was introduced in the 90s. Since then, IBM
continues to develop on DB2 for both mainframe and distributed platforms.
Although the relational data model has become more prevalent in the industry;
IBM still realizes that the hierarchical data model is important. Therefore in July
2006, IBM launched the first hybrid (also known as multi-structured) data server.

The release of DB2 for Linux, UNIX, and Windows Version 9 (DB2 9) data server
brought the most exciting and innovative database features to the market; these
features were further enhanced with the release of DB2 9.5 and 9.7. DB2 9
introduced many important features for both database administrators and
application developers. These features included pureXML®, autonomics, table
partitioning, data compression, and label-based access control. DB2 9.5
enhanced the manageability of the DB2 data server by introducing the threaded
engine, easier integration with high availability disaster recovery (HADR),
workload management, enhancements to autonomics, and more. The focus of
the DB2 9.7 release is to provide unparalleled reliability and scalability for the
changing needs of your business. Therefore, DB2 9.7 introduces enhancements
to Version 9 and Version 9.5 features, such as enhancements to data
compression, performance, workload management, security, and application
development.

When this book was written, DB2 9.7 had just been released on June 2009. DB2
9.7 is the database version that we use throughout the book. DB2 9.7 is a highly
scalable and easy to install and manage hybrid data server. DB2 was developed
to meet the demands of even the most critical database applications. This is
managed through various autonomics capabilities, such as self-tuning memory
management and automatic storage. DB2 provides a highly adaptable database
environment while optimizing data storage through backups and deep data row
compression. DB2 deep embedded capabilities allow for ubiquitous deployment
in user directories and administrative installations for any size server. In a single
database, DB2 provides native storage and processing of both transactional
XML data in a pre-parsed tree format and relational data using pureXML
technology.

2 MySQL to DB2 Conversion Guide

1.2 Product overview

DB2 for Linux, UNIX, and Windows spans the spectrum from products on
handheld devices to large clusters and mainframes (see Figure 1-1). You can
obtain more detailed information from the DB2 Web site:

http://www.ibm.com/db2/

Figure 1-1 DB2 product overview

1.2.1 DB2 Data Server Editions for the production environment

DB2 provides packages for users based on their business needs. In DB2 9.5,
IBM introduced the common client concept for all IBM data management
products that provides equal engine functionality across system boundaries. This
functionality means that DB2 scales up and down according to your needs. Be it
a desktop or a heavy duty enterprise server, DB2 has consistent behavior across
any platform, providing an easy move regardless of the size limit. DB2 widens
the boundaries even further, because all IBM data servers, including Informix®,
now share a common API for SQL. Therefore, whether using Java Database
Connectivity (JDBC™) on DB2 for z/OS, Informix 11 on an embedded system, or
DB2 for Linux, UNIX, and Windows, the driver code remains the same. In fact, all
database connections to any IBM data server can be made with the same
common client. In addition, IBM Optim™ Data Studio provides a new
cross-family tool for both application development and database management,
underlining commitment across and beyond DB2.

 Chapter 1. DB2 for Linux, UNIX, and Windows 3

http://www.ibm.com/db2/

There are several DB2 package formats:

� DB2 Personal Edition

DB2 Personal Edition (PE) provides a single user database engine that is
ideal for deployment to PC-based users. The PE includes the ability for
remote management, the pureXML feature, and the SQL replication feature,
making it the perfect choice for deployment in occasionally connected or
remote office implementations that do not require multi-user capability, that is,
point-of-sale systems.

PE does not accept remote database requests; however, it contains DB2
client components and serves as a remote client to a DB2 Server. The DB2
Personal Edition can also be used for connecting and managing other DB2
data servers in the network.

The Personal Edition includes most of the features included in DB2 Express
Edition and runs in either 32-bit or 64-bit Intel® or AMD™ workstations for
either Windows or Linux operating systems.

� DB2 Express-C

DB2 Express-C is the no-charge community version of the DB2 data server. It
is targeted towards developers and Independent Software Vendors (ISVs) to
allow the development and deployment of applications, including the no
charge distribution of DB2 Express-C itself. All applications developed with
this version of DB2 can be moved to a higher edition of DB2 for Linux, UNIX
and Windows and even DB2 for z/OS without any application changes if using
the common SQL API set of the DB2 family.

This version of DB2 is at no charge for download and is therefore perfectly
suited for DB2 educators and students. DB2 Express-C does not restrict the
database size and can be used in a 64-bit memory model. The code is
optimized to use up to a maximum of 2 CPU cores and 2 GB of memory. No
fix pack updates are available for this edition; however, new versions of
Express-C are updated and freely available for download at any time.

While this version does not include all the features of higher editions of DB2,
such as storage optimization, replication services, or high availability, it
comes with the award-winning pureXML technology to leverage both
relational and XML data by being able to natively store XML data in a single
database. Several of these features can be activated by purchasing the DB2
Express Fixed Term License (FTL). Obtaining the FTL provides 1 year of
24x7 support, plus the ability to use high availability and disaster recovery.

At any point, users of DB2 Express-C can receive advice on the IBM DB2
Express Forum, which is monitored by IBM DB2 developers, by accessing the
following link:

http://www.ibm.com/developerworks/forums/forum.jspa?forumID=805

4 MySQL to DB2 Conversion Guide

http://www.ibm.com/developerworks/forums/forum.jspa?forumID=805
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=805

DB2 Express-C runs on Windows or Linux for both Intel and AMD on 32-bit or
64-bit architecture, as well as on Linux on Power (IBM System p® and
System i®).

You can download DB2 Express-C from this link:

hhttp://www-01.ibm.com/software/data/db2/express/

� DB2 Express + Fixed Term License

The plus fixed term license (FTL) is a 1-year license subscription with 24x7
IBM support to DB2 Express, providing service-level assurances for problem
resolution and offering fix pack updates tied to the usual DB2 fix pack
schedule.

FTL also raises the DB2 Express-C limitations and is optimized to run for 4
CPU cores and 4 GB of memory. Additional features with the DB2 Express
FTL include the High Availability Disaster Recovery (HADR) feature and full
SQL replication capability.

Licensing is quite easy with DB2 Express-C + FTL, because it requires only
purchasing one FTL subscription per data server no matter how it is used or
as explained before, its size. This licensing explicitly applies also to an HADR
setup, where no distinction is made between cold, warm, or hot standby
usage.

DB2 Express-C with FTL runs on Windows or Linux for both Intel or AMD on
32-bit or 64-bit architecture, as well as on Linux on Power (IBM System p and
System i).

More information about DB2 Express + Fixed Term License is available at
this Web site:

http://www-01.ibm.com/software/data/db2/express/support.html?S_TACT=105AGX2
8&S_CMP=DLMAIN

� DB2 Express

DB2 Express edition is specifically tailored for small and medium businesses
(SMBs). It is designed for independent software vendors who need an
easy-to-install database integrated into their application software solution. It is
a multi-user version that supports local and remote applications in
stand-alone and local area network (LAN) environments.

DB2 Express utilizes up to 4 GB of memory and can be installed on a server
with up to 200 processor value units. For more information about processor
value units, visit this Web site:

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0611zikopoulos
2/

Several key features and strengths of the Express Edition are simplified
deployment, SQL replication, backup compression, autonomic management

 Chapter 1. DB2 for Linux, UNIX, and Windows 5

http://www-01.ibm.com/software/data/db2/express/support.html?S_TACT=105AGX28&S_CMP=DLMAIN
http://www.ibm.com/software/data/db2/express/download.html
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0611zikopoulos2/

features, such as the Self-Tuning Memory Manager, adaptive utility throttling,
automatic storage management, configuration and design advisors, health
and fault monitors, automated backup, pureXML, high availability, and more.

DB2 Express runs on Linux, Solaris™ x86, or Windows platforms.

� DB2 Workgroup

DB2 Workgroup Server Edition is used primarily in small to medium-sized
business environments. It includes support for a per authorized user-based or
a per processor-based licensing model that is designed to provide an
attractive price point for smaller installations while still providing a fully
functional data server on a wider range of platforms compared to lower
function editions of DB2.

Workgroup Server now includes the High Availability Disaster Recovery
(HADR) feature, Tivoli System Automation for MultiPlatforms (TSA MP), and
Online Table Reorganization. The following feature packs are available:

– Query Optimization including Materialized Query Tables (cached tables)
– Multidimensional Clustering and Query Parallelism
– pureXML

This DB2 edition can be deployed on systems with up to 400 processor value
units and 16 GB of memory.

While the DB2 Express edition only runs on Windows, Linux, or Solaris, the
Workgroup Server edition adds support for AIX®, Hewlett-Packard UNIX
(HP-UX) on Itanium64, and Solaris on x86 and Sparc.

� DB2 Enterprise

DB2 Enterprise Server Edition meets the database server needs for any size
business. This product is the ideal foundation for building data warehouses,
transaction processing, or Web-based solutions, as well as for a back-end for
packaged solutions, such as enterprise resource planning (ERP), customer
relationship management (CRM), and supply chain management (SCM). In
addition, the DB2 Enterprise Server Edition offers connectivity and integration
for other enterprise DB2 and Informix data sources.

The Enterprise Server Edition does not pose limits to the maximum memory
or number of CPU cores. It can be licensed with either authorized user
licenses or processor value unit licenses.

In addition to the features offered in the Workgroup Server Edition, the
following features are also available: Query Parallelism, Multidimensional
Clustering, Materialized Query Tables, Table Partitioning, and Connection
Concentration. With the DB2 feature pack, you can add the following
features: Performance Optimization Feature, Advanced Access® Control
Feature, Storage Optimization Feature, and Geodetic Data Management
Feature.

6 MySQL to DB2 Conversion Guide

DB2 Enterprise Server Edition runs on Windows (32-bit and 64-bit), Linux
(Intel/ AMD 64-bit, System i, System p, System z®), AIX, Solaris (Sparc and
x64) and HP-UX (ia64).

� InfoSphere™ Warehouse

InfoSphere Warehouse (formerly known as DB2 Warehouse) is a powerful
platform for building business intelligence (BI) solutions. InfoSphere
Warehouse comes as single integrated software package, using DB2
Enterprise Server Edition as its base. It provides an ideal solution for
companies that need to consolidate data marts, information silos, and
business analytics.

InfoSphere Warehouse contains database management tools and embedded
data movement and transformation tools. In addition to the base feature set of
DB2 Enterprise Server Edition, the DB2 feature packs containing Data
Partitioning Feature (DPF) are standard in all editions of InfoSphere
Warehouse. Workload Management and Deep Data Row Compression are
optional features for InfoSphere Warehouse Enterprise Base Edition.

The overall integrated software package for InfoSphere Warehouse has
support for slice and dice analytics and provides direct support for optimized
online analytical processing (OLAP) analytics against the dynamic
warehouse. Embedded analytical features include capabilities for Data
Mining, In-line Analytics, Cubing Services, and Unstructured Analytics.

� Other DB2 editions

There are also DB2 versions for System i and System z available. See the
following Web site for details:

http://www.ibm.com/software/data/db2/

1.2.2 Products for accessing System z and System i host data

With the following DB2 products, you can extend enterprise systems to access
the host data in a System z or System i system:

� DB2 Connect™ Personal Edition

The DB2 Connect Personal Edition provides the application programming
interface (API) drivers and connectivity infrastructure to enable direct
connectivity from desktop applications to System z and System i data
servers. This product is specifically designed and is licensed for enabling
two-tier, client/server applications running on individual workstations, and as
such, is not appropriate for use on servers.

� DB2 Connect Enterprise Edition

The DB2 Connect Enterprise Edition addresses the needs of organizations
that require robust connectivity from a variety of desktop systems to System i

 Chapter 1. DB2 for Linux, UNIX, and Windows 7

http://www.ibm.com/software/data/db2/

and System z database servers. DB2 client software is deployed on desktop
systems and provides drivers that connect client/server applications running
on these desktop systems to a DB2 Connect server (gateway) that accesses
host data. The licensing model for this product is user-based.

� DB2 Connect Application Server Edition

Technically, the DB2 Connect Application Server Edition product is identical
to the DB2 Connect Enterprise Server; however, its licensing terms and
conditions are meant to address the specific needs of multi-tier, client/server
applications, as well as applications that utilize Web technologies. DB2
Connect Application Server Edition license charges are based on the size and
number of processors that are available to the application servers where the
application is running.

� DB2 Connect Unlimited Edition

The DB2 Connect Unlimited Edition product is ideal for organizations with
extensive usage of DB2 Connect, especially where multiple applications are
involved. This product provides program code of the DB2 Connect Personal
Edition, as well as program code identical to the DB2 Connect Application
Server Edition for unlimited deployment throughout an organization.

1.2.3 DB2 for pervasive platforms

DB2 Everyplace® Edition supports a wide variety of handheld devices, such as
Palm OS, Windows Mobile® for Pocket PC, Windows desktops, Symbian, QNX
Neutrino, and various Linux distributions. Its strength is to synchronize with data
from other systems, using security features, including table-level encryption and
communication encryption, such as Secure Sockets Layer (SSL).

DB2 Everyplace is also extremely flexible by being completely self-managed and
by supporting many programmable API interfaces, such as Open Database
Connectivity (ODBC), Java Database Connectivity (JDBC), .NET, DB2 call level
interface (CLI), and so on. Its engine is highly flexible, which makes it easy to
move DB2 Everyplace databases from one supported mobile device to another.

1.2.4 Additional DB2 data server features

In addition to the product offerings for Linux, UNIX, Windows, and accessing
System z and System i host data, DB2 also offers a great variety of features,
which are included in various DB2 packages.

Information about additional DB2 features and products can be found at this Web
site:

http://www.ibm.com/software/data/db2/9/features.html?S_CMP=wspace

8 MySQL to DB2 Conversion Guide

http://www.ibm.com/software/data/db2/9/features.html?S_CMP=wspace

1.3 DB2 for Linux, UNIX, and Windows architecture

Data servers provide software services for the secure and efficient management
of structured information. DB2 is a hybrid relational and XML data server. A data
server refers to a computer where the DB2 database engine is installed. The
DB2 engine is a full-function, robust database management system that includes
optimized SQL support based on actual database usage and tools to help
manage the data. In this section, we will discuss the DB2 engine architecture and
the database objects that are used to maintain your database.

1.3.1 DB2 9.7 threaded architecture and process model

Figure 1-2 shows the DB2 9.7 architecture overview. Starting with DB2 9.5, a
threaded model architecture is used. There are many advantages to using a
threaded model architecture. Firstly, a new thread requires less memory and
fewer operating system resources than a process, because certain operating
system resources can be shared among all threads within the same process.
Moreover, on specific platforms, the context switch time for threads is less than
that for processes, which can improve performance.

Figure 1-2 DB2 threaded architecture

 Chapter 1. DB2 for Linux, UNIX, and Windows 9

From a client/server perspective, the client code and the server code are
separated into separate address spaces. The application code runs in the client
process, while the server code runs in a separate process. The client process
can run on either the same machine as the data server or another machine,
accessing the data server through a programming interface. The memory units
are allocated for database managers, databases, and applications.

Because DB2 is running with a threaded architecture, all threads within the
engine process share the same address space, meaning all threads can
immediately see new memory allocations. This design creates a simplified
memory model by allowing memory growth and shrinkage through control of a
single memory parameter for an entire instance. This control is automatically
performed by the Self-Tuning Memory Manager, which can also tune other
memory parameters for best performance without DBA intervention. Its adaptive
algorithm is able to react to unforeseen memory requirements in DB2 caused by
workloads running against it.

To enable access to a specific database, the DB2 instance process responsible
for the database must be running on the DB2 server. When an instance process
is started, several processes are created, which interact with one another to
maintain connected applications and the database. There are several
background processes in DB2 that are pre-started; other processes start on a
need-only basis. There are several important background processes:

� The main process is the DB2 System Controller (db2sysc), which runs the
entire DB2 engine infrastructure. The DB2 data server activities are
performed by Engine Dispatchable Units (EDU), which are defined as
threads running within a single operating system process.

� A second DB2 background process is started together with the system
controller and is called the DB2 Watch Dog (db2wdog). Its responsibility is to
watch and monitor the system controller and to react to error conditions.

� For autonomic tasks, another process is initialized when the database is
activated, which can happen either manually or by being triggered by a client
connection. This process is the Autonomic Computing Daemon (db2acd) and
runs autonomic tasks, such as health-monitoring, auto-runstats, and the
administration scheduler on the client side.

� There is also the db2fmp process, which, decoupled from the DB2 system
controller process, serves thread-safe stored procedures and user-defined
functions (UDFs).

1.3.2 DB2 database objects

In this section, we introduce the DB2 objects and their relationships to each
other. Figure 1-3 on page 11 shows the fundamental DB2 database objects.

10 MySQL to DB2 Conversion Guide

Figure 1-3 DB2 object relationships

These are a few major DB2 objects:

� Instances

A DB2 instance represents the database management system. It controls
how data is manipulated and manages system resources assigned to it. Each
instance is a complete, fairly independent environment, containing all the
database partitions defined for a given parallel database system. An instance
can have its own set of databases (which other instances cannot access
directly), and all database partitions share the same system directories. Each
instance has separate security from other instances on the same machine
(system), allowing for situations where both production and development
environments are run on the same machine without interference. In order to
connect to a database, any database client must first establish a network
connection to the instance.

� Databases

A database is a structured collection of data, which is stored within tables.
Since DB2 9, data within tables can be stored as both relational data and
XML documents natively in a pre-parsed tree format within a table column.
Each database includes a set of system catalog tables that describes the

 Chapter 1. DB2 for Linux, UNIX, and Windows 11

logical and physical structure of the object in the database, a configuration file
containing the parameter values configured for the database, and a recovery
log. Figure 1-4 shows the relationship between instances, databases, and
tables.

Figure 1-4 Relationship between instances, databases, and tables

� Database partition groups

A database partition group is a set of one or more database partitions
(Figure 1-5 on page 13). A database partition group must be created prior to
the creation of the tables in a database. This database partition group is
where the table spaces will be stored. After the database partition group is
there, a table space can be created where tables will be stored. If a partition
group is not specified, there is a default group where table spaces are
allocated. In a non-partitioned environment, all the data resides in a single
partition; therefore, it is unnecessary to worry about partition groups in simple
setups.

12 MySQL to DB2 Conversion Guide

Figure 1-5 Database partition groups in a database

� System catalog tables

Each database includes a set of system catalog tables that describes the
logical and physical structure of the data. DB2 creates and maintains an
extensive set of system catalog tables for each database. These tables
contain information regarding definitions of database objects, including user
tables, views, indexes, and security information about the privileges that
users have on these objects. Catalog tables are created when the database is
created and are updated during normal operations. They cannot be explicitly
created or dropped; however, they can be queried for their contents using the
catalog views.

� Table spaces

A database is organized into subdivided table spaces, which store data. When
creating a table, you can decide to have certain objects, such as indexes and
large object (LOB) data, kept separately from the rest of the table data. A
table space is equally spread over one or more physical storage devices,
which is called striping. When using a database, if no additional table spaces
are created by the user, the default user table space is used. DB2 allows you
as much control as needed.

When table spaces are created, they reside in database partition groups. The
table space definitions and attributes are maintained in the database system
catalog. Each table space has at least one container assigned to it. A
container is an allocation of physical storage, such as a file or a device.

Table spaces come in two types: system managed space (SMS) or database
managed space (DMS), as shown in Figure 1-6 on page 14. In an SMS table

 Chapter 1. DB2 for Linux, UNIX, and Windows 13

space, each container is a directory in the file system of the operating system.
This type of table space allows the operating system’s file manager to control
the storage space. In a DMS table space, each container is either a re-sizable
file or a pre-allocated physical device, such as a disk, which the database
manager must control.

Figure 1-6 DMS/SMS table spaces and containers

When using SMS or DMS in combination with container files, you can choose
how DB2 handles these files. For example, you can choose to enable various
optimization features if supported by the operating systems, that is, Direct I/O
(to bypass file system caching; always enabled with raw and block devices),
Vector I/O (reading contiguous data pages from disk into contiguous portions
of memory), and Async I/O (non-sequential processing of read and write
requests across multiple disks to avoid delays from synchronous events).

When using the Automatic Storage feature in DB2, you can simply specify
folders where the database can automatically create and manage DMS table
spaces. When more space is required, the database manager automatically
allocates more space. Table spaces can be automatically resized using this
feature. This feature provides a convenient and worry-free operation
scenario. You can perform manual operations without having to specify
container files.

� Containers

A container is a physical storage device. It can be identified by a directory
name, a device name, or a file name. A container is assigned to a table
space. A single table space can span many containers, but each container
can belong to only one table space.

14 MySQL to DB2 Conversion Guide

� Buffer pools

A buffer pool is the amount of memory allocated to cache table and index
data pages. The purpose of the buffer pool is to improve system performance.
Think of it as a database-controlled file system cache. Data can be accessed
much faster from memory than from disk. Therefore, the fewer times the
database manager needs to read from or write to a disk (I/O) synchronously,
the better the performance of the application. The size of the buffer pool is the
single most important performance tuning area to help reduce the delay
caused by synchronous I/O.

Buffer pool memory can be automatically tuned online in the same way as
most other memory-related parameters. The feature responsible for
automatic tuning is called the Self-Tuning Memory Manager, which allocates
and releases new memory from the OS by shifting unused memory within
DB2 to components.

� Schemas

A schema is an identifier, by default, the user ID, which qualifies tables and
other database objects. A schema can be owned by an individual, and the
owner can control access to the data and the objects within it. A schema
name is used as the first part of a two-part object name. For example, a
schema named Smith might qualify a table named SMITH.PAYROLL.

� Tables

A database presents data as a collection of tables. Data within a table is
arranged in columns and rows. A table can contain XML documents that are
natively stored as a parsed hierarchical format, as shown in Figure 1-7 on
page 16. The data in the table is logically related, and relationships can be
defined between tables. Table data is accessed by using Structured Query
Language (SQL) or XQuery with XPath expressions. Both products are
standardized query languages for defining and manipulating both relational
and XML data in a database. A query is used in applications or by users to
retrieve data from a database. A typical query for relational data uses SQL to
create a statement in the form of:

SELECT <column_name> FROM <table_name>

A typical XQuery for the table that is shown in figure 1-7 looks like this query:

xquery
db2-fn:sqlquery("SELECT INFO FROM XMLEmployeeInfo
 WHERE EmpID=1001")/customerinfo/name

This query allows us to iterate through all our table rows and return customer
information from each XML document stored in each row for the example
table that is outlined in Figure 1-7 on page 16. DB2 and the XQuery language
also allow us to modify and update a subtree of an XML document in place
without having to rewrite the whole document. This query is possible,

 Chapter 1. DB2 for Linux, UNIX, and Windows 15

because we already store XML documents in a pre-parsed and hierarchical
format:

db2 create table dept (EmpID int,…, XMLEmployeeInfo xml)

Figure 1-7 Relational and XML data in a single table

When using the Deep Data Row Compression feature, DB2 is able to
transparently compress and decompress table rows (for each table with
compression turned on). This feature can effectively save 45-80% of the
space on disk. Compressed rows in a table are compressed when
pre-fetched to buffer pool memory and left in a compressed state until they
are actually used. Although decompression of the data when it is fetched
adds a slight overhead, I/O bound workloads will have a performance gain
due to the reduced amount of data we actually need to read and write from or
to disk, as well as saved memory.

� Views

A view provides another way of looking at data from one or more tables; it is a
named specification of a result table. The specification is a SELECT
statement that runs whenever the view is referenced in an SQL statement. A
view has columns and rows just like a base table. All views can be used just
like base tables for data retrieval. Figure 1-8 on page 17 shows the
relationship between tables and views.

16 MySQL to DB2 Conversion Guide

Figure 1-8 Relationship between tables and views

� Indexes

An index is a set of keys, each pointing to rows in a table. For example, table
A has an index based on the first column in the table (Figure 1-9 on page 18).
This key value provides a pointer to the rows in the table: value 19 points to
record KMP. If searching for this particular record, a full table scan can be
avoided, because we have an index defined. Except for changes in
performance, users of this table are unaware that an index is being used.
DB2 decides whether to use the index or not. DB2 also provides tools, such
as the Design Advisor, that can help decide what indexes will be beneficial.

An index allows efficient access when selecting a subset of rows in a table by
creating a direct path to the data through pointers. The DB2 SQL Optimizer
chooses the most efficient way to access data in tables. The optimizer takes
indexes into consideration when determining the fastest access path.

Indexes have both benefits and disadvantages. Be careful when defining
indexes and take into consideration costs associated with update, delete, and
insert operations and maintenance, such as reorganization and recovery.

 Chapter 1. DB2 for Linux, UNIX, and Windows 17

Figure 1-9 Relationship between indexes and tables

1.3.3 DB2 catalog

In DB2, the metadata is stored in a set of base tables and views called the
catalog. The catalog contains information about the logical and physical
structure of the database objects, object privileges, integrity information, and
more.

The catalog is automatically created with the database. The base tables are
owned by the SYSIBM schema and stored in the SYSCATSPACE table space.
On top of the base tables, the SYSCAT and SYSSTAT views are created. SYSCAT
views are the read-only views that contain the object information and are found in
the SYSCAT schema. SYSSTAT views are views, which you can update, that
contain statistical information that is found in the SYSTAT schema. You can
obtain the complete DB2 catalog views in DB2 SQL Reference Volume 1 and 2
available for download under the following link:

http://www.ibm.com/support/docview.wss?rs=71&uid=swg27015148

1.4 DB2 utilities

All DB2 system commands are installed in the sqllib/bin directory during
installation. Several of the most important commands in DB2 are listed in
Table 1-1 on page 19, Table 1-2 on page 19, Table 1-3 on page 20, Table 1-4 on
page 20, and Table 1-5 on page 20. You can obtain more information in the DB2
manuals, especially the Command Reference that is available at this link:

http://www.ibm.com/support/docview.wss?rs=71&uid=swg27015148

18 MySQL to DB2 Conversion Guide

http://www.ibm.com/support/docview.wss?rs=71&uid=swg27015148
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27015148

Table 1-1 DB2 instance commands

Table 1-2 Handling general database tasks

Command Description Example

db2start Starts the default instance db2start

db2stop Stops the current instance db2stop -f

db2icrt Creates an instance db2icrt -u db2fenc1 db2inst1

db2idrop Drops an instance db2idrop -f db2inst1

db2ilist Lists all instance db2ilist

db2imigr Converts an instance after upgrading
DB2

db2imigr -u db2fenc1 db2inst1

db2iupdt Updates an instance after installation
of a fix pack

db2iupdt -u db2fenc1 db2inst1

Description Example

Deactivates a database db2 deactivate db mydb

Views database manager settings db2 get dbm cfg show detail

Changes a database manager setting db2 update dbm cfg using health_mon off

Views database settings db2 get db cfg show detail

Changes a database setting db2 update db cfg using
SELF_TUNING_MEM on

Views registry values db2set

Changes registry parameters db2set DB2AUTOSTART=yes

Views cataloged databases db2 list db directory

Views cataloged nodes db2 list node directory

Lists all connected applications db2 list applications all

Forces applications off db2 force application (41408, 55458)

Lists utilities db2 list utilities

Gets a database snapshot db2 get snapshot for database on mydb

 Chapter 1. DB2 for Linux, UNIX, and Windows 19

Table 1-3 DB2 DAS instance commands

Table 1-4 Informational commands

Table 1-5 Graphical tools

Command Description Example

db2admin Starts and stops the DB2 Administration Server db2admin start

dasauto Autostarts DB2 Administration Server dasauto -on

dascrt Creates a DB2 Administration Server dascrt -u dasusr1

dasdrop Removes a DB2 Administration Server dasdrop

dasmigr Converts a DB2 Administration Server dasmigr

Command Description Example

db2level Shows the current version and service level db2level

db2look Extracts DDL statements db2look -d dep -a -e -o
db2look.sql

db2dart Database analysis and reporting tool db2dart dbaddr

db2pd Troubleshooting tool db2pd -db sample -locks

Tool Command Purpose

IBM Data Studio Integrated development environment
package, which includes all administrative
capabilities, as well as an integrated
Eclipse development environment for
Java, XML, and Web services

Optim Development
Studio

A purchasable integrated development
environment for advanced development of
DB2 databases

Optim Database
Administrator

A purchasable integrated development
environment for advanced administration of
DB2 databases

DB2 installer db2setup Installs DB2 and creates instances

DB2 instance installer db2isetup Creates instances

Control Center db2cc Administers instances, databases

Replication Center db2rc Administers replication between servers

Satellite Admin. Center db2cc Administers collections of DB2 servers

20 MySQL to DB2 Conversion Guide

1.5 DB2 database access

IBM introduced common application development and tooling support for DB2 for
Linux, UNIX, and Windows (as of 9.5), DB2 for z/OS, and Informix Dynamic
Server. This support generally lowers development costs through reuse and
support of common components across IBM data servers.

More information to application development, tools, clients, and drivers can be
obtained at this link:

http://www.ibm.com/software/data/db2/ad/

and

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0804zikopoulos

1.5.1 DB2 clients and drivers

DB2 clients and drivers are used to access databases that reside on DB2
servers. A database cannot be created on a DB2 client.

IBM data server clients
DB2 Data Server 9.7 comes with the following clients:

� IBM Data Server Runtime Client
� IBM Data Server Client

Command line
processor (CLP)

db2 or
db2cmd

Executes DB2 commands at the command
line

Health Center db2hc Views/resolves health monitor alerts

Task Center db2cc –tc Schedules, runs tasks; notifies contacts

Journal db2cc -j Monitors jobs, recovery history, and so on

Configuration Assistant db2ca Configures instances and databases

Note: The Control Center and its associated components have been
deprecated in Version 9.7 and might be removed in a future release. We
recommend that you use the new suite of GUI tools for managing DB2 data
and data-centric applications. These new tools include the IBM Data Studio,
the Optim Development Studio, and the Optim Database Administrator.

 Chapter 1. DB2 for Linux, UNIX, and Windows 21

http://www.ibm.com/software/data/db2/ad/
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0804zikopoulos

The IBM Data Server Runtime client offers the basic client functionality and
includes drivers for ODBC, CLI, ADO.NET, Object Linking and Embedding (OLE)
DB, PHP, Ruby, Perl-DB2, JDBC, and SQLJ. This client already includes the
drivers and the capabilities to define data sources. Furthermore, the Lightweight
Directory Access Protocol (LDAP) is available, as well.

Additionally, the IBM Data Server Client provides vast amounts of sample code
in various languages, header files for application development and graphical
administration and development tools, such as the DB2 Control Center, the IBM
Data Studio, the MS® Visual Studio® Tools, and more.

Figure 1-10 illustrates how to connect to a DB2 data server using the IBM data
server clients.

Figure 1-10 DB2 9.7 client and drivers

IBM Optim Data Studio is a comprehensive suite of integrated Eclipse tools
geared toward both database developers and database administrators. It
reduces the time to perform day-to-day administration tasks, create, deploy, and
debug SQL and Java stored procedures, deploy data-centric Web services, and
create queries for relational and XML data using SQL and XQuery. It supports
multiple IBM data servers, including DB2 for Linux, UNIX, and Windows, DB2 for
i5/OS® and z/OS, Apache Derby, and the Informix Dynamic Server. Because it is

22 MySQL to DB2 Conversion Guide

built on the extensible Eclipse framework, this IDE includes a number of plug-ins
to support programming languages, such as Java, C/C++, PHP, Ruby, Perl, and
so on. Other plug-ins are available to maintain the written application sources in
various source code repositories, for example, the Concurrent Versions System
(CVS) or IBM Rational® ClearCase® from within IBM Optim Data Studio.

If running mixed versions of DB2 servers and clients, it is good to know that DB2
Clients from DB2 UDB Version 8 and DB2 9.1 or 9.5 for Linux, UNIX, and
Windows are still supported and able to connect to a DB2 9.7 data server. In the
reverse direction, the newer IBM data server clients from Version 9.7 can also
connect to the earlier DB2 9.1 and DB2 UDB Version 8 servers using the IBM
Data Server Driver for ODBC, CLI, and .Net. In this case, however, new DB2
Version 9.7 functionality is not available.

IBM data server drivers
The IBM data server drivers include the products:

� IBM Data Server Driver for JDBC and SQLJ
� IBM Data Server Driver for ODBC, CLI, and .NET

As of DB2 Version 9.5, both clients and drivers are decoupled from the server
release schedule and can be downloaded separately. The IBM Data Server
Driver for JDBC and SQLJ is already included in the IBM Data Server Runtime
Client. It provides support for JDBC 3 and 4 compliant applications, as well as for
Java applications using static SQL (SQLJ). Support is also provided for
pureXML, SQL/XML, and XQuery. All of this support and other features, such as
connection concentration, automatic client reroute, and more, are provided within
in a single package called db2jcc4.jar. The IBM Data Server Driver for ODBC,
CLI and .Net is a lightweight deployment solution for Windows applications to
provide runtime support for applications without needing to install the Data
Server client or the Data Server Runtime Client. On Windows, the driver comes
as an installable image including merge modules to easily embed it in a Windows
installer-based installation. On Linux and UNIX, there is another easy
deployment solution called the IBM Data Server Driver for ODBC and CLI, which
is available in tar format.

Communication protocols
DB2 primarily uses these protocols to communicate:

� TCP, IPv4, IPv6, and Named Pipes (Windows only) for remote connections
� Interprocess Communication (IPC) for local connections within a DB2

instance

 Chapter 1. DB2 for Linux, UNIX, and Windows 23

For client/server communication, DB2 supports TCP/IP and Named Pipes for
remote or local loopback connections and uses IPC for client connections, which
are local to the DB2 server instance. Local and remote DB2 connections are
illustrated in Figure 1-11.

Figure 1-11 Client connection scenario

Protocols are automatically detected and configured during an instance creation.
The DB2COMM registry variable identifies the protocol detected in a server. To
enable a specific protocol on the server, the db2set db2comm command must be
executed. For TCP/IP, a unique port address has to be specified in the database
manager configuration. This port is registered in the services file (usually
/etc/services on UNIX and Linux). For example, to reserve port 50000 with the
service name db2icdb2, the entry in the services file is:

db2icdb2 50000/tcp

From the command line, this information can be then updated in the database
manager with the following DB2 command:

db2 UPDATE DBM CFG USING SVCENAME db2icdb2

These tasks can also be performed using the DB2 Configuration Assistant utility.

Client/server configuration methods
The following methods are available for client/server configuration:

� Statically using command line processor (CLP) or Configuration Assistant
(Discovery Service available)

� Dynamically using Lightweight Directory Access Protocol (LDAP)

At the client side, the database information is configured using either the
CATALOG command or using the Configuration Assistant. The databases are

24 MySQL to DB2 Conversion Guide

configured under a node, which describes host information, such as protocol
use, port number, and so on. To configure a remote TCP/IP node, use the
following command:

db2 CATALOG TCPIP NODE node-name REMOTE host-name SERVER service-name

The service name registered in the server or the port number can be specified in
the SERVER option. To catalog a database under this node, the command used
is:

db2 CATALOG DATABASE database-name AS alias-name AT NODE node-name

When using the Configuration Assistant GUI tool to add a database connection,
a database discovery can be started to find the desired database.

For information about how to enable and configure DB2 in an LDAP
environment, have a look at the Lightweight Directory Access Protocol (LDAP)
section within the “Database fundamentals” chapter in the DB2 Information
Center. The DB2 Information Center contains searchable and structured Web
pages and can be installed locally. Additionally, the Information Center is also
publicly available online at this Web site:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

1.5.2 Application access

You can use various methods when deploying applications with DB2 Data Server
9.7:

� Single-tier

In this configuration, the application and the database reside on the same
system. In enterprise environments, it can be rare to see such a configuration,
because remote access to a database server is typically required.
Nonetheless, this method is quite common for developing applications that
can later be deployed transparently in a multi-tier DB2 environment without
any changes or batch applications.

� Client/Server or 2-tier

The application and the database reside on separate systems. The machines
where the application runs typically have a DB2 client installed, which
communicates over the network to a database server. For the application, the
physical location of the data is transparent. The application communicates
with the DB2 client using a standard interface (for example, ODBC) and the

Note: DB2 Discovery method is enabled at the instance level using the
DISCOVER_INST parameter, and at database level using the
DISCOVER_DB parameter.

 Chapter 1. DB2 for Linux, UNIX, and Windows 25

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

DB2 client takes over the task of accessing the data over the network. In
certain cases, such as browser-based access or Java-based access, it is not
necessary to have the DB2 client running on the same machine where the
application executes.

DB2 provides exceptional flexibility for mixing and matching client and server
platforms in a heterogeneous environment. DB2 client and server code is
available for a wide variety of platforms. For example, the application can
execute on a Windows-based machine with a DB2 client for Windows, which
can then access a DB2 database on a Linux server. Likewise, the Linux
machine can act as a client and access data from UNIX servers or
mainframes.

� Multi-tier

In a multi-tier configuration, the application, DB2 client, and the data source
typically reside on separate systems. Table 1-6 provides examples of these
configuration scenarios.

Table 1-6 Multi-tier configuration examples

IBM recognizes that in many cases there might be a need for accessing data
from a variety of distributed data sources rather than one centralized
database. The data sources can be from IBM, such as DB2 or Informix, from
non-IBM databases, such as Oracle®, or even from non-relational data, such
as files or spreadsheets. As illustrated in the last scenario in Table 1-6, IBM
offers the most comprehensive business integration solution by allowing
federated access to a variety of distributed data sources.

1.5.3 DB2 application programming interfaces

In order to access or manage DB2 objects, several application programming
interfaces (APIs) can be used, as shown in Figure 1-12 on page 27.

Client Middle-tier Server

Web-browser Web server DB2 database

Application client Application server
DB2 client

DB2 database server 1
DB2 database server 2

Application
DB2 Client

DB2 Connect Gateway System z®, System i®

Application
DB2 Client

DB2 server Secondary data sources
(for example, Mainframe DB2,
Non-DB2, and non-relational)

26 MySQL to DB2 Conversion Guide

Figure 1-12 Application connections to DB2

DB2 administrative application programming interface
DB2 provides numerous administrative APIs, which allow applications to perform
database administration tasks available in DB2 Control Center, such as
importing and exporting data, or creating, activating, backing up, or restoring a
database. These calls can be included within embedded SQL and DB2 CLI
applications. Examples of API programs can be found in the DB2 home directory
sqllib/sample/ for various programming languages. For additional information,
refer to DB2 Administrative API Reference, SC23-5824.

Embedded SQL statements in applications
Two types of SQL statements have to be distinguished:

� Static SQL statements

With static SQL statements, the SQL statement type and the table and
column names are known before compilation time. The specific data values
for which the statement is searching are not known. These values can be
represented in host language variables.

Before compiling and linking the program, pre-compiling and binding of the
embedded SQL statements must be performed. Pre-compiling converts

 Chapter 1. DB2 for Linux, UNIX, and Windows 27

embedded SQL statements into DB2 runtime API calls that a host compiler
can process to create a bind file. The bind command creates a package in the
database. This package then contains the SQL operation and the access plan
that DB2 will use to perform the operations.

� Dynamic SQL

Dynamic SQL statements in an application are built and executed at run time.
For a dynamically prepared SQL statement, the syntax has to be checked and
an access plan has to be generated during the program execution.

Examples of embedded static and dynamic SQL can be found in the DB2
home directory: sqllib/samples/.

DB2 call level interface
DB2 call level interface (DB2 CLI) is a programming interface that can be used
from C and C++ applications to access DB2 data servers. DB2 CLI is based on
the Microsoft® Open Database Connectivity (ODBC) specification and the
International Organization for Standardization (ISO) CLI standard. The DB2 CLI
library can be loaded as an ODBC driver by an ODBC driver manager. DB2 CLI
includes support for many ODBC and ISO SQL/CLI functions, as well as DB2
specific functions. Figure 1-13 illustrates the ODBC driver manager environment
and the DB2 CLI environment.

Figure 1-13 ODBC/CLI driver connectivity

28 MySQL to DB2 Conversion Guide

When using DB2 CLI, the application passes dynamic SQL statements as
function arguments to the database manager for processing. Because of this
design, applications use the common access packages that are provided with
DB2. DB2 CLI applications do not need to be pre-compiled or bound. Only
compiling and linking the application are needed. Before DB2 CLI or ODBC
applications can access DB2 databases, the DB2 CLI binds files, which come
with the IBM Data Server Client, to each DB2 database that will be accessed.
This binding occurs automatically with the execution of the first statement.

Typically, when building an ODBC application, an ODBC driver manager is
needed, which is provided by platform vendors, such as Microsoft and others. An
ODBC driver manager is available for Linux at this Web site:

http://www.unixodbc.org/

In environments without an ODBC driver manager, DB2 CLI is a self sufficient
driver, which supports a subset of the functions provided by the ODBC driver.
Examples of C programs using CLI calls can be found in the DB2 home directory:
sqllib/samples/cli. For additional information regarding CLI, refer to Call Level
Interface Guide and Reference, Volume 1 and Volume 2, SC23-5844 and
SC23-584.

Java database connectivity application
DB2 Java support includes Java database connectivity application (JDBC), a
vendor-neutral dynamic SQL interface that provides data access to the
application through standardized Java methods. For detailed information about
the Java support, we strongly recommend the following articles and publications:

http://www.ibm.com/support/docview.wss?uid=pub1sc23585301
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0804zikopoulos/

Similar to DB2 CLI, pre-compiling or binding a JDBC program is not necessary.
As a vendor-neutral standard, JDBC applications offer increased portability. The
JDBC API, which is similar to the CLI/ODBC API, provides a standard way to
access databases from Java code. The Java code passes SQL statements to the
DB2 JDBC driver, which handles the JDBC API calls. Java’s portability enables
the delivery of DB2 access to clients on multiple platforms, requiring only a
Java-enabled Web browser or a Java Runtime Environment (JRE)™.

DB2 Data Server 9 offers multiple ways of creating Java applications, by either
using a type 2 or type 4 JDBC driver:

� Type 2 driver

With a type 2 driver, calls to the JDBC application driver are translated to Java
native methods. The Java applications that use this driver must run on a DB2
client, through which JDBC requests flow to the DB2 server.

 Chapter 1. DB2 for Linux, UNIX, and Windows 29

http://www.unixodbc.org/
http://www.ibm.com/support/docview.wss?uid=pub1sc23585301
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0804zikopoulos/

Figure 1-14 illustrates the Java type 2 driver connectivity.

Figure 1-14 Java type 2 driver connectivity

� Type 4 driver

The JDBC type 4 driver can be used to create both Java applications and
applets. To run an applet that is based on the type 4 driver, a Java-enabled
browser is required, which downloads the applet and the JDBC driver
(db2jcc4.jar). To run a DB2 application with a type 4 driver, an entry for the
JDBC driver in the class path is required and no DB2 client is required.

Tip: If prototyping CLI calls before placing them in a program, use the
db2cli.exe (Windows) or db2cli (Linux) file in the sqllib/samples/cli
directory.

Note: The type 2 driver is still included, but it was deprecated. We
recommend that you convert any existing applications to use the type 4
driver.

30 MySQL to DB2 Conversion Guide

The JDBC driver is included in the IBM Data Server Client Driver for JDBC
and SQLJ and is architected as an abstract JDBC processor that is
independent of driver-type connectivity or target platform. Examples of JDBC
calls can be found in sqllib/samples/java/jdbc.

Figure 1-15 illustrates the java type 4 driver connectivity environment.

Figure 1-15 Java type 4 driver connectivity

Embedded SQL for Java
DB2 Java embedded SQL (SQLJ) support is provided by the IBM Data Server
Runtime Client. With DB2 SQLJ support, in addition to DB2 JDBC support, SQLJ
applets, applications, and stored procedures can be built to contain static SQL
and use embedded SQL statements that are bound to a DB2 database.

SQLJ applications use JDBC as a foundation for tasks, such as connecting to
databases and handling SQL errors, but also contain embedded static SQL
statements in separate SQLJ source files. Unlike any other languages that can
contain embedded SQL (COBOL, C, and C++), the Java code is not
precompiled, instead the SQLJ translator converts SQLJ clauses into JDBC
statements. Because SQLJ shares its underlying connection with that of JDBC
applications, it can connect to DB2 using either a type 2 or type 4 driver.
Examples of SQLJ calls can be found in sqllib/samples/java/sqlj.

 Chapter 1. DB2 for Linux, UNIX, and Windows 31

ActiveX Data Objects and Object Linking and Embedding
(Windows only)
DB2 supports ActiveX® Data Object (ADO) applications that use the Microsoft
Object Linking and Embedding (OLE) DB to ODBC bridge. ADOs provide the
ability to write applications to access and manipulate data in a database server
through an OLE DB provider. Therefore, applications will have uniform access to
data that is stored in diverse information sources.

Remote Data Objects (RDO) provide an information model for accessing remote
data sources through ODBC. RDO offers a set of objects that makes it easy to
connect to a database, execute queries and stored procedures, manipulate
results, and commit changes to the server. Because RDO implements a thin
code layer over the ODBC API, it requires an ODBC data source to be created
for the DB2 database to which you connect.

ADO.NET
DB2 supports the Microsoft ADO.NET programming interface through a native
managed provider. These applications can use the DB2 .Net, the OLE DB .Net,
or the ODBC .NET data provider. High performing Windows Forms, Web Forms,
and Web Services can be developed using the ADO.NET API. DB2 supports a
collection of features that integrate seamlessly into Visual Studio 2003, 2005,
and 2008 to make it easier to work with DB2 servers and to develop DB2
procedures, functions, and objects.

The IBM Data Server Provider for .Net extends data server support for the
ADO.NET interface and delivers high performing, secure access to IBM data
servers:

� DB2 Version 9 (or later) for Linux, UNIX, and Windows

� DB2 Universal Database™ Version 8 for Windows, UNIX, and Linux

� DB2 for z/OS and OS/390® Version 6 (or later), through DB2 Connect

� DB2 for i5/OS Version 5 (or later), through DB2 Connect

� DB2 Universal Database Version 7.3 (or later) for VSE and VM, through DB2
Connect

� IBM Informix Dynamic Server, Version 11.10 or later

� IBM UniData®, Version 7.1.11 or later

� IBM UniVerse, Version 10.2 or later

When used in conjunction with stored procedures and the federated database
capabilities of DB2 data servers and DB2 Connect servers, this data access can
be extended to include a wide variety of other data sources, including non-DB2
mainframe data and Informix Dynamic Server (IDS), Microsoft SQL Server®,

32 MySQL to DB2 Conversion Guide

Sybase, and Oracle databases, as well as any data source that has an OLE DB
Provider available.

For more information about developing ADO.NET and OLE DB, refer to DB2 for
Linux, UNIX, and Windows Developing ADO.NET and OLE DB Applications,
SC23-5851-01, which is available at this Web site:

http://www.ibm.com/support/docview.wss?uid=pub1sc23585101

Perl DBI
DB2 supports the Perl Database Interface (DBI) specification for data access
through the DBD::DB2 driver. The Perl DBI module uses an interface that is
similar to the CLI and JDBC interfaces, which makes it easy to port Perl
prototypes to CLI and JDBC. As of DB2 9.5, Perl DBI comes with support for
DB2 pureXML technology, which allows you to insert XML documents without
the need to parse or validate XML. The Perl driver also supports multi-byte
character sets, which means your application does not have to deal with the
conversion itself when interacting with the database.

You can obtain more information about Perl DBI at this Web site:

http://www.ibm.com/software/data/db2/perl/

PHP
The PHP Hypertext Preprocessor is a modular and interpreted programming
language intended for the development of Web applications. Its functionality can
be customized through the use of extensions. DB2 supports PHP through an
extension called pdo_ibm, which allows DB2 access through the standard PHP
Data Objects (PDO) interface. In addition, the ibm_db2 extension offers a
procedural API that, in addition to the normal create, read, update, and write
database operations, also offers extensive access to the database metadata.
The most up-to-date versions of ibm_db2 and pdo_ibm are available from the PHP
Extension Community Library (PECL):

http://pecl.php.net/

For more information about the PHP application development support that DB2
data server for Linux, UNIX, and Windows offers, refer to this Web site:

http://www.ibm.com/software/data/db2/ad/php.html

Ruby on Rails
DB2 9.5 has drivers for Ruby, which is an object-oriented programming
language. Combined with the open source Ruby framework called Rails, the
development of Web-based and database-driven applications can be extremely
quick. Included in DB2 is the IBM_DB Ruby adapter, which allows any
database-backed Ruby application to interface with IBM data servers.

 Chapter 1. DB2 for Linux, UNIX, and Windows 33

http://www-1.ibm.com/support/docview.wss?uid=pub1sc23585101
http://www.ibm.com/software/data/db2/perl/
http://pecl.php.net/
http://www.ibm.com/software/data/db2/ad/php.html

For more information about IBM Ruby projects and the RubyForge open source
community, refer to the following Web site:

http://rubyforge.org/projects/rubyibm/

34 MySQL to DB2 Conversion Guide

http://rubyforge.org/projects/rubyibm/

Chapter 2. MySQL database

When planning a conversion project, it is critical to understand how the source
data server operates to successfully convert all functionality to the destination
data server. The goal of this chapter is to discuss the MySQL database
architecture and design, while keeping in mind how the features will be converted
to DB2.

This chapter discusses the following MySQL details:

� License and origin
� Architecture overview
� Data handling
� Utilities

2

© Copyright IBM Corp. 2009. All rights reserved. 35

2.1 MySQL licensing overview

MySQL is a dual-licensed relational database management system developed
and distributed by MySQL AB (http://www.mysql.com), which is a company that
builds its business by providing services around MySQL. In late 2007, MySQL
AB was acquired by Sun™ Microsystems, which was later acquired by Oracle in
April of 2009. At the time of writing this book, the acquisition of Sun
Microsystems by Oracle is still ongoing and the future of the MySQL licensing
model is still uncertain. Currently, MySQL implements a dual licensing model.
The first is a General Public License (GPL), the “open source” license, which is
mostly linked to open source projects. That is, if you implement this licensing
model and distribute MySQL with applications, the application source code must
be open source as well. The second licensing model is for commercial use
covering all other environments outside of the purely open source and
non-commercial environments. The commercial license has a significant price
tag equal to the price of other commercial database products.

DB2 offers a no-charge community edition (DB2 Express-C) of the DB2 data
server. This edition of DB2 is completely free to develop, to deploy, and to
distribute. DB2 Express-C is a full-function relational and XML data server and
has the same reliability, flexibility, and power of the higher editions of DB2. DB2
also offers the DB2 Express + Fix Term license option, which is priced
comparably with the MySQL Enterprise Gold pricing. For more details about
each of the available DB2 editions, refer to 1.2.1, “DB2 Data Server Editions for
the production environment” on page 3.

MySQL was initially developed for UNIX and Linux applications. It became
popular when Internet Service Providers (ISPs) discovered that MySQL can be
offered at no charge to their Internet customers, providing all of the storage and
retrieval functionality that a dynamic Web application needs. It was also
advantageous, because ISPs primarily use Linux or UNIX as their base
operating system, in combination with APACHE as their favorite Web server
environment. Today, MySQL is also used as an integrated or embedded
database for various applications running on almost all platform architecture.

2.2 MySQL architecture overview

MySQL is built on a client/server architecture model that can be installed on
Windows, UNIX, Macintosh, and Linux platforms. The server is the host that
manages the database objects and data, whereas the client requests and works
with the actual data. MySQL client programs connect to the MySQL server either
through a local or remote connection. If the client is running remotely, MySQL

36 MySQL to DB2 Conversion Guide

http://www.mysql.com

always connects using TCP/IP. If the client is running on the local server, any of
the supported connection protocols can be used.

Figure 2-1 illustrates the conceptual architecture of the MySQL database. The
next several sections cover the functionality of the integrated components in
more detail.

Figure 2-1 Conceptual MySQL architecture

2.2.1 Database client and non-client utilities

The client layer represents the interface between the user and the database.
Most components are provided by MySQL AB in the server installation bundle.
The graphical tools need to be downloaded and installed separately. MySQL
clients include these tools:

� Query interface
� Administrative interface and utilities
� Application interface and utilities

The client layer is the front-end component with which users will interact. This
component presents three types of users that interact with the server: query
users, administrators, and applications.

 Chapter 2. MySQL database 37

Query users
Query users can interact with the database server through a query interface
called mysql, which allows users to issue SQL statements and view the results
returned from the server using the command line. There is also a graphical tool
called MySQL Query Browser that provides a graphical interface to create and
execute database queries.

In DB2, you can use the command line process for the same functionality. Use
the db2 or db2cmd command to start the command line processor.

Administrators
Administrators use the administrative interface and utilities, such as mysqladmin
and MySQL Administrator. Theses tools can be used for creating or dropping
databases and users, as well as managing the MySQL server. These tools
connect to the database server using the native C client library. There are also
utilities that can be used for administrative purposes, but they do not connect to
the MySQL server. Instead, they work directly with the database files. These
tools are myisamchk for table analysis, optimization, and crash recovery and
myisampack for creating read-only compressed versions of MyISAM tables.

DB2 offers a rich set of database management GUI tools, such as the DB2
Control Center, the Optim Database Administrator, and the IBM Optim Data
studio. These tools simplify database administration by providing one single tool
to completely manage your entire database environment. Also, you can use
these tools to query the database. The GUI tools are discussed in detail in 9.8,
“Database management tools” on page 312.

Applications
Applications communicate with the database server through MySQL APIs that
are available for various programming languages, such as C++, PHP, Java, Perl,
.NET, and so on. We discuss these APIs in more detail later in the chapter.

2.2.2 Database server

The database server represents the core functionality of the database
architecture. It is responsible for storing, accessing, and managing the
databases and database objects. MySQL server is multi-threaded, allowing
multiple users to access multiple databases. Figure 2-1 on page 37 shows the
components of the MySQL server. As shown in Table 2-1 on page 42, you can
find the following major components in MySQL:

� Connection pool
� SQL interface
� Parser

38 MySQL to DB2 Conversion Guide

� Optimizer
� Caches and buffers
� Database management utilities
� Storage engines
� Physical resources

Connection pool
The connection pool assigns user connections to the database and
corresponding memory caches. The utilities and programs that are included with
MySQL connect using the Native C API. Other applications can connect using
the standard drivers that MySQL offers, such as C++, PHP, Java, Perl, .NET,
and so on. MySQL supports TCP/IP, UNIX socket file, named pipe, and shared
memory networking protocols, depending on the type of operating system that is
used. For more details about application programming interfaces, see 2.5,
“MySQL application programming interfaces” on page 51.

SQL interface
The SQL interface accepts and conveys the SQL statements from the
connecting user or MySQL application. This layer is independent of the storage
ending layer, and, therefore, SQL support statements are not dependent on the
type of storage engine being used. The SQL statement is then passed to the
SQL parser for further processing.

SQL parser
The parser analyzes the SQL statements and validates the SQL query syntax.
The parser breaks up the statement and creates a parse tree structure to
validate the SQL query syntax and prepare the statement for the optimizer.

SQL optimizer
The SQL optimizer verifies that the tables exist and that the records can be
accessed by the requesting user. After security checking, the query is analyzed
and optimized to improve the performance of the query process.

Cache and buffers
Caches and buffers are used to increase the speed of the server by decreasing
the amount of data that the MySQL server needs to read from disk. The memory
caches are used for both global and engine specific caches. MySQL uses a
query cache to increase the performance of data queries. The query cache holds
both the query and the result of the query. There is also a cache to store the
table descriptors and a cache to hold the host name. MySQL stores the user
account information in the grant table buffers and the MyISAM index blocks in
the key buffer.

 Chapter 2. MySQL database 39

Database management utilities
Database management utilities assist users and DBAs with managing and
administering database objects. The majority of these tools are independent of
the storage system that is being used. The following major components make up
the database management utilities:

� Administration

Administrative utilities are used to help manage the database server,
database objects, and data. Several of the utilities that are available with
MySQL can assist with compressing MyISAM tables, managing MyISAM log
files, managing and repairing tables, checking user privileges, and converting
tables’ storage engine.

� Backup and recovery

Backups can be used for restoring a system crash, for updating hardware, or
for replicating a test or development environment. MySQL has multiple
techniques to back up a database. If an SQL-level backup is needed, the
SELECT INTO command can be used to output the table data to a file. The
mysqlhotcopy script can be used to make a fast copy of a database or an
individual table. The mysqldump utility can be used to back up a single
database or multiple databases.

� Replication

Replication allows for a secondary or subordinate server, called the slave, to
maintain a copy of the master server’s database without having to perform a
full backup and recovery. The slave database is updated with only the recent
changes that occurred on the master database. There can be multiple slave
systems.

Database management utilities also include the following components:

� Security
� Configuration
� Conversion and metadata

Pluggable storage engine
The MySQL storage engine is responsible for accessing and modifying the
stored data. MySQL supports multiple storage engines, each with its own
characteristics. The DBA can choose a specific storage engine depending on
how the data is going to be accessed and used. Storage engines are allocated
on a table basis. It is possible to mix and match various storage engines within a
database. If no storage engine is specified, the default MyISAM storage engine
will be used. We discuss each storage engine in 2.3.2, “MySQL storage engines”
on page 45.

40 MySQL to DB2 Conversion Guide

Physical resource
This is the bottom layer of the MySQL architecture and represents the secondary
storage or physical disk. This layer is accessed through the storage engines to
store or retrieve data. These types of data are stored in this layer:

� Data files (user data)
� Data dictionary (metadata)
� Indexes
� Log information
� Statistical data

In the next section, we describe how the database objects and data are
physically stored on the server.

2.3 MySQL design and SQL compliance

In this section, we discuss the following topics:

� MySQL directory structure
� MySQL storage engines
� MySQL standard SQL compliance

2.3.1 MySQL directory structure

MySQL can be installed as one or more databases within one server. For each
database, a directory is created with the same name as the database. This
directory holds all of the database data and indexes. On Linux distributions,
when installing using Red Hat Package Manager (RPM) packages, the default
directory for the database and log files is /var/lib/mysql. Installation of MySQL
can also be performed using source distribution, where the default directory and
location of all MySQL files can be chosen. For UNIX distributions, the databases
are stored under /usr/local/mysql/data. For Windows, the databases are
stored under C:\Program Files\MySQL\MySQL Server 5.1\data. Table 2-1 on
page 42 shows the default installation directories for MySQL Windows, Linux,
and UNIX installations.

 Chapter 2. MySQL database 41

Table 2-1 MySQL default directories

In the example in Figure 2-2 on page 43, there are two databases on this MySQL
server. The first database is the mysql database, which, by default, holds the
security information. The second database is the sample database inventory,
which is discussed in more detail in Chapter 4, “Conversion scenario” on
page 75.

Contents Windows default
directory

Linux default
directory

UNIX default
directory

Default
installation
directory

C:\Program Files\
MySQL\MySQL Server
5.1

/usr/local/mysql

Databases
and log files

<Default Dir>\data /var/lib/mysql <Default Dir>/data

Client
programs
and scripts

<Default Dir>\bin /usr/bin <Default Dir>/bin

mysqld
server

<Default Dir>\bin /usr/sbin <Default Dir>/bin

Manual <Default Dir>\Docs /usr/share/info <Default Dir>/docs

Example
scripts

<Default Dir>\examples

Include files <Default Dir>\include /usr/include/mysq
l

<Default Dir>/include

Libraries <Default Dir>\lib /usr/lib/mysql <Default Dir>/lib

Utilities and
scripts

<Default Dir>\scripts <Default Dir>/scripts

Error
message
files

<Default Dir>\share /usr/share/mysql <Default
Dir>/share/mysql

42 MySQL to DB2 Conversion Guide

Figure 2-2 MySQL example directory structure

The following files are created for each database directory in the MySQL home
directory:

� Files with the frm extension contain the structural definition of the table and
the view, which is known as the schema.

� Files with the MYD extension contain the table data.

� Files with the MYI extension contain the table indexes.

� If there are triggers, there also are files with the TRN and the TRG extensions.

Example 2-1 shows the files that are created for each table in our sample
database.

Example 2-1 MySQL example table files

mysqlServer:/var/lib/mysql/inventory # ls -lrt
total 428
-rw-rw---- 1 mysql users 8670 Jul 21 23:11 locations.frm
-rw-rw---- 1 mysql users 65 Jul 21 23:11 db.opt
-rw-rw---- 1 mysql users 4976 Jul 21 23:15 locations.MYD
-rw-rw---- 1 mysql users 4096 Jul 21 23:18 locations.MYI
-rw-rw---- 1 mysql users 8918 Aug 7 13:21 owners.frm
-rw-rw---- 1 mysql users 8804 Aug 7 13:29 inventory.frm
-rw-rw---- 1 mysql users 1584 Aug 7 14:21 empGroup.frm
-rw-rw---- 1 mysql users 1585 Aug 7 14:22 techGroup.frm
-rw-rw---- 1 mysql users 1587 Aug 7 14:23 bossGroup.frm
-rw-rw---- 1 mysql users 8746 Aug 7 17:23 groups.frm
-rw-rw---- 1 mysql users 1595 Aug 10 01:42 managerGroup.frm
-rw-rw---- 1 mysql users 1596 Aug 10 01:43 generalGroup.frm
-rw-rw---- 1 mysql users 1587 Aug 10 02:58 testGroup.frm
-rw-rw---- 1 mysql users 128 Aug 10 02:58 groups.MYD
-rw-rw---- 1 mysql users 8886 Aug 10 03:29 services.frm

 Chapter 2. MySQL database 43

-rw-rw---- 1 mysql users 8620 Aug 10 03:54 status.frm
-rw-rw---- 1 mysql users 2048 Aug 10 03:54 status.MYI
-rw-rw---- 1 mysql users 160 Aug 10 03:54 status.MYD
-rw-rw---- 1 mysql users 8692 Aug 10 03:56 severity.frm
-rw-rw---- 1 mysql users 2048 Aug 10 15:31 groups.MYI
-rw-rw---- 1 mysql users 37876 Aug 11 15:45 inventory.MYD
-rw-rw---- 1 mysql users 27648 Aug 11 16:39 inventory.MYI
-rw-rw---- 1 mysql users 212 Aug 24 16:07 severity.MYD
-rw-rw---- 1 mysql users 40 Aug 24 16:08 updateDate.TRN
-rw-rw---- 1 mysql users 378 Aug 24 16:08 services.TRG
-rw-rw---- 1 mysql users 2048 Aug 27 20:21 severity.MYI
-rw-rw---- 1 mysql users 45576 Sep 9 03:08 services.MYD
-rw-rw---- 1 mysql users 37888 Sep 11 00:46 services.MYI
-rw-rw---- 1 mysql users 30720 Sep 11 13:41 owners.MYI
-rw-rw---- 1 mysql users 61144 Sep 11 13:41 owners.MYD

Log files, by default, are created in the mysql home directory. The security data
tables in the mysql database are in the /< mysql home directory>/mysql
directory. Table 2-2 lists the files of the security data tables.

Table 2-2 Permission information stored in tables

File Description

columns_priv.MYD,
columns_priv.MYI,
columns_priv.frm

Permission for individual columns within a table

db.MYD,
db.MY,
db.frm

Permission for individual database

func.MYD,
func.MYI,
func.frm

Permission for user-defined functions

host.MYD,
host.MYI,
host.frm

General permission by host

procs_priv.MYD,
procs_priv.MYI,
procs_priv.frm

Permission for stored procedures

tables_priv.MYD,
tables_priv.MYI,
tables_priv.frm

Permission for individual tables within a database

44 MySQL to DB2 Conversion Guide

By default, DB2 uses a better approach for the logical and physical distribution of
database objects. DB2 differs from MySQL in that DB2 stores all database
objects in table spaces. The benefits of table spaces are increased performance
and simplified management. To take advantage of this advanced database
distribution, refer to 6.2.1, “Database manipulation” on page 123, where we
discuss in detail the conversion of a MySQL database structure to DB2.

2.3.2 MySQL storage engines

Although MySQL supports multiple storage engines per database, each table
must be managed by a specific storage engine. All storage engines will create
table definitions in a file with the .frm extension upon creation. MySQL storage
engines can be split into two categories:

� Non-transaction-safe
� Transaction-safe

Transaction-safe storage engines have commit and rollback capabilities and can
be recovered from a crash. Therefore, these storage engines guarantee the
Atomicity, Consistency, Isolation, and Durability (ACID properties) of a database.
Non-transaction-safe storage engines are faster and require less memory and
disk space. However, non-transaction-safe storage engines do not guarantee the
database is left in a consistent state, because they do not support ACID
properties.

We explain these storage engines in this section:

� Non-transaction-safe tables can be managed by the following storage
engines:

– MyISAM
– Memory
– Merge
– Archive
– Comma separated value (CSV)
– Federated
– Blackhole

� Transaction-safe tables can be managed by the following storage engines:

– InnoDB

user.MYD,
user.MYI,
user.frm

General Permission by user

 Chapter 2. MySQL database 45

MySQL supports transactions with the InnoDB and NDB transactional storage
engines. Although both storage engines provide full ACID compliance, the
performance and throughput are often enough of a concern to justify converting
to DB2.

In DB2, all tables support transactions. Therefore, tables that are managed by
MySQL InnoDB, MyISAM, ARCHIVE, and CSV storage engines can all be
converted to a DB2 regular table. We discuss the details of converting MySQL
tables to a DB2 table in 6.2.2, “Table manipulation” on page 128.

MyISAM storage engine
The MyISAM storage engine, based on ISAM code, was enhanced to overcome
the disadvantages of the ISAM storage engine and to provide more useful
extensions. MyISAM has been the default storage engine of MySQL since
Version 3.23. This storage engine stores the table definition in a file with the .frm
extension. The index is stored in a file with the .MYI extension. And, the data is
stored in a file with the .MYD extension. The MyISAM storage engine uses
table-level locking.

MyISAM supports three storage formats:

� Static tables

These tables have a fixed length and are the default format that MyISAM
uses, if no VARCHAR, VARBINARY, BLOB, or TEXT columns are used.

� Dynamic tables

The tables are used as the default if VARCHAR, VARBINARY, BLOB, or
TEXT columns are defined in the table.

� Compressed tables

These tables are read-only static and dynamic tables that have been
compressed. To write data to a compressed table, the table has to be
uncompressed first.

Memory storage engine
The memory storage engine, formerly known as the heap table, uses hashed and
B-tree indexes and can only be held in memory. Therefore, they are primarily
used as temporary tables. This storage engine only creates the .frm file for the
table definition. The memory storage engine uses table-level locking.

Merge storage engine
The merge storage engine allows the grouping of multiple MyISAM tables across
the same disk or separate disks into one table. The merge storage engine can
only be used with MyISAM tables that have the same columns and indexes. The

46 MySQL to DB2 Conversion Guide

.MRG file contains the list of MyISAM tables that make up the new Merge table. If
a table created with this storage engine is dropped, the Merge .frm and .MRG files
are removed and the individual MyISAM tables still exist. Tables created with the
merge storage engine support SELECT, UPDATE, INSERT, and DELETE
operations if the user has the privileges on the underlying MyISAM tables.

Archive storage engine
The archive storage engine is typically used for storing large amounts of data
that will not be modified. The archive engine only supports SELECT and INSERT
operations. Data stored in the archive engine is stored in compressed format
without indexing on the data. This storage engine will store the table definition in
a file with the .frm extension. The data is stored in a file with the .ARZ extension.
And, the metadata is stored in a file with the .ARM extension. The archive storage
engine uses row-level locking.

CSV storage engine
The CSV (comma separated value) storage engine stores data in comma
separated text files. The table definition is stored on the server in a file with the
.frm extension, and the data is stored in a file with the .CSV extension.

Federated storage engine
The federated storage engine allows tables on a remote server to be accessed
as though they were stored locally. The table definition, the .frm file, is stored
locally, but no data is actually stored on the local server.

Blackhole storage engine
The blackhole storage engine creates a table where no data is stored and no
data can be retrieved. This storage engine only creates the .frm file for the table
definition.

InnoDB storage engine
MySQL 4.0 InnoDB is enabled by default. The InnoDB engine is a completely
separate database back end that is produced by a company called Innobase Oy
(http://www.innodb.com) and placed under MySQL. InnoDB tables are transaction
safe and support foreign key constraints. This storage engine stores the table
definition in a file with the .frm extension. Table data and indexes are stored in a
table space consisting of several files or even raw disk partitions. InnoDB uses
B-tree indexes to locate data in the tables. This storage engine uses row-level
locking and does not lock rows for read statements. DB2 9.7 has introduced a
similar approach to locking, which is discussed further in 8.3.3, “DB2 isolation
levels” on page 272. This change in DB2 locking behavior makes porting an
application much easier.

 Chapter 2. MySQL database 47

http://wwww.innodb.com
http://wwww.innodb.com

Innodb was acquired by Oracle in 2006, which resulted in a development effort
by MySQL AB to build their own transactional safe storage engine. This
development is ongoing at the time of writing this book.

NDB cluster storage engine
The NDBCLUSTER, which is also known as NDB, is a transaction safe storage
engine. This storage engine was introduced in MySQL 4.1. This storage engine
allows for clustering of a database in a shared-nothing architecture. This type of
architecture allows a table to be split apart across multiple servers, where each
server has its own set of data. In order for the table to be a part of the cluster, the
table must be using NDBCLUSTER storage engine. As of MySQL 5.1.24, the
support for the NDBCLUSTER storage engine has been removed from the
standard MySQL release and is now available in its own release, which is known
as MySQL Cluster NDB.

2.3.3 MySQL standard SQL compliance

Up to Version 5.1, MySQL complies most closely to SQL-92 and meets Open
Database Connectivity (ODBC) levels 0-3.51 standards. MySQL aims to fully
comply with the ANSI/ISO SQL standard. The most important missing
compatibilities of the MySQL default table MyISAM toward the ANSI-SQL-92
standard refers to these areas:

� Transactions

The MySQL default storage engine MyISAM does not support transactions.
For this storage engine, the developers of MySQL followed the “atomic
operations” data integrity model. Auto-commit is always enabled, by default,
for MyISAM. Therefore, every time that a statement is executed, the changes
are committed to the database, as shown in Example 2-2.

Example 2-2 Atomic operation

INSERT INTO table1 ...
COMMIT
DELETE FROM table2 ...
COMMIT

MySQL supports transactions with the InnoDB and NDB transactional storage
engines. Both engines provide full ACID compliance. In contrast, all tables in
DB2 support transactions and provide full ACID compliance.

� Referential integrity

Referential integrity is the state in which all values of all foreign keys are
valid. The relationship between certain rows of the DEPT and EMP tables, as
shown in Figure 2-3 on page 49, illustrates referential integrity concepts and

48 MySQL to DB2 Conversion Guide

terminology. For example, referential integrity ensures that every foreign key
value in the DEPT column of the EMP table matches a primary key value in
the DEPTNO column of the DEPT table.

Figure 2-3 Referential integrity

In MySQL Server, MyISAM tables do not support foreign key constraints.
MySQL only parses the FOREIGN KEY syntax in CREATE TABLE
commands, but MySQL does not use or store this information. Only InnoDB
tables support checking foreign key constraints, including ON DELETE
CASCADE and ON UPDATE CASCADE.

DB2 supports referential integrity on all of the tables that are created. In 6.5,
“Sample database conversion” on page 148, we discuss how to take
advantage of foreign keys in DB2.

2.4 MySQL utilities

MySQL is distributed with a set of support utilities. The Internet, however,
provides a larger set of third-party tools to manage MySQL databases. In this
section, we attempt to give a brief overview of the MySQL distributed set of
supported tools. For more information, visit this Web site:

http://dev.mysql.com/doc/refman/5.1/en/programs.html

 Chapter 2. MySQL database 49

http://dev.mysql.com/doc/refman/5.1/en/programs.html

DB2 has a full set of utilities available for working with and managing the
database environment. We describe DB2 utilities in 1.4, “DB2 utilities” on
page 18.

2.4.1 Overview of the MySQL server-side programs and utilities

This section introduces the distributed set of server-side tools, which is included
in the MySQL package.

MySQL server programs
These programs are used to start, stop, and manage the MySQL server for
various purposes:

� mysqld
� mysqld-nt
� mysqld_safe
� mysqld-debug
� mysqld_multi
� mysql.server
� mysqld-max
� mysqlmanager

Setup programs
The rest of the programs are used for setting up operations during the installation
or upgrade of the MySQL server:

� mysql_install_db
� mysql_fix_privilege_tables
� make_binary_distribution
� mysqlbug
� comp_err
� make_win_bin_dist
� mysql_secure_installation
� mysql_tzinfo_to_sql
� mysql_upgrade

2.4.2 Overview of the MySQL client-side programs and utilities

The distributed set of client-side tools, which is provided by MySQL AB, includes
these tools:

� mysql
� mysqladmin
� mysqlcheck

50 MySQL to DB2 Conversion Guide

� mysqldump
� mysqlimport
� mysqlshow
� mysqlaccess
� mysqlbinlog
� mysqlhotcopy
� myisamchk
� myisampack
� innochecksum
� my_print_defaults
� myisamlog
� mysql_convert_table_format
� mysql_fix_extensions
� mysql_tableinfo
� mysql_setpermissions
� mysql_waitpid
� mysql_zap
� replace
� perror
� msql2mysql
� mysql_config
� MySQL Administrator
� MySQL Query Browser

2.5 MySQL application programming interfaces

The MySQL application programming interfaces (APIs) are interfaces by which
an application program communicates with the MySQL database. This section
gives an overview of which APIs are available for MySQL.

There are four major approaches to connect to a MySQL database, as shown in
Figure 2-4 on page 52:

� JDBC with Connector/J
� .NET with Connector/NET
� ODBC with Connector/ODBC
� Other APIs with C Library

 Chapter 2. MySQL database 51

Figure 2-4 MySQL APIs

The first approach is to connect the Java application using Java Database
Connectivity (JDBC) and the Connector/J, which is officially supported by
MySQL. This connector is written in Java and does not use the C client library to
implement the client/server communication protocol.

The second approach is to connect the .NET application using Connector/NET,
which is written in C# and does not use the C client library to implement the
client/server communication protocol. This approach is officially supported by
MySQL AB.

The third approach is to connect using Connector/ODBC for applications that use
ODBC standards. This connector uses the embedded C client libraries to
implement the client/server communication protocol. This approach is officially
supported by MySQL.

The fourth approach is to use the third-party APIs that are provided by
programming languages, such as PHP, Perl, or Python. These APIs will use the
embedded C client libraries to implement the client/server communication
protocol. The third-party APIs are not officially supported by MySQL. The
following list shows several of the APIs that are available for MySQL:

� C API

The API to connect from C programs to a MySQL database. You can obtain
more details at this Web site:

http://dev.mysql.com/doc/refman/5.1/en/c.html

52 MySQL to DB2 Conversion Guide

http://dev.mysql.com/doc/refman/5.1/en/c.html

� C++ API

The API to connect to a MySQL database from C++. You can obtain
information at this Web site:

http://forge.mysql.com/wiki/Connector_C%2B%2B_Binary_Builds

� PHP API

PHP contains support for accessing several databases, including MySQL.
You can obtain information about MySQL access in the PHP documentation,
which can be downloaded from this Web site:

http://www.php.net/download-docs.php

� PERL API

The Perl API consists of a generic Perl interface and a special database
driver. The generic interface in Perl is called Database Interface (DBI). For
MySQL, the driver is called DBD::mysql. You can obtain information about the
DBI at this Web site:

http://dbi.perl.org/

� Python API

The API to connect to MySQL for Python is called MySQLdb. You can obtain
the API at this Web site:

http://sourceforge.net/projects/mysql-python/

� Ruby API

You can obtain the API to access MySQL servers from Ruby programs at this
Web site:

http://tmtm.org/en/mysql/ruby/

DB2 supports the most frequently used MySQL programming languages. These
languages include PHP, Java, Perl, Python, Ruby, C#, C/C++, and Visual
Basic®. With proper planning and knowledge, you can convert these applications
to DB2 with minimal effort. In Chapter 8, “Application conversion” on page 205,
we discuss and provide examples for converting applications from MySQL to
DB2.

 Chapter 2. MySQL database 53

http://tangentsoft.net/mysql++/doc
http://www.php.net/download-docs.ph
http://www.php.net/download-docs.php
http://dbi.perl.org/
http://sourceforge.net/projects/mysql-python/
http://tmtm.org/en/mysql/ruby/

54 MySQL to DB2 Conversion Guide

Chapter 3. Planning the conversion
from MySQL to DB2

Proper planning influences the success of a project significantly. This chapter
discusses the overall conversion planning stages. This chapter includes the
considerations required prior to porting, various assessments that must be
considered, and finally, the porting steps. In this chapter, we discuss the
following conversion topics in detail:

� Project planning

� Application assessment and system planning

� The conversion process:

– Porting preparation and installation

– Database structure porting

– Data porting

– Application porting

– Basic administration

– Testing and tuning

We also provide information describing how IBM conversion specialists can
support you in your conversion project in any of the steps involved, and we
discuss the available conversion tools, such as the IBM Data Movement Tool.

3

© Copyright IBM Corp. 2009. All rights reserved. 55

3.1 Conversion project planning overview

In order to understand what needs to be done and how long it will take, each
conversion or conversion project begins with a conversion assessment. A
systematic and organized analysis provides a detailed picture of the full project.
The assessment requires in-depth knowledge of the application to be converted
and the products that will be used.

To assess an application for conversion, you must create an application profile
that describes the application architecture, technologies used, application
functions, application interface, application environment characteristics,
database detail, application size, and so on.

Based on the application profile, you can plan the software and hardware needs
for the target system. The planning stage is also a good time to consider many of
the rich functions and features of the DB2 product family, which can increase
productivity and reduce maintenance costs. While the most common reason for
the one-to-one conversion from MySQL to DB2 is to use the more advanced
features of DB2 that MySQL does not provide, reducing the run time of
transactions dramatically also helps. The advanced optimizer in DB2 showed
improvements of approximately 20x for the real production load in various
projects.

Knowledge regarding the skills required and the resources that are available for
the conversion project is required. IBM provides a variety of DB2 courses to help
IBM clients learn DB2 quickly. For more information, go to these Web sites:

http://www.ibm.com/developerworks/
http://www.ibm.com/industries/education/index.jsp
http://www.ibm.com/developerworks/data/bootcamps

A conversion assessment provides you with the overall picture of the conversion
tasks and efforts needed. From a conversion assessment, a conversion project
plan can be created to manage each conversion step.

To execute the typical conversion steps, various tools are available to help you
save time in your conversion project. IBM offers the no charge conversion tool,
the IBM Data Movement Tool, for converting from various relational database
systems to DB2.

The process of database and application conversion consists of the following
major steps, which are discussed in detail later:

� Porting preparation and installation database structure porting
� Data porting
� Application porting

56 MySQL to DB2 Conversion Guide

http://www-03.ibm.com/industries/education/index.jsp
http://www.ibm.com/developerworks/
http://www.ibm.com/developerworks/data/bootcamps

� Basic administration
� Testing and tuning
� User education

Experienced IBM specialists can support you during any phase of the conversion
project with special conversion offerings that are provided worldwide by IBM.

3.1.1 Benefits of converting to DB2

DB2 offers open, industrial-strength database management for e-business,
business intelligence, transaction processing, and a broad range of applications.
At the same time, great focus and investment have been put into simplifying
administration within DB2 with autonomic computing.

Several primary motivators for conversion exist:

� Multiplatform support

DB2 is a true cross-platform database management system (DBMS), running
on a wide variety of systems, including Linux, Windows 98/NT/2000/XP,
Solaris, Hewlett-Packard UNIX (HP-UX), and AIX. For more information
about platform support, see this Web site:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

� Performance optimization

DB2 has dominated key performance benchmarks many times over the years,
including both Online Transaction Processing (OLTP) and Online Analytical
Processing (OLAP) benchmarks. This world-class performance means that
for businesses running DB, they can do more work with their existing
hardware, thereby avoiding or delaying costly server upgrades:

http://www.ibm.com/software/data/db2/9/editions_features_perf_ent.html

� Reliability

For many businesses, database downtime causes both money and
opportunity loss. DB2 can minimize the downtime that is associated with
many planned activities, such as altering a table, and many unplanned
events, such a power outage, by either eliminating the downtime completely
or reducing its duration to a few seconds. The DB2 High Availability Feature
provides 24x7 availability for your DB2 data server through replicated failover
support and data recovery modules. For more details, visit this Web site:

http://www.ibm.com/software/data/db2/9/editions_features_ha.html

 Chapter 3. Planning the conversion from MySQL to DB2 57

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp
http://www-01.ibm.com/software/data/db2/9/editions_features_perf_ent.html
http://www-01.ibm.com/software/data/db2/9/editions_features_ha.html

� Industrial scalability

DB2 has the best scalability by being the only DBMS to have transaction
processing and business intelligence scaling up to 1,000 nodes. For more
information about scalability, see this Web site:

http://www.ibm.com

� Integrated support for native environments

DB2 conforms to many standards, including operating system support. It
maps closely onto internal resources for performance and scalability, making
it more reliable and tightly integrated.

� Deep compression

Businesses with large volumes of data know how expensive storage can be.
DB2 can dramatically reduce this cost with industry-leading data compression
technologies that compress rows, indexes, temporary tables, LOBs, XML,
and backup data with compression rates that can reach over 80%. This deep
compression allows DB2 to keep more data in memory, thereby avoiding
performance-robbing disk I/O, which in turn, causes database performance to
increase considerably. For more details about deep compression, see this
Web site:

http://www.ibm.com/software/data/db2/compression/

� Security

Unauthorized data access is an ever present threat that can cost businesses
considerable sums of money, their reputation, or both. DB2 offers a
comprehensive suite of security features that effectively and decisively
minimizes this threat. DB2 provides additional peace of mind with lightweight
security audit mechanisms that check the validity of any unauthorized data
access:

http://www.ibm.com/software/data/db2/9/editions_features_advaccess.html

� pureXML

DB2 pureXML revolutionizes the management of XML data with breakthrough
native XML support provided only by DB2. It eliminates much of the work
typically involved in the management of XML data, and it serves data at
unmatched speeds. If you work with XML data, you need to know about DB2
pureXML. Now, DB2 9.7 for Linux, UNIX, and Windows opens new
opportunities to efficiently analyze XML data in data warehouses:

http://www.ibm.com/software/data/db2/xml/

� Integrated system management tools

DB2 has a number of tools for managing the database system. IBM Optim
Data studio is a rich and extensible solution to help you develop DB2
applications and to manage databases. The Health Monitor and the Health

58 MySQL to DB2 Conversion Guide

http://www.ibm.com
http://www-01.ibm.com/software/data/db2/compression/
http://www-01.ibm.com/software/data/db2/9/editions_features_advaccess.html
http://www-01.ibm.com/software/data/db2/xml/

Center help to easily capture and monitor the overall health of the database.
The Replication Center is a tool that is used to set up and administer a
replication environment. The Configuration Assistant and the Control Center
can be used to assist in configuring and maintaining database objects. These
tools are just a few of the management tools that are available for DB2. For a
list of all of the tools and for more information about the tools, see this Web
site:

http://www.ibm.com/software/data/db2imstools/products/db2-luw-tools.html

� Self-managing and resource tuning capability

DB2 also contains self-managing and resource tuning database technology,
such as the Self-Tuning Memory Manager and automatic storage, which
provides enhanced automation to configure, tune, and manage databases.
This innovative database manageability allows database administrators to
spend less time managing routine tasks and to focus on tasks that help
enterprises gain and maintain a sustainable competitive advantage. For more
information about autonomics, visit this Web site:

http://www.ibm.com/software/data/db2/autonomics/

� Multi-vendor SQL and application development support

Businesses cannot afford to have their application development teams
struggling with unfamiliar SQL syntax and foreign database APIs. With DB2,
non-DB2 application developers can use the full cross-vendor support for
many APIs, such as Java Database Connectivity (JDBC), Open Database
Connectivity (ODBC), and .NET, as well as rich support of other database
vendors’ SQL, functions, and data types:

http://www.ibm.com/software/data/db2/ad/

� Web services applications

DB2 can be accessed as a Web service provider and is usually teamed with
the IBM WebSphere® family products to provide a complete Web services
framework. For more information, visit this Web site:

http://www.ibm.com/software/websphere/

� Data warehousing functionality

IBM offers the InfoSphere Warehouse Enterprise Edition, which provides a
powerful range of capabilities that goes beyond traditional data warehouses.
InfoSphere Warehouse is a comprehensive platform that includes tooling and
infrastructure to help data warehouse architects and administrators efficiently
design, deploy, and maintain an enterprise data warehouse. For more
information, visit this Web site:

http://www.ibm.com/software/data/infosphere/warehouse/

 Chapter 3. Planning the conversion from MySQL to DB2 59

http://www-01.ibm.com/software/data/db2imstools/products/db2-luw-tools.html
http://www-01.ibm.com/software/data/db2/autonomics/
http://www-01.ibm.com/software/data/db2/ad/
http://www-01.ibm.com/software/websphere/
http://www-01.ibm.com/software/data/infosphere/warehouse/

3.1.2 IBM conversion support

With assistance from IBM DB2 experts, you can greatly reduce the cost, time,
and errors that are associated with the conversion process. DB2 experts are
available to assist your organization regarding any phase of the conversion
process, including these phases:

� Assessment of the database and application conversion efforts
� Project planning
� System planning
� Database design
� Porting preparation and DB2 installation
� Database structure and data conversion
� Application conversion
� Basic administration
� Testing and tuning of the DB2 data server

IBM Business Partner conversion projects
IBM PartnerWorld® is designed to help IBM Business Partners succeed in the
marketplace and strengthen their relationship with IBM. When enrolled, you can
utilize PartnerWorld tools and resource to grow and profit in the market. You can
work with IBM experts to provide you with leading-edge support. Visiting the
PartnerWorld Web site, you can find information about sales and marketing,
technical resources, and products and technologies. You can also learn about
upcoming events, educational opportunities, certifications, products, and a
variety of promotions.

There is no cost to join PartnerWorld; you can find more information and register
by visiting the following link:

http://www.ibm.com/partnerworld

If you are a partner and have a conversion project in mind, contact us at
askdata@ca.ibm.com and title your e-mail “MySQL to DB2 migration.”

Client conversion projects
In more than 3,500 cases, IBM conversion specialists around the world have
advised clients about conversion projects to DB2. Before starting the
assessment phase, contact the Software Migration Project Office (SMPO) for
no charge conversion estimates, as well as access to a team of conversion
experts.

60 MySQL to DB2 Conversion Guide

http://www.ibm.com/partnerworld

If you are a client and have a conversion project in mind, contact one of the
following contacts according to your geography:

� In North America and Latin America, contact db2mig@us.ibm.com
� In the U.K., Europe, Middle East, and Africa, contact emeadbct@uk.ibm.com
� In Japan, India, and Asia Pacific, contact dungi@hkl.ibm.com

You can obtain more information about the DB2 conversion team at the Software
Migration Project Office (SMPO) Web site:

http://www.ibm.com/software/solutions/softwaremigration/dbmigteam.html

You can obtain the most up-to-date details about current offerings, success
stories, literature, and other information about DB2 Migrate Now! at this Web
site:

http://www.ibm.com/software/data/db2/migration/

3.1.3 Education

DB2 provides an easy-to-use, feature-rich environment. Therefore, it is important
that those individuals involved in the conversion process are appropriately
trained to take full advantage of its offerings.

There is extensive training material available, such as courses, self-study guides,
and IBM Redbooks publications. IBM also offers a variety of DB2 courses; one
extremely useful course is the DB2 9.7 Bootcamp. For course details and
scheduled courses near you, visit this Web site:

http://www.ibm.com/developerworks/wikis/display/im/DB2+9.7+Bootcamp

For further information regarding DB2 training, visit the DB2 Web site:

http://www.ibm.com/software/data/education/

This DB2 for Linux, UNIX, and Windows conversion Web site can help you find
the information that you need to port an application and its data from other
database management systems to DB2. The porting and conversion steps,
which are described in this chapter, appear in the order that they are commonly
performed. In addition to the technical information that is available at this site,
IBM clients and IBM Business Partners need to check out the Information for IBM
clients and Information for IBM partners links:

http://www.ibm.com/developerworks/db2/zones/porting/partners.html
http://www.ibm.com/developerworks/db2/zones/porting/customers.html

Here, you will find additional links and information regarding assistance or
available resources for your porting project:

http://www.ibm.com/developerworks/db2/zones/porting/index.html

 Chapter 3. Planning the conversion from MySQL to DB2 61

http://www.ibm.com/software/data/db2/migration/
http://www.ibm.com/software/data/db2/migration/
http://www-01.ibm.com/software/solutions/softwaremigration/dbmigteam.html
http://www-01.ibm.com/software/data/education/
http://www.ibm.com/developerworks/wikis/display/im/DB2+9.7+Bootcamp
http://www.ibm.com/developerworks/db2/zones/porting/partners.html
http://www.ibm.com/developerworks/db2/zones/porting/customers.html
http://www.ibm.com/developerworks/db2/zones/porting/index.html

3.2 Application assessment

An application assessment is the first step in conversion planning. The
assessment helps you to understand the scope of the conversion project and to
prepare a detailed conversion project plan to design the target system.

You need to understand how your application works and what resources are
needed. There are probably many characteristics within your application that will
influence system planning and the scope of the conversion effort.

The application assessment requires the following information:

� Application architecture:

– Stand-alone
– Client/server
– Tier architecture

� Database architecture:

– Number of databases
– Number of tables
– Number of indexes
– Users, access rights, and privileges

� Size of the data that is stored in the database:

– Bytes stored in tables
– Bytes stored in indexes
– Log file size

� Source code language:

– PHP
– Perl
– Java
– C/C++
– Any other programming language

� Database interface:

– Direct database access through an API
– Database access layer, such as ODBC or JDBC

� Operating system:

– Linux
– AIX or UNIX
– Windows
– Any other operating system

62 MySQL to DB2 Conversion Guide

� Hardware used:

– CPU
– Memory
– Hard disk

In a client/server environment, be sure to describe the application in both the
client environment and the server environment.

3.3 System planning

Based on the application profile that was created during the application
assessment, you should be able to plan your target system properly.

With DB2 support for various platforms and multiple operating systems, such as
Linux, Windows, and AIX and so on, platform limitation should not be an issue.
You can select on which system the converted application will run based on the
application nature and future enhancement requirements.

As shown in Figure 3-1, the target system can be the same system as the source
system, or another system with a separate operating system and hardware. You
might even want to make your database server a separate machine from the
machine on which your application runs on (creating a two-tier architecture).

Figure 3-1 Sample conversion scenarios

 Chapter 3. Planning the conversion from MySQL to DB2 63

If you decide to use a new machine for the conversion program, you need to plan
what kind of hardware you want to use and which operating system you want to
install on the new machine.

In either case, check if the hardware of your target system meets the minimum
requirements, paying particular attention to the following areas:

� Operating system
� DB2
� Application
� Data
� Conversion tools (if used)

We discuss system requirements in more detail in 5.1.1, “System requirements”
on page 88.

3.3.1 Software

You must determine which software must be installed on your target system,
including:

� Operating system (Linux, AIX, UNIX, Windows, or others)

� DB2 version

� Application to be converted

� Conversion tools (if used and installed on the target system)

� Any software on your source system that is required by your application to run
properly, including but not limited to:

– HTTP server
– Web application server
– Development environment
– Additional software (such as Lightweight Directory Access Protocol

(LDAP) or others)

Be sure to have the latest versions and fix packs of the planned products. Ensure
that the chosen operating system supports the chosen software.

3.3.2 Hardware

When starting the conversion process, it is important to have a target platform
that meets the minimum requirements of all the software that will be installed on
it. Check the supported hardware platforms, depending on the chosen software.

64 MySQL to DB2 Conversion Guide

Your application also requires hardware resources. Be sure to have enough disk
space for your application and the transformed data.

Virtual images are a great option for operating enablement environments. Virtual
images reduce the hardware impact and allow simple test environments for the
enablement effort without incurring additional costs. Keep in mind that the disk
space is still needed.

3.3.3 Conversion tools

There are no charge commercial tools available to assist you in converting your
application from MySQL to DB2. The tools offer a variety of functions and are
supported on various operating systems. IBM offers the no charge IBM Data
Movement Tool. In addition to this conversion tool, IBM also offers an assortment
of no charge IBM tools, such as the new IBM Optim Data Studio, which can ease
the learning curve by making database administration and debugging queries
and functions effortless.

When deciding to use a tool, be sure that it fulfills the requirements that are
appropriate for your platform.

IBM Data Movement Tool
The IBM Data Movement Tool offers schema and data movement support from
MySQL, Oracle, Microsoft SQL Server, Microsoft Access, Sybase Adaptive
Server Enterprise, PostgreSQL, and Ingres to DB2 9.7. The IBM Data Movement
Tool replaces the Migration Tool Kit with a greatly simplified workflow and high
speed data movement.

The tool can be used to extract the data from the source database into flat files,
to generate scripts to create the database objects, and to import the data using
the DB2 LOAD utility. At the time that this book was written, the Data Movement
Tool supported the following database objects for a MySQL to DB2 conversion:
tables, constraints, indexes, primary keys, and foreign keys (with InnoDB).

At the time that this book was written, the Data Movement Tool did not support
the following database objects for a MySQL database conversion: views,
procedures, functions, triggers, and packages.

The IBM Data Movement tool is available in both graphical user interface (GUI)
and command-line interface:

� Graphical user interface

The GUI interface offers the IBM Data Movement Tool conversion
functionality by using a Java interface. It provides an easy to use interface for
beginners.

 Chapter 3. Planning the conversion from MySQL to DB2 65

� Command-line interface

The command-line interface offers a way to operate the IBM Data Movement
Tool from the command line. The command-line interface is intended for
experienced users, who want to run end-to-end conversions without user
interaction.

For our conversion scenario, we use the new IBM Data Movement Tool to
convert database objects and data from MySQL to DB2. If you want to download
the IBM Data Movement Tool or receive more information about it, refer to:

http://www.ibm.com/developerworks/data/library/techarticle/dm-0906datamovement/
index.html

We discuss the installation of the IBM Data Movement Tool in Chapter 5,
“Installation” on page 87.

Other available conversion tools
Various other tools are available online, such as SQLWays. Note that IBM does
not service these conversion tools and does not guarantee the usage of these
tools. SQLWays is a commercial tool by Ispirer Systems for the Windows, UNIX,
and Linux operating systems. For more details, visit this Web site:

http://www.ispirer.com/

3.4 The conversion process

For accurate planning, it is important to understand the steps to complete the
conversion project. To estimate the project effort correctly and to convert the
database and application successfully, you must plan each step. Figure 3-2
shows the basic porting process steps.

Figure 3-2 Steps of the conversion process

66 MySQL to DB2 Conversion Guide

http://www.ispirer.com/
http://www.ibm.com/developerworks/data/library/techarticle/dm-0906datamovement/index.html

3.4.1 Preparing for the installation

After deciding which target system you want to use, you can set up the
installation of the hardware components, the operating system with users and
access rights, the network connections, the required software, and finally, the
DB2 version of your choice.

For more information about the installation of DB2 and the IBM Data Movement
Tool, refer to Chapter 5, “Installation” on page 87.

3.4.2 Porting the database structure

After you install DB2 on the target system, you can port the database structure
from your source MySQL database to DB2.

The database structure is usually described through Data Definition Language
(DDL) statements. DDL scripts include the creation of tables, keys, and indexes.
Because the DDL syntax for MySQL and DB2 differs, a conversion process is
required. Using a tool to convert the database structure can save time and effort.
Figure 3-3 shows the conversion database structure steps.

Figure 3-3 Database structure porting process

Exporting DDL from MySQL databases
Information for the tables, keys, indexes, and functions within your source
MySQL database must be retrieved.

Tools, such as IBM Data Movement Tool, can perform the majority of this task
automatically. Regardless of the tool used, verify the output results. This step
can also be performed manually; however, you need to make sure to cover all of
the database objects.

 Chapter 3. Planning the conversion from MySQL to DB2 67

Converting DDL to DB2 syntax
Because the DDL used for MySQL slightly differs from the DDL used for DB2, the
DDL used to create MySQL databases and objects must be converted to DB2
syntax. The syntax differences between MySQL and DB2 are described in more
detail in Chapter 6, “Database conversion” on page 115.

This conversion of DDL syntax is supported by tools, such as IBM Data
Movement Tool, or, it can be performed manually, as well. In this case, watch
closely for the different data types that are used by MySQL and DB2.

If you plan to change the logical model of your database structure to enhance
your application and take advantage of DB2 functions and features, the DDL
needs to be modified in this step.

Creating DB2 database structure
After all DDL scripts are converted to DB2 syntax, you can create your DB2
database and execute the DDL scripts to create the database structure.

These actions are supported by tools, such as the IBM Data Movement Tool.
Make sure to check that all database objects, such as tables, keys, indexes, and
functions, are created successfully.

3.4.3 Data porting

With the database installed on your new system and the structure of your
database created, the data extracted must be loaded from the source to the
target system.

Databases usually provide mechanisms for exporting (dumping) and importing
(loading) data. We categorized the MySQL data into two types:

� User data: Data that contains information about users, access rights, and
privileges

� Application data: Data created and used by an application

Figure 3-4 on page 69 shows the steps of data movement.

68 MySQL to DB2 Conversion Guide

Figure 3-4 Data porting process

Exporting MySQL user data
MySQL and DB2 use different database security mechanisms. The database
object access privileges are stored in the MySQL database. You need to
understand the MySQL access rights of your application and how you can map
them to DB2. Depending on your application, you probably have to export user
data from the MySQL database.

Mapping MySQL user data to DB2 user data
Because DB2 users, access rights, and privileges are maintained in a separate
way, you have to translate the MySQL user data into DB2 commands that grant
privileges and use operation system user ID management functions to create the
users.

In this step, you create scripts to create the required users and grant them
access privileges to the DB2 database and objects based on the MySQL user
data.

Creating DB2 user data
After you have mapped your MySQL user data to DB2 user data, your users
must be created in the DB2 system, and the necessary privileges must be
granted to them.

 Chapter 3. Planning the conversion from MySQL to DB2 69

The scripts with the DB2 commands for creating users and granting privileges
must be run.

Exporting MySQL application data
You have to dump the application data out of the MySQL database. This step is
supported by the IBM Data Movement Tool, or you can perform it manually. Be
aware of the differences in the format of DATE, TIME, and other data types.

Converting MySQL application data to DB2 format
You must convert the MySQL application data to a format that can be stored
within DB2. The IBM Data Movement Tool handles the conversion of all MySQL
data types for you.

Importing application data into DB2
The exported (and maybe converted) data must finally be loaded into the DB2
tables. The IBM Data Movement Tool also supports this step, and of course, data
can be loaded into DB2 manually.

Basic data checking
After you have loaded all data into your database, you need to perform basic
data checking. For example, you must verify the correct number of rows per table
and the correct representation of the field values. Also, be sure that you have all
the users created in your DB2 system.

All of the steps that are described in this section are performed on the MySQL
sample database and are explained in great detail in Chapter 7, “Data
conversion” on page 167.

3.4.4 Application porting

Various tools can greatly help the conversion process of a database structure
and its data. The conversion of the application can include manual conversions
for cases where nonstandard SQL functions are utilized. DB2 9.7 introduced a
number of features that simplify this task from other relational database vendors
to DB2. Tools exist that support tasks, such as syntax highlighting, but in most
cases, the main conversion must be done manually. A good way is by simply
performing a search for typical SELECT, INSERT, UPDATE, and DELETE key
words and mark these key words with specific comments. If the application
supports SQL92-compliant database systems, the work is significantly reduced.

The extent to which you have to change the application code depends on the
database interface that is used in the source application. When a database

70 MySQL to DB2 Conversion Guide

access layer is used, the adoption is not that complicated; otherwise, the effort to
enable the application will likely be higher.

Application source code changes
Because the Data Manipulation Language (DML) of MySQL and DB2 differs,
you might have to change the SQL statements in your application code directly.

You might find MySQL behaviors that are not natively supported in DB2, so a
concept must be established to allow the application to behave in the same way
as it did prior to conversion.

Database interface
Regardless of the interface used between an application and a database
application, the access to the database must be changed, because the database
server has been modified.

If standardized interfaces, such as ODBC or JDBC are used, the changes will be
less significant than if the application uses the native API of the database
product.

Handling conditions
Depending on the implementation of your application, there might be changes in
the condition handling part of the application.

Additional considerations
DB2 offers rich, robust functions, which you can take advantage of in your
applications. The following list shows several of these features that you might
want to consider using in your application and which differ in MySQL:

� Concurrency
� Locking
� Isolation-level transactions
� Logging
� National language support
� XML support

The steps listed in this section are performed with various sample application
code and explained in great detail in Chapter 8, “Application conversion” on
page 205.

 Chapter 3. Planning the conversion from MySQL to DB2 71

3.4.5 Basic administration

Regardless of the conversion, regular maintenance work performed by the
database administrator must still be performed. Any administrative issues must
also be taken into account during the conversion planning process.

Every database has its own method for backup and recovery, because these
tasks are common, vital tasks in database administration. The database must be
backed up regularly, and the data retention period must be defined based on the
business requirements.

If you have backup and recovery tasks defined on the source system, you
probably want to convert these tasks, as well. Be sure to port any existing scripts
for backup tasks to support DB2.

Both the database backup and recovery functions must be tested to ensure a
safe environment for your application.

Log files
DB2 logs differently than MySQL, so database administrators must be aware of
the logging level that can be set, where log information is stored, and how to read
these logs.

We describe DB2 database administration in detail in Chapter 9, “Database
administration” on page 279.

3.4.6 Testing and tuning

After your new system is up and running, you have to verify that the data and
application functionality have been ported completely, and that system behavior
has not changed in a negative way.

If you succeed with testing, you can then proceed to tuning your database and
application in order to speed up your application.

Checking data
Aside from the basic data checks that must be performed when exporting and
importing data, checking that your application handles your data correctly and
manipulates the expected fields on inserts, updates, or deletes is vital.

Performance checking can be done manually, or a script can be used to have the
data checked.

72 MySQL to DB2 Conversion Guide

Code and application testing
It is extremely important that the behavior of your application has not changed.
Interactions between components, as well as each module of your application,
must be tested. We recommend a code review of all changed code, as well.

Troubleshooting
Whenever the conversion leads to a problem, such as incorrect data or
unexpected application behavior, you have to determine the problem in order to
fix it.

You must understand error messages from the application, as well as DB2 error
messages. The troubleshooting process includes studying the DB2 log files.

See the DB2 technical support Web site for help with specific problems:

http://www.ibm.com/software/data/support/

Basic tuning
When your new system is working perfectly, you might want to tune it for even
better performance. With the correct database configurations, and hints from
DB2 tuning tools, you can speed up your queries quite easily.

DB2 provides tools, such as Design Adviser, Performance Monitor, or Index
Advisor, to support you in speeding up your DB2 system. DB2 also provides the
Self-Tuning Memory Manager, which keeps your database at an optimal state at
all times without any DBA intervention.

We discuss testing and initial tuning of a DB2 database in detail in Chapter 10,
“Testing and tuning” on page 321.

 Chapter 3. Planning the conversion from MySQL to DB2 73

http://www-306.ibm.com/software/data/support/

74 MySQL to DB2 Conversion Guide

Chapter 4. Conversion scenario

To illustrate the process of converting a database from MySQL to DB2, we have
developed a small sample Web application written in PHP. We created the
back-end database using MySQL 5.1 MyISAM tables. This application scenario
is a hardware inventory and services tracking application. Although, the
application is written in PHP, it is possible to convert other popular programming
languages, such as Perl, Java, and C/C++. Chapter 8, “Application conversion”
on page 205 also provides samples of these popular programming languages.

We discuss the following topics in detail:

� Application description
� Database structure
� System environment

4

© Copyright IBM Corp. 2009. All rights reserved. 75

4.1 Application structure

The application that is used for this scenario is a Web-based inventory
management tracking system. With this application, the user can organize and
monitor employee inventory, service tickets, users, and groups.

4.1.1 Application flow

The flow diagram (Figure 4-1) describes the application flow and functions at a
high level.

Figure 4-1 Flow diagram for the sample application

76 MySQL to DB2 Conversion Guide

When a user enters the Web site, the login page (Figure 4-2) provides three
functions:

� User Login: To log in as an already registered user
� New Users: To create a new user account
� Reset Password: To request resetting the password to a default password

Figure 4-2 Login page of the sample Web application

With User Login, a registered user uses their user ID and password to log in. The
application verifies the user name, password, and user permissions against the
registered users in the database. The lowest level of permissions allows the user
to view, edit, and create inventory and service requests. If the user has
permissions to view, create, and edit groups and users, the user is given extra
functionality to do so.

From New Users, a new user can create an account. Completing the registration
form (Figure 4-3 on page 78) creates a new user account in the application. The
application verifies that the user name provided by the user is unique. By default,
new users have the lowest level of permissions. A user who is allowed to edit
groups can add a user to a group with more than default-level permissions.

 Chapter 4. Conversion scenario 77

Figure 4-3 Registration form of the sample application

Using Forget Password, a user can reset the user’s account password by
entering the user’s first, last, and user name, as shown in Figure 4-4 on page 79.
The new password will be displayed to the user.

78 MySQL to DB2 Conversion Guide

Figure 4-4 Reset the password window of the sample application

When successfully logged in, the management options are presented to the
user. A set of management options is displayed and can vary, depending on the
type of permissions held by the logged in user. Figure 4-5 shows the welcome
page options for a user with the highest level of permissions.

Figure 4-5 Welcome menu for the administration login of the sample application

Using the View/Edit Account Info option, users can view account details, as
shown in Figure 4-6 on page 80. Users can update their details by editing the
fields and submitting the form.

 Chapter 4. Conversion scenario 79

Figure 4-6 View/Edit account information of the sample application

With Add Inventory, the user can associate new inventory with their user
account. Figure 4-7 shows a typical completed Add New Inventory form.

Figure 4-7 Add new inventory window of the sample application

Using View/Edit Inventory List, users have the ability to view their assigned
inventory and other users’ inventory using owner, location, inventory type, or
service created against the inventory (Figure 4-8 on page 81). From this page,

80 MySQL to DB2 Conversion Guide

users can select to update inventory records by selecting Edit. To see the Edit
button, the user must have permissions to update the inventory record.

Figure 4-8 View/Edit inventory list window of the sample application

Using Create Service Ticket (Figure 4-9), users can open service tickets against
their assigned inventory.

Figure 4-9 Create Service Ticket window of the sample application

 Chapter 4. Conversion scenario 81

By clicking the View/Edit Service Tickets option, users have the ability to view
their created and assigned service tickets, as shown in Figure 4-10. A user can
also view all service tickets based on the user, inventory location, inventory type,
and service type. From this page, the user can select to update the service ticket
by selecting Edit. To see the Edit button, the user must have the permissions to
update the inventory record.

Figure 4-10 View/Edit service tickets window of the sample application

With the View Group Users option, users with administration permissions can
view all users within a specific group. From this page, the user can update any
given user account by selecting Edit. Figure 4-11 on page 83 shows a user
viewing the manager group user details.

82 MySQL to DB2 Conversion Guide

Figure 4-11 View group users window of the sample application

Using the Create/Edit Group option (Figure 4-12), a user with administration
permissions can create and edit groups.

Figure 4-12 Create/Edit Group window of the sample application

 Chapter 4. Conversion scenario 83

4.2 Database structure

The database that is used for this scenario consists of seven tables, four views,
one trigger, and one stored procedure:

� The LOCATIONS table contains the building layout information.

� The OWNERS table contains the user account information for all of the users
that have access to the application. Each owner is associated with a location
from the LOCATIONS table.

� The INVENTORY table contains the hardware inventory information. Each
piece of inventory is associated with an owner from the OWNER table and a
location from the LOCATIONS table.

� The SERVICES table contains all service tickets that have been opened
against a specific piece of hardware inventory from the INVENTORY table.
Each service has one service owner from the SERVICE table associated with
the service. Each service is also associated with a severity level from the
SEVERITY table and a status from the STATUS table.

� The STATUS table contains the details of the various stages of a service
ticket throughout its life cycle.

� The GROUPS table contains the group name and permissions.

� The SEVERITY table contains the degree of importance of getting the service
ticket resolved and the estimated time for each degree of importance.

� The BOSSGROUP, EMPGROUP, GENERALGROUP, MANAGERGROUP,
and TECHGROUP views contain a summary of the user details and user
inventory in each of the groups.

� The UPDATEDATE trigger can be used to update the closing date field in the
SERVICES table to the current date when the ticket is marked as closed.

� The UPDATE stored procedure can be used to update the average number
of days that it takes to resolve a service ticket in the SEVERITY table. The
stored procedure accepts a specific severity level as an input.

For detailed table information, see Figure 4-13 on page 85. We discuss the data
type conversion between MySQL and DB2 in detail in Chapter 6, “Database
conversion” on page 115.

84 MySQL to DB2 Conversion Guide

Figure 4-13 Inventory database structure diagram for the sample application

4.3 System environment

In this section, we discuss the hardware and software environment that is used
for this conversion scenario.

This database and application were developed in a virtual machine using a
VMware® workstation with the following device settings allocated to the image:

� Memory: 1020 MB
� Hard Disk: 40 GB
� Processors: 2

 Chapter 4. Conversion scenario 85

In our conversion scenario, we set up two servers. Our original server had the
following software installed on the VMware image:

� SUSE® Linux 10 SP2
� MySQL 5.1.36 Community (MySQL AB)
� Apache 2.0
� PHP 5.3.0

The second VMware image, the destination server, has the following software
installed on the VMware image:

� SUSE Linux 10 SP2
� DB2 9.7 Express-C
� Apache 2.0
� PHP 5.3.0
� IBM Data Movement Tool

For more information about the VMware workstation and working with VMware
images, go to this Web site:

http://vmware.com/

DB2 9.7 Express-C for Linux, UNIX and Windows can be downloaded from this
Web site:

http://www.ibm.com/software/data/db2/express/

The IBM Data Movement Tool is used to simplify and greatly decrease the time
that it takes to convert from MySQL to DB2. This tool is available at no charge
from IBM at the following URL:

http://www.ibm.com/developerworks/data/library/techarticle/dm-0906datamovement/
index.html

With the IBM Data Movement Tool, the conversion of database objects, such as
tables and data types, and the conversion of data can be done automatically into
equivalent DB2 database objects.

We discuss the installation and configuration of DB2 and the IBM Data
Movement Tool in the next chapter.

86 MySQL to DB2 Conversion Guide

http://vmware.com/
http://www-306.ibm.com/software/data/db2/express/
http://www.ibm.com/developerworks/data/library/techarticle/dm-0906datamovement/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-0906datamovement/index.html

Chapter 5. Installation

In this chapter, we discuss the target system environment setup. For the
database server, we guide you through the installation process of DB2 9.7 for
Linux, including the hardware and software prerequisites. The application server
has to be examined to ensure that the existing software has the proper DB2
support. If this is a completely new system setup, make sure that all the required
software is included in the installation list. Furthermore, we describe the
download and steps required to set up the IBM Data Movement Tool.

5

© Copyright IBM Corp. 2009. All rights reserved. 87

5.1 DB2 Express-C 9.7 on Linux

Before you start your conversion project, it is important to ensure that the system
you choose meets the necessary operating system, hardware, software, and
communication requirements.

5.1.1 System requirements

This section provides information about supported Linux distributions, hardware,
software, and communication requirements for DB2 on Linux.

Linux distributions supported by DB2
Table 5-1 on page 89 lists IBM DB2 validated and recommended Linux
distributions at the time of writing this book. For the most recent list of all of the
supported Linux distributions that have successfully completed the IBM DB2 for
Linux validation program, check this Web site:

http://www.ibm.com/software/data/db2/linux/validate/

88 MySQL to DB2 Conversion Guide

http://www.ibm.com/software/data/db2/linux/validate/

Table 5-1 Currently supported Linux distributions, kernels, and libraries

Hardware requirements
DB2 products are supported on the following hardware:

� HP-UX

– Itanium®-based HP Integrity Series Systems

� Linux

– x86 (Intel Pentium®, Intel Xeon®, and AMD) 32-bit Intel and AMD
processors

– x64 (64-bit AMD64 and Intel EM64T processors)

Platform Distribution Kernel Library Comment

x86 Red Hat®
Enterprise
Linux (RHEL) 5

2.6.18-
92

libstdc++.so.
5

SUSE Linux
Enterprise
Server (SLES)
11

2.6.27.
19-5

glibc-2.9-13.2

SUSE Linux
Enterprise
Server (SLES)
10 SP2

2.6.16 glibc-2.4-31

Ubuntu 8.0.4 2.6.24-
19

glibc-2.7.so

x86_64
AMD64/
EM64T

Red Hat
Enterprise
Linux (RHEL)

52.6.18
-92l

libstdc++.so All 32-bit compatibility
libraries are required for
32-bit applications.

SUSE Linux
Enterprise
Server (SLES)
11

2.6.27.
19-5

glibc-2.9-13.2 All 32-bit compatibility
libraries are required for
32-bit applications.

SUSE Linux
Enterprise
Server (SLES)
10 SP2

2.6.16 glibc-2.4-31 All 32-bit compatibility
libraries are required for
32-bit applications.

Ubuntu 8.0.4 2.6.24-
19

glibc-2.7.so

 Chapter 5. Installation 89

– POWER® (IBM eServer™ OpenPower®, iSeries, pSeries®, System i,
System p, and POWER Systems that support Linux)

– System z or System z9®

� Solaris

– UltraSPARC or SPARC64 processors
– Solaris x64 (Intel 64 or AMD64)

� Windows

– All Intel and AMD processors capable of running the supported Windows
operating systems (32-bit and 64-bit base systems)

For more information about DB2 9.7 system requirements and other DB2 release
system requirement, check this Web site:

http://www.ibm.com/software/data/db2/9/sysreqs.html

Disk requirements for DB2 servers
The disk space that is required for your product depends on the type of
installation that you choose and the type of file system that you have. The DB2
setup wizard provides dynamic size estimates based on the components
selected during a typical, compact, or custom installation. The following sizes are
the sizes for the DB2 Express-C installation:

� Typical: Requires 500 - 610 MB

With the Typical installation type, DB2 is installed with most of the features
and functionality, including graphical tools, such as the Control Center and
DB2 Instance Setup wizard.

� Compact: Requires 450 - 550 MB

With the Compact installation type, only basic DB2 features and functions are
installed. A minimal configuration will be performed, and graphical tools are
not included.

� Custom: Requires 450 - 1080 MB

With the Custom installation type, you can select the features that you want to
install. The disk space needed varies based on the selected features.

When you install DB2 Enterprise Server Edition or Workgroup Server Edition
using the DB2 setup wizard, size estimates are dynamically provided by the
installation program based on the installation type and component selection.

If the space required for the installation type and components exceeds the space
found in the path specified, the setup program issues a warning about insufficient
space. The installation is allowed to continue. If the space for the files being

90 MySQL to DB2 Conversion Guide

http://www-01.ibm.com/software/data/db2/9/sysreqs.html

installed is in fact insufficient, installation will stop, and the setup program will
need to be aborted if additional space cannot be provided.

Remember to include disk space for required databases, software, and
communication products.

On the Linux and UNIX operating systems, 2 GB of free space in the /tmp
directory is recommended.

Memory requirements for servers
At minimum, a DB2 database system requires 256 MB of RAM. For a system
running a DB2 product and the DB2 GUI tools, a minimum of 512 MB of RAM is
required. For improved performance, 1 GB of RAM is recommended. These
requirements do not include additional memory requirements for other software
components running on your system.

When determining memory requirements, ensure to remember the following
considerations:

� DB2 products that run on HP-UX Version 11i for Itanium-based™ systems
require 512 MB of RAM at a minimum.

� For IBM Data Server Client support, these memory requirements are for a
base of five concurrent client connections. You will need an additional 16 MB
of RAM for every five client connections.

� Memory requirements are affected by the size and complexity of your
database system, as well as by the extent of database activity and the
number of clients accessing your system.

� For DB2 server products, the self-tuning memory feature simplifies the task of
memory configuration by automatically setting values for several memory
configuration parameters. When enabled, the memory tuner dynamically
distributes available memory resources among several memory consumers,
including sort memory, the package cache, lock list memory, and buffer
pools.

� Additional memory can be required for non-DB2 software that might be
running on your system.

� Specific performance requirements can determine the amount of memory
needed.

� On the Linux operating system, we recommend a SWAP space at least twice
as large as RAM.

 Chapter 5. Installation 91

Communication requirements
When using TCP/IP as the communication protocol, no additional software is
needed for connectivity. For more supported communication protocols, refer to
the DB2 manual Quick Beginnings for DB2 Servers 9.5, GC10-4246, at this Web
site:

http://publibfp.boulder.ibm.com/epubs/pdf/c2358642.pdf

Or, you can visit the IBM DB2 Database for Linux, UNIX, and Windows
Information Center at this Web site:

https://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

5.1.2 Installation procedure

Table 5-2 shows the four installation methods in which DB2 can be installed. For
completeness, we have provided the information for supported Linux, UNIX, and
Windows operating systems. Each of the methods listed has its own advantages
and disadvantages and varies upon the environment. For a discussion about the
preferred method, refer to Up and Running with DB2 on Linux, SG24-6899.

Table 5-2 DB2 installation methods

For this particular project or any other conversion project in general, the DB2
Data Server Client is required. It provides libraries for application development. If
the application server and the database server are to be placed on the same
system, you can install both the DB2 server and Data Server Client in one step
by selecting the Custom installation type.

For this project, we perform the following steps to install DB2 9.7 on Linux:

1. Log on to Linux as a root user.

2. Download DB2 9.7 Express-C from this Web site:

http://www.ibm.com/software/data/db2/express/download.html

3. Save the tar file to the /usr/local/src directory.

Installation method Linux UNIX Windows

DB2 setup wizard Yes Yes Yes

db2_install Yes Yes No

Response file installation Yes Yes Yes

Payload file deployment (Manual
installation)

Yes Yes No

92 MySQL to DB2 Conversion Guide

http://publibfp.boulder.ibm.com/epubs/pdf/c2358642.pdf
https://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp
http://www-01.ibm.com/software/data/db2/express/download.html

4. Change directories to the /usr/local/src directory:

cd /usr/local/src/expc

5. Extract the tar file:

tar -xzf db2exc_970_LNX_x86.tar.gz

6. Change to the directory:

cd /usr/local/src/expc

7. Launch the DB2 setup wizard, which opens the panel that is shown in
Figure 5-1:

./db2setup

Figure 5-1 DB2 Setup Launchpad

8. When the DB2 Launchpad opens, choose Install a Product, as shown in
Figure 5-2 on page 94.

Note: Starting in DB2 9.5, you can also perform a non-root installation of DB2.

 Chapter 5. Installation 93

Figure 5-2 DB2 setup launchpad

9. Select Install New under the option to install the server to launch the DB2
setup wizard.

10.Go to the Software License Agreement panel, and read the Software License
Agreement, as shown in Figure 5-3 on page 95. If you agree with the
agreement, select Accept, and click Next.

94 MySQL to DB2 Conversion Guide

Figure 5-3 DB2 Software License Agreement panel

11.In the Installation Type panel, click Custom, as shown in Figure 5-4 on
page 96, and click Next.

 Chapter 5. Installation 95

Figure 5-4 DB2 installation type panel

12.Click Next again to get the Features panel. Select the Application
Development tools option, as shown in Figure 5-5 on page 97, and click
Next.

96 MySQL to DB2 Conversion Guide

Figure 5-5 DB2 custom installation with application development tools selected

13.In the Languages panel, choose the type of languages to install, and click
Next.

14.In the Documentation panel, choose where to access the DB2 Information
Center. You can choose to install it as part of this process, or you can access
the online DB2 Information Center at any time. Click Next.

15.In the Database Administration Server (DAS) panel, enter the DAS user
information. Linux group and user accounts do not have to be created prior to
this step; DB2 will create the required Linux system group and user
automatically. For the example installation, we use the default name dasusr1
and choose a password for this user, as shown in Figure 5-6 on page 98, and
click Next.

 Chapter 5. Installation 97

Figure 5-6 DB2 setup administration server panel

16.In the Instance setup panel, you can choose whether you want to set up an
instance during the DB2 installation. By selecting Create a DB2 instance and
clicking Next, we let DB2 create the instance for us.

17.Enter the instance owner information in the Instance Owner panel. Linux
group and user accounts do not have to be created prior to this step; DB2 will
create the Linux group and user. For the example installation, we use the
default db2inst1 settings and create a password for this user, as shown in
Figure 5-7 on page 99, and click Next.

98 MySQL to DB2 Conversion Guide

Figure 5-7 DB2 set up DB2 instance owner

18.In the Fenced user panel, we allow DB2 create the ID for us, as shown in
Figure 5-8 on page 100, and click Next.

 Chapter 5. Installation 99

Figure 5-8 DB2 set up DB2 fenced user

19.In the Instance Communication panel, configure the DB2 instance TCP/IP
communication. For the example installation, we use the default settings and
click Next.

20.In the DB2 Tools Catalog Configuration panel, we create a local tools catalog
by selecting the db2inst1 instance. We also use the default local database
TOOLSDB and default schema SYSTOOLS and then, click Next. Figure 5-9 on
page 101 shows the DB2 Tools Catalog Configuration panel.

100 MySQL to DB2 Conversion Guide

Figure 5-9 Prepare DB2 tools catalog

21.At the end, the setup wizard provides a summary of the installation options
selected. Review it and click Finish to start the installation.

Fix pack installation
We recommend that you install the latest DB2 fix pack:

1. Download the fix pack from this Web site:

 http://www.ibm.com/software/data/db2/support/db2_9/

2. Change to the directory in which the installation image is located.

3. Enter the installFixPak command to launch the installation.

4. Update instances to run against the new code with the db2iupd command.

5. Update DB2 Administration Server (DAS) using the dasupdt command.

6. Restart applications.

The db2setup command options
The db2setup command provides options for specifying the locations of the log
files, trace file, or response file created during installation (see Figure 5-10 on
page 102). Log files are useful for verifying the installation status and tracing the

 Chapter 5. Installation 101

http://www-306.ibm.com/software/data/db2/support/db2_9/

problem if the installation failed. By default, db2setup starts the graphical user
interface (GUI) and picks up the language flag from the operating systems
settings.

Figure 5-10 The db2setup command options

If the log file option is not specified, the db2setup.log file and db2setup.err file
are stored in the /tmp directory on a Linux operating system. Example 5-1 shows
an example of the db2setup.log file.

Example 5-1 DB2setup log file

DB2 Setup log file started at: Fri Jul 24 15:20:15 2009 EDT
==

Operating system information: Linux 2.6.16.60-0.21-smp.#1 SMP Tue May 6
12:41:02 UTC 2008 i686

Product to install: DB2 Express-C
Installation type: Custom
...

5.1.3 Instance creation

For our project, we allow DB2 to create the DB2 instance automatically during
installation (Figure 5-8 on page 100). Although this option is the default, you can
turn automatic instance creation off during installation and create instances and
databases manually after the installation has completed.

If you have chosen not to create instances during the DB2 installation or need to
add another instance after installation, there are two options to create instances
manually:

� The db2isetup command starts a graphical tool for creating and configuring
instances, as shown in Figure 5-11 on page 103. It allows you to specify all
the required configuration parameters, such as the instance owner and
communication protocol, in an easy, guided fashion. The command can be
found in the /opt/ibm/db2/V9.7/instance directory on a Linux operating
system.

102 MySQL to DB2 Conversion Guide

Figure 5-11 Graphical user interface for db2isetup

� The second option is the db2icrt command. It is a command-line alternative
to create the instances, for example:

db2icrt -u db2fenc1 db2inst1

The command to create the DAS user is the dascrt command. Use it in the
following way:

dascrt -u dasadm1

As part of the GUI instance creation, the installer suggests three users identified
as db2inst1, db2fenc1, and dasadm1. These are default names for the instance
users. If you do not want to use the default names, you can choose your own
names by creating the system user IDs and groups ahead of time and inputting
these parameters in the wizard when prompted. The installer will also add the
following entry to the /etc/services file in order to allow communication from
DB2 clients:

db2c_db2inst1 50000

In this entry, db2c_db2inst1 indicates the service name, and 50000 indicates the
port number. DB2 allows for multiple instances on one server installation to allow
for various environments, that is, test, production, development, and so on.
Subsequent instances can be created on the same server simply by using one of
the methods introduced here.

5.1.4 Client setup on Linux

This section discusses installation and configuration of DB2 clients to access a
remote DB2 server. DB2 provides two types of clients at no charge:

� DB2 Runtime Client: This client is best suited for enabling applications to
access DB2 servers.

� DB2 Client: This client includes all the functionality found in the DB2 Runtime
Client, plus functionality for the client/server configuration, database
administration, and application development.

 Chapter 5. Installation 103

All clients are supported on Linux, AIX, HP-UX, Solaris, and Windows operating
systems.

To access a remote DB2 database, you can either run the easy to use graphical
tool Configuration Assistant or use the catalog commands to provide entries for
the following three directories:

� NODE directory: A list of remote DB2 instances
� ADMIN NODE directory: A list of remote DB2 Administration servers
� DATABASE directory: A list of databases

To use the command-line tools, first catalog the DB2 node. The DB2 node is the
server where the database resides. Then, catalog the database. See
Example 5-2.

Example 5-2 Cataloging the DB2 node and the database

--
-- catalog database node
--
CATALOG TCPIP NODE db2node REMOTE server1 SERVER 50001

--
-- catalog the DAS on the remote node
--
CATALOG ADMIN TCPIP NODE db2das remote SERVER1
-
-- catalog database
--
CATALOG DATABASE invent AS inventdb AT NODE db2node

After installing your DB2 Client, configure it to access a remote DB2 server using
the Configuration Assistant. The graphical interface can be launched through the
DB2 Control Center or run on its own by using the command db2ca. For more
details, refer to the IBM DB2 manual Quick Beginnings for DB2 Clients,
GC10-4242.

Note: Typically, in a production environment, DB2 clients are installed on
separate physical machines from the DB2 server. However, for an application
development environment, it can be useful to have everything, such as the
DB2 database server plus the clients, on the same machine.

104 MySQL to DB2 Conversion Guide

5.2 Other software products

All software requirements for the target environment must be identified in the
conversion planning and preparation stage. Prior to conversion of any data
objects, all software must be installed and configured.

The sample application in this book is written in PHP with Apache2. Therefore,
the next two sections discuss how to prepare the target system for Apache2 and
PHP.

5.2.1 Apache2 installation with DB2 support

When converting an application from one server to another server, you must
ensure that all software is properly installed on the new server. In our conversion
scenario, we use Apache.

Installation steps
The following steps explain how we install Apache2 on SUSE 10 SP2:

1. Download the Apache package.

The source code for Apache package is available at this Web site:

http://httpd.apache.org/download.cgi

In our conversion scenario, we use Version 2.2.11 of Apache, and the
package that we download is httpd-2.2.11.tar.gz.

2. Change the working directory.

Use the cd command to make your working directory the directory to which
you download the tar file:

db2server: # cd /usr/local/src/

3. Uncompress the source package.

The following command decompresses the contents of the source package
into a directory called httpd-2.2.11:

db2server:/usr/local/src # tar -xzf httpd-2.2.11.tar.gz

4. Change the working directory.

Use the cd command to make the newly created directory your working
directory:

db2server:/usr/local/src # cd httpd-2.2.11/

 Chapter 5. Installation 105

http://httpd.apache.org/download.cgi

5. Specify the configuration options for the PHP source.

Possible configuration options can be listed by issuing the following
command:

db2server:/usr/local/src/httpd-2.2.11# configure -help

6. Run the configure script.

The configure script builds the Makefile. The following script is the
configuration command that we use to set up our server:

db2server:/usr/local/src/httpd-2.2.11# ./configure
--prefix=/usr/local/apache2
--enable-so
--enable-cgi
--enable-info
--enable-rewrite
--enable-speling
--enable-usertrack
--enable-deflate
--enable-ssl
--enable-mime-magic

Where option:

--prefix Specifies the Apache install directory

--enable-so Dynamically Shared Object (DSO) capability, which
allows you to load modules into Apache at run time

--enable-cgi Enables support for CGI scripts

--enable-info Enables server information

--enable-rewrite Enables rule-based URL manipulation

--enable-speling When enabled, Apache corrects common URL
misspellings

--enable-usertrack Enables user-session tracking

--enable-deflate Deflates transfer encoding support

--enable-ssl Enables SSL/TLS support (mod_ssl)

--enable-mime-magic
Automatically determines Multipurpose Internet
Mail Extensions (MIME) type

You can run the configure command with the --help option to get a full list of
options for configuring Apache.

106 MySQL to DB2 Conversion Guide

7. Compile Apache.

After configuring the source files, the compile process is started using the
make command. We pipe the output to a log file in order to check for failure
afterward:

db2server:/usr/local/src/httpd-2.2.11 # make > apacheMake.out

8. Install Apache.

After Apache compiles successfully, it can be installed as the root user:

db2server:/usr/local/src/httpd-2.2.11 # make install

9. Add the apachect1 script to the following directories.

Use the ln command to create a link to the apachect1 file in the /usr/bin and
/etc/init.d directories:

ln -s /usr/local/apache2/bin/apachectl /usr/bin/apachectl
ln -s /usr/local/apache2/bin/apachectl /etc/init.d/

10.Start the Apache httpd server.

Use the following command to start the apache httpd server:

apachectl start

5.2.2 PHP installation with DB2 support

There are four major interfaces that are available for connecting to a DB2
database in PHP:

� The ibm_db2 extension interface provides an API to read/write from/to the
database. This extension makes it easy to convert Unified Open Database
Connectivity (ODBC) applications to use ibm_db2.

� PDO_ODBC and PDO_IBM are object-oriented extension interfaces that are
used to connect to a database. Both extension interfaces are based on PDO
PHP Data Object (PDO) standards. PDO_IBM includes the IBM database
driver for PDO.

� Unified ODBC is the traditional procedural interface and supports multiple
database servers. The Unified ODBC extension is not optimized for DB2 and
therefore not recommended for new applications.

When converting a PHP application on an existing server, preparation and
verification must be performed to have DB2 connection support. If a precompiled
package of PHP is used, by default, only a predefined set of functions and
database support is integrated. To see which configuration options are included
in the previous installed PHP version, the PHP function phpinfo() can be invoked
out of a Web page file. The included configuration commands are listed in the
third section of the PHP information, as shown in Figure 5-12 on page 108.

 Chapter 5. Installation 107

Figure 5-12 PHP configuration options

Installation steps
In order to use the IBM DB2 libraries, you must recompile PHP. These
installation steps explain how to update your PHP install and how to install PHP
from the beginning:

1. Back up the httpd.conf and php.ini files.

To ensure the configuration files for Apache and PHP are not lost when
installing the new PHP version, we recommend backing up the
/etc/httpd/httpd.conf and if you have a previous version of PHP installed,
back up the /etc/php.ini files.

2. Download the PHP package.

The source code for PHP is available at this Web site:

http://www.php.net/downloads.php

Note: All commands and procedure descriptions that are provided in this
section refer to SUSE Linux Enterprise Server 10 SP2. The commands and
procedures can vary for other versions or Linux distributions.

108 MySQL to DB2 Conversion Guide

http://www.php.net/downloads.php

In our conversion scenario, we use Version 5.3.0 of PHP, and the package
that we downloaded was php-5.3.0.tar.gz.

Download the ibm_db2 PECL extension at this Web site:

http://pecl.php.net/package/ibm_db2

In our conversion scenario, we use Version 1.2.8, and the package that we
downloaded was ibm_db2-1.8.2.tgz.

Download the PDO_IBM PECL extension at this Web site:

http://www.pecl.php.net/package/PDO_IBM

In our conversion scenario, we use Version 1.3.0, and the package that we
downloaded was PDO_IBM-1.3.0.tgz.

3. Uncompress the source package.

The following command decompresses the contents of the source package to
a directory called php-5.3.0:

db2server:/usr/local/src # tar xzf php-5.3.0

4. Add the PECL extensions to the php install directory.

Use the mv command to move the compressed files to the extension directory
in the install directory:

db2server:/usr/local/src # mv ibm_db2-1.8.2.tgz php-5.3.0/ext/.
db2server:/usr/local/src # mv PDO_IBM-1.3.0.tgz php-5.3.0/ext/.

5. Change the working directory.

Use the cd command to make the ext directory your working directory:

db2server:/usr/local/src # cd php-5.3.0/ext/

6. Uncompress the PECL extension packages.

The following command decompresses the contents of the extension
packages into directories called ibm_db2-1.8.2 and PDO_IBM-1.3.0:

db2server:/usr/local/src/php-5.3.0/ext/ # gzip -d < ibm_db2-1.8.2.tgz |
tar -xvf -
db2server:/usr/local/src/php-5.3.0/ext # gzip -d < PDO_IBM-1.3.0.tgz |
tar -xvf -

7. Rename the extension directories.

Use the mv command to rename the extension directories:

db2server:/usr/local/src/php-5.3.0/ext # mv ibm_db2-1.8.2 ibm_db2
db2server:/usr/local/src/php-5.3.0/ext # mv PDO_IBM-1.3.0 pdo_ibm

 Chapter 5. Installation 109

http://pecl.php.net/package/ibm_db2
http://www.pecl.php.net/package/PDO_IBM

8. Change the working directory.

Use the cd command to make the PHP install directory your working
directory:

db2server:/usr/local/src # cd /usr/local/src/php-5.3.0/

9. Remove the configure file.

Use the rm command to remove the PHP configure script:

db2server:/usr/local/src/php-5.3.0 # rm configure

10.Rebuild the configure file.

The buildconf command rebuilds the configure file to include the new
extensions:

db2server:/usr/local/src/php-5.3.0 # ./buildconf --force

11.Verify that the extension is now within the configure file.

Use the following command to verify that the buildconf command worked
successfully:

db2server:/usr/local/src/php-5.3.0 # ./configure --help | grep
with-ibm-db2
db2server:/usr/local/src/php-5.3.0 # ./configure --help | grep pdo-ibm

12.Specify the configuration options for the PHP source.

A list of the possible configuration options can be seen by issuing the
following command:

db2server:/usr/local/src/php-5.3.0 # configure -help

13.Run the configure script.

The configure script builds the Makefile. For our purposes, we specify the
configure command:

db2server:/usr/local/src/php-5.3.0 # ./configure
--prefix=/usr/local/apache2/php
--with-IBM_DB2=/opt/ibm/db2/V9.7
--with-pdo-ibm=/opt/ibm/db2/V9.7
--with-pdo-odbc=ibm-db2,/home/db2inst1/sqllib
--with-ibm-db2=/opt/ibm/db2/V9.7
--with-apxs2=/usr/local/apache2/bin/apxs
--with-config-file-path=/usr/local/apache2/php

Where option:

--prefix Specifies the PHP install directory

--with-IBM_DB2 Is for the ibm_db2 extension

--with-pdo-ibm Is for the PDO_IBM extension

--with-pdo-odbc Is for the PDO_ODBC extension

110 MySQL to DB2 Conversion Guide

--with-ibm-db2 Is for the Unified ODBC extension

--with-apxs2 Is for the Apache apxs tool, which allows you to
build extension modules to add to Apache’s
functionality

--with-config-file-path
Allows you to specify the path to the php.ini file

If a particular extension is not required, it can be removed from the
configure command and the install.

14.Compile PHP.

After configuring the source files, start the compile process by using the make
command. We pipe the output to a log file in order to check for failures
afterward:

db2server:/usr/local/src/php-5.3.0 # make > phpMake.out

15.Install PHP.

After PHP has compiled successfully, install it as the root user:

db2server:/usr/local/src/php-5.3.0 # make install

16.Configure Apache.

If Apache was already configured for PHP on your server, you only have to
make certain changes. As part of the installation process, PHP automatically
modifies the Apache configuration file /usr/local/apache2/conf/httpd.conf.
Confirm that the httpd.conf has the following lines. If the lines are missing,
update the file:

– LoadModule php5_module modules/libphp5.so
– directoryIndex index.php index.html index.htm index.html.var
– AddType text/html php
– AddType application/x-httpd-php.php

17.Check the php.ini file.

Either copy php.ini-dist in the Configuration File Path (see Figure 5-12 on
page 108) of PHP and rename it to php.ini, or if your PHP version is the
same as before, copy the version that was saved in step 1 back in this
directory.

18.Start the Apache httpd server.

Apache has to be restarted to use the configuration changes:

db2server:/usr/local/src/php-5.3.0 # apachect1 restart

 Chapter 5. Installation 111

5.3 IBM Data Movement Tool installation and usage

The IBM Data Movement Tool is an ingenuous tool that offers schema and data
movement from various database providers to DB2. The tool accepts information
about the source database and target database, extracts the database objects
and data from source database, and can input this data into the target DB2
database.

For the IBM Data Movement user guide and a no charge download of the IBM
Data Movement Tool, visit this Web site:

http://www.ibm.com/developerworks/data/library/techarticle/dm-0906datamovement/

5.3.1 IBM Data Movement Tool prerequisites

The following prerequisites are required to successfully deploy the IBM Data
Movement Tool for MySQL.

Software requirements
We describe the software that is required to use the IBM Data Movement Tool in
this topic.

General requirements
In general, you need the following software:

� Latest version of the IBM Data Movement Tool.

� MySQL: Ensuring that MySQL is running (usually the daemon can be started
with the command safe_mysqld & from an account with root permissions).

� DB2 V9.7 needs to be installed on the target server. Use the command
db2start to ensure that the DB2 Server is up and running.

� Java Version 1.5 or higher must be installed on your target server. To verify
your current Java version, run the java -version command. By default, Java
is installed as part of DB2 for Linux, UNIX, and Windows in
<install_dir>\SQLLIB\java\jdk (Windows) or /opt/ibm/db2/V9.7/java/jdk
(Linux).

� You must have the Java Database Connectivity (JDBC) drivers for the
MySQL source database (mysql-connector-java-5.1.8-bin.jar or the latest
driver) and the DB2 target database (db2jcc.jar, db2jcc_license_cu.jar, or
db2jcc4.jar, db2jcc4_license_cu.jar) installed on the server with the IBM Data
Movement Tool.

112 MySQL to DB2 Conversion Guide

http://www.ibm.com/developerworks/data/library/techarticle/dm-0906datamovement/

Operating system
IBM Data Movement Tool supports the following operating systems:

� Windows
� z/OS
� AIX
� LINUX
� Solaris
� HP-UX
� MacIntosh

For the purpose of this document, we have used the IBM Data Movement Tool
with DB2 Version 9.7 and MySQL Version 5.1.36. We recommend that you install
the IBM Data Movement Tool on the DB2 server side to achieve the best data
movement performance.

5.3.2 IBM Data Movement Tool installation

Installing the IBM Data Movement Tool is simple and straightforward:

1. Download the latest version of the IBM Data Movement Tool from this Web
site:

http://www.ibm.com/developerworks/data/library/techarticle/dm-0906datamovem
ent/

2. Create a directory for the IBM Data Movement Tool, and copy
IBMDataMovementTool.zip to this directory:

db2server:/opt/ibm # mkdir IBMDataMovementTool
db2server:/usr/local/src # cp IBMDataMovementTool.zip
/opt/ibm/IBMDataMovementTool/

3. Expand the compressed package using this command:

db2server:/opt/ibm/IBMDataMovementTool/ # unzip IBMDataMovementTool.zip

To start the IBM Data Movement Tool, execute IBMDataMovemtnTool.sh for
Linux and UNIX and the IBMDataMovmentTool.cmd command for Windows.
Figure 5-13 on page 114 shows the IBM Data Movement Tool window.

 Chapter 5. Installation 113

http://www.ibm.com/developerworks/data/library/techarticle/dm-0906datamovement/

Figure 5-13 IBM Data Movement Tool

114 MySQL to DB2 Conversion Guide

Chapter 6. Database conversion

After you create the conversion plan and install and set up all of the required
software, it is time to translate the source MySQL database structure into DB2.

In this chapter, we discuss the process of converting the database structure from
the MySQL 5.1 server to the DB2 9.7 server. Before this discussion, we must
evaluate the differences between the MySQL database structure and the DB2
database structure.

In the first section, we discuss data type mapping, taking a closer look at MySQL
and DB2 data types and the differences between them. Following this section,
we provide Data Definition Language (DDL) differences, providing a syntax
comparison between MySQL and DB2.

In the succeeding section, we provide additional considerations for users while
porting the database schema from MySQL to DB2.

In the last section, we provide detailed information regarding the database
schema porting steps using the following approaches:

� Porting using the IBM Data Movement Tool
� Manual porting
� Metadata transform

6

© Copyright IBM Corp. 2009. All rights reserved. 115

6.1 Data type mapping

In this section, we compare the differences between MySQL and DB2 data
types. In general, all MySQL data types can be mapped to DB2 data types. With
the assistance of the IBM Data Movement Tool, this process can be effortless.

Every column in the database table has an associated data type, which
determines the values that this column can contain. DB2 supports both built-in
data types and user-defined data types (UDT) whereas MySQL only supports
built-in data types. Figure 6-1 shows the built-in data types of MySQL.

Figure 6-1 MySQL data types

Figure 6-2 on page 117 shows the built-in data types that are supported by DB2.

116 MySQL to DB2 Conversion Guide

Figure 6-2 DB2 data types

MySQL data types are grouped into three categories and can be converted to
DB2 data types following these suggested rules:

� Numeric type:

– TINYINT

A tiny integer is a single-byte integer in MySQL that can be mapped to a
DB2 SMALLINT for similar functionality.

– SMALLINT

A small integer is a two-byte integer with a precision of five digits. With
MySQL, the range of signed small integers is -32768 to 32767, making it
replaceable by DB2 SMALLINT. For unsigned MySQL small integers, the
range is 0 to 65535, making it replaceable by DB2 INTEGER.

– BIT, BOOL, and BOOLEAN

These types are synonyms for TINYINT(1). Instead of BIT, BOOL, and
BOOLEAN, DB2 uses SMALLINT with check constraint.

 Chapter 6. Database conversion 117

– MEDIUMINT

This type is a medium-sized integer with a signed range of -8388608 to
8388607 or 0 to 16777215 for the unsigned range. DB2 uses an INTEGER
for this type, which has a range of -2147483648 to 2147483647.

– INTEGER and INT

An integer is 4-byte integer for both MySQL and DB2. The range of a
signed MySQL INTEGER and DB2 INTEGER is -2147483648 to
2147483647; therefore, the DB2 INTEGER can be used. For the unsigned
MySQL INTEGER, the range is 0 to 4294967295. This type can be
replaced by DB2 BIGINT.

– BIGINT

A big integer is an 8-byte integer for both MySQL and DB2. A DB2 BIGINT
can be used for a signed MySQL BIGINT, because the range of a signed
MySQL BIGINT and a DB2 BIGINT is -9223372036854775808 to
9223372036854775807. For unsigned MySQL BIGINT, the range is 0 to
18446744073709551615; DB2 DECIMAL will cover the range.

– FLOAT

A FLOAT in MySQL is a single precision floating-point number ranging
from -3.402823466E+38 to -1.175494351E-38, 0, and 1.175494351E-38
to 3.402823466E+38. Whereas in DB2, it is a double precision
floating-point number ranging from -1.79769E+308 to -2.225E-307, or
from 2.225E-307 to 1.79769E+308. Hence, a FLOAT value in MySQL can
be directly mapped to a DOUBLE in DB2.

– DOUBLE

A DOUBLE is a double precision floating-point number for both DB2 and
MySQL. A signed MySQL DOUBLE can be directly mapped to DOUBLE in
DB2. An unsigned MySQL DOUBLE can be mapped to DECIMAL in DB2.

– REAL

This type is a synonym for DOUBLE in MySQL and, therefore, can be
mapped to the same DB2 data types as the MySQL DOUBLE data type.

– DECIMAL, NUMERIC, and FIXED

A DECIMAL in MySQL is mapped to a DECIMAL in DB2. Although MySQL
and DB2 implement decimals differently, externally, they behave the same
way.

� Date and time type:

– DATE

A DATE in MySQL and DB2 DATE both use four bytes (first two bytes for
the year, the third byte for the month, and the last byte for the day). The

118 MySQL to DB2 Conversion Guide

range of the MySQL date for the year is 1000-9999, whereas DB2
supports a date range from 0001-9999, allowing DB2 to map to this
MySQL data type.

– DATETIME

A date and time combination in MySQL is displayed as YYYY-MM-DD
HH:MM:SS, ranging from year 1000 - 9999. In DB2, TIMESTAMP is used
for a similar purpose, which is a seven part value (year, month, day, hour,
minute, second, and microsecond).

– TIMESTAMP

A time stamp in MySQL is a date/time combination with a range of
1970-01-01 00:00:00 to the year 2037. It is automatically set to the date
and time of the most recent operation if you do not give it a valid value.
This data type can be mapped to the DB2 TIMESTAMP, or an optional
choice is the DB2 TIME data type.

– TIME

MySQL time represents a clock ranging from -838:59:59 to 838:59:59. It is
mapped to DB2 TIME, which is a 24-hour clock.

– YEAR

The MySQL year can be in either a two-digit or four-digit format,
representing the year from 1901 - 2155 mapped to SMALLINT or
CHAR(4) in DB2.

� String and character types:

– CHAR

A fixed length string in MySQL is represented with the same name in DB2,
mapping to a CHAR in DB2.

– VARCHAR

A variable-length string in MySQL has a maximum length of 65,535, and a
DB2 variable-length string has a maximum length of 32,672. A MySQL
VARCHAR can be mapped to a DB2 VARCHAR when the MySQL
VARCHAR variables are shorter than 32,672; otherwise, VARCHAR can
be mapped to a character large object (CLOB).

– BINARY

MySQL BINARY stores binary byte strings, which can be mapped to DB2
CHAR(I).

– VARBINARY

MySQL VARBINARY stores binary byte strings, which can be mapped to
DB2 VARCHAR(I).

 Chapter 6. Database conversion 119

– TINYBLOB

MySQL TINYBLOB is a binary large object column with a maximum length
of 255, which can be mapped to DB2 BLOB(255).

– TINYTEXT

MySQL TINYTEXT is a character stream of maximum length 255, which
can be mapped to DB2 CLOB(255).

– BLOB

MySQL BLOB is a binary data column with a maximum length of 65,535,
which can be mapped to DB2 BLOB(65 KB).

– TEXT

TEXT is a TEXT column with a maximum length of 65,535 and is mapped
to DB2 CLOB(65 KB).

– MEDIUMBLOB

MySQL MEDIUMBLOB is a blob column with a maximum length of
16,777,215, which can be mapped to DB2 BLOB(16 MB).

– MEDIUMTEXT

MySQL MEDIUMTEXT is a text column with a maximum length of
16,777,215, which can be mapped to DB2 CLOB(16 MB).

– LONGBLOB

MySQL LONGBLOB is an extremely large BLOB column with a maximum
length of 4,294,967,295, which can be mapped to DB2 BLOB(2 GB).

– LONGTEXT

MySQL LONGTEXT is a text column with a maximum length of
4,294,967,295, which can be mapped to DB2 CLOB(2 GB).

– ENUM

MySQL has a special ENUM type, which is a string object that can have
only one value chosen from a list of values, 'value1', 'value2', ..., NULL,
which can be mapped to DB2 VARCHAR() with check constraints.

– SET

MySQL has another special SET type, which is a string object that can
have zero or more values, which must be chosen from the list of values,
'value1', 'value2',..., which can be mapped to DB2 VARCHAR() with check
constraints.

Table 6-1 shows the default data type mappings between the two databases that
are used by the IBM Data Movement Tool. We use this mapping for our sample
conversion.

120 MySQL to DB2 Conversion Guide

Table 6-1 MySQL to DB2 data type mapping

MySQL 5.1 DB2 9.7

TINYINT SMALLINT

TINYINT
UNSIGNED

SMALLINT

SMALLINT SMALLINT

SMALLINT
UNSIGNED

INTEGER
Optional: SMALLINT

BIT SMALLINT

BOOLEAN SMALLINT

MEDIUMINT INTEGER

MEDIUMINT
UNSIGNED

INTEGER

INTEGER/INT INTEGER

INTEGER/INT
UNSIGNED

BIGINT
Optional: INTEGER

BIGINT BIGINT

BIGINT
UNSIGNED

DECIMAL
Optional: BIGINT

FLOAT DOUBLE

FLOAT
UNSIGNED

DOUBLE

DOUBLE DOUBLE

DOUBLE
UNSIGNED

DECIMAL
Optional: DOUBLE

REAL DOUBLE

REAL
UNSIGNED

DOUBLE

NUMBERIC
DECIMAL
DEC

DECIMAL(31,0)

NUMERIC(P)
NUMERIC(P,0)
DECIMAL(P)
DECIMAL(P,0)
DEC(P)
DEC(P,0)

DECIMAL(min(P,31),0)

DECIMAL
UNSIGNED

DECIMAL

 Chapter 6. Database conversion 121

6.2 Data definition language differences

In this section, we address the Data Definition Language (DDL) syntax
differences between MySQL and DB2 DDL statements. These differences can
be syntactical, semantic, or functional.

NUMERIC
UNSIGNED

DECIMAL

NUMERIC(p,s)
DECIMAL(p,s)
DEC(p,s)
where:
s > 0 && p >= s
s > 0 && p < s
s < 0

DECIMAL(min(p,32), min(s,32))
DECIMAL(min(s,32), min(s,32))
DECIMAL(min(p,32),0)

DATE DATE

DATETIME TIMESTAMP
Optional: TIME

TIMESTAMP TIMESTAMP

TIME TIME

YEAR CHAR(4)
Optional: SMALLINT

CHAR CHAR

VARCHAR VARCHAR

BINARY CHAR(I) FOR BIT DATA

VARBINARY VARCHAR(I) FOR BIT DATA

TINYBLOB BLOB(255)
Optional: VARCHAR(255)

TINYTEXT CLOB(255)

BLOB BLOB(65535)

TEXT CLOB(65535)

MEDIUMBLOB BLOB(16777215)

MEDIUMTEXT CLOB(16777215)

LONGBLOB BLOB(2GB)

LONGTEXT CLOB(2GB)

ENUM VARCHAR() with check constraints

SET VARCHAR() with check constraints

122 MySQL to DB2 Conversion Guide

Both MySQL and DB2 follow the structured query language (SQL), which is a
standardized language that is used to access databases and their objects, as
defined by the American National Standards Institute (ANSI)/International
Organization for Standardization (ISO).

The data definition language is a set of SQL statements. You can use these
statements for a variety of tasks, including the creation or deletion of databases
and database objects (tables, views, and indexes), definitions of column types,
and definitions of referential integrity rules.

6.2.1 Database manipulation

By default, MySQL database objects are stored in a single directory. Although
this design is simple, it poses a big performance bottleneck due to slow disk
seek, slow search, and non-indexing of data. MySQL depends on the operating
system’s capabilities for distributing its data across disks. It uses symbolic links
to link different disks for different databases, as well as for database and table
distribution.

On Linux machines, MySQL can use the file system mounting options. However,
in most cases, MySQL uses symbolic links, which can be done by creating a
directory where you have extra space:

bash> cd <file system with space>
bash> mkdir mysqldata

Then, create a symbolic link to the newly created directory using these
statements:

bash> cd /var/lib/mysql
bash>ln -sf <file system with space>/mysqldata data

Then, create a database from the mysql prompt using this statement:

mysql>CREATE DATABASE inventory

MySQL users can distribute tables using symbolic linking or the data and index
directory options of the CREATE TABLE statement.

MySQL stores data in single files, multiple files, or table spaces, depending on
the table type being used. Figure 6-3 shows an example of storage engines that
fall under one of these three types.

 Chapter 6. Database conversion 123

Figure 6-3 MySQL physical storage levels

The tables on the left side of the diagram are managed by the MyISAM storage
engine. For MyISAM tables, MySQL creates a .MYD file for data and a .MYI file to
store indexes, with only one file for all data and indexes. The tables in the middle
of the diagram are managed by the Merge storage engine. With Merge tables,
the .MRG file contains the names of the tables to be used and a .FRM file for table
definition. In a Merge table, various tables are used, each of these tables having
its own data file. However, as a whole, a Merge table uses multiple data files.
The tables on the right side of the diagram are managed by the InnoDB storage
engine. For InnoDB tables, MySQL stores data in a table space identified by the
path parameter, innodb_data_file_path. Multiple data files can be used for
InnoDB.

MySQL also has a feature called user-defined partitioning, which allows for table
data to be horizontally split across file systems depending on a specific set of
data defined by the user. For each partition that is created, there is a
corresponding .MYD file for data and .MYI file for the index.

In contrast to MySQL, DB2 stores everything in table spaces. Table spaces are
logical representations of physical containers on the file system. DB2 uses a
better approach for the logical and physical distribution of the database and the
database elements in different sectors, as shown in Figure 6-4 on page 125.
After completing the conversion of your database from MySQL to DB2, you can
use these features to enhance the performance of your application.

124 MySQL to DB2 Conversion Guide

Figure 6-4 DB2 storage levels

Instance
A DB2 server can have more than one instance. One instance can have multiple
databases. One instance per application database has the advantage that the
application support and the database support do not have to coordinate with one
another to take the database or the instance offline. For conversion purposes, a
single instance can be created for your database application environment using
the db2icrt command:

bash> db2icrt -u db2fenc1 db2inst1

Database
A database represents your data as a collection of data in a structured fashion. It
includes a set of system catalog tables that describes the logical and physical
structure of the data, a configuration file containing the environment parameter
values that are used by the database, and a recovery log with ongoing
transactions and transactions that can be archived.

Database partition
A database partition is part of a database, containing its own data, indexes,
configuration files, and transaction logs. A database partition is sometimes called
a node or a database node. A partitioned database environment is a database
installation that supports the distribution of data across database partitions. This

 Chapter 6. Database conversion 125

can be used if you want to spread your DB2 database across multiple servers in
a cluster or along multiple nodes. There are no database partition group design
considerations when using a non-partitioned database. The database partition
group can be created within a database by using the following command:

db2> CREATE DATABASE PARTITION GROUP MaxGroup ON ALL DBPARTITIONNUMS

Creating a database
The database in DB2 can be created simply by issuing the following command:

db2>CREATE DATABASE invent

This command generates a new database with a default path, and it generates
table spaces. It creates three initial table spaces and the system tables, and it
creates the recovery log.

You can use the CREATE DATABASE statement with options to personalize the
database and take advantage of DB2 advanced features, such as automatic
storage, which simplifies the storage management for table spaces, as shown in
Example 6-1. When using automatic storage, it is possible to specify a group of
storage devices for DB2 to use for your database. This specification allows DB2
to allocate and grow this specified space as table spaces are created and
populated. Automatic storage is turned on by default when creating a database.

Example 6-1 The CREATE DATABASE statement

db2> CREATE DATABASE invent AUTOMATICE STORAGE YES on '/db2fs/invent'

Dropping a database
In MySQL, you can drop the database using this statement:

mysql> DROP DATABASE [if exists] inventory

This statement removes all of the database files (.BAK, .DAT, .HSH, .ISD, .ISM,
.ISM, .MRG, .MYD, .MYI, .db, and .frm) from your file system.

DB2 has a similar command:

db2> DROP DATABASE invent [at DBPARTITIONNUM]

This command deletes the database contents and all log files for the database,
uncatalogs the database, and deletes the database subdirectory.

Alter database
The MySQL alter database command allows you to change the overall
characteristics of a database. For example, the character set clause changes the

126 MySQL to DB2 Conversion Guide

database character set, and the collation clause changes the database collation.
Use this basic syntax for altering the database:

mysql>ALTER DATABASE inventory CHARACTER SET charset_name COLLATE
collation_name

In DB2, you can use the UPDATE DATABASE CONFIGURATION and UPDATE
DATABASE MANAGER CONFIGURATION commands to set the database and
database manager configuration parameters. These commands allow
modification of various configuration parameters, such as log file size, log file
path, heap size, cache size, and many others. You can take advantage of the
DB2 autonomic features by enabling the automatic maintenance and Self-Tuning
Memory Manager features. Automatic maintenance allows for scheduling
database backups, keeping statistics current, and reorganizing tables and
indexes. The Self-Tuning Memory Manager provides constant tuning of your
database without the need for DBA intervention. The following examples show
how these commands can be set in DB2:

db2> UPDATE DATABASE MANAGER CONFIGURATION using diaglevel 3
db2> UPDATE DATABASE ONFIGURATION for invent

using auto_maint on
auto_tbl_maint on
auto_runstats on
auto_reorg on
self_tuning_mem on

This example does not show all of the parameters that are available in DB2. For
more information about how to set up automatic maintenance and Self-Tuning
Memory Manager, visit this Web site:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

In addition, you can use these commands to change the physical and logical
partitioning of a database and to allocate table spaces and paging
configurations.

Table space
A table space is a storage structure containing tables, indexes, large objects, and
long data. Table spaces reside in database partition groups and allow the
assignment of database location and table data directly onto containers. DB2
allows for two types of table spaces: System Managed Space (SMS), where the
operating system allocates and manages the space where the tables are stored,
and Data Managed Space (DMS), where the database administrator has the
ability to decide which devices or files to use and allows DB2 to manage this
space. Another option is to enable automatic storage for the table spaces. No
container definitions are needed in the latter case, because the DB2 database
manager assigns and manages the container automatically.

 Chapter 6. Database conversion 127

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

Any DB2 database must have at least the following three table spaces:

� One catalog table space, which contains system catalog tables
� One or more user table spaces, which contain user-defined tables
� One or more temporary table spaces, which contain temporary tables

You can create more table spaces by using the following commands:

db2> CREATE REGULAR TABLESPACE tblsp1 PAGESIZE 8192 MANAGED BY SYSTEM using
('/home/db2inst1/database/user8K') extentsize 8 prefetchsize 8 bufferpool
bp8k
db2> CREATE TABLESPACE tblsp2 MANAGED BY DATABASE using (device
'/dev/rhdisk6' 10000, device '/dev/rhdisk7' 10000, device '/dev/rhdisk8'
10000) overhead 12.67 transferrate 0.18
db2> CREATE TABLESPACE tblsp3 MANAGED BY AUTOMATIC STORAGE

Schema
A schema is an identifier, such as a user ID, that helps group tables and other
database objects. A schema can be owned by an individual, and the owner can
control access to the data and the objects within it. A schema is also an object in
the database. It can be created automatically when the first object in a schema is
created. We can create a schema:

db2>CREATE SCHEMA inventschema AUTHORIZATION inventUser

6.2.2 Table manipulation

Tables are logical structures that are made up of columns and rows, which are
maintained by the database manager.

MySQL tables
As shown in Figure 6-5 on page 129, MySQL supports two types of tables:
transaction-safe tables and non-transaction-safe tables. Transaction-safe tables
(managed by InnoDB or NDB storage engines) are crash safe and can take part
in transactions providing concurrency features that allow commit and rollback.
Alternatively, non-transaction-safe tables (managed by MyISAM, MEMORY,
MERGE, ARCHIVE, or CSV storage engines) are less safe but are much faster
and consume less space and memory.

128 MySQL to DB2 Conversion Guide

Figure 6-5 MySQL table types

The following tables are the basic storage elements in MySQL:

� InnoDB table

InnoDB is a transaction-safe storage engine with commit, rollback, and crash
recovery capabilities. It provides locking on the row level and consistent
non-locking read-in select statements.

InnoDB is a complete database service placed under MySQL, having its own
buffer pool for caching data and indexes in main memory and supporting
multiple table spaces. An InnoDB table can be created using the following
command:

mysql>CREATE TABLE tblinnodb (i int ,f float) type=innodb;

� NDB

NDB is a transaction-safe storage engine. This storage engine allows for
clustering of a database in a shared-nothing architecture. This type of
architecture allows tables to be split across multiple servers, with each server
having its own set of data. In order for the table to be a part of the cluster, the
table must use the NDB storage engine.

� MyISAM table

MyISAM is the default table type in MySQL. It is based on the ISAM code and
supports concurrent insert, big files on the operating system and file system
that support big files, better indexing, index compression, and table
compression.

MyISAM is a default MySQL table, so it can be created either by specifying
type=myisam or by not specifying any type:

mysql>CREATE TABLE tblmyisam (i int ,f float);

 Chapter 6. Database conversion 129

� MERGE

The MERGE storage engine is a group of MyISAM tables in one table,
grouped together across the same disk or multiple disks. The tables must
have exact column and index structures.

� MEMORY (HEAP)

MEMORY was previously called the HEAP storage engine. Tables that are
created in the MEMORY storage engine are stored in memory. The table
definition is stored on disk, but the rows are stored in memory. Therefore, the
table still exists after a reboot; however, all rows within this table are lost.

� ARCHIVE

ARCHIVE stores the data in compressed format on disk and is typically used
to store large amounts of data. There are no indexes in the ARCHIVE storage
engine.

� CSV

The CVS storage engine, which stands for comma separated value, allows
data to be stored in text files. This data can then be accessed via SQL calls.

� FEDERATED

The FEDERATED storage engine works with non-transactional tables and
allows tables to be accessed on a remote server as though they were stored
locally. The table definition is stored locally; however, no data is actually
stored on the local server.

DB2 conversion of MySQL table
In DB2, all the tables take part in the transaction. Therefore, tables that are
managed by MySQL InnoDB, MyISAM, ARCHIVE, and CSV storage engines
can all be converted to a DB2 regular table. A DB2 regular table is a general
purpose table, which is created with the CREATE TABLE statement and is used
to hold persistent user data.

Create table syntax
In this section, we give a high-level overview of the difference in the CREATE
TABLE syntax of MySQL and DB2. MySQL CREATE TABLE statements are
quite simple with few exceptions. Example 6-2 shows the creation of MySQL
InnoDB. Example 6-3 on page 131 shows the DB2 conversion. You can notice
that no major change is required.

Example 6-2 Creating MySQL InnoDB managed table

mysql>CREATE TABLE tblinno(col1 int, col2 char(10)) engine=InnoDB ;

130 MySQL to DB2 Conversion Guide

Example 6-3 DB2 conversion of creating MySQL InnoDB managed table

db2>CREATE TABLE tblinno(col1 int, col2 char(10))

Example 6-4 shows how to create a table using the MyISAM storage engine.
Example 6-5 is the DB2 conversion. Note the changes:

� Changes in the data type according to data type mapping
� Instead of auto_increment, generated by default because identity is used

Example 6-4 Creating MySQL MyISAM table

mysql>CREATE TABLE tblmysiam (
wk_id int(11) unsigned NOT NULL auto_increment,
user_id int(11) unsigned default NULL,
cnt int(10) unsigned default NULL,
cat_id int(12) unsigned default NULL,
status varchar(10) default NULL,
PRIMARY KEY (wk_id)) type=MyISAM;

Example 6-5 Conversion of MySQL MyISAM table creation

db2>CREATE TABLE tblmysiam (
wk_id INT NOT NULL GENERATED BY DEFAULT AS IDENTITY,
user_id INT default NULL,
cnt INT default NULL,
cat_id INT default NULL,
status VARCHAR(10) default NULL,
PRIMARY KEY (wk_id));

Example 6-6 is a MySQL table creation example using the ARCHIVE engine.
Example 6-7 is the DB2 conversion using row compression.

Example 6-6 Creating MySQL ARCHIVE table

mysql>CREATE TABLE tblarchive(col1 int, col2 char(10)) type=ARCHIVE;

Example 6-7 DB2 conversion of creating MySQL ARCHIVE table

db2>CREATE TABLE tblarchive(col1 int, col2 char(10)) COMPRESS YES

Example 6-8 on page 132 shows how to create a MySQL table with partitioning.
Example 6-9 on page 132 is the DB2 conversion; again, no major change is
required.

 Chapter 6. Database conversion 131

Example 6-8 Creating MySQL table using partitioning with the default MyISAM storage
engine

mysql>CREATE TABLE partsales (id INT, item VARCHAR (20))
PARTITION BY RANGE (id)(
PARTITION p1 VALUES LESS THAN (10),
PARTITION p2 VALUES LESS THAN (20)
);

Example 6-9 DB2 conversion of MySQL table creation with partitioning

db2>CREATE TABLE partsales (id INT, item VARCHAR (20)
PARTITION BY RANGE (id)(
PARTITION p1 STARTING FROM (MINVALUE) ENDING (10),
PARTITION p2 ENDING (20)
);

Alter table
ALTER TABLE is a statement that is used to modify one or more properties of a
table. The syntax of the ALTER TABLE statement for MySQL and DB2 is quite
similar and is shown in Example 6-10.

Example 6-10 MySQL and DB2 ALTER TABLE example

mysql>ALTER TABLE partsales modify status varchar(20);

db2>ALTER TABLE partsales alter column status set data type varchar(20)

ALTER TABLE in DB2 now supports dropping columns. DB2 drops columns
using a temporary table. The syntax of ALTER TABLE for MySQL and DB2 is
similar, as shown in Example 6-11.

Example 6-11 MySQL and DB2 dropping column example

mysql> ALTER TABLE sales drop column c1, drop column c2;

db2> ALTER TABLE sales drop c1 drop c2

Drop table
Tables can easily be deleted from the database by issuing the DROP TABLE
statement as shown.

For MySQL:

DROP [TEMPORARY] TABLE [IF EXISTS] tbl_name [, tbl_name,...] [RESTRICT
|CASCADE]

132 MySQL to DB2 Conversion Guide

For DB2:

DROP table tbname

Non-persistent storage tables
The following descriptions explain the differences between MySQL and DB2
temporary table types:

� MERGE table

A merge table groups multiple MyISAM tables into one table. Dropping the
merge table leads to dropping the merge specifications, but tables that made
up the merge table continue to exist.

Tables can be merged only if they have identical columns and key
information. Example 6-12 shows the statements for merge table in MySQL.

Example 6-12 Usage of merge table in MySQL

mysql> CREATE TABLE table1
(col1 int not null auto_increament primary key, col2 char(20));

mysql> CREATE TABLE table2
(col1 int not null auto_increament primary key,col2 char(20));

mysql> CREATE TABLE tblmerge
(col1 int not null auto_increament, col2 char(20), key(col1));
TYPE=MERGE UNION=(table1,table2) INSERT_METHOD=LAST;

mysql> INSERT INTO table1 (col2) VALUES ("value1"),("value2");
mysql> INSERT INTOtable2 (col2) VALUES ("value3"),("value4");

DB2 uses the update-able UNION ALL view to achieve the merge table
feature. UNION ALL views are commonly used for logically combining
different but semantically related tables. The UNION ALL view is also used for
unification of like tables for better performance, manageability, and
integrating federated data sources.

The following example shows using the UNION ALL command for views:

db2>CREAT VIEW UNIONVIEW as SELECT * FROM table1 UNION ALL SELECT * FROM
table2

� MEMORY table

A MEMORY table is a hashed index that is always stored in memory. Memory
tables are fast but are not crash safe. When MySQL crashes or has a
scheduled reboot, the MEMORY table will still exist on the reboot but the data
is lost.

A MySQL Memory table can be created using the following command:

mysql> CREATE TABLE memtable type=MEMORY SELECT * FROM table1;

MySQL MEMORY tables can be converted to DB2 as temporary tables,
materialized query tables, or indexes depending upon your requirements.

 Chapter 6. Database conversion 133

– Temporary table

DB2 temporary tables are tables that are used for storing data in
non-persistent, in-memory, session-specific tables. When a session is
over, the table definition for the table is lost. When your application uses
the MEMORY table in this fashion, temporary tables can be declared in
your application by calling these statements:

• Create user temporary table space if it does not exist by using this
statement:

db2>CREATE USER TEMPORARY TABLESPACE discompose MANAGED BY SYSTEM
using ('usertemp1')

• Declare the temporary table in the application:

db2>DECLARE GLOBAL TEMPORARY TABLE distemper LIKE table1 ON COMMIT
db2>DELETE ROWS NOT LOGGED IN discompose

– Materialized query table

Materialized query tables (MQT), which are also known as summary
tables, can also be used to improve the query performance. An MQT is a
table whose definition is based on the results of a query and whose data is
in the form of precomputed results. If the SQL compiler determines that a
query will run more efficiently against an MQT than a base table or tables,
the query executes against the MQT:

db2>CREATE TABLE sales AS (SELECT * FROM table1) DATA INITIALLY
DEFERRED REFRESH DEFERRED

We discuss MQT in more detail in 11.4, “Materialized query tables” on
page 394.

In addition, DB2 also supports tables for clustering and query performance
enhancement. These tables can also be used according to various
requirements.

� Multidimensional clustering (MDC) tables

Multidimensional clustering (MDC) tables have a physical cluster on more
than one key or dimension at the same time. An MDC table maintains
clustering over all dimensions automatically and continuously, thus
eliminating the need to reorganize the table in order to restore the physical
order of the data.

When creating MDC tables, the performance of many queries might improve,
because the optimizer can apply additional optimization strategies. The
advantages of MDC tables include quicker and less frequent scanning,
because of dimension block, faster lookups, the use of block-level index
“AND” and “OR”, and faster retrieval.

134 MySQL to DB2 Conversion Guide

Issue the following command to create the MDC table:

db2>CREATE TABLE tblmdc
(col1 int, col2 int, col3 int, col4 char(10))
ORGANIZE BY DIMENSIONS(col1,col2,col3)

We discuss MQT in more detail in 11.3.3, “Multidimensional clustering” on
page 392.

� Range-clustered tables (RCT)

Range-clustered tables (RCT) are implemented as sequential clusters of data
that provide fast, direct access. RCT is a table layout scheme where each
record in the table has a predetermined offset from the logical start of the
table. The advantages associated with RCT are direct and include quicker
access times, less maintenance, less logging, less locking, smaller buffer
pool sizes, and less indexing. Create RCT by using the following command:

db2> CREATE TABLE tblrct
(col1 int not null, col2 int not null,col3 char(10),

col4 float)
ORGANIZE BY KEY SEQUENCE

(col1 starting from 1 ending at 10000)
allow overflow

� Typed table/hierarchy table

Typed tables are tables that are defined with a user-defined structured type.
With typed tables, you can establish a hierarchical structure with a defined
relationship between tables called a table hierarchy. The table hierarchy is
made up of a single root table, supertables, and subtables. Example 6-13
shows the creation of a typed table.

Example 6-13 Usage of typed/hierarchy table

//Here is the SQL to create the BusinessUnit typed table

db2>CREATE TABLE BusinessUnit OF BusinessUnit_t (REF IS Oid USER GENERATED)

//Here is the SQL to create the tables in the Person table hierarchy

db2>CREATE TABLE Person OF Person_t (REF IS Oid USER GENERATED)
db2>CREATE TABLE Employee OF Employee_t UNDER Person INHERIT SELECT PRIVILEGES
(SerialNum WITH OPTIONS NOT NULL, Dept WITH OPTIONS SCOPE BusinessUnit)
db2> CREATE TABLE Student OF Student_t UNDER Person INHERIT SELECT PRIVILEGES
db2> CREATE TABLE Manager OF Manager_t UNDER Employee INHERIT SELECT PRIVILEGES
db2> CREATE TABLE Architect OF Architect_t UNDER Employee INHERIT SELECT
PRIVILEGES

 Chapter 6. Database conversion 135

� Views

Views are the named specification of a result table. This specification is a
select statement that is run whenever the view is referenced in an SQL
statement. It can be used just like a base table.

You can create a simple view by issuing a create statement, as shown in
Example 6-14.

Example 6-14 Create view example

db2>CREATE TABLE table1(col1 INTINT, col2 INT, col3 CHAR(20),col4 FLOAT,
col5 CHAR(30))
db2>CREATE TABLE itable2(col6 INT, col7 INT, col8 CHAR(20),col9 FLOAT,
col10 CHAR(30))
db2>CREATE VIEW myview(col1,sum1,col4,col10) AS

SELECT col1,col1+col6,col4,col10
FROM table1, table2
WHERE col1<10 AND col6>10

6.2.3 Index manipulation

An index is an object in the database system, which uses techniques for faster
retrieval of the data from tables. It is an ordered set of pointers to rows of a base
table that is managed by the database manager directly.

MySQL supports both single column indexes and multi-column indexes. MySQL
has five types of indexes:

� Primary key
� Unique
� Non-unique
� Fulltext
� Spatial

DB2 supports all of the index types that are supported by MySQL with the same
terminology, allowing them to map directly during conversion.

Create index
The following example shows the MySQL CREATE INDEX syntax:

CREATE [ONLINE|OFFLINE] [UNIQUE|FULLTEXT|SPATIAL] INDEX index_name
[index_type]
ON tbl_name (index_col_name,...)
index_col_name:
col_name [(length)] [ASC | DESC]

136 MySQL to DB2 Conversion Guide

Creating an index in DB2 is quite similar:

CREATE [unique] INDEX index-name on tablename (columnnames ASC|DESC)
SPECIFICATION ONLY INCLUDE(column-name)
CLUSTER/EXTEND USING index-extension-name (constant-expression)
PCTFREE 10/PCTFREE integer LEVEL PCTFREE integer MINPCTUSED integer
ALLOW/DISALLOW REVERSE SCANS
PAGE SPLIT SYMMETRIC/PAGE SPLIT HIGH/LOW
COLLECT STATISTICS DETAILED SAMPLED

Drop index
This example shows the DROP INDEX statement for MySQL and DB2:

mysql> DROP INDEX index_name ON tbl_name;
db2> DROP INDEX index_name

6.2.4 Trigger manipulation

Triggers are a predefined set of actions to be executed automatically in response
to a set of events. Triggers are commonly defined to respond to the following
events: INSERT, UPDATE, or DELETE.

There are two types of triggers: statement triggers and row triggers. Statement
triggers are executed in response to a single INSERT, UPDATE, or DELETE
statement. Row triggers are executed for each row that is affected by the
INSERT, UPDATE, or DELETE statement. There are many benefits to having
triggers. They allow you to log information about changes to a table, can be used
to validate an insert, can restrict access to specific data, or can make data
modifications and comparisons as a change occurs.

DB2 supports both row-based triggers and statement-based triggers; MySQL
supports only row-based triggers. Both MySQL and DB2 support INSERT,
UPDATE, and DELETE-triggered events and can be defined to fire using
BEFORE and AFTER. DB2 has an additional firing classification called INSTEAD
OF, which allows the triggers to perform INSERT, UPDATE, or DELETE on
views. MySQL does not support a trigger on a view.

The following example shows the CREATE TRIGGER syntax for MySQL:

CREATE [DEFINER = { user | CURRENT_USER}]
TRIGGER trigger_name trigger_time trigger_event
ON tbl_name FOR EACH ROW trigger_stmt

 Chapter 6. Database conversion 137

Creating a trigger in DB2 has similar syntax:

CREATE TRIGGER trigger-name NO CASCADE BEFORE/AFTER/INSTEAD OF
INSERT/DELETE/UPDATE OF column-name ON table-name/view-name
REFERENCE OLD AS correlation-name/NEW AS correlation-name/OLD TABLE

AS identifier/NEW TABLE AS identifier
FOR EACH ROW/FOR EACH STATEMENT triggered-action

6.2.5 Procedures and function manipulation

Stored procedures and functions are routines that are stored and run on the
database server. Stored procedures can be developed to compute or manipulate
results from a query on the database server prior to sending data back to the
application. This capability can result in increased performance, because
unnecessary data is not sent across the network to the application. This
capability also decreases the dependency between the application and the
database, because the application no longer needs to manipulate the results.
Both DB2 and MySQL follow the standard syntax that is specified by SQL:2003
for stored procedures and functions, therefore, creating a procedure or function
in DB2 is similar to MySQL.

6.3 Other considerations

Up until now, we have discussed approaches for converting database elements,
which use similar approaches in the two products. In subsequent sections, we
discuss the conversion of database objects that do not map directly from MySQL
to DB2. We also discuss server and database placement architecture.

Multiple servers
In certain cases, multiple MySQL servers are placed on the same machine.
Possible reasons include user management, testing, or potentially differentiating
applications. MySQL provides an option to run multiple servers on same
machine using several operating parameters.

There are several ways to configure a new server; we used this method:

bash> /path/to/mysqld --socket=file_name --port=port_number

Or, you can use this method:

bash> MYSQL_UNIX_PORT=/tmp/mysqld-new.sock
bash> MYSQL_TCP_PORT=3307
bash> export MYSQL_UNIX_PORT MYSQL_TCP_PORT
ash> mysql

138 MySQL to DB2 Conversion Guide

DB2 supports similar functionality using multiple database manager instances on
the same machine. Each database manager instance has its own configuration
files, directories, and database. Figure 6-6 shows the typical scenario.

DB2 also supports the creation of separate instances on the same machine with
a different DB2 version.

Figure 6-6 Typical DB2 setup

Multiple databases and schema conversion
Within MySQL, tables in a database cannot be logically grouped by a schema or
qualified by a name based on the application. To fulfill this requirement, MySQL
tables are placed in separate databases.

MySQL supports the access of tables in multiple databases using the same
connection. So, an application connected to MySQL can use two tables in
separate databases in a single statement. The queries in Example 6-15 show
how MySQL can use two tables in separate databases in a single statement.

Example 6-15 Multiple database example

mysql>CREATE DATABASE mydb1;
mysql>CREATE DATABASE mydb2;
mysql>CONNECT mydb1;
mysql>CREATE TABLE table1(col1 INT, col2 CHAR(10));
mysql>INSERT INTO table1 VALUES(1,"new");
mysql>CONNECT mydb2;
mysql>CREATE TABLE table2(col1 INT, col2 CHAR(10));
mysql>INSERT INTO table2 VALUES(1,"val 1");

 Chapter 6. Database conversion 139

mysql>SELECT * FROM table2, mydb1.table1;

This works in MySQL and gives the following result

+------+-------+------+------+
| col1 | col2 | col1 | col2 |
+------+-------+------+------+
| 1 | val 1 | 1 | new |
| 1 | val 1 | 2 | new |
+------+-------+------+------+

Figure 6-7 shows the architecture of multiple MySQL databases accessed by a
single application using the same connection.

Figure 6-7 MySQL application using multiple DBs instead of multiple schema

DB2 supports access to multiple databases using database links in a federated
system. For a non-federated system, DB2 applications use a more logical
technique by using multiple schemas to replace the use of multiple databases
within the same application. Each database can have multiple schemas and
each table belongs to a particular schema.

When converting the MySQL applications using multiple databases, all
databases used in the applications can be placed under a single DB2 database.

Each MySQL database becomes represented by a DB2 schema to hold the
tables under that database. All tables can be accessed by the application using a
single connection. The DBA only needs to manage one database.

You can create DB2 schema by using the following command:

db2>CREATE SCHEMA schema1 AUTHORIZATION schema1

The tables created in the particular schema can be accessed using the full table
qualifier table schema.table name.

140 MySQL to DB2 Conversion Guide

Table placement
MySQL does not support table spaces for managing physical location and page
size or distributing tables onto the different table spaces, except with the optional
InnoDB storage engine, which supports multiple table spaces by distributing
them into separate files.

DB2 supports table spaces to establish the relationship between the physical
storage devices that are used by your database system and the logical
containers that are used to store data. Table spaces reside in database partition
groups. They allow you to assign the location of table data directly onto
containers.

Prior to the conversion of your database structure, you must create proper table
spaces of various sizes in DB2. Individual or multiple tables can then be
assigned to the tables spaces. If the table space design is done effectively, it can
greatly increase performance. We discuss this topic in more detail in Chapter 10,
“Testing and tuning” on page 321.

List information
MySQL provides a show command to list the information about databases,
tables, columns, or status information about the server.

DB2 provide commands for getting information about instances, databases, table
spaces, and other objects. The DB2 system catalogs contain all of the necessary
information about tables, columns, indexes, and other objects. You can use the
describe and list commands to display database and table structure or use the
select statement to get the details of the table definition.

Table 6-2 shows examples of MySQL and corresponding DB2 statements or
commands to list database or table-related information.

Table 6-2 MySQL to DB2 conversion of list information statement

MySQL DB2

Show databases List database directory

Show tables from <databasename> List tables

Show columns from <tablename> Describe table <tablename>

Show index from <tablename> SELECT indname FROM syscat.indexes
WHERE tabname=tablename

 Chapter 6. Database conversion 141

Referential integrity refers to the constraints that are defined on the table and its
columns, which help you to control the relationship of data in various tables.
Essentially, referential integrity involves primary keys, foreign keys, and unique
keys.

Primary keys and unique keys are treated similarly in MySQL and DB2.
However, MySQL currently only parses foreign key syntax in the CREATE
TABLE statements. MySQL does not use or store the information about foreign
keys, except in InnoDB tables, which support checking foreign key constraints,
including CASCADE, ON DELETE, and ON UPDATE.

DB2 provides full support for foreign keys. With the full referential integrity
functionality from DB2, your application can be released from the job of taking
care of the data integrity issues. Example 6-16 shows the creation and usage of
foreign key constraints in DB2.

Example 6-16 Foreign key constraint usage

db2> ALTER TABLE table1 ADD CONSTRAINT foreign1 FOREIGN KEY (id)
REFERENCES table2 ON DELETE SET NULL

We discuss foreign key creation in more detail in 6.5.2, “Manual database object
conversion and enhancements” on page 158.

6.4 Converting the database

After understanding the MySQL database structure/schema relative to various
types of DB2 objects, such as the database, tables, views, indexes, and
referential integrity, this section provides details of the database
structure/schema conversion from an existing MySQL database to DB2.

You can convert database schema in various ways; however, there are three
most common approaches:

� Automatic conversion using porting tools
� Manual porting
� Metadata transport

In general, all of these approaches use existing MySQL databases as input and
pass them through the following functional engine:

� Capture database schema information from MySQL
� Modify schema information for DB2
� Create the database in DB2 with structure

142 MySQL to DB2 Conversion Guide

6.4.1 Automatic conversion using porting tools

Using porting tools is the easiest and most common approach. The IBM Data
Movement Tool can simplify your move to DB2. There are a number of
third-party upgrade tools available on the market, which can be used, but IBM
does not guarantee the correct functionality of these tools.

IBM Data Movement Tool
The IBM Data Movement Tool is a simple conversion tool that uses the MySQL
database to be converted to create the database objects and data records for the
new DB2 database. With the IBM Data Movement Tool, you can automatically
convert data types, tables, columns, and indexes into equivalent DB2 database
elements. The IBM Data Movement Tool provides database administrators
(DBAs) and application programmers the functionality needed to automate the
conversion task. The strength of this tool is shown in large-scale data movement
projects. This tool has been used to move up to 4 TB of data in just three days
with good planning and procedures.

You can reduce the downtime, eliminate human error, and cut back on person
hours and other resources associated with the database conversion by using the
following features found in the IBM Data Movement Tool:

� Extract DDL statements from the MySQL source database.

� Extract data from the MySQL source database.

� Generate and run DB2 DDL conversion scripts.

� Automate the conversion of database object definitions.

� View and refine conversion scripts.

� Efficiently implement converted objects using the deployment options
(interactive deployment or automated deployment).

� Generate and run data movement scripts.

� Track the status of object conversions and data movement, including error
messages, error location, and DDL change reports, using the detailed
conversion log file and report.

We describe the instructions to download, install, and use the IBM Data
Movement Tool in 5.3, “IBM Data Movement Tool installation and usage” on
page 112.

For the rest of this chapter, we discuss how to convert the database structure to
DB2. The next chapter discusses how to convert the data to DB2.

 Chapter 6. Database conversion 143

The following steps briefly describe the database structure conversion process
when using the IBM Data Movement Tool:

1. Specify source and DB2 database server connection information.

2. Test the connection to the source and target database. Click Connect to
MySQL to test the connection and Connect to DB2 to test the DB2
connection.

3. Specify the working directory to where the DDL and the data will be extracted.

4. With the IBM Data Movement Tool, you have the option to extract only the
database objects, only the data, or both. Choose if you want DDL and DATA.

5. Click Extract Data to extract the DDL and DATA and automatically convert to
DB2 syntax. You can monitor the progress in the console window.

6. After the data extraction completes successfully, review the result output files
for the status of the data movement, any warnings, errors, and other potential
issues. Optionally, you can click View Script/Output to check the generated
scripts, DDL, data, or the output log file.

7. Click Deploy Data to automatically create tables and indexes in DB2 and to
load data that was extracted from the source database. Optionally, you can
click Interactive Deploy to deploy database objects one at a time.

In this chapter, we only discuss the database conversion portion of the
conversion process.

Other upgrade tools
There are other upgrade tools available to port MySQL database to DB2, such as
SQLWays, which is a database conversion tool from Ispirer Systems Ltd.

6.4.2 Manual conversion

Sometimes, you must use a manual process to convert your database instead of
a standard tool. For those few cases, we describe the manual conversion
processes, with a focus on converting MySQL objects and features that are not
automatically converted by the IBM Data Movement Tool.

In 6.1, “Data type mapping” on page 116 and 6.2, “Data definition language
differences” on page 122, we demonstrated syntax and semantic differences
between MySQL and DB2 that might require manual conversion. We have also
discussed the creation, deletion, and alteration of various database objects, such
as the database, tables, index, and views, and how these objects are related
when converting from MySQL and DB2.

144 MySQL to DB2 Conversion Guide

There are several steps involved in the manual process:

� Capture the database schema information from MySQL

MySQL offers a utility called mysqldump, which extracts the database
structure and deposits this information into a text file. The structure is
represented in DDL and can be used to recreate these database elements for
your DB2 server. This example shows the syntax for mysqldump:

bash> mysqldump DatabaseName > mysqlobjects.ddl

When using this tool on an extremely large database, we recommend that
you use the --quick or --opt option. Without these options, mysqldump loads
the whole result set into memory before dumping the results.

For further information about this utility, refer to the MySQL Reference
Manual at this Web site:

http://dev.mysql.com/doc/refman/5.1/en/

� Modify schema information for DB2

Now that you have captured the source of your MySQL database structure
using the mysqldump utility, it is time to modify the schema information and
make it work for DB2. You must make these manual changes:

– DDL changes

The first step in schema modification is the conversion of the create
statement for various database objects, such as the database, tables,
views, indexes, and other objects. Refer to 6.2, “Data definition language
differences” on page 122 or to these conversions as reference. Also, you
must write a DDL script for creating the database and table spaces.

– Data type changes

Check the data types that are used in the table definition. Change the
MySQL data types to DB2 data types. Refer to 6.1, “Data type mapping”
on page 116.

– Reserved words conversion

There are many reserved words in MySQL and DB2, which cannot be a
valid name for the column and database element. Refer to the MySQL
Reference Manual (http://dev.mysql.com/doc/refman/5.1/en/) and DB2.

For more detail about reserved words and to change the conflicting names
in the DDL statements, visit the DB2 Information Center at this Web site:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

 Chapter 6. Database conversion 145

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp
http://dev.mysql.com/doc/refman/5.1/en/
http://dev.mysql.com/doc/refman/5.1/en/
http://dev.mysql.com/doc/refman/5.1/en/
http://dev.mysql.com/doc/refman/5.1/en/
http://dev.mysql.com/doc/refman/5.1/en/

– Create database and database objects

Now that you have modified the DDL statements, you need to create the
DB2 database and database objects. You can create them from the
command line processor (CLP).

It is a common practice to place the database and table space creation
statements in one file. You must place the database objects, such as tables,
views, and other objects, that you create in a separate file. Note that you must
create the database and table spaces prior to creating the database objects. You
must base the database creation scripts on the logical and physical database
design. In our example, we created a database using the create-database.sql
script, as shown in Example 6-17.

Example 6-17 Create-database.sql script

-- Create the Initial Database
create database invent

automatic storage yes ON '/home/db2inst1/invent;
update db cfg for invent using AUTO_MAINT ON;

connect to invent;

-- Create a Bufferpool with 8K and 16K Pages
create bufferpool bp8k size 2000 pagesize 8192;
create bufferpool bp16k size 1000 pagesize 16384;

-- Make the Bufferpool Change Take Effect
disconnect invent;
connect to invent;

-- Create a Tablespace with 8K and 16K Pages
create regular tablespace tblsp8k pagesize 8192 managed by automatic storage
extentsize 8
prefetchsize automatic
bufferpool bp8k;

reate regular tablespace tblsp16k pagesize 16384 managed by automatic storage
extentsize 8
prefetchsize automatic
bufferpool bp16k;

-- Create a System Temporary Tablespace with 8K and 16K Pages
create system temporary tablespace temp8k pagesize 8 K managed by automatic
storage
extentsize 32
prefetchsize automatic
bufferpool bp8k;

146 MySQL to DB2 Conversion Guide

create system temporary tablespace temp16k pagesize 16 K managed by automatic
storage
extentsize 32
prefetchsize automatic
bufferpool bp16k;

disconnect invent;

To create the database, invoke this SQL script from the DB2 command-line
window or bash shell by using this command:

db2>@create-database.sql
bash>db2 -f create-database.sql

We then use the database object creation statements from the output of
mysqldump and the mysqlobjects.ddl file to create the db2objects.ddl script.
Change the DDL statements and data types based on the discussion in 6.1,
“Data type mapping” on page 116 and 6.2, “Data definition language differences”
on page 122. You can create any additional statements that are required.

Now, we execute the newly created DDL scripts from the bash shell, as shown in
Example 6-18.

Example 6-18 Create database object from the bash shell

bash>db2 CONNECT to invent
bash>db2 -tf db2objects.ddl
bash>db2 DISCONNECT invent

6.4.3 Metadata transport

In this section, we discuss using the database modeling tool for the conversion of
a database structure from MySQL to DB2. There are a number of modeling tools
that exist in the market that support model capturing of a MySQL database. Most
of the tools use a logical model to define the database design and a physical
model map to the target database. One tool is the IBM Rational Rose®
Professional Data Modeler Edition.

The IBM Rational Rose Data Modeler Edition is a data design tool, which
integrates application design with database design and maps the data model
with the object model. It allows database designers, business analysts, and
developers to work together through a common language. Use this tool for
conversions that require your MySQL model file to be available for a conversion
to a DB2 physical model.

 Chapter 6. Database conversion 147

Database structure conversion process using modeling tools
Database structure conversion using the modeling tool is an extremely neat
technique for database conversion, because many applications already have
entity-relationship diagrams. Follow these steps to convert the database
structure easily:

1. Reverse-engineer database objects using a DDL script or an existing
database using one of the modeling tools.

2. Switch to a physical model.

3. Select the DB2 database as a target database and generate a DDL script for
the new target.

4. Create the DB2 database structure using DDL scripts.

Although this technique is good, it is extremely costly, because it requires
modeling tools for the conversions.

6.5 Sample database conversion

In this section, we demonstrate the database structure conversion for our sample
Inventory Management application from MySQL to DB2. The Inventory database
is a small database consisting of tables, views, indexes, triggers, and a stored
procedure. Before starting the database conversion, see the existing database
structure in 4.2, “Database structure” on page 84.

For demonstration purposes, we describe a step-by-step conversion process
using the IBM Data Movement Tool. Then, we describe the manual conversion
method for objects that are not converted with the IBM Data Movement Tool. We
also discuss additional database enhancements.

6.5.1 Converting database objects with the IBM Data Movement Tool

The following steps describe the process of converting the MySQL sample
Inventory database to DB2 using the IBM Data Movement Tool.

STEP 1: Create the DB2 Database
DBAs normally like to create their databases according to their storage paths’
information. Therefore, prior to using the IBM Data Movement Tool, you need to
create the database manually. Consider reading the IBM best practice papers at
this Web site:

http://www.ibm.com/developerworks/data/bestpractices/

148 MySQL to DB2 Conversion Guide

http://www.ibm.com/developerworks/data/bestpractices/

For this example, we use the following command to create our new DB2
database:

db2> CREATE DATABASE invent AUTOMATIC STORAGE YES ON
'/home/db2inst1/invent'

STEP 2: Specify the source, connection information, and test
connection
Specify the source, DB2 database server connection information, and test
connection within the IBM Data Movement Tool:

1. Start the IBM Data Movement Tool.

For our conversion scenario, we use the IBM Data Movement Tool GUI:

<IBM Data Movement Tool Installation directory>/IBMDataMovementTool.sh
db2inst1@db2server:/opt/ibm/IBMDataMovementTool>
./IBMDataMovementTool.sh

The IBM Data Movement window opens, as shown in Figure 6-8.

Figure 6-8 IBM Data Movement Tool startup window

 Chapter 6. Database conversion 149

You can also run the IBM Data Movement Tool in command-line mode. The
tool automatically switches to command-line mode if it is not able to start the
GUI. If you want to run the tool in command-line mode, you can run the
following command:

<IBM Data Movement Tool Installation directory>/IBMDataMovementTool.sh
-console
db2inst1@db2server:/opt/ibm/IBMDataMovementTool>
./IBMDataMovementTool.sh -console

2. Specify the source and target database information.

Enter the connection information in the Source Database and DB2 Database
fields. Because the IBM Data Movement Tool that is used in this example is
installed on the DB2 server, we connect to localhost for the DB2 server and
specify the MySQL server IP address. You must know the following
information:

– IP Address or host name of the source and DB2 servers
– Port numbers to connect
– Name of the databases
– A user ID with DBA privileges on the source database
– Password for that user
– Location of your source database and DB2 JDBC drivers
– Enough space or volume/mount point information where data will be

stored

3. Test the connection.

After you have filled out the source and target database connection
information, the next step is to test the connection to the source and target
databases. Click Connect to MySQL to test the connection and Connect to
DB2 to test the DB2 connection. Connection results will show in the lower-left
corner of the window.

Figure 6-9 on page 151 shows the values filled out for our sample conversion
and the buttons to click to test the connections.

150 MySQL to DB2 Conversion Guide

Figure 6-9 Testing database connection using IBM Data Movement Tool

STEP 3: Extract the DDL from the source database
In this step of the conversion process, we extract the DDL and data from the
source MySQL database. The IBM Data Movement Tool connects to the
specified source database, extracts the DDL and data, formats the DDL scripts to
DB2 syntax, and generates conversion scripts:

1. Specify the output directory.

Specify the working directory where the DDL and data are to be extracted.
The user running the IBM Data Movement tool must have full access to the
directories specified in this step. For our sample conversion, we use the
default directory:

<IBM Data Movement Tool Installation directory>/migr

2. Choose whether DDL and DATA are required.

With the IBM Data Movement Tool, you have the option to extract only the
database objects, only the data, or both. Select or clear the DDL and Data
Movement check boxes. We extract only the DDL at this point.

3. Extract the DDL and data.

Click Extract Data to extract the DDL or DATA and automatically convert it to
DB2 syntax. Five threads are used to complete the extractions. For data

 Chapter 6. Database conversion 151

movement using the command-line approach, you can control the number of
threads by modifying NUM_THREADS in the unload script. You can monitor
the progress in the console window, as shown in Figure 6-10.

Figure 6-10 DDL and data extraction output

After the data extraction is complete, read through the result output files for the
status of the data movement, warnings, errors, and other potential issues. You
can click View Script/Output from the Extract/Deploy window to check the
generated scripts, DDL, data, or output log file.

Table 6-3 on page 153 shows the command scripts that are regenerated each
time that you run the tool in GUI mode. These scripts can also be issued in
console mode without the GUI, which is helpful when you want to embed this tool
as part of a batch process to accomplish an automated data movement.

152 MySQL to DB2 Conversion Guide

Table 6-3 IBM Data Movement Tool scripts

STEP 4: Deploying database objects
Now that we have the database object definitions extracted, we have three
options to deploy the database objects to DB2:

� Deploy DDL and DATA in one step using the Deploy DDL/DATA button from
the GUI window.

� Deploy DDL and DATA in one step by using the command-line unload script.

� Deploy the database objects one by one by selecting the Interactive Deploy
tab.

Choose an option that works best for your conversion project. The interactive
deployment mode is best for deploying database objects that contain triggers,
functions, or procedures. In most MySQL conversions, the first two options will
suffice, because the conversion of the database objects will be performed
outside of the IBM Data Movement tool. For our example, we select the
Interactive Deploy mode to better explain the conversion process by separating
the database object and the data deployment. Figure 6-11 on page 154 shows
the Interactive Deploy tab window.

Filename Description

IBMExtract.properties This file contains all input parameters that you specified
through your GUI or command-line input values. You can edit
this file manually to modify or correct parameters. Note this
file will be overwritten each time that you run the GUI.

geninput This script is the first data movement step where you will
create an input file that contains the names of the tables to
move. You can edit this file manually to exclude tables that
you do not want to move.

genddl This optional script is only generated if you choose to
separate DDL generation from DATA. This step is the second
step in data movement to generate all DDLs from your source
database to DB2.

unload This script is the last step of data movement. This script
unloads data from the source database server to flat files.
DB2 LOAD scripts will be generated after running this script.
Note that if you did not choose to separate DDL from DATA,
the genddl content is included in the unload script.

rowcount This file will be used after you have moved the data to perform
a sanity check for the row count for tables in source and target
database servers.

 Chapter 6. Database conversion 153

Figure 6-11 DDL and data extraction output

From the Interactive Deploy window, you can perform a number of tasks:

� Refresh the database object list.

Select the refresh button (circled in Figure 6-12 on page 155) to refresh the
list of database objects in the DB2 Objects view on the left side of the window.

� Edit the object definition.

You can select the database object that you want to modify and edit in the
right panel, as shown in Figure 6-12 on page 155. To save and deploy
changes, deploy the object before selecting a new object. After deployment,
you can return to refine any objects that failed to deploy.

154 MySQL to DB2 Conversion Guide

Figure 6-12 Editing objects

You can also edit the scripts that were extracted into the conversion directory.
To change the table definition, edit the db2tables.sql file:

db2inst1@db2server:/opt/ibm/IBMDataMovementTool/migr> vi db2tables.sql

Example 6-19 shows the converted DB2 table creation file.

Example 6-19 Output DB2 statements - db2tables.sql

CONNECT TO INVENT;
-- Approximate Table Size 70
--#SET :TABLE:ADMIN:GROUPS
CREATE TABLE "ADMIN"."GROUPS"
(
"GROUPNAME" VARCHAR(30) NOT NULL ,
"EDITUSER" VARCHAR(10) ,
"EDITGRANTUSERPERM" VARCHAR(10) ,
"EDITINVT" VARCHAR(10) ,
"EDITSERVICE" VARCHAR(10)
)
;

-- Approximate Table Size 48
--#SET :TABLE:ADMIN:LOCATIONS

 Chapter 6. Database conversion 155

CREATE TABLE "ADMIN"."LOCATIONS"
(
"ID" INT NOT NULL ,
"ROOMNAME" VARCHAR(20) NOT NULL ,
"FLOORNUM" INT NOT NULL ,
"PASSCODE" VARCHAR(20)
)
;

-- Approximate Table Size 47
--#SET :TABLE:ADMIN:SEVERITY
CREATE TABLE "ADMIN"."SEVERITY"
(
"ID" INT NOT NULL ,
"TITLE" VARCHAR(15) NOT NULL ,
"NOTES" VARCHAR(20) ,
"ESTDAYS" INT ,
"AVGDAYS" INT
)
;

-- Approximate Table Size 89
--#SET :TABLE:ADMIN:INVENTORY
CREATE TABLE "ADMIN"."INVENTORY"
(
"ID" INT NOT NULL ,
"ITEMNAME" VARCHAR(15) NOT NULL ,
"MANUFACTURER" VARCHAR(20) ,
"MODEL" VARCHAR(20) ,
"YEAR" SMALLINT ,
"SERIAL" VARCHAR(20) ,
"LOCID" INT ,
"OWNERID" INT
)
;

-- Approximate Table Size 64
--#SET :TABLE:ADMIN:SERVICES
CREATE TABLE "ADMIN"."SERVICES"
(
"ID" INT NOT NULL ,
"INVENTID" INT NOT NULL ,
"DESCRIPTION" VARCHAR(20) NOT NULL ,
"SEVERITY" INT NOT NULL ,
"SERVICEOWNER" INT NOT NULL ,
"OPENDATE" DATE NOT NULL ,
"CLOSEDATE" DATE ,
"TARGETCLOSEDATE" DATE ,
"STATUS" INT
)
;

-- Approximate Table Size 39
--#SET :TABLE:ADMIN:STATUS

156 MySQL to DB2 Conversion Guide

CREATE TABLE "ADMIN"."STATUS"
(
"ID" INT NOT NULL ,
"TITLE" VARCHAR(15) NOT NULL ,
"NOTES" VARCHAR(20)
)
;

-- Approximate Table Size 212
--#SET :TABLE:ADMIN:OWNERS
CREATE TABLE "ADMIN"."OWNERS"
(
"ID" INT NOT NULL ,
"FIRSTNAME" VARCHAR(20) NOT NULL ,
"LASTNAME" VARCHAR(20) NOT NULL ,
"EMAIL" VARCHAR(50) ,
"LOCID" INT ,
"CUBENUM" INT ,
"PHONENUM" VARCHAR(20) ,
"LOGINNAME" VARCHAR(20) NOT NULL ,
"PASSWORD" VARCHAR(20) NOT NULL ,
"FAXNUM" VARCHAR(20) ,
"GROUPS" VARCHAR(30)
)
;

TERMINATE;

� Deploy objects to target.

The final step of the database conversion is to deploy the database objects.
You use Deploy All (circled red in Figure 6-13 on page 158) to deploy all
objects in the database object view or select Deploy Selected (circled blue in
Figure 6-13 on page 158) to deploy the database object currently selected.
You can view the status of the database object deployment and error
messages in the lower-right panel, as shown in Figure 6-13 on page 158.

Important: You must not reduce the size of any field, because it can cause
an error while converting the data.

 Chapter 6. Database conversion 157

Figure 6-13 All database objects successfully deployed

6.5.2 Manual database object conversion and enhancements

Now that we have converted the major database objects to DB2 using the IBM
Data Movement Tool, we can use manual methods for the objects that are not
converted with the tool and add any additional database improvements.

Views
You must manually port views from MySQL to DB2. You can extract the MySQL
view definition from the MySQL database using the mysqldump utility or
selecting from the INFORMATION_SCHEMA.VIEWS table.

The syntax for a view in MySQL and DB2 is extremely similar, which makes it
simple to convert the DDL for this database object. Example 6-20 on page 159
shows the CREATE VIEW syntax for the MySQL views.

For our example, we alter the CREATE VIEW commands to match the DB2
syntax, as shown in Example 6-21 on page 159.

158 MySQL to DB2 Conversion Guide

Example 6-20 MySQL create view statement

CREATE VIEW managerGroup AS
SELECT o.id as newID, o.firstName, o.lastName, o.loginName, l.roomName, l.floorNum,
 o.phoneNum,
 (SELECT count(*) FROM inventory i, owners o
 WHERE o.id = newID and o.id = i.ownerID) as inventNum
FROM owners o, locations l
WHERE o.groups = 'manager' and o.locID = l.id;

CREATE VIEW empGroup AS
SELECT o.id as newID, o.firstName, o.lastName, o.loginName, l.roomName, l.floorNum,
 o.phoneNum,
 (SELECT count(*) FROM inventory i, owners o
 WHERE o.id = newID and o.id = i.ownerID) as inventNum
FROM owners o, locations l
WHERE o.groups = 'emp' and o.locID = l.id;

CREATE VIEW techGroup AS
SELECT o.id as newID, o.firstName, o.lastName, o.loginName, l.roomName, l.floorNum,
 o.phoneNum,
 (SELECT count(*) FROM inventory i, owners o
 WHERE o.id = newID and o.id = i.ownerID) as inventNum
FROM owners o, locations l
WHERE o.groups = 'tech' and o.locID = l.id;

CREATE VIEW bossGroup AS
SELECT o.id as newID, o.firstName, o.lastName, o.loginName, l.roomName, l.floorNum,
 o.phoneNum,
 (SELECT count(*) FROM inventory i, owners o
 WHERE o.id = newID and o.id = i.ownerID) as inventNum
FROM owners o, locations l
WHERE o.groups = 'boss' and o.locID = l.id;

CREATE VIEW generalGroup AS
SELECT o.id as newID, o.firstName, o.lastName, o.loginName, l.roomName, l.floorNum,
 o.phoneNum,
 (SELECT count(*) FROM inventory i, owners o
 WHERE o.id = newID and o.id = i.ownerID) as inventNum
FROM owners o, locations l
WHERE o.groups = 'general' and o.locID = l.id;

Example 6-21 DB2 create view statement

CREATE VIEW admin.managerGroup AS
SELECT o.id, o.firstName, o.lastName, o.loginName, l.roomName, l.floorNum,
 o.phoneNum,
 (SELECT count(*) FROM admin.inventory in, admin.owners u
 WHERE u.id = o.id and u.id = in.ownerID) AS inventNum
FROM admin.owners o, admin.locations l
WHERE o.groups = 'manager' and o.locID = l.id;

CREATE VIEW admin.empGroup AS
SELECT o.id, o.firstName, o.lastName, o.loginName, l.roomName, l.floorNum,
 o.phoneNum,
 (SELECT count(*) FROM admin.inventory in, admin.owners u
 WHERE u.id = o.id and u.id = in.ownerID) AS inventNum
FROM admin.owners o, admin.locations l
WHERE o.groups = 'emp' and o.locID = l.id;

CREATE VIEW admin.techGroup AS
SELECT o.id, o.firstName, o.lastName, o.loginName, l.roomName, l.floorNum,

 Chapter 6. Database conversion 159

 o.phoneNum,
 (SELECT count(*) FROM admin.inventory in, admin.owners u
 WHERE u.id = o.id and u.id = in.ownerID) AS inventNum
FROM admin.owners o, admin.locations l
WHERE o.groups = 'tech' and o.locID = l.id;

CREATE VIEW admin.bossGroup AS
SELECT o.id, o.firstName, o.lastName, o.loginName, l.roomName, l.floorNum,
 o.phoneNum,
 (SELECT count(*) FROM admin.inventory in, admin.owners u
 WHERE u.id = o.id and u.id = in.ownerID) AS inventNum
FROM admin.owners o, admin.locations l
WHERE o.groups = 'boss' and o.locID = l.id;

CREATE VIEW admin.generalGroup AS
SELECT o.id, o.firstName, o.lastName, o.loginName, l.roomName, l.floorNum,
 o.phoneNum,
 (SELECT count(*) FROM admin.inventory in, admin.owners u
 WHERE u.id = o.id and u.id = in.ownerID) AS inventNum
FROM admin.owners o, admin.locations l
WHERE o.groups = 'general' and o.locID = l.id;

Trigger conversion
Triggers also require manual conversion to port them from MySQL to DB2. You
can extract the MySQL trigger definition from the MySQL database using the
mysqldump utility or selecting from the INFORMATION_SCHEMA.TRIGGERS
table.

Example 6-22 on page 161 shows the MySQL CREATE TRIGGER statement
and Example 6-24 on page 161 shows the DB2 CREATE TRIGGER statement.
In these examples, note the difference between new and old data values that are
declared and referenced. Refer to 6.2.4, “Trigger manipulation” on page 137 for
more details about syntax differences between MySQL and DB2.

Also, notice the change in the date function. You must find the equivalent
functions in DB2 when converting DDL and DML statements that contain built-in
functions. We discuss and compare MySQL and DB2 built-in functions and
operators in more detail in 8.1.10, “Built-in functions and operators” on page 221.

We have found a similar function in DB2 to replace the curDate function in
MySQL. However, the default date format needs to be modified to the ISO format
(YYYY-MM-DD), because the default format for the DB2 current date function is
MM/DD/YY, whereas the MySQL curDate function is YYYY-MM-DD. The
commands that are described in Example 6-23 on page 161 change the default
format to the ISO format (YYYY-MM-DD).

160 MySQL to DB2 Conversion Guide

Example 6-22 MySQL updateDate Trigger

CREATE TRIGGER updateDate BEFORE UPDATE on services
FOR EACH ROW
 BEGIN
 IF NEW.status = 7 THEN
 SET NEW.closeDate = CURDATE();
 END IF;
 END

Example 6-23 Commands to change to the ISO format

db2inst1@db2server:~> cd /home/db2inst1/sqllib/bnd/
db2inst1@db2server:~/sqllib/bnd> db2 CONNECT TO invent

 Database Connection Information

 Database server = DB2/LINUX 9.7.0
 SQL authorization ID = DB2INST1
 Local database alias = INVENT

db2inst1@db2server:~/sqllib/bnd> db2 bind @db2ubind.lst datetime ISO blocking
all grant public

Example 6-24 DB2 updateDate trigger

CREATE TRIGGER updateDate BEFORE UPDATE on admin.services
REFERENCING NEW AS N OLD AS O
FOR EACH ROW
 BEGIN
 IF N.status = 7 THEN
 SET N.closeDate = CURRENT DATE;
 END IF;
 END

Stored procedure conversion
Porting stored procedures from MySQL to DB2 requires manual conversion. You
can extract the MySQL stored procedure definition from the MySQL database by
selecting the definition from the INFORMATION_SCHEMA.ROUTINES table.

The syntax for a procedure in MySQL and DB2 is similar. Example 6-25 on
page 162 shows the CREATE PROCEDURE syntax for the MySQL procedure
and Example 6-26 on page 162 shows the CREATE PROCEDURE syntax for the
DB2 procedure. You might notice that the only difference between the statements
is the date function to determine the number of days between the open date and
the close date. For a description of MySQL built-in functions and DB2 equivalent

 Chapter 6. Database conversion 161

functions or solutions, refer to 8.1, “Data Manipulation Language differences and
similarities” on page 206.

Example 6-25 MySQL create updateAvgDays procedure

CREATE PROCEDURE updateAvgDays(IN sevLevel INT)
BEGIN
 UPDATE severity SET avgDays = (SELECT SUM(Datediff(closeDate,
 openDate))/Count(*)
 FROM services where severity = sevLevel and status = 7)
 WHERE id = sevLevel;
END

Example 6-26 DB2 create updateAvgDays procedure

CREATE PROCEDURE updateAvgDays(IN sevLevel INT)
BEGIN
 UPDATE admin.severity
 SET avgDays = (SELECT SUM(TIMESTAMPDIFF(16,CHAR(TIMESTAMP(closeDate) -
TIMESTAMP(openDate))))/count(*)
 FROM admin.services WHERE severity = sevLevel and status = 7)
 WHERE id = sevLevel;
END

Foreign keys
Now, you can add any additional enhancement to your database using the DB2
features that might have not been supported in your existing MySQL storage
engine. One example is referential integrity, which is essential to the database by
ensuring consistency of data values between related columns in separate tables.
Referential integrity is usually maintained by using the primary key, unique key,
and foreign keys. MySQL only supports foreign keys in the InnoDB engine.
Primary and unique keys are successfully converted using the IBM Data
Movement Tool, but at the time of writing this book, foreign keys are not
supported for a MySQL conversion project. If you want to create foreign keys in
your database or to convert your foreign keys from an Innodb database, you
need to perform this task manually.

In our sample application, we create referential integrity between tables in a file
called the referential.ddl file, which looks like Example 6-27.

Example 6-27 Add foreign keys

ALTER TABLE admin.owners ADD CONSTRAINT OWNERLOCI FOREIGN KEY (locid)
REFERENCES admin.locations (id) ON DELETE CASCADE;

ALTER TABLE admin.owners ADD CONSTRAINT OWNERGRPI FOREIGN KEY (groups)
REFERENCES admin.groups (GROUPNAME) ON DELETE CASCADE;

162 MySQL to DB2 Conversion Guide

ALTER TABLE admin.inventory ADD CONSTRAINT INVENTLOCI FOREIGN KEY (locid)
 REFERENCES admin.locations (id) ON DELETE CASCADE;

ALTER TABLE admin.inventory ADD CONSTRAINT INVENTOWNERI FOREIGN KEY (ownerid)
 REFERENCES admin.owners (id) ON DELETE CASCADE;

ALTER TABLE admin.services ADD CONSTRAINT SERVINVENTI FOREIGN KEY (inventid)
 REFERENCES admin.inventory (id) ON DELETE CASCADE;

ALTER TABLE admin.services ADD CONSTRAINT SERVOWNERI FOREIGN KEY (serviceowner)
 REFERENCES admin.owners (id) ON DELETE CASCADE;

ALTER TABLE admin.services ADD CONSTRAINT SERVSERVERITYI FOREIGN KEY (severity)
 REFERENCES admin.severity (id) ON DELETE CASCADE;

ALTER TABLE admin.services ADD CONSTRAINT SERVSTATI FOREIGN KEY (status)
 REFERENCES admin.status (id) ON DELETE CASCADE;

Now, we have completed the DDL modification. We execute the changed scripts
in Example 6-27 on page 162 to create the DB2 database and the objects, as
shown in Example 6-28.

Example 6-28 Creation of tables and databases in DB2

db2inst1@db2server:~/DB2Scripts> db2 CONNECT TO invent

 Database Connection Information

 Database server = DB2/LINUX 9.5.0
 SQL authorization ID = DB2INST1
 Local database alias = INVENT

db2inst1@db2server:~/DB2Scripts> db2 -tf referential.ddl
DB20000I The SQL command completed successfully.
DB20000I The SQL command completed successfully.
DB20000I The SQL command completed successfully.
DB20000I The SQL command completed successfully.
DB20000I The SQL command completed successfully.
DB20000I The SQL command completed successfully.
DB20000I The SQL command completed successfully.
DB20000I The SQL command completed successfully.

 Chapter 6. Database conversion 163

Automatic maintenance
Performing maintenance activities on your databases is essential to ensure that
they are optimized for performance and recoverability. The database manager
provides automatic maintenance capabilities for performing database backups,
keeping statistics current, and reorganizing tables and indexes as necessary.

For users, it can be time-consuming to determine when to run maintenance
activities. Automatic maintenance takes the burden off of the users. With
automatic maintenance, you can specify your maintenance objectives, including
when automatic maintenance can run. The DB2 database manager uses the
objectives that you have specified to determine if the maintenance activities need
to be done and runs only the required maintenance activities during the next
available maintenance window (a user-defined time period for running automatic
maintenance activities). Example 6-29 shows the activities that can be controlled
by the database manager’s automatic maintenance feature.

Example 6-29 Automatic maintenance database manager variables

Automatic maintenance (AUTO_MAINT) = ON
Automatic database backup (AUTO_DB_BACKUP) = OFF
Automatic table maintenance (AUTO_TBL_MAINT) = ON
Automatic runstats (AUTO_RUNSTATS) = ON
Automatic statement statistics (AUTO_STMT_STATS) = OFF
Automatic statistics profiling (AUTO_STATS_PROF) = OFF
Automatic profile updates (AUTO_PROF_UPD) = OFF
Automatic reorganization (AUTO_REORG) = ON

Enablement of the automatic maintenance features is controlled using the
automatic maintenance database configuration parameters. These configuration
parameters are a hierarchical set of switches to allow for simplicity and flexibility
in managing the enablement of these features. You can automate database
maintenance activities to run only when they are needed using the Configure
Automatic Maintenance wizard. The DB2 database manager uses the objectives
that you have specified using the Configure Automatic Maintenance wizard to
determine whether the maintenance activities need to be done. Then, the DB2
database manager runs only the required maintenance activities during the next
available maintenance window.

Self-tuning memory manager
A revolutionary memory tuning system called the Self-Tuning Memory Manager
was introduced in DB2 9. It works on main database memory parameters,
including buffer pools, sort heaps, locklist, package cache, and total database
memory. It allows hands-off online memory tuning without DBA intervention by
sensing the underlying workload and tunes the memory based on needs. When
workload shifts, and memory redistribution is required to achieve optimal

164 MySQL to DB2 Conversion Guide

performance, the Self-Tuning Memory Manager can adapt quickly to adjust the
memory configuration.

Self-tuning memory simplifies the task of memory configuration by automatically
setting values for memory configuration parameters and sizing buffer pools.
When enabled, the memory tuner dynamically distributes available memory
resources between several memory consumers, including sort, package cache
and lock list areas, and buffer pools. Example 6-30 shows how to enable
Self-Tuning Memory Manager and how to enable specific parameters to be
automatically tuned.

Example 6-30 Setting up Self-Tuning Memory Manager

db2> UPDATE DATABASE CONFIGURATION FOR invent SELF_TUNING_MEM ON

db2> UPDATE DB CFG FOR invent USING locklist AUTOMATIC

maxlocks AUTOMATIC
pckcachesz AUTOMATIC
sheapthres_shr AUTOMATIC
sortheap AUTOMATIC

 Chapter 6. Database conversion 165

166 MySQL to DB2 Conversion Guide

Chapter 7. Data conversion

There are various considerations around converting data from a MySQL
database to DB2. In this chapter, we focus on several of these considerations
and describe the usage of tools and commands that aid in data movement from a
MySQL database to a DB2 database.

In this chapter, we also discuss the differences in specific data formats and data
types and ways in which they can be converted from MySQL to DB2.

We also describe how user account management (user data, access rights, and
privileges) is implemented in MySQL and how this information can be ported to
implement secure database access within DB2.

Finally, we discuss in detail the steps that we performed to convert the data in
our sample project.

7

© Copyright IBM Corp. 2009. All rights reserved. 167

7.1 Data porting considerations

Data porting describes the necessary steps to get data from one database to
another database. In general, you have to unload (also referred to as dump or
export) the data from the source database into one or more files and load (also
referred to as import) these files into the target database.

Database systems provide commands and tools for unloading and loading data.
In MySQL, the mysqldump tool is used to unload a database. DB2 provides the
LOAD and IMPORT commands for loading data from files into the database.

You have to be aware of the differences in how specific data types are
represented by various database systems. For example, the representation of
date and time values can differ in separate databases, and this representation
often depends on the local settings of the system.

If the source and the target databases use different formats, you must to convert
the data either automatically using tools or manually. Otherwise, the loading tool
is not able to understand the data that it needs to load due to improper
formatting.

You must convert the binary data stored in binary large objects (BLOBs)
manually, because binary data cannot be exported to files in a text format.

Porting the user account management is an extremely specific step in a
conversion project. You must get the information about users, access rights, and
privileges out of MySQL, convert it to DB2 specific security information, and
create the users in DB2 according to the source data. Porting encrypted
passwords is impossible in most cases.

7.1.1 Data porting commands and tools

MySQL and DB2 both provide tools that support data porting between the two
systems. In MySQL, the mysqldump utility and the mysqlhotcopy scripts are
used to retrieve data from the database; the LOAD and IMPORT commands can
be used to get this data into DB2.

The IBM Data Movement Tool automates the use of the MySQL SELECT
statements and the DB2 LOAD commands.

168 MySQL to DB2 Conversion Guide

The mysqldump tool
When porting data, you use this tool to retrieve the data from MySQL tables. It is
included with MySQL and is usually located in the bin directory of the MySQL
installation.

The following example shows the syntax of the mysqldump tool:

mysqldump [OPTIONS] database [tables]

For a complete description of this tool, run mysqldump --help. Consider these
important command-line options:

� --no-data

This option ensures that no data is extracted from the database, just the SQL
statements for creating the tables and indexes. Therefore, this option is used
for extracting DDL statements only.

� --no-create-info

This option ensures that no SQL statements for creating the exported table
are extracted from the database. Therefore, it is used for exporting data only.
The output file containing the data can be loaded into a DB2 table at a later
time.

� --tab=<outFilePath>

This option creates a text file with the DDL (<tablename>.sql) and a tab
separated text file with the data (<tablename>.txt) in the given path for each
specified table. This option works only when the utility is run on the same
machine as the MySQL daemon. If this option is not specified, INSERT
statements for each row are created.

Example 7-1 shows the usage and output of the mysqldump command using only
the --user and --password options. The output includes DDL statements for table
creation and INSERT statements to insert data into the table.

Example 7-1 Usage of mysqldump with only the --user and --password options

mysqlServer:~ # mysqldump --user root --password inventory severity

-- MySQL dump 10.13 Distrib 5.1.36, for pc-linux-gnu (i686)
--
-- Host: localhost Database: inventory
-- --
-- Server version 5.1.36-log

--
-- Table structure for table `severity`
--

 Chapter 7. Data conversion 169

DROP TABLE IF EXISTS `severity`;

CREATE TABLE `severity` (
 `id` int(15) NOT NULL,
 `title` varchar(15) NOT NULL,
 `notes` varchar(20) DEFAULT NULL,
 `estDays` int(20) DEFAULT '14',
 `avgDays` int(20) DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

--
-- Dumping data for table `severity`
--

LOCK TABLES `severity` WRITE;

INSERT INTO `severity` VALUES
2,'high-med',NULL,4,4),
(4,'low-med',NULL,10,10),
(3,'medium',NULL,7,7),(
5,'low',NULL,14,12),(
1,'high',NULL,1,2);

UNLOCK TABLES;

-- Dump completed on 2009-08-25 2:11:48

Example 7-2 shows the usage and output of the mysqldump command with the
--no-create-info option, but without the --tab option. The output has only INSERT
statements for each row to insert data into the table.

Example 7-2 Usage of mysqldump with the --no-create-info but without the --tab option

mysqlServer:~# mysqldump--no-create-info --user root -password inventory severity

-- MySQL dump 10.13 Distrib 5.1.36, for pc-linux-gnu (i686)
--
-- Host: localhost Database: inventory
-- --
-- Server version 5.1.36-log

--
-- Dumping data for table `severity`
--

LOCK TABLES `severity` WRITE;

INSERT INTO `severity` VALUES
(2,'high-med',NULL,4,4),
(4,'low-med',NULL,10,10),
(3,'medium',NULL,7,7),
(5,'low',NULL,14,12),

170 MySQL to DB2 Conversion Guide

(1,'high',NULL,1,2);

UNLOCK TABLES;

-- Dump completed on 2009-08-25 2:28:23

Example 7-3 shows the usage and output of the mysqldump command with the
--no-create-info and the --tab options. This command outputs a file in the current
directory named <tableName>.txt that contains only the exported MySQL data.
This file can be read by the DB2 LOAD command.

Example 7-3 Usage of mysqldump with the --no-create-info and the --tab option

mysqlServer:~ # mysqldump --no-create-info --tab=. --user root --password
inventory severity

mysqlServer:~ # cat severity.txt

2 high-med \N 4 4
4 low-med \N 10 10
3 medium \N 7 7
5 low \N 14 12
1 high \N 1 2

Example 7-4 shows the usage and output of mysqldump without the
--no-create-info option but with the --tab option. This command outputs two files:
one file contains the DDL statements for table creation (<tableName>.sql) and
the other file contains the exported MySQL data (<tableName>.txt) in the current
directory. The second file can be read by the DB2 LOAD command.

Example 7-4 Usage of mysqldump without the --no-create-info but with the --tab option

mysqlServer:~ # mysqldump --tab=. --user root -password inventory severity

mysqlServer:~ # cat severity.sql

-- MySQL dump 10.13 Distrib 5.1.36, for pc-linux-gnu (i686)
--
-- Host: localhost Database: inventory
-- --
-- Server version 5.1.36-log

--
-- Table structure for table `severity`
--

DROP TABLE IF EXISTS `severity`;

CREATE TABLE `severity` (

 Chapter 7. Data conversion 171

 `id` int(15) NOT NULL,
 `title` varchar(15) NOT NULL,
 `notes` varchar(20) DEFAULT NULL,
 `estDays` int(20) DEFAULT '14',
 `avgDays` int(20) DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

-- Dump completed on 2009-08-25 2:49:30

mysqlServer:~ # cat severity.txt
2 high-med \N 4 4
4 low-med \N 10 10
3 medium \N 7 7
5 low \N 14 12
1 high \N 1 2

The mysqlhotcopy script
When porting data, you can use the mysqlhotcopy Perl script to retrieve the data
from MySQL tables. It is included with MySQL, located in the bin directory of the
MySQL installation, and requires that the Perl DBI module is installed.

This example shows the syntax of the mysqlhotcopy script:

mysqlhotcopy database [/path/]

IBM Data Movement Tool SELECT script
The IBM Data Movement Tool generates a file with the SELECT statement that
is required to extract the data from the MySQL database. This file, which is called
<database>.tables, is located in the conversion output directory. It is generated
during the DDL extraction phase, which is described in 6.5.1, “Converting
database objects with the IBM Data Movement Tool” on page 148.

Example 7-5 illustrates the inventory.tables generated file for our sample
conversion.

Example 7-5 Inventory.tables file

db2server:/opt/ibm/IBMDataMovementTool/migr # cat inventory.tables
"ADMIN"."groups":SELECT * FROM groups
"ADMIN"."inventory":SELECT * FROM inventory
"ADMIN"."locations":SELECT * FROM locations
"ADMIN"."owners":SELECT * FROM owners
"ADMIN"."services":SELECT * FROM services
"ADMIN"."severity":SELECT * FROM severity
"ADMIN"."status":SELECT * FROM status

172 MySQL to DB2 Conversion Guide

There are a few other scripts that are generated during the DDL extraction phase
that are used to extract the data from the MySQL database and load it into DB2.
The unload script is used to unload the data from the MySQL database and store
it in <schema>_<tableName>.txt files in the <migration output
directory>/data. You can then use the db2load.sh script to load these files into
the DB2 database. The db2load.sql script is executed from the db2gen.sh script,
which also executes other .sql generated scripts to port the database. You can
also execute these scripts using the GUI, which we discuss further in this
chapter.

DB2 loading tools
DB2 provides two utilities for loading data into a database: LOAD and IMPORT.

In general, the LOAD utility is faster than the IMPORT utility, because it writes
formatted pages directly into the database, while the IMPORT utility performs
SQL insert statements. The LOAD utility validates the uniqueness of the indexes,
but it does not fire triggers. It also does not perform referential constraint or table
constraint checking.

DB2 LOAD command
The LOAD utility is capable of efficiently moving large quantities of data into
newly created tables, or into tables that already contain data.

The load process goes through four phases:

� Load data.
� Build indexes.
� Delete rows with a unique key violation or a data link violation.
� Copy index data from the system temporary table space to the original table

space.

See Example 7-6 for a simplified syntax diagram for the LOAD command. For a
complete syntax description, visit the Information Center at this Web site:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

Example 7-6 shows a simplified syntax of the DB2 LOAD command.

Example 7-6 Simplified syntax of the DB2 LOAD command

>>-LOAD--+--------+--FROM----+-filename---+-+--OF--filetype----->
'-CLIENT-' +-pipename---+
+-device-----+
'-cursorname-'

>--+-------------------------------+---------------------------->
 | .--------------. |
 | V | |
 '-MODIFIED BY----filetype-mod-+-'

 Chapter 7. Data conversion 173

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

>--+--------------+--+-------------+--+-----------------+------->
'-SAVECOUNT--n-' '-ROWCOUNT--n-' '-WARNINGCOUNT--n-'
>--+------------------------+----------------------------------->
 '-MESSAGES--message-file-'
>--+-------------------------------+--+-INSERT----+------------->
 '-TEMPFILES PATH--temp-pathname-' +-REPLACE---+
 +-RESTART---+
 '-TERMINATE-'
>--INTO--table-name--+-------------------------+---------------->
 | .-,-------------. |
 | V | |
 '-(----insert-column-+--)-'
 .-ALLOW NO ACCESS-----------------------------.
>--+---+-------------->
 '-ALLOW READ ACCESS--+----------------------+-'
'-USE--tablespace-name-'
>--+--------------------------------------+--------------------->
 '-CHECK PENDING CASCADE--+-IMMEDIATE-+-'
 '-DEFERRED--'
>--+-----------------+-->
 '-LOCK WITH FORCE-'

The IBM Data Movement Tool uses the LOAD utility for loading the application
data into DB2. Example 7-7 shows an example of the LOAD command that is
used to load the data into the severity table.

Example 7-7 IBM Data Movement Tool LOAD example

--#SET :LOAD:ADMIN:SEVERITY
LOAD FROM "/opt/ibm/IBMDataMovementTool/migr/data/admin_severity.txt"
OF DEL
MODIFIED BY CODEPAGE=1208 COLDEL~ ANYORDER USEDEFAULTS CHARDEL""
DELPRIORITYCHAR NOROWWARNINGS
--DUMPFILE="/opt/ibm/IBMDataMovementTool/migr/dump/admin_severity.txt"
METHOD P (1,2,3,4,5)
MESSAGES "/opt/ibm/IBMDataMovementTool/migr/msg/admin_severity.txt"
REPLACE INTO "ADMIN"."SEVERITY"
(
"ID",
"TITLE",
"NOTES",
"ESTDAYS",
"AVGDAYS"
)
--STATISTICS YES WITH DISTRIBUTION AND DETAILED INDEXES ALL
NONRECOVERABLE
INDEXING MODE AUTOSELECT
;

174 MySQL to DB2 Conversion Guide

DB2 IMPORT command
The IMPORT utility inserts data from an input file into a table or an update-able
view. If the table or view receiving the imported data already contains data, you
can either replace the existing data or append this new data to the existing data.

See Example 7-8 for a simplified syntax diagram for the IMPORT command. For
a complete syntax description, visit the Information Center at this Web site:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

Example 7-8 Simplified syntax of the DB2 IMPORT command

>>-IMPORT FROM --filename--OF--filetype----------------------------->
>--+--------------------------------+------------------------------->
 | .--------------. |
 | V | |
 '-MODIFIED BY----filetype-mod--+-'
>--+------------------------+--------------------------------------->
 '-MESSAGES--message-file-'
>--+-+-INSERT---------+------INTO--+-table-name--+---------------------------->

-INSERT_UPDATE----+		.-,------------.		
-+-REPLACE--------+		V		
-+-REPLACE_CREATE-+	'--(--insert-column-+--)-'			
'-	hierarchy description	--------------'		

7.1.2 Differences in data formats

When porting data from MySQL to DB2, specific data types require some
attention. The DATETIME and TIMESTAMP data types have the same content
in MySQL and DB2, but have a different representation. YEAR does not have a
representation in DB2 but it can be mapped as a CHAR or SMALLINT. When
loading the exported data into DB2 you have to be aware of this data format.

Binary Large Objects (BLOB data type) usually contain binary data. Exporting of
binary data into text files is not possible. So, if your BLOBs contain binary data,
you must convert them in a different way than exporting and loading. The IBM
Data Movement tool handles the conversion BLOB data for you.

MySQL DATETIME and TIMESTAMP data type formats
Both MySQL data types DATETIME and TIMESTAMP must be mapped to the
DB2 data type TIMESTAMP, and YEAR must be mapped to either CHAR or
SMALLINT. Therefore, exported MySQL application data of these types must be
in a DB2 readable format before the data is loaded into DB2.

The mysqldump format of the MySQL DATETIME and TIMESTAMP values is
“YYYY-MM-DD hh:mm:ss”, for example, “2009-08-30 14:21:14”. Notice the
separators.

 Chapter 7. Data conversion 175

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

The DB2 LOAD command lets you specify the file-type-modifier clause
TIMESTAMPFORMAT, which determines the formatting of the TIMESTAMP
values. If you want to import MySQL TIMESTAMP values, you must change the
LOAD command in the deploy.sh script to the following syntax:

db2 LOAD from ""<outFilePath>/<tablename>.dat"" |
of DEL

modified by
coldel0x09

 timestampformat=\" YYYY-MM-DD HH:MM:SS\"
insert into <schemaname>.<tablename>

If you use the IBM Data Movement Tool, you do not have to worry about this
format, because the tool takes care of this formatting for you.

Manipulating data extraction
In certain cases, you might want to manipulate the data when it is extracted from
the MySQL database. For example in our sample conversion, the application
stores the application user passwords encrypted in the owners table. Because
we know the key that is used to encrypt each password, these passwords can be
decrypted during extraction. The IBM Data Movement Tool uses SELECT
statements to extract the data from the MySQL database. You can find the
SELECT commands in the <database>.tables file. To modify the extraction
commands, open the file in an editor and make the necessary changes to the
SELECT command. The highlighted text in Example 7-9 illustrates the changes
that we made to the inventory.tables file.

Example 7-9 Edits made to IBM Data Movement Tool extraction script

"ADMIN"."groups":SELECT * FROM groups
"ADMIN"."inventory":SELECT * FROM inventory
"ADMIN"."locations":SELECT * FROM locations
"ADMIN"."owners":SELECT id, firstName, lastName, email, locID, cubeNum,
phoneNum, loginName, AES_DECRYPT(password,'password') as password, faxNum,
groups FROM owners
"ADMIN"."services":SELECT * FROM services
"ADMIN"."severity":SELECT * FROM severity
"ADMIN"."status":SELECT * FROM status

When extracting the data from the GUI tool, make sure to select No when
requested to recreate the conversion directory and the <database>.tables file.
Otherwise, your changes will be overwritten.

176 MySQL to DB2 Conversion Guide

7.1.3 Differences in the user account management

The method in which the access rights and privileges are stored in MySQL differs
completely from DB2.

MySQL user account management
Porting the user account management from MySQL to the DB2 security system
requires knowledge about how the user account management data affects your
application and how user data, passwords, access rights, and privileges are
stored in MySQL.

User accounts
When assessing your application, be sure to distinguish between the following
user types:

� Application user accounts

These users log on to the application, but they do not exist on the database
level. Database access is through the application with the application’s
database user ID. Because the information about application users is usually
stored in custom application tables, the porting of application user account
data is done when porting the MySQL application data. In the sample
inventory database, this custom application table is our owners table.

� Database user accounts

Database users connect directly to the MySQL database to retrieve and
manipulate data. At least one database user must exist for applications to
connect to the database. Database user accounts are created with the
MySQL server and allow you to grant and restrict access to portions of the
MySQL servers. A database user account is associated with a host name and
user name. The user account information is stored with the mysql.user table
and must be ported in data conversion step. Access rights and privileges for
these users are stored in the mysql.db, mysql.host, mysql.tables_priv,
mysql.columns_priv, and mysql.procs_priv tables.

Passwords
Database users have associated passwords, which are stored encrypted in the
mysql.user table. Encrypted passwords cannot be ported and must be reset on
the new system. The password of the database user, which is used by an
application to access the database, is typically stored in a profile with restricted
rights.

 Chapter 7. Data conversion 177

Access rights
When accessing a MySQL database, there are two levels of access control.
When you first connect to a MySQL server, you provide a user name and the
associated password. Furthermore, the machine that you are connecting from
must be associated with this user to allow the connection. This requirement is
based on the assumption that a user with a specific user name from one host is
different from a user with the same user name from a separate host.

This access information is stored in the mysql.user table in the fields: user,
password, and host. The MySQL wildcard ampersand character (%) is often
used in the host field to specify that this user can connect from any host. The
wildcard underscore (_) is also sometimes used for single characters.

In Example 7-10, the user1 user can connect from any host, the user2 user can
connect from only the remoteHost.ibm.com host, and db2inst1 can connect from
localhost, myServer, and 127.0.0.1.

Example 7-10 Sample user data for connection verification

mysql> select user, password, host from mysql.user;
+---------+---+--------------------+
| user | password | host |
+---------+---+--------------------+
db2inst1	EE2FD1618DEE42FD1618BB9JD33HD736H5HNNT757	myServer
db2inst1	GGFD1618BDJ473SKCNGU8JB9JD33HD73J5748SUFL	127.0.0.1
user1	2FD162470C0C06DEE418BDCA2EC9D1E1B99005A9K	%.com
user2	*2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19	remoteHost.ibm.com
db2inst1	06DE005ADCA2EC2470C0C99005*ADCA2EC8BB9900	localhost
+---------+---+--------------------+

Refer to the MySQL Reference Manual at this Web site for a complete
description of the MySQL connection verification:

http://dev.mysql.com/doc/refman/5.1/en/index.html

You can also find information about how the entries in the mysql.user table are
ordered when the provided connection data meets more than one connection
criteria.

Important: The porting of encrypted database user passwords is impossible,
because it is the intended purpose of encryption functions to make password
decryption impossible.

178 MySQL to DB2 Conversion Guide

http://dev.mysql.com/doc/refman/5.1/en/index.html

Privileges
The second level of access control occurs after a connection to the MySQL
database is established. Each time that a command is run against the database,
MySQL checks if the connected user has sufficient privileges to run this
command.

Privileges exist for selecting, inserting, updating, and deleting data for creating,
altering, and dropping database objects and other operations performed at the
database level.

All privileges are stored in either the mysql.user, mysql.db, mysql.host,
mysql.tables_priv, mysql.columns_priv, or mysql.procs_priv tables.

Privileges in MySQL can be granted on the following levels:

� Global level

Global privileges provide control over the overall MySQL server and are
stored in the mysql.user table.

� Database level

Database privileges provide control over a specific database and are stored
in the mysql.db (database privileges) and mysql.host (host privileges) tables.

� Table level

Table privileges provide control over a specific table and are stored in the
mysql.tables_priv table.

� Column level

Column privileges provide control over a specific column in a table and are
stored in the mysql.columns_priv table.

� Routine level

Stored routine privileges provide control over a specific stored routine and are
stored in the mysql.procs_priv table.

Privileges can be granted to users with the MySQL GRANT command; they can
be revoked with the REVOKE command.

For more information about MySQL privileges, see the MySQL Reference
Manual at this Web site:

http://dev.mysql.com/doc/refman/5.1/en/

 Chapter 7. Data conversion 179

http://dev.mysql.com/doc/refman/5.1/en/

DB2 security system
There are four major mechanisms within DB2 that allow DB2 to implement a
security plan: authentication, administrative authorization, privileges, and
Label-Based Access Control (LBAC). DB2 works closely with the security
features of the underlying operating system to authenticate users’ specific
database privileges and authorizations. The database privileges and
authorizations are granted to operating system users, groups, or DB2 roles.

User accounts
To create a user for DB2 implies creation of a user in the server’s operating
system, assigning the user to a group, and granting specific database privileges
to the user or group.

On Linux systems, you must have root access to the system to create groups
and users. Group information is stored in the /etc/group file and user
information is stored in the /etc/passwd file.

For example, if you want to create a new db2app1 group with one user, db2usr1,
to access a specific DB2 table, perform the necessary steps:

1. Log on to the Linux system with root privileges.

2. Create the group. Make sure that the provided group name does not already
exist and ensure that it is not longer than eight characters:

groupadd [-g 995] db2app1

3. Create the user and assign it to the previously created group. Make sure that
the ID for the user does not already exist and that it is not longer than eight
characters:

useradd [-u 1001] -g db2app1 -m -d /home/db2usr1 db2usr1 [-p passwd1]

If the user will access the DB2 database locally, continue with the next two
steps:

a. Edit the profile of the created user:

vi /home/db2usr1/.profile

b. Add the following line to the profile. Be sure to specify the path of your
DB2instance owner’s home directory and to specify a blank between the
dot and the command:

. /home/db2inst1/sqllib/db2profile

DB2 9.5 introduced roles to simplify the management of authorization. Roles are
equivalent to in-database groups and allow DBAs to group together one or more
privileges, authorities, or security labels. Roles can be assigned to users, groups,
PUBLIC, or other roles by using the GRANT statement.

180 MySQL to DB2 Conversion Guide

Passwords
The passwords that are used for DB2 are the system passwords of the user. To
set a password in Linux, use the passwd <username> command as root user.

Access rights
The first component in the DB2 security model is authentication. Access to DB2
databases is restricted to users that exist on the DB2 system. When connecting
to a DB2 database, you have to provide a user name and password combination
that is valid against the server’s system. Authentication can occur at the DB2
server or the DB2 client using operating system authentication, Kerberos, or an
external security manager.

Authorities and privileges
Privileges enable users to create or access database objects. Authority levels
provide a method of grouping privileges and control over higher-level database
manager maintenance and utility operations. Label-based access control (LBAC)
provides a more granular approach to granting privileges on a row and column
basis. Together, these methods control access to the database manager and its
database objects. Users can access only those objects for which they have the
appropriate authorization, that is, the required privilege or authority.

Administrative authority
A user or group can have one or more of the following administrative authorities.

System-level authorization
The system-level authorities provide varying degrees of control over
instance-level functions:

� SYSADM authority

The SYSADM (system administrator) authority provides control over all the
resources created and maintained by the database manager. The system
administrator possesses all authorities for the SYSCTRL, SYSMAINT, and
SYSMON authority. The user who has SYSADM authority is responsible for
both controlling the database manager and ensuring the safety and integrity
of the data.

� SYSCTRL authority

The SYSCTRL authority provides control over operations that affect system
resources. For example, a user with SYSCTRL authority can create, update,
start, stop, or drop a database. This user can also start or stop an instance,
but cannot access table data. Users with SYSCTRL authority also have
SYSMON authority.

 Chapter 7. Data conversion 181

� SYSMAINT authority

The SYSMAINT authority controls maintenance operations on all databases
associated with an instance. A user with SYSMAINT authority can update the
database configuration, back up a database or table space, restore an
existing database, and monitor a database. Like SYSCTRL, SYSMAINT does
not provide access to table data. Users with SYSMAINT authority also have
SYSMON authority.

� SYSMON authority

The SYSMON (system monitor) authority controls the usage of the database
system monitor.

Figure 7-1 illustrates the instance-level authorities that can be granted to a user
or role.

Figure 7-1 Instance-level authorities

182 MySQL to DB2 Conversion Guide

Database-level authorization
The database-level authorities provide control within a database:

� DBADM (database administrator)

The DBADM authority level provides administrative authority over a single
database. This database administrator possesses the privileges required to
create objects and issue database commands.

The DBADM authority can only be granted by a user with SECADM authority
and cannot be granted to PUBLIC.

� SECADM (security administrator)

The SECADM authority level provides administrative authority for security
over a single database. The security administrator authority possesses the
ability to manage database security objects (database roles, audit policies,
trusted contexts, security label components, and security labels) and grant
and revoke all database privileges and authorities. A user with SECADM
authority can transfer the ownership of objects that they do not own. They can
also use the AUDIT statement to associate an audit policy with a particular
database or database object at the server.

The SECADM authority has no inherent privileges to access data stored in
tables. This authority can only be granted by a user with SECADM authority.
The SECADM authority cannot be granted to PUBLIC.

� SQLADM (SQL administrator)

The SQLADM authority level provides administrative authority to monitor and
tune SQL statements within a single database. It can be granted by a user
with ACCESSCTRL or SECADM authority.

� WLMADM (workload management administrator)

The WLMADM authority level provides administrative authority to manage
workload management objects, such as service classes, work action sets,
work class sets, and workloads. It can be granted by a user with
ACCESSCTRL or SECADM authority.

� EXPLAIN (explain authority)

The EXPLAIN authority level provides administrative authority to explain
query plans without gaining access to data. It can only be granted by a user
with ACCESSCTRL or SECADM authority.

 Chapter 7. Data conversion 183

� ACCESSCTRL (access control authority)

The ACCESSCTRL authority level provides administrative authority to issue
the following GRANT (and REVOKE) statements. ACCESSCTRL authority
can only be granted by a user with SECADM authority. The ACCESSCTRL
authority cannot be granted to PUBLIC.

– GRANT (Database authorities)
– GRANT (Global variable privileges)
– GRANT (Index privileges)
– GRANT (Module privileges)
– GRANT (Package privileges)
– GRANT (Routine privileges)
– GRANT (Schema privileges)
– GRANT (Sequence privileges)
– GRANT (Server privileges)
– GRANT (Table, view, or nickname privileges)
– GRANT (Table space privileges)
– GRANT (Workload privileges)
– GRANT (XML schema repository (XSR) object privileges)

� DATAACCESS (data access authority)

The DATAACCESS authority level provides the following privileges and
authorities. It can be granted only by a user who holds SECADM authority.
The DATAACCESS authority cannot be granted to PUBLIC.

– LOAD authority

– SELECT, INSERT, UPDATE, and DELETE privileges on tables, views,
nicknames, and materialized query tables

– EXECUTE privilege on packages

– EXECUTE privilege on modules

– EXECUTE privilege on routines

� Database authorities (non-administrative)

Specific database authorities are required to perform activities, such as
creating a table or a routine, or for loading data into a table. For example, the
LOAD database authority is required for use of the load utility to load data into
tables (a user must also have INSERT privilege on the table).

Figure 7-2 on page 185 illustrates the database-level authorities that can be
granted to a user or role.

184 MySQL to DB2 Conversion Guide

Figure 7-2 Database-level authorities

 Chapter 7. Data conversion 185

Privileges
A privilege is a permission to perform an action or a task. Authorized users can
create objects, have access to objects they own, and can pass on privileges on
their own objects to other users by using the GRANT statement.

Privileges can be granted to individual users, groups, or PUBLIC. PUBLIC is a
special group that consists of all users, including future users. Users that are
members of a group will indirectly take advantage of privileges granted to the
group, where groups are supported.

Privileges can be assigned to a user in the following three ways:

� Explicit

Individual privileges can be explicitly granted to allow a user or group to carry
out specific tasks on specific objects. These privileges can be given and
revoked using the GRANT and REVOKE commands, for example:

db2 GRANT SELECT on TABLE db2inst1.t1 to employee
db2 REVOKE SELECT on TABLE db2inst1.t1 from employee

Users with the administrative authorities ACCESSCTRL or SECADM, or with
the CONTROL privilege, can grant and revoke privileges to and from users.

Individual privileges and database authorities allow for a set of activities, but
they do not include the right to grant the same privileges or authorities to
other users. The right to grant table, view, schema, package, routine, and
sequence privileges to other users can be extended to other users through
the WITH GRANT OPTION on the GRANT statement. However, the WITH
GRANT OPTION does not allow the person granting the privilege to revoke
the privilege once it is granted. You must have SECADM authority,
ACCESSCTRL authority, or the CONTROL privilege to revoke an explicitly
granted privilege.

� Implicit

Implicit privileges are granted implicitly through the execution of a command.
For example, if a user executes a CREATE statement, they inherently gain
full access to the object they created, which is otherwise known as
CONTROL privileges.

db2 CREATE TABLE t2

In this example, the user who issued the CREATE TABLE statement has full
CONTROL privileges over table t2.

Possessing the CONTROL privilege on an object allows a user to access that
database object, and to grant and revoke privileges to or from other users on
that object. The creator of a base table, materialized query table, staging
table, or nickname automatically receives the CONTROL privilege. The
creator of a view automatically receives the CONTROL privilege if the user

186 MySQL to DB2 Conversion Guide

holds the CONTROL privilege on all tables, views, and nicknames identified
in the fullselect.

� Indirect

When a user has the privilege to execute a package or routine, the user does
not necessarily require specific access privileges on the objects handled in
the package or routine. If the package or routine contains static SQL or
XQuery statements, the privileges of the owner of the package are used for
those statements. If the package or routine contains dynamic SQL or XQuery
statements, the authorization ID used for privilege checking depends on the
setting of the DYNAMICRULES BIND option of the package issuing the
dynamic query statements, and whether those statements are issued when
the package is being used in the context of a routine.

A user or group can be authorized for any combination of individual privileges
or authorities. When a privilege is associated with a resource, that resource
must exist. For example, a user cannot be given the SELECT privilege on a
table unless that table has previously been created.

Privileges and authorities in DB2 can be granted on the following levels:

� Database level:

– CONNECT privilege
– CREATETAB privilege
– LOAD privilege
– IMPLICIT_SCHEMA privilege
– BINDADD privilege
– CREATE_EXTERNAL_ROUTINE privilege
– CREATE_NOT_FENCED_ROUTINE privilege
– IMPLICIT_SCHEMA privilege
– LOAD privilege
– QUIESCE_CONNECT privilege
– ACCESSCTRL authority
– DATAACCESS authority
– EXPLAIN authority
– DBADM authority
– SECADM authority
– SQLADM authority
– WLMADM authority
– Schema level

Note: Care must be given to granting authorities and privileges to user names
that do not exist in the system yet. At a later time, this user name can be
created and automatically receive all of the authorities and privileges
previously granted.

 Chapter 7. Data conversion 187

– CREATEIN privilege
– ALTERIN privilege
– DROPIN privilege

� Table space level:

– USE privilege

� Table and view level:

– CONTROL privilege
– SELECT privilege
– INSERT privilege
– UPDATE privilege
– DELETE privilege
– INDEX privilege
– ALTER privilege
– REFERENCES privilege
– ALL PRIVILEGES privilege

� Row or column level:

– SECURITY LABEL privilege
– LBAC Rule Exemption privileges

� Other privileges:

– Package privileges
– Index level privileges
– Procedure, function, and method privileges
– Sequence privileges

Label-Based Access Control
Label-based access control (LBAC) was introduced in DB2 9. LBAC provides the
ability to have more control over who can access specific data in tables and
views. LBAC provides particular privileges for users, groups, or roles on one or
more columns and rows within a table.

LBAC controls access to table objects by attaching security labels to rows and
columns. Users attempting to access an object must have a certain security label
granted to them. Only users who have the proper labels when accessing the row
are allowed to retrieve the data. Other users do not receive any indication that
they cannot retrieve the row. This form of security differs from normal SELECT
privileges, because users who attempt to access a table that they are not
allowed to access receive an SQL error message.

All privileges and labels can be granted to users or groups with the GRANT
command, and they can be revoked using the REVOKE command.

188 MySQL to DB2 Conversion Guide

Mapping the user information from MySQL to DB2
When converting from MySQL to DB2, you must port user privileges as well.

Table 7-1 shows the mapping of MySQL privileges to DB2 privileges, assuming
that different MySQL databases are mapped to different DB2 schemas. For
example, an INSERT privilege granted in MySQL on the global level means that
you have to grant the INSERT privilege on all existing tables in the DB2 database
to the specified user. If you create a new table in DB2, you have to grant the
INSERT privilege on this table to the user.

Table 7-1 Mapping MySQL to DB2 privileges

Note: Catalogs contain, among other things, statistics about data distribution
in a table, which are needed by the query optimizer to determine the best way
to execute a query. Users can indirectly gain knowledge about certain data
values by accessing the catalogs. When using LBAC, you can add the new
RESTRICT_ACCESS option on the CREATE DATABASE command to create
a database where access to the catalogs is not granted to PUBLIC. Access to
the catalogs can then be granted on a “need-to-know” basis.

MySQL
privilege

MySQL
scope

DB2 privilege or authority DB2 scope

ALL
[PRIVILEGES]

Global SYSADMIN authority and
DBADM authority with
DATAACCESS and
ACCESSCTRL authorities

Instance

Database DBADM authority with
DATAACCESS and
ACCESSCTRL authorities

Database

Table ALL WITH GRANT OPTION Table

ALTER Global ALTERIN For each
schema in the
database

Database ALTERIN Schema

Table ALTER TABLE Table

ALTER
ROUTINE

Global CREATE_EXTERNAL_ROUTINE Database

Database CREATIN Schema

CREATE Global CREATETAB Database

Database CREATIN Schema

 Chapter 7. Data conversion 189

Table CONTROL Table

CREATE
ROUTINE

Global CREATE_EXTERNAL_ROUTINE Database

Database CREATIN Schema

CREATE
TEMPORARY
TABLES

Global CREATETAB Database

Database CREATIN Schema

CREATE
USER

Global SECADMIN authority Database

CREATE
VIEW

Global DATAACCESS authority Database

Database CONTROL or SELECT For all tables in
the Schema

Table CONTROL or SELECT Table

DELETE Global DATAACCESS authority Database

Database DELETE For each table in
the schema

Table DELETE Table

DROP Global DROPIN For each
schema in the
database

Database DROPIN Schema

Table CONTROL Table

EVENT Global DBADM authority Database

Database DBADM authority Database

EXECUTE Global DATAACCESS authority Database

Database EXECUTE For each routine
in the schema

Routine EXECUTE Routine

FILE Global LOAD authority Database

GRANT
OPTION

Global SECADMIN authority or
DBADM WITH ACCESSCTRL

Database

Database SECADMIN authority or
DBADM WITH ACCESSCTRL

Database

190 MySQL to DB2 Conversion Guide

Table SECADMIN authority or
DBADM WITH ACCESSCTRL
or CONTROL

Database/Table

Routine SECADMIN authority or
DBADM WITH ACCESSCTRL
or CONTROL

Routine

INDEX Global CREATETAB Database

Database CREATIN Schema

Table INDEX Table

INSERT Global DATAACCESS authority Database

Database INSERT For all tables in
the Schema

Table INSERT Table

Column LBAC Column

PROCESS Global SYSADM, SYSCTRL, or
SYSMAINT authority

Instance

RELOAD Global WLMADM Database

REPLICATION
CLIENT

Global DBADM authority Database

REPLICATION
SLAVE

Global DBADM authority Database

SELECT Global DATAACCESS authority Database

Database SELECT For all tables in
the Schema

Table SELECT Table

Column LBAC Column

SHOW
DATABASES

Global ALL users All users

SHOW VIEW Global SELECT On
SYSCAT.VIEWS

Database SELECT On
SYSCAT.VIEWS

Table SELECT On
SYSCAT.VIEWS

SHUTDOWN Global SYSADMN, SYSCTRL, or
SYSMAINT authority

Instance

 Chapter 7. Data conversion 191

7.2 Sample project: Data porting

This section describes the steps that necessary to port data for our sample
conversion project.

7.2.1 Export user data from MySQL

We use the mysqlaccess utility to get the user names that have access to the
database inventory out of the MySQL database. See Example 7-11.

Example 7-11 shows retrieving users with access to the sample project
database.

Example 7-11 Retrieve users with access to the sample project database

>mysqlaccesss % % inventory -b -U root -P
mysqlaccess Version 2.06, 20 Dec 2000
……

SUPER Global Not available

TRIGGER Global DBADM authority Database

Database ALTERIN Schema

Table CONTROL Table

UPDATE Global DATAACCESS authority Database

Database UPDATE For all tables in
the Schema

Table UPDATE Table

Column LBAC Column

USAGE Global Not applicable, because users
are created through the
operating system

Database Not applicable, because users
are created through the
operating system

Table Not applicable, because users
are created through the
operating system

192 MySQL to DB2 Conversion Guide

Sele Inse Upda Dele Crea Drop Relo Shut Proc File Gran Refe Inde Alte Show Supe Crea
Lock Exec Repl Repl Crea Show Crea Alte Crea Even Trig Ssl_ Ssl_ X509 X509 Max_ Max_
Max_ Max_ | Host,User,DB
---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
---- ---- + --------------------
N ? ? ? ? 0 0 0 0 |
%,root,inventory
Y Y Y Y Y Y N N N N N Y Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y ? ? ? ? 0 0 0 0 |
%,inventAppUser,inventory
N ? ? ? ? 0 0 0 0 |
%,user01,inventory
N ? ? ? ? 0 0 0 0 |
%,user02,inventory
N ? ? ? ? 0 0 0 0 |
%,ANY_NEW_USER,inventory
Y ? ? ? ? 0 0 0 0 |
localhost,root,inventory
Y Y Y Y Y Y N N N N N Y Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y ? ? ? ? 0 0 0 0 |
localhost,inventAppUser,inventory
N ? ? ? ? 0 0 0 0 |
localhost,user01,inventory
N ? ? ? ? 0 0 0 0 |
localhost,user02,inventory
N ? ? ? ? 0 0 0 0 |
localhost,ANY_NEW_USER,inventory

7.2.2 Map MySQL user data to DB2 user data

The root user is the database administrator and is not used by our sample
application; we do not want to port this user. The MySQL root user is similar to
the instance owner in DB2.

The user accounts user1, users2, and ANY_NEW_USER (which is similar to the
logical DB2 group PUBLIC) do not have any privileges on our sample database,
so we do not need to upgrade these users either.

The only remaining user is the user inventAppUser, which is the account that our
application uses to connect to the MySQL database and manipulate data.

We want to add a new group for this user called db2app1.

The user’s privileges are set for SELECT, INSERT, UPDATE, DELETE,
CREATE, and DROP on the database level for inventory, so we map these
privileges to SELECT, INSERT, UPDATE, and DELETE for all tables in the DB2
schema inventory and to CREATEIN and DROPIN for the schema.

 Chapter 7. Data conversion 193

7.2.3 Create DB2 user

We use the script in Example 7-12 for user and group creation.

Example 7-12 Sample script to create DB2 users and groups

db2server:~ # cat db2addusr.sh
export DB2DIR='/home/db2inst1' export HOMEDIR='/home'

groupadd $2
useradd -g $2 -m -d $HOMEDIR/$1 $1
passwd $1
echo '. '${DB2DIR}'/sqllib/db2profile' >> $HOMEDIR/$1/.profile

The root user creates our user and group, as shown in Example 7-13.

Example 7-13 Creation of the user and group

db2server:~ # ./db2addusr.sh inventAppUser db2app1
Changing password for inventAppUser.
New password:
Re-enter new password:
Password changed

The instance owner, db2inst1, grants the privileges with the DB2 command that
is shown in Example 7-14.

Example 7-14 Granting privileges

db2 => connect to invent
connect to invent

 Database Connection Information

 Database server = DB2/LINUX 9.7.0
 SQL authorization ID = DB2INST1
 Local database alias = INVENT

grant createin, dropin on schema db2inst1 to group db2app1
DB20000I The SQL command completed successfully.

grant select, insert, update, delete on table admin.inventory to user inventAppUSer
DB20000I The SQL command completed successfully.

grant select, insert, update, delete on table admin.locations to user inventAppUSer
DB20000I The SQL command completed successfully.

grant select, insert, update, delete on table admin.owners to user inventAppUSer
DB20000I The SQL command completed successfully.

grant select, insert, update, delete on table admin.services to user inventAppUSer

194 MySQL to DB2 Conversion Guide

DB20000I The SQL command completed successfully.

grant select, insert, update, delete on table admin.BOSSGROUP to user inventAppUSer
DB20000I The SQL command completed successfully.

grant select, insert, update, delete on table admin.EMPGROUP to user inventAppUSer
DB20000I The SQL command completed successfully.

grant select, insert, update, delete on table admin.GENERALGROUP to user inventAppUSer
DB20000I The SQL command completed successfully.

grant select, insert, update, delete on table admin.GROUPS to user inventAppUSer
DB20000I The SQL command completed successfully.

grant select, insert, update, delete on table admin.MANAGERGROUP to user inventAppUSer
DB20000I The SQL command completed successfully.

grant select, insert, update, delete on table admin.SEVERITY to user inventAppUSer
DB20000I The SQL command completed successfully.

grant select, insert, update, delete on table admin.STATUS to user inventAppUSer
DB20000I The SQL command completed successfully.

grant select, insert, update, delete on table admin.TECHGROUP to user inventAppUSer
DB20000I The SQL command completed successfully.

7.2.4 Export MySQL application data

The database Data Definition Language (DDL) scripts were generated and
ported to DB2 automatically with the IBM Data Movement Tool as described in
6.5, “Sample database conversion” on page 148.

The next step is to extract the MySQL application data using the Data Movement
Tool. In 7.1.1, “Data porting commands and tools” on page 168 of this chapter,
we discuss how to create data extraction and transfer files using the IBM Data
Movement Tool. And in 7.1.2, “Differences in data formats” on page 175, we
discuss how to modify the extraction scripts to extract special data. Now, we must
execute these scripts and extract the data from the MySQL database. Open the
Extract/Deploy tab window, clear the DDL check box, select the Data Movement
check box, and click Extract DDL/data, as shown in Figure 7-3 on page 196. If
you have made changes to the extraction script, be sure to select No when
requested to recreate the output directory or <tableName>.tables file.

 Chapter 7. Data conversion 195

Figure 7-3 Extract/Deploy tab of the IBM Data Movement Tool

Now, you can go into your project directory to check the extracted data files. The
data output files extracted from the MySQL database are located under the
<migration output directory>/data directory. Example 7-15 shows the created
scripts for our inventory scenario.

Example 7-15 IBM Data Movement Tool export files

db2server:/opt/ibm/IBMDataMovementTool/migr/data # ls -l
-rw-r--r-- 1 db2inst1 db2iadm1 114 Aug 28 01:03 admin_status.txt
-rw-r--r-- 1 db2inst1 db2iadm1 82 Aug 28 01:03 admin_severity.txt
-rw-r--r-- 1 db2inst1 db2iadm1 43188 Aug 28 01:03 admin_services.txt
-rw-r--r-- 1 db2inst1 db2iadm1 60137 Aug 28 01:03 admin_owners.txt
-rw-r--r-- 1 db2inst1 db2iadm1 4173 Aug 28 01:03 admin_locations.txt
-rw-r--r-- 1 db2inst1 db2iadm1 45489 Aug 28 01:03 admin_inventory.txt
-rw-r--r-- 1 db2inst1 db2iadm1 143 Aug 28 01:03 admin_groups.txt

Each of the files is tab-delimited, containing the data from the corresponding
MySQL table. This format can be read by the DB2 LOAD command.

196 MySQL to DB2 Conversion Guide

7.2.5 Convert MySQL application data to DB2 format

We do not have to manually convert any data in our export files, because no
special data types are used in our sample database.

7.2.6 Import application data into DB2

You can import data into DB2 automatically by using the IBM Data Movement
Tool. The IBM Data Movement Tool creates a script containing the DB2 LOAD
commands and then executes the script. In case of any errors, you can edit the
the script and run it again.

Example 7-16 shows the DB2 LOAD commands that are generated by the IBM
Data Movement Tool for our sample project.

Example 7-16 DB2 LOAD commands for loading the data into the DB2 database

CONNECT TO INVENT;
--#SET :LOAD:ADMIN:GROUPS
LOAD FROM
"/opt/ibm/IBMDataMovementTool/migr/data/admin_groups.txt" OF DEL
MODIFIED BY CODEPAGE=1208COLDEL~ ANYORDER USEDEFAULTS CHARDEL"" DELPRIORITYCHAR
NOROWWARNINGS --DUMPFILE="/opt/ibm/IBMDataMovementTool/migr/dump/admin_groups.txt"
METHOD P(1,2,3,4,5)MESSAGES "/opt/ibm/IBMDataMovementTool/migr/msg/admin_groups.txt"
REPLACE INTO "ADMIN"."GROUPS"("GROUPNAME", "EDITUSER", "EDITGRANTUSERPERM", "EDITINVT",
"EDITSERVICE") --STATISTICS YES WITH DISTRIBUTION AND DETAILED INDEXES ALL
NONRECOVERABLE INDEXING MODE AUTOSELECT;

--#SET :LOAD:ADMIN:LOCATIONS
LOAD FROM
"/opt/ibm/IBMDataMovementTool/migr/data/admin_locations.txt" OF DEL
MODIFIED BY CODEPAGE=1208 COLDEL~ ANYORDER USEDEFAULTS CHARDEL"" DELPRIORITYCHAR
NOROWWARNINGS --DUMPFILE="/opt/ibm/IBMDataMovementTool/migr/dump/admin_locations.txt"
METHOD P(1,2,3,4)MESSAGES "/opt/ibm/IBMDataMovementTool/migr/msg/admin_locations.txt"
REPLACE INTO "ADMIN"."LOCATIONS" ("ID", "ROOMNAME", "FLOORNUM", "PASSCODE")
--STATISTICS YES WITH DISTRIBUTION AND DETAILED INDEXES ALL NONRECOVERABLE
INDEXING MODE AUTOSELECT ;

--#SET :LOAD:ADMIN:SEVERITY
LOAD FROM
"/opt/ibm/IBMDataMovementTool/migr/data/admin_severity.txt" OF DEL
MODIFIED BY CODEPAGE=1208 COLDEL~ ANYORDER USEDEFAULTS CHARDEL"" DELPRIORITYCHAR
NOROWWARNINGS --DUMPFILE="/opt/ibm/IBMDataMovementTool/migr/dump/admin_severity.txt"
METHOD P (1,2,3,4,5) MESSAGES "/opt/ibm/IBMDataMovementTool/migr/msg/admin_severity.txt"
REPLACE INTO "ADMIN"."SEVERITY" ("ID", "TITLE", "NOTES", "ESTDAYS", "AVGDAYS"
)--STATISTICS YES WITH DISTRIBUTION AND DETAILED INDEXES ALL NONRECOVERABLE INDEXING
MODE AUTOSELECT;

 Chapter 7. Data conversion 197

--#SET :LOAD:ADMIN:OWNERS
LOAD FROM
"/opt/ibm/IBMDataMovementTool/migr/data/admin_owners.txt" OF DEL
MODIFIED BY CODEPAGE=1208 COLDEL~ ANYORDER USEDEFAULTS CHARDEL"" DELPRIORITYCHAR
NOROWWARNINGS --DUMPFILE="/opt/ibm/IBMDataMovementTool/migr/dump/admin_owners.txt"
METHOD P (1,2,3,4,5,6,7,8,9,10,11) MESSAGES
"/opt/ibm/IBMDataMovementTool/migr/msg/admin_owners.txt" REPLACE INTO "ADMIN"."OWNERS"
("ID", "FIRSTNAME", "LASTNAME", "EMAIL", "LOCID", "CUBENUM",
"PHONENUM", "LOGINNAME", "PASSWORD", "FAXNUM", "GROUPS") --STATISTICS YES WITH
DISTRIBUTION AND DETAILED INDEXES ALL NONRECOVERABLE INDEXING MODE AUTOSELECT;

--#SET :LOAD:ADMIN:INVENTORY
LOAD FROM
"/opt/ibm/IBMDataMovementTool/migr/data/admin_inventory.txt" OF DEL
MODIFIED BY CODEPAGE=1208 COLDEL~ ANYORDER USEDEFAULTS CHARDEL"" DELPRIORITYCHAR
NOROWWARNINGS --DUMPFILE="/opt/ibm/IBMDataMovementTool/migr/dump/admin_inventory.txt"
METHOD P (1,2,3,4,5,6,7,8) MESSAGES
"/opt/ibm/IBMDataMovementTool/migr/msg/admin_inventory.txt"
REPLACE INTO "ADMIN"."INVENTORY"("ID", "ITEMNAME", "MANUFACTURER", "MODEL", "YEAR",
"SERIAL", "LOCID", "OWNERID")--STATISTICS YES WITH DISTRIBUTION AND DETAILED INDEXES ALL
NONRECOVERABLE INDEXING MODE AUTOSELECT ;

--#SET :LOAD:ADMIN:SERVICES
LOAD FROM
"/opt/ibm/IBMDataMovementTool/migr/data/admin_services.txt" OF DEL
MODIFIED BY CODEPAGE=1208 COLDEL~ ANYORDER USEDEFAULTS CHARDEL"" DELPRIORITYCHAR
NOROWWARNINGS --DUMPFILE="/opt/ibm/IBMDataMovementTool/migr/dump/admin_services.txt"
METHOD P (1,2,3,4,5,6,7,8,9) MESSAGES
/opt/ibm/IBMDataMovementTool/migr/msg/admin_services.txt" REPLACE INTO
"ADMIN"."SERVICES" ("ID", "INVENTID", "DESCRIPTION", "SEVERITY", "SERVICEOWNER",
"OPENDATE", "CLOSEDATE", "TARGETCLOSEDATE", "STATUS")--STATISTICS YES WITH DISTRIBUTION
AND DETAILED INDEXES ALL NONRECOVERABLE INDEXING MODE AUTOSELECT;

--#SET :LOAD:ADMIN:STATUS
LOAD FROM
"/opt/ibm/IBMDataMovementTool/migr/data/admin_status.txt" OF DEL
MODIFIED BY CODEPAGE=1208 COLDEL~ ANYORDER USEDEFAULTS CHARDEL"" DELPRIORITYCHAR
NOROWWARNINGS --DUMPFILE="/opt/ibm/IBMDataMovementTool/migr/dump/admin_status.txt"
METHOD P (1,2,3) MESSAGES "/opt/ibm/IBMDataMovementTool/migr/msg/admin_status.txt"
REPLACE INTO "ADMIN"."STATUS" ("ID", "TITLE", "NOTES")--STATISTICS YES WITH
DISTRIBUTION AND DETAILED INDEXES ALL NONRECOVERABLE INDEXING MODE AUTOSELECT;

TERMINATE;

To execute the DB2 LOAD commands, go to the Extract/Deploy tab window.
Make sure that the DDL check box is still unselected and that Data Movement is
selected. Click Deploy DDL/Data, as shown in Figure 7-3 on page 196. You can

198 MySQL to DB2 Conversion Guide

also execute this load from the command line by running the db2load.sh script. If
you made changes to the extraction script, be sure to select No when requested
to recreate the output directory or <tableName>.tables file, because it overrides
your changes.

After importing the data into the DB2 tables, execute the RUNSTATS command
to recreate the statistics information about indexes. The query optimizer uses
this statistics information. The IBM Data Movement Tool generates a custom
RUNSTATS script for the new database, which is called db2runstats.sql.
Example 7-17 shows the db2runstats.sql script for our sample conversion. You
can run this script in the IBM Data Movement Tool GUI or command line.

Example 7-17 DB2 RUNSTATS commands for recreating the statistics information

CONNECT TO INVENT;
RUNSTATS ON TABLE "ADMIN"."GROUPS" ON ALL COLUMNS WITH DISTRIBUTION
ON ALL COLUMNS AND DETAILED INDEXES ALL ALLOW WRITE ACCESS ;

RUNSTATS ON TABLE "ADMIN"."LOCATIONS" ON ALL COLUMNS WITH DISTRIBUTION
ON ALL COLUMNS AND DETAILED INDEXES ALL ALLOW WRITE ACCESS ;

RUNSTATS ON TABLE "ADMIN"."SEVERITY" ON ALL COLUMNS WITH DISTRIBUTION
ON ALL COLUMNS AND DETAILED INDEXES ALL ALLOW WRITE ACCESS ;

RUNSTATS ON TABLE "ADMIN"."OWNERS" ON ALL COLUMNS WITH DISTRIBUTION
ON ALL COLUMNS AND DETAILED INDEXES ALL ALLOW WRITE ACCESS ;

RUNSTATS ON TABLE "ADMIN"."INVENTORY" ON ALL COLUMNS WITH DISTRIBUTION
ON ALL COLUMNS AND DETAILED INDEXES ALL ALLOW WRITE ACCESS ;

RUNSTATS ON TABLE "ADMIN"."SERVICES" ON ALL COLUMNS WITH DISTRIBUTION
ON ALL COLUMNS AND DETAILED INDEXES ALL ALLOW WRITE ACCESS ;

RUNSTATS ON TABLE "ADMIN"."STATUS" ON ALL COLUMNS WITH DISTRIBUTION
ON ALL COLUMNS AND DETAILED INDEXES ALL ALLOW WRITE ACCESS ;

7.2.7 Basic data checking

When the script executes, it creates a db2load.log file where all output messages
are logged. Check the log file for the success of the DB2 LOAD commands. You
can find this information in the log file, as shown in Example 7-18.

Example 7-18 Log file information about the DB2 LOAD command

Number of rows read = 140
Number of rows skipped = 0
Number of rows loaded = 140
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 140

 Chapter 7. Data conversion 199

LOAD FROM "/opt/ibm/IBMDataMovementTool/migr/data/admin_severity.txt" OF DEL MODIFIED BY
CODEPAGE=1208 COLDEL~ ANYORDER USEDEFAULTS CHARDEL"" DELPRIORITYCHAR NOROWWARNINGS METHOD P
(1,2,3,4,5) MESSAGES "/opt/ibm/IBMDataMovementTool/migr/msg/admin_severity.txt" REPLACE INTO
"ADMIN"."SEVERITY" ("ID", "TITLE", "NOTES", "ESTDAYS", "AVGDAYS") NONRECOVERABLE INDEXING MODE
AUTOSELECT

Number of rows read = 5
Number of rows skipped = 0
Number of rows loaded = 5
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 5

LOAD FROM "/opt/ibm/IBMDataMovementTool/migr/data/admin_owners.txt" OF DEL MODIFIED BY
CODEPAGE=1208 COLDEL~ ANYORDER USEDEFAULTS CHARDEL"" DELPRIORITYCHAR NOROWWARNINGS METHOD P
(1,2,3,4,5,6,7,8,9,10,11) MESSAGES "/opt/ibm/IBMDataMovementTool/migr/msg/admin_owners.txt" REPLACE
INTO "ADMIN"."OWNERS" ("ID", "FIRSTNAME", "LASTNAME", "EMAIL", "LOCID", "CUBENUM", "PHONENUM",
"LOGINNAME", "PASSWORD", "FAXNUM", "GROUPS") NONRECOVERABLE INDEXING MODE AUTOSELECT

Number of rows read = 504
Number of rows skipped = 0
Number of rows loaded = 502
Number of rows rejected = 2
Number of rows deleted = 0
Number of rows committed = 504

SQL3107W There is at least one warning message in the message file.

LOAD FROM "/opt/ibm/IBMDataMovementTool/migr/data/admin_inventory.txt" OF DEL MODIFIED BY
CODEPAGE=1208 COLDEL~ ANYORDER USEDEFAULTS CHARDEL"" DELPRIORITYCHAR NOROWWARNINGS METHOD P
(1,2,3,4,5,6,7,8) MESSAGES "/opt/ibm/IBMDataMovementTool/migr/msg/admin_inventory.txt" REPLACE INTO
"ADMIN"."INVENTORY" ("ID", "ITEMNAME", "MANUFACTURER", "MODEL", "YEAR", "SERIAL", "LOCID", "OWNERID"
) NONRECOVERABLE INDEXING MODE AUTOSELECT

Number of rows read = 703
Number of rows skipped = 0
Number of rows loaded = 703
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 703

SQL3107W There is at least one warning message in the message file.

LOAD FROM "/opt/ibm/IBMDataMovementTool/migr/data/admin_services.txt" OF DEL MODIFIED BY
CODEPAGE=1208 COLDEL~ ANYORDER USEDEFAULTS CHARDEL"" DELPRIORITYCHAR NOROWWARNINGS METHOD P
(1,2,3,4,5,6,7,8,9) MESSAGES "/opt/ibm/IBMDataMovementTool/migr/msg/admin_services.txt" REPLACE INTO
"ADMIN"."SERVICES" ("ID", "INVENTID", "DESCRIPTION", "SEVERITY", "SERVICEOWNER", "OPENDATE",
"CLOSEDATE", "TARGETCLOSEDATE", "STATUS") NONRECOVERABLE INDEXING MODE AUTOSELECT

Number of rows read = 808
Number of rows skipped = 0
Number of rows loaded = 808
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 808

LOAD FROM "/opt/ibm/IBMDataMovementTool/migr/data/admin_status.txt" OF DEL MODIFIED BY
CODEPAGE=1208 COLDEL~ ANYORDER USEDEFAULTS CHARDEL"" DELPRIORITYCHAR NOROWWARNINGS METHOD P
(1,2,3) MESSAGES "/opt/ibm/IBMDataMovementTool/migr/msg/admin_status.txt" REPLACE INTO
"ADMIN"."STATUS" ("ID", "TITLE", "NOTES") NONRECOVERABLE INDEXING MODE AUTOSELECT

Number of rows read = 7
Number of rows skipped = 0
Number of rows loaded = 7

200 MySQL to DB2 Conversion Guide

Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 7

TERMINATE
DB20000I The TERMINATE command completed successfully.

 Database Connection Information

 Database server = DB2/LINUX 9.7.0
 SQL authorization ID = DB2INST1
 Local database alias = INVENT

CONNECT TO INVENT

 Database Connection Information

 Database server = DB2/LINUX 9.7.0
 SQL authorization ID = DB2INST1
 Local database alias = INVENT

select count_big(*) "ADMIN.GROUPS" FROM "ADMIN"."GROUPS"

ADMIN.GROUPS

 6.

 1 record(s) selected.

select count_big(*) "ADMIN.LOCATIONS" FROM "ADMIN"."LOCATIONS"

ADMIN.LOCATIONS

 140.

 1 record(s) selected.

select count_big(*) "ADMIN.SEVERITY" FROM "ADMIN"."SEVERITY"

ADMIN.SEVERITY

 5.

 1 record(s) selected.

select count_big(*) "ADMIN.OWNERS" FROM "ADMIN"."OWNERS"

ADMIN.OWNERS

 502.

 1 record(s) selected.

select count_big(*) "ADMIN.INVENTORY" FROM "ADMIN"."INVENTORY"

ADMIN.INVENTORY

 703.

 Chapter 7. Data conversion 201

 1 record(s) selected.

select count_big(*) "ADMIN.SERVICES" FROM "ADMIN"."SERVICES"

ADMIN.SERVICES

 808.

 1 record(s) selected.

select count_big(*) "ADMIN.STATUS" FROM "ADMIN"."STATUS"

ADMIN.STATUS

 7.

 1 record(s) selected.

TERMINATE
DB20000I The TERMINATE command completed successfully.

 Database Connection Information

 Database server = DB2/LINUX 9.7.0
 SQL authorization ID = DB2INST1
 Local database alias = INVENT

TABLE_NAME FK_CHECKED CC_CHECKED STATUS
-- ---------- ---------- ------
ADMIN.GROUPS Y Y N

 1 record(s) selected.

TABLE_NAME FK_CHECKED CC_CHECKED STATUS
-- ---------- ---------- ------
ADMIN.LOCATIONS Y Y N

 1 record(s) selected.

TABLE_NAME FK_CHECKED CC_CHECKED STATUS
-- ---------- ---------- ------
ADMIN.SEVERITY Y Y N

 1 record(s) selected.

TABLE_NAME FK_CHECKED CC_CHECKED STATUS
-- ---------- ---------- ------
ADMIN.OWNERS Y Y N

 1 record(s) selected.

TABLE_NAME FK_CHECKED CC_CHECKED STATUS
-- ---------- ---------- ------

202 MySQL to DB2 Conversion Guide

ADMIN.INVENTORY Y Y N

 1 record(s) selected.

TABLE_NAME FK_CHECKED CC_CHECKED STATUS
-- ---------- ---------- ------
ADMIN.SERVICES Y Y N

 1 record(s) selected.

TABLE_NAME FK_CHECKED CC_CHECKED STATUS
-- ---------- ---------- ------
ADMIN.STATUS Y Y N

 1 record(s) selected.

DB20000I The TERMINATE command completed successfully.

Make sure that the number of rows read equals the number of rows committed,
which also needs to equal the number of records in the MySQL source table.
Example 7-19 shows the MySQL command for the record count.

Example 7-19 Retrieving the number of records from MySQL

mysql> select count(*) from groups;
+----------+
| count(*) |
+----------+
| 6 |
+----------+
1 row in set (0.04 sec)

mysql> select count(*) from inventory;
+----------+
| count(*) |
+----------+
| 703 |
+----------+
1 row in set (0.00 sec)

mysql> select count(*) from locations;
+----------+
| count(*) |
+----------+
| 140 |
+----------+
1 row in set (0.00 sec)

mysql> select count(*) from owners;
+----------+
| count(*) |
+----------+
| 504 |
+----------+
1 row in set (0.01 sec)

mysql> select count(*) from services;
+----------+
| count(*) |

 Chapter 7. Data conversion 203

+----------+
| 808 |
+----------+
1 row in set (0.00 sec)

mysql> select count(*) from status;
+----------+
| count(*) |
+----------+
| 7 |
+----------+
1 row in set (0.00 sec)

mysql> select count(*) from severity;
+----------+
| count(*) |
+----------+
| 5 |
+----------+
1 row in set (0.00 sec)

After you have checked that all the records were loaded into DB2, check the
sample data in each ported table. Pay attention to ensure that the values are
correct, especially if you have any time values or decimal values. Example 7-20
shows the table content checking.

Example 7-20 Sample data of MySQL data

mysql> select * from services where id = 20;
+----+----------+-------------+----------+--------------+------------+------------+-----
------------+--------+
| id | inventID | description | severity | serviceOwner | openDate | closeDate |
targetCloseDate | status |
+----+----------+-------------+----------+--------------+------------+------------+-----
------------+--------+
| 20 | 36 | test | 1 | 108 | 2009-01-18 | 2009-01-20 |
2009-01-19 | 7 |
+----+----------+-------------+----------+--------------+------------+------------+-----
------------+--------+
1 row in set (0.00 sec)

db2inst1@db2server:~> db2 "select * from admin.services where id = 20"

ID INVENTID DESCRIPTION SEVERITY SERVICEOWNER OPENDATE CLOSEDATE TARGETCLOSEDATE
STATUS
----------- ----------- -------------------- ----------- ------------ ----------
---------- --------------- -----------
 20 36 test 1 108 2009-01-18 2009-01-20 2009-01-19
7

 1 record(s) selected.

204 MySQL to DB2 Conversion Guide

Chapter 8. Application conversion

The task of converting an application, its databases, and the associated data
most often requires significant resources and commitment. Simultaneously to the
meticulous planning of the porting project as a whole, it is important to assess the
issues that might affect the highest level of resources. In many porting projects,
evaluating the issues that might affect your resources is part of application
porting. This chapter attempts to provide you with important considerations for
the following areas:

� Differences in SQL Data Manipulation Language (DML), built-in functions,
and SQL semantics

� Conversion of the application source, application programming interfaces
(APIs), and condition handling

� Internals of the Database Management System that might affect the
conversion, such as locking, isolation levels, transaction logging, and national
language support

8

© Copyright IBM Corp. 2009. All rights reserved. 205

8.1 Data Manipulation Language differences and
similarities

Modifying an application to work with DB2 is an important task during the
conversion process. While a large portion of this step might encompass
changing code to work with a separate development environment, it is likely that
you will spend additional time testing the resulting code.

8.1.1 SELECT syntax

In this section, we focus on the SELECT statement syntax as it is supported in
MySQL, and we attempt to show how MySQL extensions to the SQL standard
might be implemented in DB2. Example 8-1 shows the MySQL syntax for the
SELECT statement. Then, we discuss individual keywords.

Example 8-1 MySQL SELECT syntax

SELECT [STRAIGHT_JOIN]
[SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT]
[SQL_CACHE | SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS] [HIGH_PRIORITY]
[DISTINCT | DISTINCTROW | ALL]
select_expression,...
[INTO {OUTFILE | DUMPFILE} 'file_name' export_options]
[FROM table_references
[WHERE where_definition]
[GROUP BY {unsigned_integer | col_name | formula} [ASC | DESC], ... [WITH
ROLLUP]]
[HAVING where_definition]
[ORDER BY {unsigned_integer | col_name | formula} [ASC | DESC], ...] [LIMIT
[offset,] row_count | row_count OFFSET offset]
[PROCEDURE procedure_name(argument_list)]
[FOR UPDATE | LOCK IN SHARE MODE]]

The STRAIGHT_JOIN keyword forces the MySQL optimizer to join tables in the
order that is specified. In DB2, the join order is always determined by the
optimizer. The optimizer choices can be limited by changing the default query
optimization class to a lower level using SET CURRENT QUERY
OPTIMIZATION. However, changing this class does not guarantee that the
optimizer will evaluate the join in the order stated within the SQL statement,
because the DB2 cost-based optimizer usually chooses the best access path for
a given query. For additional information, see 10.5.5, “SQL execution plan” on
page 366.

206 MySQL to DB2 Conversion Guide

Options prefixed with SQL are MySQL-specific and do not require a DB2
equivalent.

The DISTINCTROW keyword is a synonym for the DISTINCT clause that is
supported by DB2.

The INTO {OUTFILE | DUMPFILE} 'file_name' export_options selection allows
you to write output data to a file without invoking the mysqldump utility. The DB2
command line processor allows you to direct the output of any SELECT
statement to an operating system file.

The LIMIT [offset,] row_count | row_count OFFSET offset keyword translates to
FETCH FIRST n ROWS ONLY in DB2. Implement an offset to retrieve rows
through the WHERE clause if possible.

With the SQL_SMALL_RESULT or SQL_BIG_RESULT commands, the query
developer can hint to the SQL optimizer the size of the expected result set,
influencing the optimizer access strategy. Example 8-2 shows how the optimizer
hint works.

Example 8-2 MySQL SELECT with optimizer hint

mysql> SELECT sql_small_result * FROM t1;

DB2 has a similar operator to guide SQL optimizer decisions with a different
syntax, as shown in Example 8-3.

Example 8-3 DB2 SELECT with optimizer hint

db2 => SELECT * FROM t1 OPTIMIZE FOR 2 ROWS
DB20000I The SQL command completed successfully.

8.1.2 JOIN syntax

Join capabilities for commercial and industrial strength database management
systems are extremely important. MySQL supports the linguistic elements for
JOIN, as shown in Example 8-4. We discuss various aspects of JOINs next.

Example 8-4 MySQL JOIN Syntax

table_reference, table_reference
table_reference [INNER | CROSS] JOIN table_reference [join_condition]
table_reference STRAIGHT_JOIN table_reference
table_reference LEFT [OUTER] JOIN table_reference [join_condition]
table_reference NATURAL [LEFT [OUTER]] JOIN table_reference
{OJ table_reference LEFT OUTER JOIN table_reference ON conditional_expr }

 Chapter 8. Application conversion 207

table_reference RIGHT [OUTER] JOIN table_reference [join_condition]
table_reference NATURAL [RIGHT [OUTER]] JOIN table_reference

Where table_reference is defined as:
table_name [[AS] alias] [[USE INDEX (key_list)] | [IGNORE INDEX (key_list)] |
[FORCE IN and join_condition is defined as:
ON conditional_expr |
USING (column_list)

The STRAIGHT_JOIN keywords force the MySQL optimizer to join tables in the
order that they are specified. In DB2, the join order is always determined by the
optimizer. You can limit the optimizer choices by changing the default query
optimization class by using the SET CURRENT QUERY OPTIMIZATION
command.

A NATURAL join, as its name implies, can be invoked when two or more tables
share exactly the same columns needed for a successful equijoin. It is
semantically equivalent to DB2 INNER JOIN or LEFT OUTER JOIN with the
respective join criteria specified in the ON clause.

According to the SQL ANSI standard when you must join tables that share more
than one column naturally, you must use the JOIN ... USING syntax. You can
compose an equivalent join using the DB2-supported join syntax in the ON
clause.

Cartesian products do happen from time to time, usually as the result of an
equijoin condition that has been missed in a query using DB2 syntax, even
though the developers of applications and database queries spend a significant
amount of time trying to avoid them. However, one of the advantages of the
CROSS JOIN syntax is that a specific keyword is required to create a Cartesian
product. Therefore, when the CROSS JOIN syntax is used in your conversion
project, you can code a regular join in DB2 with a no join condition in the WHERE
clause.

8.1.3 UNION syntax

MySQL support for the UNION feature (shown in Example 8-5) is extremely
similar to the DB2 syntax and, therefore, does not require additional discussion.

Example 8-5 UNION syntax in MySQL and DB2

SELECT ...
UNION [ALL | DISTINCT] SELECT ...
[UNION [ALL | DISTINCT] SELECT ...]

208 MySQL to DB2 Conversion Guide

8.1.4 Subquery syntax

A subquery is a SELECT statement within another query or statement.
Therefore, subqueries can be found in other SELECT statements - either in the
column list, the WHERE clause, or the HAVING clause, and in INSERT,
UPDATE, and DELETE statements. Example 8-6 shows a sequence of
subqueries in a DELETE statement.

Example 8-6 Example of subqueries in a DELETE statement

DELETE FROM t1
WHERE col1 > ANY
 (SELECT COUNT(*) FROM t2
 WHERE NOT EXISTS
 (SELECT col3 FROM t3
 WHERE col3 =
 (SELECT col4 FROM t4 UNION SELECT 1 FROM
 (SELECT col5 ROM t5) AS t5)));

MySQL provides similar subquery implementation to that of DB2. We found
nothing to cause serious issues when moving from MySQL to DB2.

8.1.5 Grouping, having, and ordering

All ANSI SQL 92 standard grouping functions available in MySQL Version 5.1
are also available in DB2. In general, we found no significant differences in the
areas of grouping, having, and ordering. However, beyond the SQL 92 standard,
DB2 provides interesting functionality that might enhance the ported application
significantly. Refer to the DB2 manual SQL Reference, Volume 1, SC10-4249.
Table 8-1 on page 210 contains a partial list of the differences in the two
databases and provides conversion examples. For a full list of MySQL grouping
functions and the DB2 equivalent, refer to A.1, “Grouping related functions” on
page 400.

 Chapter 8. Application conversion 209

Table 8-1 MySQL and DB2 grouping related function

8.1.6 Strings

Unless you start MySQL in ANSI mode (using mysqld --ansi), MySQL behaves
differently than DB2. As Example 8-7 on page 211 illustrates, MySQL accepts
single, as well as double quotation marks as a string delimiter when started in
default mode.

MySQL function MYSQL example DB2 function DB2 example Notes

AVG([DISTINCT]
expression)

mysql> SELECT a,
AVG(b)
 FROM t1
 GROUP BY a

AVG ([DISTINCT |
ALL] expression)

db2 " SELECT a,
AVG(b)
 FROM t1
 GROUP BY a"

Returns the
average set of
numbers

COUNT([DISTINCT
]
expression,
expression,...)

mysql> SELECT a,
COUNT(b)
 FROM t1
 GROUP BY a

COUNT([DISTINCT|
ALL] expression).

DB2 allows only one
expression:
Use CONCAT for
character data type
or
CHAR and CONCAT
on
numeric data types

db2 " SELECT a,
COUNT(b)
 FROM t1
 GROUP BY a"

Returns the
number of rows
or values in a set
of rows or values.

MAX ([DISTINCT]
expression)

mysql> SELECT a,
MAX(b)
 FROM t1
 GROUP BY a

MAX ([DISTINCT |
ALL] expression)

db2 "SELECT a,
MAX(b)
 FROM t1
 GROUP BY a"

Returns the
maximum value
in a set of values.

SUM([DISTINCT]
expression)

mysql> SELECT a,
SUM(b)
 FROM t1
 GROUP BY a

SUM([DISTINCT |
ALL] expression)

db2 " SELECT a,
sum(b)
 FROM t1
 GROUP BY a"

Returns the sum
of a set of
numbers.

GROUP BY on alias mysql> SELECT a as x
 FROM a
 GROUP BY x;

Use column name for
grouping

db2 " SELECT a
 FROM t1
 GROUP BY a"

Groups data by
the alias name
provided.

GROUP BY on
position

mysql> SELECT a
 FROM t1
 GROUP BY 1

Use column name for
grouping

db2 " SELECT a
 FROM t1
 GROUP BY a"

Groups data by
the position
provided.

HAVING on alias mysql> SELECT a as x
 FROM t1
 GROUP BY a
 HAVING x > 0

Use column name in
having clause

db2 " SELECT a
 FROM t1
 GROUP BY a
 HAVING a > 0”

Groups data
meeting the
HAVING
expression.

210 MySQL to DB2 Conversion Guide

Example 8-7 MySQL string handling

mysql> select 'redbook', '"redbook"', '""redbook""', 'red''book';
+---------+-----------+-------------+----------+
| redbook| "redbook"| ""redbook""| red'book|
+---------+-----------+-------------+----------+
| redbook| "redbook"| ""redbook""| red'book|
+---------+-----------+-------------+----------+
1 row in set (0.00 sec)
mysql> select "redbook", "'redbook'", "''redbook''", "red""book";
+---------+-----------+-------------+----------+
| redbook | 'redbook'| ''redbook''| red"book|
+---------+-----------+-------------+----------+
| redbook | 'redbook' | ''redbook'' | red"book |
+----------+-------------+---------------+----------+
1 row in set (0.00 sec)

DB2 is designed and implemented according to the ANSI standard and therefore
accepts single quotation marks as a string delimiter. Double quotation marks are
used in DB2 for delimiting SQL identifiers. Example 8-8 shows how DB2 handles
strings. You achieve similar results when MySQL runs in ANSI mode.

Example 8-8 DB2 string handling

db2 => select "redbook", "'redbook'", "''redbook''", "red""book" from t1
SQL0206N "redbook" is not valid in the context where it is used.
SQLSTATE=42703

db2 => select 'redbook', '"redbook"', '""redbook""', 'red''book' from t1
1 2 3 4

redbook "redbook" ""redbook"" red'book

Table 8-2 provides an overview of a few of the MySQL string related functions,
and how these can be converted to DB2. For a full list of MySQL string functions
and the DB2 equivalent, refer to A.2, “String functions” on page 402.

Table 8-2 MySQL and DB2 string-related function

MySQL
function

MYSQL example DB2 function DB2 example Notes

ASCII(string) mysql> SELECT ascii('a');
+------------+
| ascii('a') |
+------------+
| 97 |
+------------+
1 row in set (0.00 sec)

ASCII(string) db2 "VALUES ascii('a') "

1

 97

 1 record(s) selected

Returns ASCII
code value

 Chapter 8. Application conversion 211

CHAR_LENG
TH(string) /
CHARACTE
R_LENGTH(
string)

mysql> SELECT
CHAR_LENGTH('Orange');
+-----------------------+
| CHAR_LENGTH('Orange') |
+-----------------------+
| 6 |
+-----------------------+
1 row in set (0.00 sec)

CHARACTER
_LENGTH(stri
ng,
CODEUNITS1
6|
CODEUNITS3
2| OCTETS),/
CHAR_LENG
TH(string,
CODEUNITS1
6|
CODEUNITS3
2| OCTETS)

db2 " VALUES
CHAR_LENGTH('Orang
e', CODEUNITS32)"

1

 6

 1 record(s) selected.

Returns the
number of
bytes for
expression. For
double byte
character set
(DBCS) the
number of
DBCS characters
is
returned

CONCAT_W
S(separator,
string,
string,…)

mysql> SELECT
CONCAT_WS('-', firstname,
lastname, loginname) as
FULLNAME from owners
where id = 501;
+-------------------------+
| FULLNAME |
+-------------------------+
| Angela-Carlson-acarlson |
+-------------------------+
1 row in set (0.01 sec)

Use || to
implement
CONCAT(list)

db2 "SELECT (firstName
|| '-' || lastName || '-' ||
loginName) as fullName
from admin.owners
where id = 501"

FULLNAME

Angela-Carlson-acarlson

 1 record(s) selected.

Returns the
concatenation of
string arguments
with separator

FORMAT(do
uble, integer)

FORMAT:
select
format(1234.5555, 2)
returns 1,234.56

No equivalent
function.
Implement
using UDF

Refer to UDF B.2,
“Sample code for
FORMAT function” on
page 415

Returns the
rounded string

INSERT(strin
g, position,
length,
substring)

mysql> SELECT
INSERT('original', 2, 2, 'NEW');
+---------------------------------+
| INSERT('original', 2, 2,
'NEW') |
+---------------------------------+
| oNEWginal |
+---------------------------------+
1 row in set (0.00 sec)

INSERT(string
, position,
length,
substring)

db2 "VALUES
INSERT('original', 2, 2,
'NEW')"
1

oNEWginal
1 record(s) selected.

Inserts a string
into an existing
string

LPAD(string,
length,
substring) /
RDAP(string,
length,
substring)

mysql> SELECT
LPAD('TEST',6,'!!!');
+----------------------+
| LPAD('TEST',6,'!!!') |
+----------------------+
| !!TEST |
+----------------------+
1 row in set (0.00 sec)

No equivalent
function.
Implement
using UDF

Refer to UDF B.3,
“Sample code for RPAD
and LPAD functions” on
page 416

Returns the a
string of the given
length, if the
length is longer
then the string the
substring
characters will be
added to the left or
right end.

212 MySQL to DB2 Conversion Guide

8.1.7 Implicit casting of data types

DB2 9.7 introduces support for implicit casting. Implicit casting is an automatic
conversion of data from one data type to another data type based on an implied
set of conversion rules, which occurs in support of weak typing.

Prior to Version 9.7, strong typing was used during comparisons and
assignments. Strong typing requires matching data types, which means that you
must explicitly convert one or both data types to a common data type prior to
performing comparisons or assignments.

In Version 9.7, the rules that are used during comparisons and assignments
have been relaxed. If reasonable interpretation can be made between two
mismatched data types, implicit casting is used to perform comparisons or
assignments. Implicit casting is also supported during function resolution. When
the data types of the arguments of a function being invoked cannot be promoted
to the data types of the parameters of the selected function, the data types of the
arguments are implicitly cast to those of the parameters.

REPLACE(str
ing1, string2,
string3)

mysql> SELECT REPLACE
('DINING', 'N', 'VID');
+--------------------------------+
| REPLACE ('DINING', 'N',
'VID') |
+--------------------------------+
| DIVIDIVIDG |
+--------------------------------+
1 row in set (0.00 sec)

REPLACE(stri
ng1, string2,
string3)

db2 "VALUES REPLACE
('DINING', 'N', 'VID') "
1

DIVIDIVIDG
1 record(s) selected.

Returns as sting
with all
occurrences of
string2 in string1
with string3

SUBSTRING
(string,
position,
length) / MID
(string,
position,
length) /
SUBSTR(stri
ng, position,
[length])

mysql> select
substring('abcdef', 2, 3);
+---------------------------+
| substring('abcdef', 2, 3) |
+---------------------------+
| bcd |
+---------------------------+
1 row in set (0.00 sec)

SUBSTR(strin
g, position,
length)

db2 "VALUES('abcdef',
2, 3)”
1

bcd

 1 record(s) selected.

Returns a
substring of a
string.

TRIM([Both |
Leading |
trailing
[substring]
FROM]
string)

mysql> select trim(trailing from
trim(LEADING FROM ' abc
')) as OUTPUT;
+--------+
| OUTPUT |
+--------+
| abc |
+--------+
1 row in set (0.00 sec)

TRIM([Both |
Leading |
trailing
[substring]
FROM] string)

db2 "VALUES
trim(trailing from
trim(LEADING FROM '
abc '))"

OUTPUT

abc

 1 record(s) selected.

Removes blanks
or occurrences of
another specified
character from the
end or the
beginning of a
string expression

 Chapter 8. Application conversion 213

Implicit casting reduces the number of SQL statements that you must modify
when enabling applications that run on data servers other than DB2 data servers
to run on DB2 9.7. In many cases, you no longer have to explicitly cast data
types when comparing or assigning values with mismatched data types.

Example 8-9 shows how MySQL implicitly casts the character value 5 to an
integer value to resolve the query.

Example 8-9 MySQL performs implicit data type casting

mysql> create table t1 (c1 int);
Query OK, 0 rows affected (0.08 sec)

mysql> insert into t1 values(5);
Query OK, 1 row affected (0.02 sec)

mysql> select * from t1 where c1='5';
+------+
| c1 |
+------+
| 5 |
+------+
1 row in set (0.00 sec)

As of DB2 9.7, DB2 now supports an implicit casting of incompatible data types.
Example 8-10 shows implicit casting of a character value in DB2 9.7.

Example 8-10 DB2 9.7 implicit data type casting

db2 => create table t1 (c1 int)
DB20000I The SQL command completed successfully.
db2 => insert into t1 values(5)
DB20000I The SQL command completed successfully.
db2 => commit
DB20000I The SQL command completed successfully.
db2 => select * from t1 where c1='5'

C1

 5

1 record(s) selected.

DB2 versions prior to 9.7 require explicit casting of the character value to an
integer value, as illustrated in Example 8-11 on page 215.

214 MySQL to DB2 Conversion Guide

Example 8-11 DB2 9.5 and prior versions require explicit casting

db2 => select * from t1 where c1 = '5'
SQL0401N The data types of the operands for the operation "=" are not
compatible. SQLSTATE=42818
db2 => select * from t1 where c1 = cast ('5' as int)

C1

5
1 record(s) selected.

Example 8-12 illustrates how MySQL implicitly casts numeric values and DATE,
TIME, or TIMESTAMP values to strings when concatenated.

Example 8-12 MySQL implicit casting using concatenation for strings and DATE

mysql> select concat('ITSOSJ',1234) from t1;
+-----------+
| stringcol |
+-----------+
| ITSOSJ1234|
+-----------+
1 row in set (0.02 sec)

mysql> select concat('ITSOSJ',current_date) as stringdate from t1;
+------------------+
| stringdate |
+------------------+
| ITSOSJ2009-08-31 |
+------------------+
1 row in set (0.01 sec)

Example 8-13 illustrates how DB2 9.7 implicitly casts numeric values, as well as
DATE, TIME, or TIMESTAMP values, to strings when concatenated.

Example 8-13 DB2 9.7 casting character strings and DATE implicitly

db2 => select concat('ITSOSJ',1234) from t1

1

ITSOSJ1234

 1 record(s) selected.

db2 => select concat('ITSOSJ',current_date) as stringdate from t1

STRINGDATE

 Chapter 8. Application conversion 215

ITSOSJ08/31/2009

 1 record(s) selected.

DB2 9.5 and prior versions require compatible arguments for the concatenation
built-in functions, as shown in Example 8-14. If the arguments are incompatible,
for example, calling a function with a character data type argument using a
numeric data type, the concatenation will fail with the error “SQL0440N No
authorized routine named "CONCAT" of type "FUNCTION" having compatible
arguments was found.”

Example 8-14 DB2 9.5 and prior versions casting character strings and DATE explicitly

db2 => select concat('ITSOSJ',1234) from t1
SQL0440N No authorized routine named "CONCAT" of type "FUNCTION" having
compatible arguments was found. SQLSTATE=42884
db2 => select concat('ITSOSJ','1234') as stringcol from t1

STRINGCOL

ITSOSJ1234

1 record(s) selected.

db2 => select concat('ITSOSJ', current date) as stringdate from t1
SQL0440N No authorized routine named "CONCAT" of type "FUNCTION" having
compatible arguments was found. SQLSTATE=42884

db2 => select concat('ITSOSJ',CAST(current date as char(20))) as stringdate
from t1

STRINGDATE

ITSOSJ01/23/2004
1 record(s) selected.

8.1.8 String concatenation and NULL values

The ANSI92 standard for concatenation of multiple strings is stated to be
executed by the SQL || operator. MySQL does not support the SQL "||" operator
as concatenation, because this operator is used to represent an OR operator.
MySQL uses the CONCAT(string1, string2, string3, string4, …) function to
concatenate strings, as shown in Example 8-15 on page 217.

216 MySQL to DB2 Conversion Guide

Example 8-15 MySQL concatenation of strings

mysql> SELECT CONCAT('This ', 'is ', 'an ', 'example.') ;
+---+
| CONCAT('This ', 'is ', 'an ', 'example.') |
+---+
| This is an example. |
+---+
1 row in set (0.00 sec)

DB2 follows the ANSI92 standard for concatenation of multiple strings. DB2 also
has a CONCAT(string1, string2), which can be used for concatenation of two
strings. Example 8-16 shows how DB2 handles concatenating strings.

Example 8-16 DB2 concatenation of strings

db2 => VALUES CONCAT('This ', 'is ', 'an ', 'example.')
SQL0440N No authorized routine named "CONCAT" of type "FUNCTION" having
compatible arguments was found. SQLSTATE=42884
db2 => VALUES CONCAT('This is ', 'an example.')

1

This is an example.

 1 record(s) selected.

db2 => VALUES ('This ' || 'is ' || 'an ' || 'example.')

1

This is an example.

 1 record(s) selected.

The ANSI92 standard states that if you concatenate a NULL value onto an
existing string, the result set is NULL. Example 8-17 shows you the behavior of
MySQL.

Example 8-17 MySQL concatenation of strings and NULL values

mysql> create table t2 (col1 char(2));
Query OK, 0 rows affected (0.03 sec)

mysql> insert into t2 values(NULL);
Query OK, 1 row affected (0.07 sec)
mysql> select concat('abc',col1) as nullstring from t2;
+-------------------+
| nullstring |

 Chapter 8. Application conversion 217

+-------------------+
| NULL |
+-------------------+
1 row in set (0.05 sec)
mysql> select concat('abc', coalesce(col1,'')) as nullstring from t2;
+----------------------------------+
| nullstring |
+----------------------------------+
| abc |
+----------------------------------+ 1 row in set (0.00 sec)

As shown, MySQL behaves as ANSI-92 compliant and, therefore, gives you the
same result sets as Example 8-18 for DB2.

Example 8-18 DB2 string and NULL concatenation

db2 => create table t2 (col1 char(2))
DB20000I The SQL command completed successfully.
db2 => insert into t2 values(NULL)
DB20000I The SQL command completed successfully.
db2 => select concat('abc', col1) as nullstring from t2

NULLSTRING

-
1 record(s) selected.

db2 => select concat('abc', coalesce(col1,'')) as nullstring from t2

NULLSTRING

abc

1 record(s) selected.

8.1.9 Record deletion

Much like other competitive relational database management systems, MySQL
uses the TRUNCATE statement. TRUNCATE is used to delete all rows from a
table when there is no need to recover the deleted records. Therefore, there is no
ROLLBACK where a TRUNCATE is used. Example 8-19 on page 219 shows
using TRUNCATE remove all rows, which does not allow a rollback of the deleted
rows.

218 MySQL to DB2 Conversion Guide

Example 8-19 Using MySQL TRUNCATE to delete all records in a file

mysql> select * from t1;
+------+
| col1 |
+------+
| 5 |
| 10 |
+------+
2 rows in set (0.02 sec)

mysql> truncate table t1;
Query OK, 0 rows affected (0.00 sec)

mysql> select * from t1;
Empty set (0.00 sec)

mysql> rollback ;
ERROR 1196: Warning: Some non-transactional changed tables couldn't be rolled
back
mysql> select * from t1;
Empty set (0.00 sec)

The TRUNCATE option is primarily used to delete all records quickly from a table
when no recovery of the deleted rows is required. As of DB2 9.5, you can enable
the support of the TRUNCATE statement using the
DB2_COMPATIBILITY_VECTOR registry variable.

The DB2_COMPATIBILITY_VECTOR registry variable is used to enable one or
more DB2 compatibility features introduced since DB2 Version 9.5.

These features ease the task of converting applications written for other
relational database vendors to DB2 Version 9.5 or later. This DB2 registry
variable is represented as a hexadecimal value, and each bit in the variable
enables one of the DB2 compatibility features. To enable the TRUNCATE
statement, set the DB2_COMPATIBILITY_VECTOR registry variable to 8.
Example 8-20 on page 220 shows the syntax to set the
DB2_COMPATIBILITY_VECTOR registry variable and execute the TRUNCATE
command. You can obtain more information about the
DB2_COMPATIBILITY_VECTOR registry variable at the IBM Information Center
at this Web site:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

 Chapter 8. Application conversion 219

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

Example 8-20 DB2 TRUNCATE to delete all records in a file

db2inst1@db2rules:~> db2stop force
08/31/2009 16:09:09 0 0 SQL1064N DB2STOP processing was successful.
SQL1064N DB2STOP processing was successful.

db2inst1@db2rules:~> db2set DB2_COMPATIBILITY_VECTOR=8

db2inst1@db2rules:~> db2set
DB2_COMPATIBILITY_VECTOR=8
DB2RSHCMD=/usr/bin/ssh
DB2COMM=tcpip

db2inst1@db2rules:~> db2start
08/31/2009 16:13:19 0 0 SQL1063N DB2START processing was successful.
SQL1063N DB2START processing was successful.

db2inst1@db2rules:~> db2 create db itsodb
DB20000I The CREATE DATABASE command completed successfully.

db2inst1@db2rules:~> db2 connect to itsodb

 Database Connection Information

 Database server = DB2/LINUX 9.7.0
 SQL authorization ID = DB2INST1
 Local database alias = ISSODB

db2inst1@db2rules:~> db2 "create table t1 (c1 int) "
DB20000I The SQL command completed successfully.

db2inst1@db2rules:~> db2 "insert into t1 values(5)"
DB20000I The SQL command completed successfully.
db2inst1@db2rules:~> db2 "insert into t1 values(10)"
DB20000I The SQL command completed successfully.
db2inst1@db2rules:~> db2 "insert into t1 values(15)"
DB20000I The SQL command completed successfully.
db2inst1@db2rules:~> db2 "insert into t1 values(20)"
DB20000I The SQL command completed successfully.

db2inst1@db2rules:~> db2 "SELECT * from t1"

C1

 5
 10
 15
 20

 4 record(s) selected.

db2inst1@db2rules:~> db2 TRUNCATE TABLE t1 IMMEDIATE
DB20000I The SQL command completed successfully.

220 MySQL to DB2 Conversion Guide

db2inst1@db2rules:~> db2 "SELECT * from t1"

C1

 0 record(s) selected.

You can also turn off logging with the following ALTER TABLE statement to
achieve a similar result.

ALTER TABLE <tablename> ACTIVATE NOT LOGGED INITIALLY WITH EMPTY TABLE

8.1.10 Built-in functions and operators

We have already discussed string and aggregate functions. In this section, we
complete the discussion of built-in functions, including date/time and numeric
functions. We also discuss the differences between various operators.

A function is an operation that is denoted by a function name followed by a pair
of parentheses enclosing the specification of arguments, if arguments are
required.

The following group of tables is not an exhaustive list of differences in built-in
functions and operators between MySQL Version 5.1 and DB2 9.7. The listed
built-in functions attempt to highlight the differences and mapping functionalities
between the two database management systems.

Numeric functions comparison
Many of the MySQL built-in numeric functions port easily to DB2 functions. A.3,
“Numeric functions” on page 408 lists several functions and examples specific to
manipulating numbers.

Functions converting date and time
Working with date and time functions and operators reveals many cases where
the implementation differences exist between the various DBMSs. A.4, “Date and
time functions” on page 409 lists date and time-related functions and examples.

Comparing operators and more functions
There are many functions, as listed in A.5, “Comparing operators and other
functions” on page 410, where syntax or implementation differ between MySQL
Version 5.1 and DB2 9.7. We summarize these differences, display code
snippets for several selected functions, and show ways to convert these
functions from MySQL to DB2. In many cases, the DB2 CASE expression is
extremely helpful when function mapping is required.

 Chapter 8. Application conversion 221

8.2 Application source conversion

Every programming language provides various commands and possibilities to
program a single functionality. It is almost impossible to provide a conversion
example for every possible programming approach. Therefore, in this section, we
discuss the most important concepts used to access a database:

� Connecting to a database
� Using query statements
� Disconnecting from a database

8.2.1 Converting MySQL Perl applications to DB2

Perl uses the DBD::mysql interface driver as a plug-in for the Database
Independent (DBI) set of modules. DBI provides a common Perl API for all
database connections. For more information about the DBD::mysql driver, visit
this Web site:

http://search.cpan.org/~capttofu/DBD-mysql-4.012/lib/DBD/mysql.pm

You can also use the DBI interface to access DB2 using the DBD::DB2 driver.
You can obtain information about the DBI interface and the DBD::DB2 driver, as
well as installation instructions, at the following Web sites:

http://www.ibm.com/software/data/db2/perl/
http://search.cpan.org/~ibmtordb2/DBD-DB2-1.74/DB2.pod
http://www.perl.com/CPAN/modules/by-module/DBD/
http://aspn.activestate.com/ASPN/Modules/

Figure 8-1 illustrates how the Perl interfaces and pluggable drivers connect to
MySQL and DB2 databases.

Figure 8-1 Perl interface and pluggable drivers

222 MySQL to DB2 Conversion Guide

http://search.cpan.org/~capttofu/DBD-mysql-4.012/lib/DBD/mysql.pm
http://www.ibm.com/software/data/db2/perl/
http://search.cpan.org/~ibmtordb2/DBD-DB2-1.74/DB2.pod
http://www.perl.com/CPAN/modules/by-module/DBD/
http://aspn.activestate.com/ASPN/Modules/

Converting DBI interface-supported code
Applications using the DBI interface to connect to MySQL generally can be
adapted to DB2 by simply changing the database driver from DBD::mysql to
DBD::DB2 within the code.

Connecting to a database
Use the following code within your Perl application to connect to a MySQL
database:

$dsn= "dbi:mysql:$database:$host:$port";
$dbh = DBI ->Connect($dsn, $user, $password);

The connection statement consists of the data source name, user ID, and
password. The data source name consists of the vendor-specific database
driver, the database name, the host name, and the port. Optionally, you can omit
the host name and port from the data source name. Example 8-21 shows the
connect syntax to a MySQL database. For simplicity reasons, we do not include
the error handling in following examples.

Example 8-21 MySQL database connection with the Mysql.pm interface

use DBI;
use DBD::mysql;
my $host="localhost";
my $port="3306";
my $database="inventory";
my $user="mysql";
my $password="password";

my $dns="DBI:mysql:database=$database;host=$host;port=$port";

$dbh =
DBI->connect("$dns","$user","$password");

Connection to a DB2 database is similar. Instead of the DBD::Mysql interface,
you must define the DBD::DB2 interface. If DB2 constants are used (for example,
SQL_MODE_READ_ONLY in the connection attributes, and others), you must
announce the use of DB2 constants to the Perl interpreter by including “use
DBD::DB2::Constants” in the Perl program (see Example 8-22).

Example 8-22 DB2 database connection with DBI interface

use DBI;
use DBI;
use DBD::DB2;
use DBD::DB2::Constants;
my $host="localhost";
my $port="50005";
my $database="invent";

 Chapter 8. Application conversion 223

my $user="db2inst1";
my $password="password";

my $dns = "dbi:DB2:DATABASE=$database; HOSTNAME=$host; PORT=$port;
PROTOCOL=TCPIP; UID=$user; PWD=$password;";

$dbh = DBI->connect("$dns","$user","$password");

Because DB2 is more powerful than MySQL, the DB2 connect statement might
require a fourth argument \%attr, which contains the connection attributes, as
shown in Example 8-23.

$dbh=DBI->connect($data_source, $user,$password, \%attr);

Example 8-23 DB2 specific connection attributes

db2_access_mode SQLL_MODE_READ_ONLY or SQL_MODE_READ_WRITE
db2_clischema Character string
db2_close_behavior SQL_CC_NO_RELEASE or SQL_CC_RELEASE
db2_connect_node Integer (must be set in DBI->connect method;

it cannot be modified afterwards)
db2_set_schema Character string
db2_db2estimate Integer
db2_db2explain One of:

 SQL_DB2EXPLAIN_OFF
 SQL_DB2EXPLAIN_SNAPSHOT_ON SQL_DB2EXPLAIN_MODE_ON
 SQL_DB2EXPLAIN_SNAPSHOT_MODE_ON

db2_info_acctstr Character string
db2_info_applname Character string
db2_info_programname Character string
db2_info_userid Character string
db2_info_wrkstnname Character string
db2_longdata_compat Boolean
db2_quiet_mode Integer
db2_sqlerrp Character string (read only)
db2_txn_isolation One of the following:

 SQL_TXN_READ_UNCOMMITTED
 SQL_TXN_READ_COMMITTED
 SQL_TXN_REPEATABLE_READ
 SQL_TXN_SERIALIZABLE
 SQL_TXN_NOCOMMIT

The DBI connect statement returns a database handle when a successful
connection is established. Otherwise, the value undef is returned. All further
communication with the database server takes place through this object.

224 MySQL to DB2 Conversion Guide

SELECT query statements
SELECT statements are handled in the same way for the two pluggable
interfaces. The only conversion that is required is modification of the SQL syntax,
if necessary, within the prepared statement. Example 8-24 shows how the two
interfaces use the SELECT statement.

Example 8-24 SELECT statement that is used with the DBI interface

$sqlStatement = "SELECT * FROM owners;";
$($sqlStatement);
$sth->execute();
@arr = $sth->fetchrow;

Calling INSERT, UPDATE, or DELETE statements
Generally, You can use the same functions for INSERT, UPDATE, and DELETE
statements as the functions that we discussed for the SELECT statement. For
the non-SELECT statement, DBI provides a faster substitute for the
DBI::prepare/DBI::execute pair with the DBI::do function:

$rows_affected = $dbh->do($sql_statement);

For further information, refer to the DBI documentation.

Disconnecting from a database
The DBI interface supports the disconnect function for the database handle, as
shown in Example 8-25. There is no change required when converting.

Example 8-25 Disconnecting DB2 database using DBI

use DBI;
use DBD::DB2::Constants;
use DBD::DB2;
my $user="db2inst1";
my $password="password";
$dbh = DBI->connect("dbi:DB2:invent", $username, $password);

$dbh->disconnect;

8.2.2 Converting MySQL PHP applications to DB2

With PHP applications, you can use various approaches to access a MySQL
database:

� mysql for PHP

The mysql extension interface provides a procedural API to read and write to
a database.

 Chapter 8. Application conversion 225

� mysqli for PHP

The mysqli extension was introduced as a more advanced extension to the
mysql extension to support features in MySQL 4.1.3 or newer versions. The
mysqli extension provides both an object-oriented and procedural interface.

� PHP Data Objects (PDO)

You can access and manipulate MySQL databases with PDOs and the PDO
MySQL driver.

Three approaches exist to connect to a DB2 application:

� IBM DB2 Extension for PHP

The ibm_db2 extension interface provides an API to read and write from and
to a database. The mysql and mysqli extensions can be easily mapped to
ibm_db2.

� PHP Data Objects (PDO)

PDO_ODBC and PDO_IBM are object-oriented extension interfaces that are
used to connect to a database. MySQL applications using PDO can be
effortlessly converted to PDO_ODBC or PDO_IBM.

� Unified Open Database Connectivity (ODBC)

Unified ODBC is traditional procedural interface and supports multiple
database servers. The Unified ODBC extension is not optimized for DB2 and
therefore not recommended for new applications.

The following sections describe porting PHP applications from MySQL to DB2.

For more information about developing PHP applications with DB2, refer to
Developing PHP Applications for IBM Data Servers, SG24-7218.

Converting from the mysql and mysqli extension library to IBM
DB2 extension for PHP
Traditionally, mysql functions were used to connect to a MySQL database from
PHP. To access MySQL V4.1 and V5 database servers from PHP 5 or higher
code, use the mysqli functions. The mysqli functions have improved methods for
accessing new features in MySQL.

If you use either the mysql or mysqli functions to access your MySQL database
from PHP, it is relatively straightforward to convert your application to use the
ibm_db2 interface. You might also decide to perform a more complex code
rewrite and use PDO instead.

226 MySQL to DB2 Conversion Guide

Connecting to a database
Connecting to a MySQL database with the mysql extension consists of two parts.
First, establish a connection to the MySQL server, and then, choose a database.

The following declaration shows the function that is specified to connect the
MySQL server:

resource mysql_connect ([string server [, string username [, string
password [, bool new_link [, int client_flags]]]]])

Another way to connect to a MySQL server is to use the mysql_pconnect()
function, which acts like the mysql_connect(),., except this command opens a
persistent connection on the database.

The server variable in the mysql_connect() function contains the host name or
the IP address of the server that hosts the MySQL database.

The mysql_select_db() function chooses the MySQL database:

bool mysql_select_db (string database_name [, resource link_identifier])

Example 8-26 shows the connection part of our sample application using the
MySQL database.

Example 8-26 Connecting a MySQL database with the mysql extension

$host="localhost";
$user="mysql";
$pwd="password";
 $database="inventory";

$conn = mysql_connect($host, $user, $pwd)or die("Couldn't connect to server. "
. mysql_error() . "\n");

$dbConn = mysql_select_db($database, $conn)or die("Couldn't select database. "
. mysql_error() .
"\n");

When connecting to a MySQL database using the mysqli extension, a single
command, mysqli_connect(), can connect to the database:

mysqli mysqli_connect ([string $host = ini_get("mysqli.default_host") [,
string $username = ini_get("mysqli.default_user") [, string $passwd =
ini_get("mysqli.default_pw") [, string $dbname = "" [, int $port =
ini_get("mysqli.default_port") [, string $socket =
ini_get("mysqli.default_socket")]]]]]])

Example 8-27 on page 228 shows an example of connecting to a MySQL
database using mysqli.

 Chapter 8. Application conversion 227

Example 8-27 Connecting a MySQL database with the mysqli extension

$host="localhost";
$user="mysql";
$pwd="password";
 $database="inventory";

$conn = mysqli_connect($host, $user, $pwd, $database)
or die("Couldn't connect to server. " . mysqli_connection_error() . "\n");

Just like the mysqli connections, a single db2_connect() command connects to a
DB2 database with ibm_db2 connections to databases:

resource db2_connect (string $database , string $username , string
$password [, array $options])

Example 8-28 shows the converted connection part of the sample application. In
our connection script, the command after the connection statement sets the
current schema, which is used when querying the database. We use this
approach, because when compared to DB2, MySQL does not have schemas or
instances.

In MySQL, you can reference a table by database.tablename. When no database
name is provided in the table name, the default is the database currently in use.
In DB2, the table name is defined as schema.tablename. Referencing a DB2
table, when no schema is provided, uses the default schema associated with the
user ID that is connected to the database. In an application, you can use the set
schema statement to provide a global schema name for the tables, which do not
have a full table name specified. To simplify application conversion, when porting
the database, create the tables under the admin schema. By using the set
schema after the database connection, we do not need to change every table
name in the application.

Example 8-28 Connect to a DB2 database

$database = 'invent';
$user = 'db2inst1';
$password = 'password';

$conn = db2_connect($database, $user, $password) or die("Couldn't connect to
server. " . db2_conn_errormsg() . "\n");

$sql="SET CURRENT SCHEMA='ADMIN'";
$sqlResult = db2_exec($conn, $sql) or die ("Couldn't execute query.... " . $sql
. "\n");

228 MySQL to DB2 Conversion Guide

You can map the persistent connection functions mysql_pconnect() and
mysqli_pconnect() to the db2_pconnect() function.

SELECT query statements
Example 8-29 shows querying a table in MySQL using the PHP mysql extension
functions.

Example 8-29 MySQL select example using the mysql extension

$sql = "SELECT * from owners where id = $id";
$sqlResults = mysql_query($sql)
or die ("Couldn't execute query. " . $sql . "\n");
$result = mysql_fetch_array($sqlResults);
$username = $result[7];

Example 8-30 shows an example of querying a MySQL database using the
mysqli extension.

Example 8-30 MySQL select example using mysqli

$sql = "SELECT * from owners where id = $id";
$sqlResult = mysqli_query($conn, $sql)
 or die ("Couldn't execute query.... " . $sql . "\n");
$result = mysqli_fetch_array($sqlResult);
$username = $result[7];

Example 8-31 shows the corresponding ibm_db2 DB2 query.

Example 8-31 DB2 SELECT example

$sql = "SELECT * from owners where id = $id";
$sqlResults = db2_exec($conn, $sql)
or die ("Couldn't execute query.... " . $sql . "\n");
$result = db2_fetch_array($sqlResults);
$username =
$result[7];

Note: The default subsystem name (DSN) is the database name, which is
registered in the DB2 catalog. Because this database is cataloged, you do not
have to declare any server information in the connect statement.

 Chapter 8. Application conversion 229

You can map the mysqli_query() function directly to the db2_exec() function, and
the db2_exec() function nearly corresponds to the mysql_query() function. The
only difference between the two functions is that db2_exec() requires two
parameters. One parameter specifies the connection ID that is returned by the
db2_connect() statement, and the other parameter is the SQL statement:

resource db2_exec (resource $connection , string $statement [, array
$options])

To get each row in an array equal to the mysql_fetch_array() or the
mysqli_fetch_array() functions, you can use the db2_fetch_array() function
without extensive modifications.

Calling INSERT, UPDATE, and DELETE statements
All three SQL commands, INSERT, UPDATE, and DELETE, use the same
MySQL and ibm_db2 functions that we discussed for the SELECT statement:

mysql_query($sql)
db2_exec($db,$sql)

Example 8-32, Example 8-33, and Example 8-34 on page 231 show the
differences between the MySQL and ibm_db2 functions for the INSERT
statement.

Example 8-32 MySQL UPDATE statement using mysql

$updateCMD = "UPDATE services SET serviceOwner = " . $servOwner . " WHERE ID =
" . $srvID ;
$updateOutput = mysql_query($updateCMD) ;
if($updateOutput){
$textOutput = "Service Ticket updated. \n";
}else{
 $textOutput = "Service Ticket updated Failed. \n";
}
echo $textOutput . "\n";

Example 8-33 MySQL UPDATE statement using mysqli

$updateCMD = "UPDATE services SET serviceOwner = " . $servOwner . " WHERE ID =
" . $srvID ;
$updateOutput = mysqli_query($conn, $updateCMD)
if($updateOutput){
$textOutput = "Service Ticket updated. \n";
}else{
 $textOutput = "Service Ticket updated Failed. \n";
}
echo $textOutput . "\n";

230 MySQL to DB2 Conversion Guide

Example 8-34 DB2 UPDATE statement

$updateCMD = "UPDATE services SET serviceOwner = " . $servOwner . " WHERE ID =
" . $srvID ;
$updateOutput = db2_exec($conn, $updateCMD);
if($updateOutput){
$textOutput = "Service Ticket updated. \n";
}else{
$textOutput = "Service Ticket updated Failed. \n";
}
echo $textOutput . "\n";

These functions differ in their return values. The mysql_query() and
mysqli_query() functions return a resource identifier only for SELECT, SHOW,
EXPLAIN, or DESCRIBE statements. The mysql_query() and mysqli_query()
functions return a false if the query was executed incorrectly. For other types of
SQL statements, mysql_query() and mysqli_query() return true on success and
false on error. The db2_exec () function returns a result identifier if the SQL
command was executed successfully and returns false if an error occurs.

Disconnecting from a database
Example 8-35, Example 8-36, and Example 8-37 show the disconnect functions
using the mysql, mysqli, and ibm_db2 extensions.

Example 8-35 Disconnecting from a MySQL database using mysql

$conn = mysql_connect($host, $user, $pwd)
or die("Couldn't connect to server. " . mysql_error() . "\n");

mysql_close($conn);

Example 8-36 Disconnecting from a MySQL database using mysqli

$conn = mysqli_connect($host, $user, $pwd, $database)
or die("Couldn't connect to server. " . mysqli_connection_error() . "\n");

mysqli_close($conn);

Example 8-37 Disconnecting from a DB2 database

$conn = db2_connect($database, $user, $password)
 or die("Couldn't connect to server. " . db2_conn_errormsg() . "\n");

db2_close($conn);

 Chapter 8. Application conversion 231

These three functions execute the same task of disconnecting from the
database, and both DB2 and MySQL return true on success and false on failure.
In rare cases, the return value of the mysql_close() function is not used at all;
therefore, you can perform conversions mostly by simply replacing the function
or inserting the new function at the end of the program execution.

mysql, mysqli, and ibm_db2 function mapping
Table 8-3 maps common functions from mysql and mysqli to ibm_db2. Note that
the mysql functions only offer a single interface for retrieving database errors.
The mysqli and ibm_db2 functions provide interfaces for handling both
connections and statement errors.

Table 8-3 mysql, mysqli, and ibm_db2 function mapping

Converting from native MySQL library to PDO
If you currently use PDO with MySQL, it is simple to port your application to DB2.
PDO provides a common API that you can use regardless of the database
vendor to which the PHP application is trying to connect. In most cases, to
convert databases, you only need to change the database driver and the
connection string at which the connection to the database is established:

mysql mysqli ibm_db2

mysql_close mysqli_close db2_close

mysql_connect mysqli_connect db2_connect

mysql_pconnect mysqli_pconnect db2_pconnect

db2_pclose

mysql_query mysqli_query db2_exec

mysqli_stmt_prepare db2_prepare

mysqli_stmt_execute db2_execute

mysql_fetch_array mysqli_fetch_array db2_fetch_array

mysql_fetch_assoc mysqli_fetch_assoc db2_fetch_assoc

mysql_fetch_row mysqli_fetch_row db2_fetch_row

mysql_fetch_object mysqli_fetch_object db2_fetch_object

mysql_field_name db2_field_name

mysql_errno mysqli_connection_errno db2_conn_error

mysql_error mysqli_connection_error db2_conn_errormsg

mysql_errno mysqli_errno db2_stmt_error

mysql_error mysqli_error db2_stmt_errormsg

mysql_affected_rows mysqli_num_rows db2_num_rows

232 MySQL to DB2 Conversion Guide

$db = new PDO("odbc:DSN=$database;UID=$user;PWD=$password;");
$db = new PDO("mysql:host=$hostname;dbname=$database", $user, $pass);

Connecting to a database
Use this syntax for connecting to a database using PDO:

$conn = new PDO(string $dsn [, string $username [, string $password [,
array $driver_options]]])

Example 8-38 and Example 8-39 show the difference between the syntax to
connect to a MySQL and a DB2 database using PDO.

Example 8-38 Connecting to a MySQL database

$database = 'invent';
$user = 'db2inst1';
$password = 'password';

$conn = new PDO("mysql:host=$hostname;dbname=$database", $user, $password)
 or die("Could not connect " . errorCode());

Example 8-39 Connecting to a DB2 database

$database = 'invent';
$user = 'db2inst1';
$password = 'password';

$conn = new PDO("odbc:$database", $user, $password)
 or die("Could not connect " . errorCode());

$query="SET CURRENT SCHEMA='ADMIN'";
$output = $conn->exec($query);

SELECT query, INSERT, UPDATE, and DELETE statements
There are no changes required, because the syntax to execute queries is exactly
the same for both data servers. Example 8-40 illustrates how to execute a query
using PDO.

Example 8-40 DB2 SELECT example

$sql = "SELECT * from owners where id = '$id'";
$query = $conn->query($sql)
 or die ("Couldn't execute query.... " . $sql . "\n");
foreach ($query as $query2){

$username = $query[7];
}

 Chapter 8. Application conversion 233

Disconnecting from a database
Example 8-41 shows the disconnect function using the MySQL and IBM PDO
API.

Example 8-41 Disconnecting from a DB2 database

$conn = new PDO("odbc:$database", $user, $password)
 or die("Could not connect " . errorCode());

Sconn = null;

Converting from a native MySQL library to Unified ODBC
A third extension, Unified ODBC, has historically offered access to DB2
database systems. We do not recommend that you write new applications with
this extension, because ibm_db2 and pdo_ibm both offer significant performance
and stability benefits over Unified ODBC. The ibm_db2 extension API makes
porting an application previously written for Unified ODBC almost as easy as
globally changing the odbc_ function name to db2_ throughout the source code
of your application.

Using the Unified ODBC support in PHP applications does not require a special
load of library files, because support has been integrated during the compilation
process of PHP. You can obtain a complete overview of the MySQL and the
Unified ODBC functions in the PHP manual, which is available at this Web site:

http://www.php.net/docs.php

When we discuss ODBC in this section (which is always Unified ODBC), we refer
to the native DB2 driver. Wide similarities between the syntax of Unified ODBC
and other ODBC types and the performance advantages when using Unified
ODBC support are the reasons that we discuss the application conversion with
Unified ODBC support.

Connecting to a database
When connecting to a DB2 database with ODBC, you connect by using a single
ODBC command (odbc_connect()):
resource odbc_connect (string dsn, string user, string password [, int
cursor_type])

Example 8-42 on page 234 shows how to connect to our sample application
database using the ODBC command.

Example 8-42 Connecting to a DB2 database

$database = 'invent';
$user = 'db2inst1';

234 MySQL to DB2 Conversion Guide

http://www.php.net/docs.php

$password = 'password';

$conn = odbc_connect($database,$user,$password)
 or die("Could not connect ". odbc_errormsg());

$query="SET CURRENT SCHEMA='ADMIN'";
odbc_exec($conn,$query) or die(odbc_errormsg($db));

The odbc_pconnect() function is a complementary function to the persistent
connect function mysql_pconnect().

SELECT query statements
Example 8-43 shows the ODBC DB2 query. Refer to Example 8-29 on page 229
and Example 8-30 on page 229 for the MySQL SELECT statements.

Example 8-43 DB2 query statement

$sql = "SELECT * FROM owners WHERE id = '$id'";
$sqlResults = odbc_exec($conn, $sql)
or die ("Couldn't execute query.... " . $sql . "\n");
odbc_fetch_into($sqlResults, $result);
$username = $result[7];

The odbc_exec() function is almost identical to the mysql_query() function. The
only difference is that the odbc_exec() function needs two parameters, one of
which is the connection ID that is returned by the odbc_connect statement:

resource odbc_exec (resource connection_id, string query_string)

To get each row in an array equal to the mysql_fetch_row() function, you can use
the odbc_fetch_into() function without extensive modifications. There are only
syntax differences in both statements in our case.

INSERT, UPDATE, and DELETE statements
Much like MySQL, the ODBC interface can execute all three types of SQL
commands, INSERT, UPDATE, and DELETE, using the same function as that of
the SELECT statement:

mysql_query($sql_statement) or mysql_queryi($$db, sql_statement)
odbc_exec($db, $sql_statement)

Example 8-44 on page 236 illustrates the ODBC functions for the UPDATE
statement. Refer to Example 8-32 on page 230 and Example 8-33 on page 230
for the MySQL UPDATE statements.

 Chapter 8. Application conversion 235

Example 8-44 DB2 UPDATE statement

$updateCMD = "UPDATE services SET serviceOwner = " . $servOwner . " WHERE ID =
" . $srvID ;
$updateOutput = odbc_exec($conn, $updateCMD);

if($updateOutput){
 $textOutput = "Service Ticket updated. \n";
}else{
 $textOutput = "Service Ticket updated Failed. \n";
}
echo $textOutput . "\n";

There is a minor difference between these functions in terms of return values:

� The mysql_query() function returns a resource identifier for SELECT, SHOW,
EXPLAIN, or DESCRIBE statements, and false if the query is executed
incorrectly. For any other SQL statements, a true is returned on success and
false on error.

� The odbc_exec() function returns a result identifier if the SQL command was
executed successfully and false if an error occurs.

Disconnecting from a database
To disconnect from a database, a difference in the return values exists between
the mysql_close() and odbc_close() statements. The function mysql_close()
returns true on success and false on failure. Whereas, the function odbc_close()
does not return a value in either case.

Example 8-45 shows the disconnect function using the ODBC library. Refer to
Example 8-35 on page 231 for the MySQL disconnect function.

Example 8-45 Disconnecting from a DB2 database

$conn = odbc_connect($database,$user,$password)
 or die("Could not connect ". odbc_errormsg());

odbc_close($conn);

236 MySQL to DB2 Conversion Guide

8.2.3 Converting MySQL Ruby on Rails applications to DB2

Ruby is a fully-integrated object-oriented programming language that is used to
develop applications. Ruby on Rails (RoR), which is also known as Rails, is a
framework for developing Web applications that access databases according to
the Model-View-Control architectural framework.

MySQL has two approaches to connect to a MySQL database from Ruby:

� MySQL/Ruby API

This API is a MySQL API.

� Ruby/MySQL API

This API is developed by Ruby.

The two APIs provide the same functions as the MySQL C API.

Collectively known as the IBM_DB gem, the IBM_DB Ruby driver and Rails
adapter allow Ruby applications to access the following database management
systems:

� DB2 Version 9 for Linux, UNIX, and Windows

� DB2 Universal Database (DB2 UDB) Version 8 for Linux, UNIX, and Windows

� DB2 UDB Version 5, Release 1 (and later) for AS/400® and iSeries, through
DB2 Connect

� DB2 for z/OS, Version 8 and Version 9, through DB2 Connect

� Informix Dynamic Server, Version 11.10 and later

Converting DBI interface-supported code
You can easily connect to a DB2 database from Ruby on Rails by setting up the
IBM_DB Ruby driver and Rails adapter. After you have configured the Ruby on
Rails environment, you can install the IBM_DB gem by using one of these
methods:

� On Linux, UNIX, and Mac OS X platforms, set the environment variables and
optionally source the DB2 profile.

� On all supported platforms, issue the following gem command to install the
IBM_DB adapter and driver:

db2server:~ # gem install ibm_db

For further information, visit this Web site:

http://www.alphaworks.ibm.com/tech/db2onrails

 Chapter 8. Application conversion 237

http://www.alphaworks.ibm.com/tech/db2onrails

Connecting to a database
Connecting to a MySQL database with the MySQL/Ruby API consists of two
parts. First, establish a connection to the MySQL server using the connect()
function, and then, choose a database using the select_db() function.

Example 8-46 on page 238 illustrates the functions that are used to connect to a
MySQL database from Ruby.

Example 8-46 Connecting a MySQL database from Ruby

require 'mysql'

conn = Mysql.init()
conn.connect('localhost', 'password')
conn.select_db('test')

You can create a connection to a DB2 database by using a single function, the
connect() function. Use this syntax for the connect function:

resource IBM_DB::connect (string database, string username, string
password [, array options])

Example 8-47 illustrates how to connect to a DB2 database.

Example 8-47 Connecting to a DB2 database from Ruby

require 'rubygems'
require 'ibm_db'
conn = IBM_DB.connect("test", "db2inst1", "password")

SELECT query statements
Example 8-48 shows querying a table in MySQL using the MySQL/Ruby API
functions.

Example 8-48 Issuing a SELECT statement on a MySQL database from Ruby

….
results = conn.query("SELECT * FROM owners;")

 while row = results.fetch_row()
 puts "#{row[0]} : #{row[1]} "
 end

The corresponding IBM_DB Ruby query is shown in Example 8-49.

238 MySQL to DB2 Conversion Guide

Example 8-49 Issuing a SELECT statement on a DB2 database from Ruby

…
results = IBM_DB.exec(conn, "SELECT * FROM admin.owners")
 while row = IBM_DB.fetch_array(results)
 puts "#{row[0]} : #{row[1]} "
 end

You can map the MySQL query() function directly to the DB2 exec() function.
Both functions have similar functionality. The only difference between the two
functions is that exec() requires two parameters: one parameter specifies the
connection ID that is returned by the connect() statement, and the other
parameter is the SQL statement:

resource IBM_DB::exec (resource connection, string statement [, array
options])

To get each row in an array equal to the MySQL/Ruby fetch_row() function, you
can use the IBM_DB fetch_array() function without extensive modifications.

Calling INSERT, UPDATE, and DELETE statements
Generally, you can use the same functions for INSERT, UPDATE, and DELETE
statements as the functions that we have discussed for the SELECT statement.

Disconnecting from a database
Both MySQL and DB2 use a close() function to disconnect from the database.
However, the difference between the syntax is that the DB2 function requires the
connection ID as a parameter for the function.

Example 8-50 and Example 8-51 show the disconnect functions using the
MySQL/Ruby API and the IBM_DB API functions.

Example 8-50 Disconnecting from a MySQL database from Ruby

…
conn.close()

Example 8-51 Disconnecting from a Db2 database from Ruby

…
IBM_DB.close(conn)

For more information about developing DB2 applications with Ruby on Rails,
review the Developing Perl, PHP, Python, and Ruby on Rails Applications
Manual, which is available at this Web site:

http://www.ibm.com/support/docview.wss?rs=71&uid=swg27015148

 Chapter 8. Application conversion 239

http://www-01.ibm.com/support/docview.wss?rs=71&uid=swg27015148

8.2.4 Converting MySQL Java applications to DB2

DB2 supports the usage of Java programming at the following levels:

� DB2 server-side programming:

– Java stored procedures on the DB2 server

– Java user-defined functions (UDFs) on the DB2 server

� Java applications:

– Java-enabled Web browser accessing DB2 using Java Database
Connectivity (JDBC)

– Java stand-alone application using JDBC and SQLJ

� Java 2 Platform, Enterprise Edition (J2EE™) application server:

– JavaServer™ Pages (JSP™) using a JDBC connection

– Servlets using JDBC or SQLJ

– Enterprise JavaBeans™ (EJB™) using JDBC or SQLJ

DB2 provides the IBM Data Server Driver for JDBC and SQLJ. This driver is a
single application driver to support the most demanding Java applications.You
can use this agile driver in either type 4 or type 2 mode. This section provides an
overview of JDBC, SQLJ, and the conversion of existing MySQL Java
applications to DB2.

MySQL has an optional package, MySQL Connector/J, which is a type 4 JDBC
driver. The latest version of MySQL Connector/J implements the SUN JDBC 4.0
API for relational database access.

Java database connectivity (JDBC)
JDBC is a vendor-neutral dynamic SQL interface that provides data access for
your application through standardized Java methods. JDBC drivers provide the
mechanics to the JDBC API to allow Java applications to access databases.
Currently, the JDBC API is in its fourth revision. IBM DB2 supports JDBC 3 and
JDBC 4.

A JDBC application can establish a connection to a data source using the JDBC
DriverManager interface. In the following sections, we discuss the changes that
are required within the code of a Java application when converting from MySQL
to DB2.

240 MySQL to DB2 Conversion Guide

IBM JDBC driver for DB2
A JDBC driver acts as an interface between a Java program and a database.
DB2 9.7 includes two JDBC drivers:

� DB2 JDBC type 2 driver

The DB2 JDBC type 2 driver, which is also called the native-API/partly Java
driver, allows Java applications to make JDBC calls that are translated to
Java native methods. The Java applications that use this driver must run a
DB2 client, which is used to communicate the JDBC requests to the DB2
server. Figure 8-2 on page 241 shows a call transfer for a DB2 JDBC type 2
driver. Only Java applications can use this driver. Implement this driver by
using the DB2 call level interface (CLI) to communicate with DB2 servers.

Figure 8-2 DB2 type 2 JDBC driver

In order to use the DB2 JDBC type 2 driver, you need following properties:

drivername="COM.ibm.db2.jdbc.app.DB2Driver"
URL="java:db2:dbname"

The user ID and password are implicitly selected according to the DB2 client
setup.

� IBM DB2 Driver for JDBC and SQLJ

The IBM DB2 Driver for JDBC and SQLJ is a single driver that includes both
Type 2 and Type 4 connectivity. This type 4/Native-protocol all-Java driver is
implemented in Java, and it uses the Distributed Relational Database
Architecture™ (DRDA®) protocol for client/server communications.
Figure 8-3 on page 242 shows the JDBC Driver usage in a Java application.

Note: The DB2 JDBC Type 2 Driver for Linux, UNIX, and Windows will not
be supported in future releases. Consider switching to the IBM Data Server
Driver for JDBC and SQLJ, which we describe next.

 Chapter 8. Application conversion 241

DB2 Universal JDBC Driver does not require any service on the client side.
You can find it in the db2jcc.jar package.

To use the DB2 Universal JDBC driver, you need the following properties:

drivername="com.ibm.db2.jcc.DB2Driver"
URL="java:db2://servername:serverport/dbname"

We recommend this driver for both applets and applications connecting to a
DB2 database.

Figure 8-3 JDBC Driver

For more details, visit this Web site:

http://www.ibm.com/software/data/db2/ad/java.html

Embedded SQL for Java
DB2 provides embedded SQL (both static and dynamic) access to Java
applications though SQLJ APIs. DB2 SQLJ support allows you to create, build,
and run embedded SQL for Java applications, applets, stored procedures, and
UDFs. The SQLJ API is an extension of JDBC. JDBC can only execute SQL
statements dynamically. Statically bound SQL statements can run faster than
dynamically bound statements; therefore, SQLJ applications have significant
performance advantages over JDBC applications.

Conversion of JDBC applications
Because both MySQL and DB2 comply with JDBC specifications, most Java
applications require minimal code changes. However, SQL statement changes
might still be required, which we discussed as part of the data definition language
(DDL) differences in 6.2, “Data definition language differences” on page 122.

Note: Servername and serverport refer to the database server.

242 MySQL to DB2 Conversion Guide

http://www.ibm.com/software/data/db2/ad/java.html
http://www.ibm.com/software/data/db2/ad/java.html

In this section, we provide you with information about Java program conversion
from MySQL to DB2.

Loading a JDBC driver
The first step in a Java program is to load the appropriate JDBC driver by calling
Class.forName(drivername) within your Java program. We discuss appropriate
values for the driver names in “IBM JDBC driver for DB2” on page 241.
Example 8-52 on page 243 shows how to load the driver for MySQL, and
Example 8-53 on page 243 shows the DB2 conversion.

Connecting to a database
In this part, the Java program tries to establish a connection to the given
database by calling the function DriverManager.getConnection with the proper
URL values as discussed within the driver description in “IBM JDBC driver for
DB2” on page 241. After this call, DriverManager selects the appropriate driver
from a set of registered drivers to connect to the database. Example 8-52 and
Example 8-53 show these steps for MySQL and then DB2.

Example 8-52 MySQL JDBC driver loading and connection

import java.sql.*;
public class inventSample {
 public static void main(String[] args) throws Exception {
 try {
 //---------- Load the driver ---------//
 Class.forName("com.mysql.jdbc.Driver");

 //---------- Connect to database ---------//
 Connection conn = DriverManager.getConnection
 ("jdbc:mysql://localhost/inventory", "mysql", "password");

//...
 }
}

Example 8-53 DB2 JDBC driver loading and connection

import java.sql.*;

public class inventSample {
 public static void main(String[] args) throws Exception {
 try {

 //---------- Load the driver ---------//
 Class.forName("com.ibm.db2.jcc.DB2Driver");
 try {

 //---------- Connect to database ---------//

 Chapter 8. Application conversion 243

 Connection conn = DriverManager.getConnection
 ("jdbc:db2:invent", "db2inst1", "password");
 //...

 }
}

Calling query statements
The query execution code does not change much, because both DB2 and
MySQL follow the SQL standard and the JDBC specifications. When establishing
a connection, code changes might only be required for SQL statements or return
data types.

The JDBC API does not place any restrictions on the kind of SQL statements that
can execute. Therefore, it becomes the responsibility of the application to pass
SQL statements that are compatible with the database. The connection obtained
in Example 8-52 on page 243 and Example 8-53 on page 243 can be used for
one of the following three types of statements, depending upon the requirements:

� Statement: Simple single SQL statement

You can create the statement by using the createStatement method of the
Connection. Example 8-54 shows the usage of executeQuery with a change
for MySQL and DB2. It is evident that only changes to the SQL statement are
required.

Example 8-54 Query statement changes from MySQL to DB2

Statement s = conn.createStatement();

//---------- MySQL statement ---------//
s.executeQuery("SELECT id, firstName, lastName, loginName FROM owners WHERE
id = 501");

//---------- DB2 statement ---------//
s.executeQuery("SELECT id, firstName, lastName, loginName FROM admin.owners
WHERE id = 501");

ResultSet rs = s.getResultSet ();
while (rs.next ()){
 int id = rs.getInt ("id");
 String firstName = rs.getString ("firstName");
 String lastName = rs.getString ("lastName");
 String userName = rs.getString ("loginName");
 System.out.println (
 "id = " + id
 + ", firstName = " + firstName
 + ", lastName = " + lastName

244 MySQL to DB2 Conversion Guide

 + ", userName = " + userName);
}
rs.close ();
s.close ();

� PreparedStatement: Precompiled SQL statements

PreparedStatements effectively execute particular statements multiple times.
Example 8-55 shows the conversion of the prepared statements. Setting the
appropriate values of host variables is vital when using prepared statements.
We discuss prepared statements in more detail in “Java, JDBC, and SQL data
type conversions”.

� callableStatement: Use this statement to call stored procedures.

Calling INSERT, UPDATE, and DELETE statements
You can execute any statement that updates the database or inserts and deletes
a value within the database by using the executeUpdate or execute method.
Example 8-55 shows the update of a record using the prepared statement for
MySQL and its form of using the same call for DB2. As shown, these changes
are due to the MySQL databases that have been merged into one DB2 database
and grouped by the table schema. If you use DB2 SET SCHEMA = <schema_name>
for a connection, you do not need to change anything.

Example 8-55 MySQL Prepared statement and executing UPDATE

//---------- MySQL prepared statement ---------//
//PreparedStatement smt = conn.prepareStatement
("UPDATE services SET serviceOwner = ? WHERE ID = ? ;");

//---------- DB2 prepared statement ---------//
PreparedStatement smt = conn.prepareStatement
("UPDATE admin.services SET serviceOwner = ? WHERE ID = ? ");

smt.setInt (1, 608);
smt.setInt (2, 108);
int count = smt.executeUpdate();
System.out.println (count + " rows were inserted");

conn.close();

Java, JDBC, and SQL data type conversions
In this section, we discuss how MySQL and DB2 handle column types for Java
data type conversions. As we saw in 6.1, “Data type mapping” on page 116,
MySQL and DB2 data types differ. While converting your Java application, we
recommend that you check the Java data types that are used to fetch your data
using JDBC. The JDBC driver converts the data exchanged between the

 Chapter 8. Application conversion 245

application and the database using the specified schema mapping, which is
defined by both DB2 and MySQL for their data types.

Because MySQL does not enforce strict type conversions, the Java programmer
has to take care of data lost because of round-off, overflow, or precision loss. For
more details about how MySQL is mapped to Java data types, refer to the
information at this Web site:

http://dev.mysql.com/doc/refman/5.1/en/connector-j-reference-type-conversions.h
tml

However, DB2 sticks to the JDBC specification, providing a default and
recommended data type mapping as shown in Table 8-4.

Table 8-4 DB2 data types mapping to Java types

DB2 data type Java type Data type description

SMALLINT Short 16-bit signed integer

INTEGER Int 32-bit signed integer

BIGINT Long 64-bit signed integer

REAL Float Single precision floating
point

DOUBLE Double Double precision floating
point

DECIMAL java.math.BigDecimal Packed decimal

CHAR java.lang.String Fixed-length character
string of length n where n is
from 1 - 254

CHAR FOR BIT DATA byte[] Fixed-length character
string of length n where n is
from 1 - 254

VARCHAR java.lang.String Variable-length character
string

VARCHAR FOR BIT DATA byte[] Variable-length character
string

LONG VARCHAR java.lang.String Long variable-length
character string

LONG VARCHAR FOR
BIT DATA

byte[] Long variable-length
character string

BLOB java.sql.Blob Large object
variable-length binary
string

246 MySQL to DB2 Conversion Guide

http://dev.mysql.com/doc/refman/5.1/en/connector-j-reference-type-conversions.html

8.2.5 Converting MySQL C/C++ applications to DB2

DB2 provides the following programming interfaces for developing applications in
C/C++:

� Embedded SQL
� DB2 call level interface (CLI)

Apart from this, DB2 uses C/C++ for server side programming for creating:

� Stored procedures on DB2 server
� User-defined functions (UDF) on DB2 server.

DB2 provides precompilers for C, C++, COBOL, Fortran, and REXX to support
embedded SQL applications. Embedded SQL applications support both static
and dynamic SQL statements. Static SQL statements require information about
all SQL statements, tables, and data types used at compile time. The application
needs to be precompiled, bound, and compiled prior to execution. In contrast,
dynamic SQL statements can be built and executed at runtime. For further
details on embedded SQL refer to Getting Started with Database Application
Development, GI11-9410-00. available at:

http://www.ibm.com/support/docview.wss?rs=71&uid=swg27015148

CLOB java.sql.Clob Large object
variable-length character
string

DBCLOB(n) java.sql.Clob Large object
variable-length
double-byte character
string

GRAPHIC java.lang.String Fixed-length double-byte
character string

VARGRAPHIC java.lang.String Non-null-terminating
varying double-byte
character string with 2-byte
string length indicator

LONG VARGRAPHIC java.lang.String Non-null-terminating
varying double-byte
character string with 2-byte
string length indicator

DB2 data type Java type Data type description

DATE java.sql.Date 10-byte character string

TIME java.sql.Time 8-byte character string

TIMESTAMP java.sql.Timestamp 26-byte character string

 Chapter 8. Application conversion 247

http://www-01.ibm.com/support/docview.wss?rs=71&uid=swg27015148

Another interface provided by DB2 is DB2 call level interface (CLI). It is a
standard based API following the Microsoft Open Database Connectivity (ODBC)
specification and the International Organization for Standardization (ISO)
SQL/CLI standard. Both embedded SQL and DB2 CLI support database
administration and database manipulation from C/C++ applications.

MySQL provides a client library for accessing a MySQL database from C
applications. The client library is shipped with the MySQL server or can be
downloaded on its own using the MySQL connector/C. It provides features for:

� Connection mechanism
� Creation and execution of SQL queries
� Status and error reporting

The MySQL Connector/C++ (also commonly known as MySQL ++) is an
additional library for accessing MySQL databases from C++ applications.

Converting applications
MySQL C API and DB2 CLI are similar in functionality and mechanisms to
access databases. Both use the function call to pass dynamic SQL statements
and do not need to be precompiled. We recommend converting MySQL C
applications to DB2 CLI. This section describes conversion changes for various
levels of the application:

Connecting to the server
The first step in converting MySQL C applications is to change the include
information, initialize variables, and replace the MySQL connection with a DB2
connection. Example 8-56 shows a typical MySQL C program to initiate MySQL
variables, create a connection, and terminate the connection.

Example 8-56 MySQL C application, initialize MySQL and create connection

#include <mysql/mysql.h> /* Include MySQL variable and function definition */
#include <stdio.h>

int main(){

MYSQL *conn; /* pointer to connection handler */
connection = mysql_init(NULL);

if(!mysql_real_connect (
 conn, /* pointer to connection handler */
 NULL, /* host to connect, default localhost*/
 "mysql", /* user name, default local user*/
 "password", /* password, default none*/
 "inventory", /* database name*/
 0, /* port */
 NULL, /* socket */
 0 /* flags*/

248 MySQL to DB2 Conversion Guide

))
 {
 printf("Connection Failed \n");
 fprintf(stderr, "%s\n", mysql_error(conn));
 } else{
 printf("Successful connection to database.\n");
 }
 }
mysql_close(conn);
}

Figure 8-4 shows a similar task using DB2 CLI. It shows the initialization tasks,
which consist of: allocation and initializing the environment and connection
handlers; creating the connection; processing of transactions; and terminating
the connection and removing of handlers.

Figure 8-4 DB2 CLI activities

Example 8-57 shows the implementation of the task defined by the figure above.

Example 8-57 DB2 CLI application, connecting to a database

#include <sqlcli.h> /* Include DB2 CLI variable and function definition */ int main()
{
 SQLRETURN ret = SQL_SUCCESS; int rc = 0;
 SQLHANDLE henv; /* environment handle */
 SQLHANDLE hdbc; /* connection handle */

 Chapter 8. Application conversion 249

 /* Allocate an environment handle */
 ret = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 if (ret != SQL_SUCCESS){
 /* handle error */
 return 1;
 }

 /* Allocate a connection handle */

 ret = SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);
 if (ret != SQL_SUCCESS){
 /* handle error */
 return 1;
 }

 /* connect to the database */
 ret = SQLConnect(hdbc,
 (SQLCHAR *)"invent", SQL_NTS,
 (SQLCHAR *)"db2inst1" /*user*/, SQL_NTS,
 (SQLCHAR *)"password" /* password*/, SQL_NTS);
 if (ret != SQL_SUCCESS){
 /* handle error */
 return 1;
 }

 /* disconnect from the database */
 ret = SQLDisconnect(hdbc);
 if (ret != SQL_SUCCESS){
 /* handle error */
 return 1;
 }

 /* free connection handle */
 ret = SQLFreeHandle(SQL_HANDLE_DBC, hdbc);
 if (ret != SQL_SUCCESS){
 /* handle error */
 return 1;
 }

 /* free environment handle */
 ret = SQLFreeHandle(SQL_HANDLE_ENV, henv);
 if (ret != SQL_SUCCESS) {
 /* handle error */
 return 1;
 }
 exit(0);
}

Processing a query
A typical MySQL C API program involves three steps in query processing:

� Query construction

250 MySQL to DB2 Conversion Guide

Depending upon your requirement you can construct a null terminated string
or counted length string for the query:

char *query;

� Execution of the query

For executing the query you can use mysql_real_query() for a counted length
query string or the mysql_query() for a null terminated query string.
Example 8-58 shows the processing of a query with both mysql_real_query()
and mysql_query() method calls.

� Processing of the returned results

After executing the query, the final step is to process the results. All the
statements except SELECT, SHOW, DESCRIBE, and EXPLAIN do not return
results. For these statements, mysql provides the mysql_affected_rows()
function for accessing the number of rows affected.

If your query returns a result set, follow these steps for the result processing:

c. Generate the result set using mysql_store_result() or mysql_use_result().
d. Fetch each row using mysql_fetch_row().

e. Release the result set using mysql_free_result().

Example 8-58 shows an example of both MySQL queries - some that return a set
of results and others that do not.

Example 8-58 MySQL query processing

MYSQL_RES *result;
if (mysql_query(conn, "SELECT * FROM owners WHERE id = 501")) {
 fprintf(stderr, "%s\n", mysql_error(conn));
 return 1;
 }
 result = mysql_use_result(conn);

 /* output table name */
 printf("MySQL Tables in mysql database:\n");
 while ((row = mysql_fetch_row(result)) != NULL){
 printf("firstName: %s \n", row[1]);
 printf("lastName: %s \n", row[2]);
 printf("email: %s \n", row[3]);
 }

 mysql_free_result(result);
 }
}

On the other hand DB2 CLI provides a more comprehensive set of APIs for doing
similar tasks. One of the essential parts of DB2 CLI is transaction processing,

 Chapter 8. Application conversion 251

which is supported by all the tables in DB2. Figure 8-5 on page 252 shows the
typical order of function calls of query processing.

Figure 8-5 DB2 Query processing

DB2 CLI query processing involves the following steps:

1. Allocating a statement handle

A statement handle tracks execution of the query for a particular connection.
This handle can be allocated using SQLAllocHandle() with a HandleType of
SQL_HANDLE_STMT function.

2. Preparing and executing SQL statements

DB2 provides two ways for preparing and executing the query:

252 MySQL to DB2 Conversion Guide

– Prepare and execute as separate steps

If you plan to execute the same query multiple times with different
parameters, you can use this technique. This involves the following steps:
Preparing a query using SQLPrepare(), binding of parameters using
SQLBindParameter(), and executing this query using SQLExecute().
Example 8-59 shows an example for prepared statements.

– Prepare and execute in a single step

If your query is executed only once, then you can use SQLExecDirect() to
directly call, prepare, and execute in a single step. Example 8-60 on
page 255 shows the usage of this method.

3. Processing results

Processing query results involves binding application variables to columns of
a result set, and then fetching the rows of data into the application variables.
This is done by calling SQLBindCol() followed by SQLFetch() as shown in
Example 8-59.

Another way to get data without binding the column is by calling SQLFetch()
and SQLGetData(), this technique is used in Example 8-60 on page 255.

4. Committing or rolling back

DB2 supports two commit modes: auto-commit and manual commit. This can
be set using SQLSetConnectAttr() with the parameter
SQL_AUTOCOMMIT_ON or SQL_AUTOCOMMIT_OFF. If a transaction is
set to SQL_AUTOCOMMIT_OFF it is the programmer's responsibility to end
the transaction. This can be done using SQLEndTran() to either rollback or
commit the transaction using parameter SQL_COMMIT or SQL_ROLLBACK.

5. Deallocating statement handle

This requires unbinding of variables, columns, or cursors (if allocated) using
SQLFreeStmt() with the option of SQL_CLOSE, SQL_UNBIND or
SQL_RESET_PARAMS, and then finally calling SQLFreeHandle() to
deallocate the statement handle.

Example 8-59 DB2 CLI prepared statement with column binding, auto commit on

SQLHANDLE hstmt; /* statement handle */
SQLCHAR firstName [TEXT_SIZE];
SQLCHAR lastName [TEXT_SIZE];
SQLCHAR email [TEXT_SIZE];
SQLINTEGER id = 501;

/* SQL statements to execute */
SQLCHAR *stmt = (SQLCHAR *)"SELECT firstName, lastName, email FROM admin.owners WHERE
id = ?";

/* set AUTOCOMMIT on */

 Chapter 8. Application conversion 253

ret = SQLSetConnectAttr(hdbc, SQL_ATTR_AUTOCOMMIT, (SQLPOINTER)SQL_AUTOCOMMIT_ON,
SQL_NTS);

if (ret != SQL_SUCCESS) {
/* handle error */
}

/* allocate a statement handle */
ret = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
if (ret != SQL_SUCCESS) {
/* handle error */
}

/* prepare the statement */
ret = SQLPrepare(hstmt, stmt, SQL_NTS);
if (ret != SQL_SUCCESS) {
/* handle error */
}
/* bind parameter1 to the statement */
ret = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_UBIGINT, SQL_CHAR, 0, 0, &id,
0, NULL);
if (ret != SQL_SUCCESS){
/* handle error */
}

ret = SQLBindCol(hstmt, 1, SQL_C_CHAR, (SQLPOINTER)firstName, sizeof(firstName) + 1,
NULL);
ret = SQLBindCol(hstmt, 2, SQL_C_CHAR, (SQLPOINTER)lastName, sizeof(lastName) + 1,
NULL);
ret = SQLBindCol(hstmt, 3, SQL_C_CHAR, (SQLPOINTER)email, sizeof(email) + 1, NULL);

/* execute the statement */
ret = SQLExecute(hstmt);
if (ret != SQL_SUCCESS){
/* handle error */
}

/* fetch each row and display */
ret= SQLFetch(hstmt);

if(ret == SQL_NO_DATA_FOUND){
printf("No data found");
}
while(ret != SQL_NO_DATA_FOUND){
 printf("First name: %s \n",firstName);
 printf("Last name: %s \n",lastName);
 printf("email: %s \n", email);
 ret=SQLFetch(hstmt);
 }
ret = SQLFreeStmt(hstmt, SQL_UNBIND);
if (ret != SQL_SUCCESS) {
/* handle error */
}

254 MySQL to DB2 Conversion Guide

/* free the statement handle */
ret = SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
if (ret != SQL_SUCCESS) {
/* handle error */
return 1;
}

Example 8-60 DB2 CLI prepare/execute in one step with SQLGetData and manual commit

SQLHANDLE hstmt; /* statement handle */
SQLCHAR firstName [TEXT_SIZE];
SQLCHAR lastName [TEXT_SIZE];
SQLCHAR email [TEXT_SIZE];

/* SQL statements to execute */
SQLCHAR *stmt1 = (SQLCHAR *)"SELECT firstName, lastName, email FROM admin.owners
WHERE id = 501";

/* set AUTOCOMMIT on */
ret = SQLSetConnectAttr(hdbc,
SQL_ATTR_AUTOCOMMIT, (SQLPOINTER)SQL_AUTOCOMMIT_OFF, SQL_NTS);
if (ret != SQL_SUCCESS) {
/* handle error */
}

/* allocate a statement handle */
ret = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
if (ret != SQL_SUCCESS) {
/* handle error */
}

/* execute statement 1 directly */
ret = SQLExecDirect(hstmt, stmt1, SQL_NTS);
if (ret != SQL_SUCCESS) {

if(ret == SQL_NO_DATA_FOUND) {
printf("No data found");
}
int count = 0;
while(ret != SQL_NO_DATA_FOUND) {

/* get data from column 1 */
ret = SQLGetData(hstmt, 1, SQL_C_CHAR, (SQLPOINTER)firstName, sizeof(firstName) + 1,
NULL);
count = count + 1;
printf("COUNT %i \n", count);
printf("First Name: %s \n", firstName);
if (ret != SQL_SUCCESS) {
/* handle error */
}

/* get data from column 2 */

 Chapter 8. Application conversion 255

ret = SQLGetData(hstmt, 2, SQL_C_CHAR, (SQLPOINTER)lastName, sizeof(lastName) + 1,
NULL);
printf("Last Name: %s \n", lastName);
if (ret != SQL_SUCCESS) {
/* handle error */
}

/* get data from column 3 */
ret = SQLGetData(hstmt, 3, SQL_C_CHAR, (SQLPOINTER)email, sizeof(email) + 1, NULL);
printf("email : %s \n", email);
if (ret != SQL_SUCCESS) {
/* handle error */
}

ret=SQLFetch(hstmt);
}
ret = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_ROLLBACK);
if (ret != SQL_SUCCESS) {
/* handle error */
return 1;
}

/* free the statement handle */
ret = SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
if (ret != SQL_SUCCESS){
/* handle error */
return 1;
}

Consider converting all applications using the MySQL Connector/C++ to DB2
CLI. The typical conversion process remains the same, because both MySQL C
and MySQL C++ use the same flow of the program.

8.2.6 Converting Connector/ODBC applications to DB2

MySQL supports the ODBC database API to connect to a MySQL database
server using an optional product called MySQL Connector/ODBC. The actual
product name is MyODBC. Support for Connector/ODBC is available at two
levels:

� Connector/ODBC 3.51 is a 32-bit ODBC driver supporting the ODBC 3.51
specification

� Connector/ODBC 5.1 supports 64-bit platforms and improves on
Connector/ODBC 3.51 support

256 MySQL to DB2 Conversion Guide

The conversion is easy, because DB2 CLI is also based on the ODBC
specification and you can build ODBC applications without using any ODBC
driver manager.

You only have to use DB2 ODBC driver to link to your application with libdb2.
The DB2 CLI driver also acts as an ODBC driver when loaded by an ODBC
driver manager. DB2 CLI conforms to ODBC 3.51.

Figure 8-6 shows the MySQL driver and DB2 ODBC driver in the ODBC
scenario. Figure 8-6 shows the simplicity of converting an application using an
ODBC driver to another driver. It also shows various components that are
involved in the ODBC application and how they map from MySQL
Connector/ODBC to DB2 ODBC.

Figure 8-6 ODBC application conversion from MyODBC to DB2 ODBC driver

Typically, the MySQL Connector/ODBC connector has five components:

� Application

Because both MyODBC and DB2 CLI are based on the ODBC specification,
applications do not require many changes. Although you do have to perform
certain tasks, such as changing SQL queries, making changes in transaction
management, and making proprietary method changes, where methods
deviate from ODBC or other methods.

� Driver manager

 Chapter 8. Application conversion 257

The IBM Data Server CLI and ODBC Driver does not come with the ODBC
driver manager. When using an ODBC application, you must ensure that an
ODBC driver manager is installed and that users using ODBC have access to
it. The following ODBC driver managers can be configured to work with the
IBM Data Server CLI and ODBC Driver:

– unixODBC driver manager

The unixODBC driver manager is an open source ODBC driver manager
supported for DB2 ODBC applications on all supported Linux and UNIX
operating systems.

– Microsoft ODBC driver manager

You can use the Microsoft ODBC driver manager for connections to
remote DB2 databases when using a TCP/IP network.

– DataDirect ODBC driver manager

You can use the DataDirect ODBC driver manager for DB2 for
connections to the DB2 database.

� Connector/ODBC

As shown in Figure 8-6 on page 257, you are not required to use
Connector/ODBC now; instead, you use the DB2 ODBC driver.

� ODBC configuration

The ODBC Driver Manager uses two initialization files:

– The /etc/unixODBC/odbcinst.ini file, in which you must add the
following lines:

[IBM DB2 ODBC DRIVER]
Driver=/home/<instance name>/sqllib/lib/db2.o

– The /home/<instance name>/.odbc.ini file, in which you must configure
the data source. To set up a data source, you must add the following
information:

In [ODBC Data Source] stanza add
invent= IBM DB2 ODBC DRIVER
Add [invent] stanza with
Driver=/home/<instance name>/sqllib/lib/libdb2.so
Description= invent DB2 ODBC Database

� MySQL server

The MySQL database server is replaced by the DB2 server, which has been
discussed in detail in previous chapters.

You can optionally configure the DB2 ODBC Driver to modify the behavior of the
DB2 ODBC Driver by changing the db2cli.ini file.

258 MySQL to DB2 Conversion Guide

8.2.7 Condition handling in DB2

It is critical that you foresee and handle exceptions in the application if you want
a robust, industrial strength program. This section gives an introduction to
condition handing in DB2.

DB2 error checking with SQLCODE and SQLSTATE
Each time that an SQL statement is executed, two values are returned by the
DB2 engine and placed in the SQL communication area (SQLCA): SQLCODE
and SQLSTATE.

Within your application program, you can retrieve these values to determine the
state of the previously executed SQL statement. These identifiers provide more
detailed information about the condition of the statement.

SQLCODE is the variable that is conventionally used for error handling in
applications coded against the DB2 family. Therefore, SQLCODE is probably the
most granular when it comes to DB2 exception handling.

However, IBM defines the value for SQLCODE. To achieve the highest
portability of applications, only build dependencies on a subset of DB2
SQLSTATEs that are defined by ODBC Version 3 and ISO SQL/CLI
specifications. Whenever you build your exception handling on IBM-supplied
SQLSTATEs or SQLCODEs, carefully and thoroughly document the
dependencies. You can access the specifications by using the search words
ISO/IEC and standards 9075-1, 9075-2, and 9075-3 for SQL Foundation.

SQLSTATE is a five character string conforming to the American National
Standards Institute (ANSI) SQL92 standard. The first two characters are known
as the SQLSTATE class code, for example:

� 00 means successful completion.
� 01 is a warning.
� HY is generated by the DB2 CLI (call level interface) or ODBC driver.
� IM is generated by the ODBC driver manager.

For example, if your application signals SQLSTATE 23000, the DB2 description
reports an integrity constraint violation, which is similar to MySQL’s rudimentary
description ER NON UNIQ ERROR or ER DUP KEY. Hence, condition handling for both
database management systems can almost execute the same code.

 Chapter 8. Application conversion 259

SQLSTATE for DB2 CLI
Follow these guidelines for using SQLSTATEs within your CLI application:

� Always check the function return code before calling SQLGetDiagRec() to
determine if diagnostic information is available. Refer to the IBM DB2 Call
Level Interface Guide and Reference, Volume 1, SC10-4224-00, for more
information about this API.

� Use the SQLSTATEs rather than the native error code.

� To increase your application’s portability, only build dependencies on the
subset of DB2 CLI SQLSTATEs that is defined by the ODBC Version 3 and
ISO SQL/CLI specifications, and return the additional dependencies as
information only.

It might be useful to build dependencies on the class (the first two characters)
of the SQLSTATEs.

� For maximum diagnostic information, return the text message along with the
SQLSTATE (if applicable, the text message will also include the IBM-defined
SQLSTATE). It is also useful for the application to print the name of the
function that returns the error.

� Ensure that the string allocated for the SQLSTATE includes space for the null
termination character that is returned by DB2 CLI.

The code segment from utilcli.c in Example 8-61 shows how to retrieve and
display diagnostic information, such as SQLSTATEs.

Example 8-61 Handling SQLSTATE in CLI

void HandleDiagnosticsPrint(SQLSMALLINT htype, /* type identifier */
 SQLHANDLE hndl /* handle */)

{
 SQLCHAR message[SQL_MAX_MESSAGE_LENGTH + 1];
 SQLCHAR sqlstate[SQL_SQLSTATE_SIZE + 1];
 SQLINTEGER sqlcode;
 SQLSMALLINT length, i;

 i = 1;

 /* get multiple field settings of diagnostic record */
 while (SQLGetDiagRec(htype,
hndl,
i,
sqlstate,
&sqlcode,
message,
SQL_MAX_MESSAGE_LENGTH + 1,
&length) == SQL_SUCCESS)
 {
 printf("\n SQLSTATE= %s\n", sqlstate);
 printf("Native Error Code = %ld\n", sqlcode);

260 MySQL to DB2 Conversion Guide

 printf("%s\n", message);
 i++;
 }

printf("-------------------------\n");
}

Handling SQL errors in an SQLJ application
SQLJ clauses use the java.sql.SQLException JDBC class for error handling.
SQLJ generates an SQLException under the following circumstances:

� When any SQL statement returns a negative SQL error code
� When a SELECT INTO SQL statement returns a +100 SQL error code

You can use the getErrorCode method to retrieve SQL error codes and the
getSQLState method to retrieve SQLSTATEs.

To handle SQL errors in your SQLJ application, import the
java.sql.SQLException class, and use the Java error handling try/catch blocks to
modify the program flow when an SQL error occurs (see Example 8-62).

Example 8-62 SQL Exception with SQLJ

try {
#sql [ctxt] {SELECT LASTNAME INTO :empname

FROM EMPLOYEE WHERE EMPNO='000010'};
 }
catch(SQLException e) {
System.out.println("Error code returned: " + e.getErrorCode());
}

For exception handling in Java, it is important to know that DB2 provides several
types of JDBC drivers with slightly different characteristics. With the DB2
Universal JDBC Driver, you can retrieve the SQLCA. For the DB2 JDBC type 2
driver for Linux, UNIX, and Windows (DB2 JDBC type 2 driver), use the standard
SQLException to retrieve SQL error information.

SQLException under the IBM Data Server Driver for JDBC and
SQLJ
As in all Java programs, error handling is done using try/catch blocks. Methods
throw exceptions when an error occurs, and the code in the catch block handles
those exceptions.

Note: We provide the code snippets in this chapter for illustrative purposes
only. The utilcli.c code is sample code that is included with DB2, which you
can find in the SQLLIB/samples directory.

 Chapter 8. Application conversion 261

JDBC provides the SQLException class for handling errors. All JDBC methods
throw an instance of SQLException when an error occurs during their execution.
According to the JDBC specification, an SQLException object contains the
following information:

� A string object that contains a description of the error or null
� A string object that contains the SQLSTATE or null
� An integer value that contains an error code
� A pointer to the next SQLException or null

IBM DB2 Driver for JDBC and SQLJ provides an extension to the SQLException
class, which gives you more information about errors that occur when DB2 is
accessed. If the JDBC driver detects an error, the SQLException class provides
you with the same information as the standard SQLException class. However, if
DB2 detects the error, the SQLException class provides you the standard
information, along with the contents of the SQLCA that DB2 returns. If you plan
to run your JDBC applications only on a system that uses the IBM DB2 Driver for
JDBC and SQLJ, you can use this extended SQLException class.

Under the IBM DB2 Driver for JDBC and SQLJ, SQLExceptions from DB2
implement the com.ibm.db2.jcc.DB2Diagnosable interface. An SQLException
from DB2 contains the following information:

� A java.lang.Throwable object that caused the SQLException or null if no such
object exists. The java.lang.Throwable class is the superclass of all errors
and exceptions in the Java language.

� The information that is provided by a standard SQLException

� An object of DB2-defined type DB2Sqlca that contains the SQLCA. This
object contains the following objects:

– An INT value that contains an SQL error code
– A String object that contains the SQLERRMC values
– A String object that contains the SQLERRP value
– An array of INT values that contains the SQLERRD values
– An array of CHAR values that contains the SQLWARN values
– A String object that contains the SQLSTATE

Follow these steps to handle an SQLException in a JDBC program that runs
under the IBM DB2 Driver for JDBC and SQLJ:

1. Import the required classes for DB2 error handling:
com.ibm.db2.jcc.DB2Diagnosable for getting diagnostic data and
com.ibm.db2.jcc.DB2Sqlca for receiving error messages.

2. In your code, catch SQLException and use it to get SQLCA, which is only
allowed if the exception thrown is an instance of the DB2Diagnosable class.

262 MySQL to DB2 Conversion Guide

3. After you have DB2Sqlca, use it to get SQLCODE, messages, SQL errors,
and warnings, as shown in Example 8-63.

Example 8-63 Processing an SQLException under the Universal JDBC driver

import java.sql.*;
 import com.ibm.db2.jcc.DB2Diagnosable;

import com.ibm.db2.jcc.DB2Sqlca;

……
try {
// Code that could throw SQLExceptions }

….
catch(SQLException sqle) {
while(sqle != null) {
 if (sqle instanceof DB2Diagnosable) {
 DB2Sqlca sqlca = ((DB2Diagnosable)sqle).getSqlca();
 if (sqlca != null) {
 System.err.println ("SqlCode: " + sqlca.getSqlCode());
 System.err.println ("SQLERRMC: " + sqlca.getSqlErrmc());
 System.err.println ("SQLERRP: " + sqlca.getSqlErrp());
 String[] sqlErrmcTokens = sqlca.getSqlErrmcTokens();
 for (int i=0; i< sqlErrmcTokens.length; i++) {
 System.err.println (" token " + i + ": " + sqlErrmcTokens[i]);
}
 int[] sqlErrd = sqlca.getSqlErrd();
 char[] sqlWarn = sqlca.getSqlWarn();
System.err.println ("SQLSTATE: " + sqlca.getSqlState());
System.err.println ("message: " + sqlca.getMessage());
 }
 }
sqle=sqle.getNextException();
 }
}

Error handling using the WHENEVER statement
The WHENEVER statement causes the SQL precompiler to generate source
code that directs the application to go to a specified label if either an error, a
warning, or no rows are found during execution. The statement, WHENEVER,
affects all subsequent SQL statements until another WHENEVER statement
alters the situation.

The WHENEVER statement has three key forms:

EXEC SQL WHENEVER SQLERROR action
EXEC SQL WHENEVER SQLWARNING action
EXEC SQL WHENEVER NOT FOUND action

Next, we explain these statements:

� SQLERROR identifies any condition where SQLCODE < 0.

 Chapter 8. Application conversion 263

� SQLWARNING identifies any condition where SQLWARN(0) = W or
SQLCODE > 0 but is not equal to 100.

� NOT FOUND identifies any condition where SQLCODE = 100.

In each case, action specifies one of the following indicators:

� CONTINUE indicates to continue with the next instruction in the application.

� GO TO label indicates to go to the statement immediately following the label
specified after GO TO (which is also commonly used as GOTO).

When the WHENEVER statement is not used, by default, execution continues
even if an error, warning, or exception condition occurs.

You must use the WHENEVER statement prior to the SQL statements that will
be affected. Otherwise, the precompiler does not know that additional
error-handling code must be generated for executable SQL statements. You can
have any combination of the three forms active at any time. The order in which
you declare the three forms is insignificant.

To avoid an infinite looping situation, ensure that you undo the WHENEVER
handling, prior to executing any SQL statements within the handler, by using the
WHENEVER SQLERROR CONTINUE statement.

Declaring the SQLCA for error handling
You can declare the SQLCA in your application program so that the database
manager can return information to your application. When you preprocess your
program, the database manager inserts host language variable declarations in
place of the INCLUDE SQLCA statement. The system communicates with your
program using the variables for warning flags, error codes, and diagnostic
information.

After executing each SQL statement, the system issues a return code in both
SQLCODE and SQLSTATE. SQLCODE is an integer value that summarizes the
execution of the statement, and SQLSTATE is a character field that provides
error codes that are common across IBM relational database products.
SQLSTATE also conforms to the ISO/ANSI SQL92 and Federal Information
Processing Standard (FIPS) 127-2 standard.

Note that if SQLCODE is less than 0, it means that an error has occurred and the
statement has not been processed. If the SQLCODE is greater than 0, it means
that a warning has been issued, but the statement is still processed.

For a DB2 application that is written in C or C++, if the application is created
using multiple source files, only one of the files can include the EXEC SQL

264 MySQL to DB2 Conversion Guide

INCLUDE SQLCA statement to avoid multiple definitions of the SQLCA. The
remaining source files need to use the following lines:

#include "sqlca.h"
extern struct sqlca sqlca;

Condition handling in a DB2 stored procedure
Similar to MySQL, DB2 defines condition handling by using a stored procedure.
Although the support is similar, it seems appropriate to include a few examples of
DB2 condition handling. For detailed information about condition handlers, refer
to SQL Procedural Languages: Application Enablement and Support,
SC09-4827.

This format is the general form of a handler declaration:

---DECLARE-----+-CONTINUE-+---- HANDLER-- FOR---condition------>
+-EXIT---------+
+-UNDO---------+
>-----------SQL-procedure-statement-----------------------------|

When DB2 raises a condition that matches a condition, DB2 passes control to
the condition handler. The condition handler performs the action that is indicated
by the handler-type and then executes the SQL-procedure-statement.

DB2 provides three general conditions:

� NOT FOUND:

This condition identifies a condition resulting in an SQLCODE of +100 or an
SQLSTATE beginning with the characters '02'.

� SQLEXCEPTION:

This condition identifies any condition that results in a negative SQLCODE.

� SQLWARNING:

This condition identifies any condition that results in a warning condition
(SQLWARN0 is 'W') or that results in a positive SQL return code other than
+100. The corresponding SQLSTATE value will begin with the characters
'01'.

You can also use the DECLARE statement to define your own condition for a
specific SQLSTATE.

Example 8-64 on page 266 shows the general flow of the condition handler in a
stored procedure.

 Chapter 8. Application conversion 265

Example 8-64 General example for condition handling

Begin
declare exit handler

for sqlexception
begin

statement3;
statement4;
end;

statement1;
statement2;
End

Example 8-65 shows a CONTINUE handler for delete and update operations on
a table named EMP. Again, note that this code is solely intended for illustrative
purposes.

Example 8-65 Example of a DB2 CONTINUE handler

CREATE PROCEDURE PROC1()
LANGUAGE SQL
BEGIN
 DECLARE SQLCODE, v_error INT;
 DECLARE CONTINUE HANDLER FOR
SQLEXCEPTION,
SET v_error = SQLCODE;

 DELETE FROM emp
 WHERE empno BETWEEN 100 and 200;
 IF (v_error = -147) THEN
 INSERT . . .
 UPDATE staff SET salary = salary * 1.25;
 IF (v_error <> 0) THEN
 RETURN -1;
 END IF;
END

8.2.8 Special conversions

MySQL provides access control on the host level, which means that specific
privileges are granted depending on the host from which the user connects. DB2
does not provide this control mechanism. Therefore, if you use this MySQL
feature, you have to implement a work-around in the application. You must
change the code for any applications that use the MySQL host authentication
feature to control user privileges on a database or global level.

266 MySQL to DB2 Conversion Guide

There are many ways to implement this authentication mechanism on the
application level. Here, we demonstrate a work-around using a simple example
application that has two functions, SELECT and INSERT, which use the MySQL
security feature to limit selecting and inserting data on the host level.
Example 8-66 shows the MySQL host access data for four users that are
controlled by our example.

Example 8-66 MySQL host access date

mysql> select user, host, select_priv, insert_priv from user;
+---------------+------------------+-------------+-------------+
| user | host | select_priv | insert_priv |
+---------------+------------------+-------------+--------------+
root	localhost	N	N	
	localhost	N	N	
user01	% _____	Y _____	N	
user02	%.ibm.com	N	Y	
inventAppUser	localhost	Y	Y	
inventAppUser	%.ibm.com	Y ________	Y	
+---------------+------------------+-------------+--------------+

This information has to be ported into a DB2 table. When a user attempts to
access the data in the DB2 database, the application will verify each user’s
database access rights, along with the host system information for the host from
which that user connects.

We need two tables for our DB2 conversion: one table to store user privilege
information ported from MySQL and one working table. The table definitions and
sample values are shown in Example 8-67.

Example 8-67 Creation of the tables for host authentication

-- script for creating the tables used by our example application

-- connect to the database
connect to invent user db2inst1 using password;

-- table ACCESSLIST
-- it stores access rights for specific users connecting from specific hosts
-- remark: there should be different access-flags for different functions

-- fields:
-- username, whom access to the function should be granted
-- hostname or ip-address, from which the user must connect
-- select access flag (Y/N), if SELECT is granted
-- insert access flag (Y/N), if INSERT is granted

drop table ACCESSLIST;
create table ACCESSLIST (
USERNAMEvarchar(20),

 Chapter 8. Application conversion 267

HOSTvarchar(30),
ACCESS_SELchar(1),
ACCESS_INSchar(1)
);
-- insert some sample values, according to the MySQL values (see above)
insert into ACCESSLIST values('user01', '%', 'Y', 'N');
insert into ACCESSLIST values('user02', '%.ibm.com', 'N', 'Y');
insert into ACCESSLIST values('inventAppUser', 'localhost', 'Y', 'Y');
insert into ACCESSLIST values('inventAppUser', '%.ibm.com', 'Y', 'Y');

-- table APPLACCESS
-- it stores the info about users and their host asking for access
-- this table is filled automatically by the sample application

-- fields:
-- username, who asks for access to the function
-- hostname, from which the user connects
-- ip-address, from which the user connects
-- timestamp, when the user asks for access

drop table APPLACCESS;
create table APPLACCESS (
USERNAME varchar(8),
HOSTNAME varchar(30),
IPADDR varchar(30),
TS timestamp
);

The authentication mechanism uses the ACCESSLIST and APPLACCESS
tables:

� ACCESSLIST table

This table stores all the combinations of users and hosts (either name or
IP address), and specific database access privileges are granted to user and
host combinations. In our example, we control two access rights: SELECT
and INSERT, so that we have two access fields: ACCESS_SEL and
ACCESS_INS. In an actual client’s application, more functions are controlled,
so this table is expanded to have one ACCESS field for each function to be
controlled, based on the corresponding MySQL privilege.

We insert sample values into this table for demonstration purposes.

� APPLACCESS table

This table is filled by the authentication application during run time. When a
user asks for access, the application inserts the user ID, the host name, and
the IP address from where the user connects. The timestamp is used as a key
in this table, because records are not deleted from it.

Example 8-68 on page 269 lists the application code; remember that the code is
just for demonstration purposes.

268 MySQL to DB2 Conversion Guide

Example 8-68 Authentication mechanism example

import java.lang.*;
import java.io.*;
import java.sql.*;
import java.net.*;
public class AccessControl
{
 // in our example we use fixed values, you should make this variable
 private static final String DB2DB = "invent"; // database name
 private static final String DB2USR = "db2inst1"; // database user
 private static final String DB2PWD = "password"; // database password

 private static Connection db2Conn; // DB2 connection object

 public static void main(String[] args) throws SQLException, Exception
 {
 Class.forName("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();

 db2Conn=DriverManager.getConnection("jdbc:db2:"+DB2DB,DB2USR,DB2PWD);

 // This example shows how to verify accesss to specific functions
 // depending on the host where the program is executed.
 // We assume that this program runs locally and connects directly to DB2
 // In a client/server-app, the server must detect the client's host.

 // Java provides two methods for this purpose:
 // socket.getInetAddress() ... for socket-connections
 // request.getRemoteHost() ... for HTTP-connections

 // In this example the username is the same as the DB2 user.
 // The application user and the database user could also be different.
 // This example implements no error handling.

 // This example shows access to two specific functions:
 // SELECT...this is indicated by mode='SEL'
 // INSERT...this is indicated by mode='INS'
 // mode should be a variable parameter

 String mode = "SEL";
 String insertStr = "";

 InetAddress addr = InetAddress.getLocalHost(); // appl executes locally
 String ipname = addr.getHostName(); // get the hostname
 String ipaddr = addr.getHostAddress(); // get the ip-address
 System.out.println("Host name = " + ipname);
 System.out.println("Host addr = " + ipaddr);
 // get records for the specified username with access to the function
String query1 = "select HOST, current timestamp as TS from ACCESSLIST "+
 "where USERNAME='" + DB2USR + "' and ACCESS_" + mode + "='Y'";
System.out.println("Query = " + query1);
 PreparedStatement ps1 = db2Conn.prepareStatement(query1);
 ResultSet rs = ps1.executeQuery(); // run the query

 Chapter 8. Application conversion 269

 if (! rs.next()) // no rows found?
 System.out.println("no authorization for this username...");
 else
 {
 String ts = rs.getString("TS"); // retrieve the timestamp (key)
 String hostval = rs.getString("HOST"); // retrieve allowed hostname

 // write the current connection info into a table
 // with this table it is possible to use the SQL like function String
 insertStr = "insert into APPLACCESS values " +
 "('"+DB2USR+"','"+ipname+"','"+ipaddr+"','"+ts+"')";
 System.out.println("Insert = " + insertStr);
 PreparedStatement ps0 = db2Conn.prepareStatement(insertStr);
 ps0.execute(); // run the insert
 // check if the current connection info has an equivalent host entry
 // (either IP-name or IP-address)
 String query2 = "select 1 from APPLACCESS where "+
 "TS='"+ts+"' and "+
 "HOSTNAME like '"+hostval+"' or IPADDR like '"+hostval +"'";
 while (rs.next()) // there can be more than one permitted hosts
 {
 hostval = rs.getString("HOST"); // retrieve the allowed hostname
 query2 = query2 + " or HOSTNAME like '" + hostval +

"' or IPADDR like '" + hostval + "'";
 }
 System.out.println("Query = " + query2);
 PreparedStatement ps2 = db2Conn.prepareStatement(query2);
 ResultSet rs2 = ps2.executeQuery(); // run the query
 if (! rs2.next()) // no accordance found?

System.out.println("no authorization...");
 else
 {
 System.out.println("You are authorized to go on!");
// here should be the call to the access controlled function if (mode.equals("SEL"))
 {
 // call the SELECT function
 }
 if (mode.equals("INS")
 {
 // call the INSERT function
 }
 }
 }
 }
}

This example application works in the following ways:

� The first step is to get all hosts out of the ACCESSLIST table from which the
specified user has access to the requested function.

� The second step is to insert the information about the access request into the
table APPLACCESS. The major reason for this step is that if this information

270 MySQL to DB2 Conversion Guide

is stored in a table, the SQL LIKE function can be used in the next step. The
LIKE function handles wildcards (“%” and “_”) in the host information
correctly.

� The third step is to verify if the host name or IP address has access rights by
comparing the entry with the host name that was retrieved in the first step.

� If access is allowed, the function is executed. You can also implement a
method that has a return code stating whether access is allowed.

8.3 Additional application considerations

After you convert to DB2 9.7, an application’s run time performance can be
impacted by a number of factors. This section describes what locking and
transaction isolation does to your application when running in a multiuser
environment.

8.3.1 The purpose of locking

When many users access the same data source using your application, or any
other interface that allows data manipulation, unwanted effects can occur:

� Lost update:

Two concurrent users retrieve and update the same data. The last successful
change is kept while the first change is overridden.

� Uncommitted (or dirty) read:

User A can read or view data changed by User B, but those changes have not
been committed yet.

� Non-repeatable read:

Within the same transaction, User A runs the identical SELECT statement
multiple times with different results, because User B modified records in User
A’s result set.

� Phantom read:

Within the same transaction, User A runs a SELECT statement multiple times
and gets additional records, because user B added records in User A’s result
set.

One of the more advanced features of a data management system is to define
modification rules to control the use of data and to guarantee the integrity of the
data to prevent these undesirable effects.

 Chapter 8. Application conversion 271

8.3.2 Concurrency control and transaction isolation

From an overview perspective, we can differentiate two methods for concurrency
control:

� The optimistic concurrency approach:

This approach is a strategy to increase concurrency in which rows are not
locked. Transactions are divided into read, validate, and write phases.
Instead, during the validation phase before the records are updated or
deleted, a cursor checks to see if the records have been changed since they
were last read. If so, the update or delete fails.

� The pessimistic concurrency or locking approach:

This approach is a strategy in which rows are locked so that other
transactions cannot change them. The transaction requests locks to the
update resources. Other transactions have to wait or time out. The resource
is released on the transaction completion or commit and rollback.

Both methods have their advantages and disadvantages, but by far, the most
popular method is the latter approach. Both MySQL and DB2 follow this
approach to various degrees of sophistication and with implementation
differences.

8.3.3 DB2 isolation levels

The isolation level that is associated with an application process determines the
degree to which the data that is being accessed by that process is locked or
isolated from other concurrently executing processes. The isolation level is in
effect for the duration of a unit of work.

The isolation level of an application process therefore specifies these conditions:

� The degree to which rows that are read or updated by the application are
available to other concurrently executing application processes.

� The degree to which the update activity of other concurrently executing
application processes can affect the application.

The isolation level for static SQL statements is specified as an attribute of a
package and applies to the application processes that use that package. The
isolation level is specified during the program preparation process by setting the
ISOLATION bind or precompile option. For dynamic SQL statements, the default
isolation level is the isolation level that was specified for the package preparing
the statement. Use the SET CURRENT ISOLATION statement to specify a
separate isolation level for dynamic SQL statements that are issued within a
session. For both static SQL statements and dynamic SQL statements, the

272 MySQL to DB2 Conversion Guide

isolation-clause in a select-statement overrides both the special register (if set)
and the bind option value.

Because the isolation level determines how data is isolated from other processes
while the data is being accessed, select an isolation level that balances the
requirements of concurrency and data integrity. Table 8-5 gives you an overview
of the DB2 isolation levels.

Table 8-5 DB2 isolation level

DB2 isolation level Description

Uncommitted Read � Access to uncommitted data from other transactions
� No record locks unless updates occur

Cursor Stability � Addresses the dirty read issue
� Sees only committed data from other transactions
� Lock is only held on cursor position unless update occurs
� Update lock is held until transaction completed = commit
� Default isolation level

Read Stability � Addresses nonrepeatable read issue
� Sees only committed data from other transactions
� Locks are held on every row fetched (Inserts permitted)
� Locks are held for the duration of the transaction

(commit/rollback)

Repeatable Read � Addresses phantom read issue
� All record locks held for the duration of the transaction
� A repeated query within the same transaction will get the

same result set (Inserts are prevented)

Note: Only committed data is returned for the cursor stability isolation level,
which is the currently committed semantics introduced in Version 9.7. Only
committed data was returned in previous releases, but now readers do not
wait for updaters to release the row locks. Instead, readers return data that is
based on the currently committed version, that is, data prior to the start of the
write operation.

 Chapter 8. Application conversion 273

The isolation levels that are listed in Table 8-5 on page 273 are ordered
descendent according to the number and duration of the locks that are held
during the transaction. Therefore, the degree of concurrency or locking is
required to ensure the desired level of data integrity. However, too much locking
drastically reduces concurrency. Poor application design and coding can cause
locking problems, such as:

� Deadlocks
� Lock waits
� Lock escalation
� Lock timeouts

By default, DB2 operates with the cursor stability isolation level. You can specify
transaction isolation at many levels, as we discussed in 8.3.5, “Specifying the
isolation level in DB2” on page 276. For good performance, verify the lowest
isolation level required for your converted application.

For additional information about the DB2 concurrency implementation, refer to
the IBM DB2 Database for Linux, UNIX, and Windows Information Center at:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

8.3.4 Locking

Certain MySQL applications, when ported to DB2, appear to behave identically,
and you can ignore the topic of concurrency. However, if your applications
involve frequent access to the same tables, the applications might behave
differently. By default, MySQL runs in a mode that is called autocommit, which
means that MySQL considers each and every SQL statement as an atomic unit
of work or transaction.

In contrast, DB2, by default, considers a group of SQL statements with the
corresponding unit of work boundaries set by a commit, a rollback statement as a
single or atomic transaction, respectively. There are certain interfaces, such as
the DB2 command line processor (CLP) or the JDBC interface, that run in
autocommit mode. For other application interfaces, autocommit is turned off by
default.

Another matter causing controversy among experts is the level of locking that is
required for implementation on the database level. Do you implement the locking
approach with the lowest level of overhead and, therefore, maintain locks on a
table level? Or, is it better to lock on a lower level, for example, on the page
level? Or, do you want even finer granularity with locking occurring on the row
level? As usual, the correct answer to these questions is, “It depends.”

274 MySQL to DB2 Conversion Guide

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

MySQL development decided to use the multistorage engine and decided to
implement lock levels based on the type of table. Table types can be mixed
within a database and even within a statement, and types can be altered. The
default storage engine for MySQL supports only table-level locking. MyISAM
table, Merge, and MEMORY tables use table-level locking. The InnoDB storage
engine was released as a transactional table handler of MySQL with a lock
manager for row-level locking mechanisms. Hence, the MySQL table type
InnoDB defines tables that are the most like DB2 tables. Table 8-6 gives a
high-level comparison of the MySQL tables and the DB2 tables.

Table 8-6 MySQL and DB2 table comparison

Consider using table-level locking in these situations:

� Applications that use mostly reads, such as data warehouse and Business
Intelligence applications

Applications reading and updating through key positioning, such as
UPDATE... WHERE Custno =?

� Applications using INSERTs with subselects and only a small number of
UPDATEs and DELETEs

Consider using row-level locking in these situations:

� Applications that require a high level of concurrency and online transaction
processing (OLTP) capabilities

� Many SELECTs with only small result sets

� Applications with high UPDATE, INSERT, and DELETE frequency

Characteristics DB2 tables MyISAM tables InnoDB tables

Lock level Row level,
table level only on
explicit request

None or table level Row level and
table level

Commitment
control

Yes No Yes

Isolation level Uncommitted
Reads, Cursor
Stability, Read
Stability, and
Repeatable Reads

No Read
Uncommitted,
Read Committed,
Repeatable Reads,
Serializable

Rollback on DDL Yes No Yes

 Chapter 8. Application conversion 275

However, there are concurrency issues that might arise when converting a
MySQL application to DB2 based on the two MySQL table types that we consider
significant:

� MyISAM tables provide a high level of concurrency, because SQL processing
occurs in autocommit mode and no row-level locks are maintained. When
converting to DB2, ensure that your application operates in autocommit
mode. Verify the lowest isolation level required for your application and
MyISAM tables.

� InnoDB tables provide concurrency control similar to DB2. Note that default
transaction isolation for InnoDB is repeatable read.

8.3.5 Specifying the isolation level in DB2

Because the isolation level determines how data is locked and isolated from
other processes, while it is being accessed, you need to select an isolation level
that balances the requirements of concurrency and data integrity.

The isolation level that you specify is in effect for the duration of the unit of work.
You can specify the isolation level in several ways. Use the following heuristics to
determine which isolation level will be used when compiling an SQL or XQuery
statement:

� Static SQL:

– If an isolation clause is specified in the statement, the value of that clause
is used.

– If no isolation clause is specified in the statement, the isolation level used
is the isolation level that is specified for the package at the time when the
package was bound to the database.

� Dynamic SQL:

– If an isolation clause is specified in the statement, the value of that clause
is used.

– If no isolation clause is specified in the statement, and a SET CURRENT
ISOLATION statement has been issued within the current session, the
value of the CURRENT ISOLATION special register is used.

– If no isolation clause is specified in the statement, and no SET CURRENT
ISOLATION statement has been issued within the current session, the
isolation level used is the one specified for the package at the time that the
package was bound to the database.

� For static or dynamic XQuery statements, the isolation level of the
environment determines the isolation level that is used when the XQuery
expression is evaluated.

276 MySQL to DB2 Conversion Guide

SQL procedure and isolation level
This section discusses when to specify the isolation level for an SQL procedure.

At precompile or bind time
For an application that is written in a supported compiled language, use the
ISOLATION option of the command line processor PREP or BIND commands.
You can also use the sqlaprep or sqlabndx API to specify the isolation level:

� If you create a bind file at precompile time, the isolation level is stored in the
bind file. If you do not specify an isolation level at bind time, the default is the
isolation level that is used during precompilation.

� If you do not specify an isolation level, the default of cursor stability is used.

On database servers that support REXX
When a database is created, multiple bind files that support the isolation levels
for SQL in REXX are bound to the database. Other command line processor
packages are also bound to the database when a database is created.

REXX and the command line processor connect to a database using a default
isolation level of cursor stability. Changing to another isolation level does not
change the connection state.

To determine the isolation level that is used by a REXX application, check the
value of the SQLISL predefined REXX variable. The value is updated each time
that the CHANGE ISOLATION LEVEL command executes.

At the statement level
Use the WITH clause. The WITH clause cannot be used on subqueries. The
WITH UR option applies to read-only operations only. In other cases, the
statement is automatically changed from UR to CS.

Note: Many commercially written applications provide a method for choosing
the isolation level. Refer to the application documentation for information.

Tip: To determine the isolation level of a package, execute the following query
where XXXXXXXX is the name of the package and YYYYYYYY is the
schema name of the package. Both of these names must be in all capital
letters:

SELECT ISOLATION FROM SYSCAT.PACKAGES
WHERE PKGNAME = 'XXXXXXXX'
AND PKGSCHEMA = 'YYYYYYYY'

 Chapter 8. Application conversion 277

This isolation level overrides the isolation level that is specified for the package in
which the statement appears. You can specify an isolation level for the following
SQL statements:

� DECLARE CURSOR
� Searched DELETE
� INSERT
� SELECT
� SELECT INTO
� Searched UPDATE

From CLI or ODBC at run time
Use the CHANGE ISOLATION LEVEL command. With DB2 call level interface
(CLI), you can change the isolation level as part of the CLI configuration. At run
time, use the SQLSetConnectAttr function with the
SQL_ATTR_TXN_ISOLATION attribute to set the transaction isolation level for
the current connection referenced by the ConnectionHandle argument. You can
also use the TXNISOLATION keyword in the db2cli.ini file.

When working with JDBC or SQLJ at run time
To create a package (and to specify its isolation level) in SQLJ, use the SQLJ
profile customizer (the db2sqljcustomize command).

For dynamic SQL within the current session
Use the SET CURRENT ISOLATION statement to set the isolation level for
dynamic SQL issued within a session. Issuing this statement sets the CURRENT
ISOLATION special register to a value that specifies the isolation level for any
dynamic SQL statements that are issued within the current session. When set,
the CURRENT ISOLATION special register provides the isolation level for any
subsequent dynamic SQL statement that is compiled within the session,
regardless of which package issued the statement. This isolation level is in effect
until the session ends or until the SET CURRENT ISOLATION…RESET
statement is issued.

Note: Isolation levels for XQuery statements cannot be specified at the
statement level.

Note: JDBC and SQLJ are implemented with CLI on DB2, which means that
the db2cli.ini settings might affect what is written and run using JDBC and
SQLJ.

278 MySQL to DB2 Conversion Guide

Chapter 9. Database administration

In this chapter, we focus on the database administration features that are offered
by DB2. We provide a general introduction and detailed description of DB2
administration programs, utilities, and tools. We also describe a few of the salient
features that are available in DB2 but that are missing in MySQL.

We present key attributes of database administration for DB2, such as:

� Database configuration
� Data recovery
� Database replication
� Data movement utilities
� High availability
� Autonomics
� Workload Manager

We also explore the following graphical tools:

� DB2 Control Center
� IBM Data Studio
� Data Studio Administration Console

9

© Copyright IBM Corp. 2009. All rights reserved. 279

9.1 Database configuration

Database configuration is a extremely important task for database
administrators. It involves setting up the optimal parameters for the database,
system, database manager, and all other related components to achieve the best
performance for your application. In this section, we discuss how DB2 database
parameters are tuned.

9.1.1 DB2 configuration

DB2 has two levels of configuration:

� Database manager (instance)
� Database

DB2 environment variables and profile registry
DB2 environment and profile registry variables control the database
environment. Information that is stored in these profile registries is used by the
DB2 server instance and any DB2 applications that are started after the changes
have been made.

Using the DB2 profile registry allows for centralized control of the environment
variables. Through use of various profiles, multiple levels of support are
provided. Remote administration of the environment variables is also available
when using the DB2 Administration Server.

There are four profile registries:

� The DB2 instance-level profile registry

The majority of the DB2 environment variables are placed in this registry. The
environment variable settings for a particular instance are kept in this registry.
Values that are defined in this level override their settings on the global level.

� The DB2 global-level profile registry

If an environment variable is not set for a particular instance, this registry is
used. This registry is visible to all instances pertaining to a particular copy of
the DB2 data server; one global-level profile exists in the installation path.

� The DB2 instance node-level profile registry

This registry level contains variable settings that are specific to a database
partition in a partitioned database environment. Values that are defined in this
level override their settings at the instance and global levels.

280 MySQL to DB2 Conversion Guide

� The DB2 instance profile registry

This registry contains a list of all instance names associated with the current
copy. Each installation has its own list. You can see the complete list of all
instances available on the system by running the db2ilist command.

You can set the variables by using the db2set command. The command
immediately stores the updated variables in the profile registry. Example 9-1
shows the various modes in which the db2set command can be used.

Example 9-1 Changing registry and environment variables using the db2set command

//this shows the current registry variables//
db2inst1@db2server:~> db2set -all
[i] DB2_COMPATIBILITY_VECTOR=8
[i] DB2PROCESSORS=0,1
[i] DB2COMM=tcpip
[g] DB2SYSTEM=db2server
[g] DB2INSTDEF=db2inst1
[g] DB2ADMINSERVER=dasusr1

//this sets registry for all databases in particular instance//
db2inst1@db2server:~>db2set DB2AUTOSTART=YES -i db2inst1

//this sets registry variable for all instances//
db2inst1@db2server:~>db2set DB2AUTOSTART=YES -g

//this sets registry variable for particular node//
db2inst1@db2server:~>db2set DB2AUTOSTART=YES -i db2inst1 65000

DB2 configures the operating environment by checking for registry values and
environment variables, and DB2 resolves them in the following order:

1. Environment variables are set using the set command (or the export
command on UNIX platforms).

2. Registry values are set with the instance node-level profile (using the db2set
-i <instance name> <nodenum> command).

3. Registry values are set with the instance-level profile (using the db2set -i
command).

4. Registry values are set with the global-level profile (using the db2set -g
command).

 Chapter 9. Database administration 281

DB2 Configuration parameters
In addition to the DB2 profile registry, DB2 also has instance and database
configuration files, which provide users with the flexibility to configure the
database and the database engine to fit business and application needs. These
files contain parameters that define values, such as resources allocated to DB2,
the diagnostic level, log file location, and other values.

When a DB2 database instance or a database is created, a corresponding
configuration file is created with default parameter values. We strongly suggest
that you modify these parameters to improve the performance of the instance or
database.

Figure 9-1 illustrates the two DB2 configuration files and additional operating
system configurations.

Figure 9-1 Configuration parameter files

There are two database configuration files:

� The database manager configuration file

This file is created automatically when creating a DB2 instance and affects
the configuration on the instance level. It is stored in the db2systm file under
the sqllib subdirectory of the instance. Use the following command to see
the values in this file:

db2 GET DATABASE MANAGER CONFIGURATION

Set parameter values using this command:

db2 UPDATE DBM CFG USING <parameter> <value>

282 MySQL to DB2 Conversion Guide

� The database configuration file

For each created database, a database configuration file is created, as well. It
is stored in a file named SQLDBCONF and resides in the directory where the
database resides. It defines the resources and variables for the particular
database. Use the following command to obtain the values in this file:

db2 GET DATABASE CONFIGURATION FOR <database name>

Set parameter values using this command:

db2 UPDATE DATABASE CONFIGURATION FOR <database name> USING <parameter>
<value>

Configuration tools
IBM has tools to assist you with configuring your database server. Two of these
tools are the Configuration Assistant and the IBM Data Studio.

You can use the DB2 Configuration Assistant to configure and maintain the
database objects that you or your application will use. The Configuration
Assistant is a graphical tool that is tightly integrated with the DB2 Control Center.
It allows you to update both the DB2 Profile Registry and the DB2 database
manager configuration parameters on the local machine, as well as remotely. It
can be launched from the DB2 Control Center or by calling the db2ca utility. The
Configuration Assistant also has an advanced view, which uses a notebook to
organize connection information by object: systems, instance nodes, databases,
database connection services (DCS), and data sources. Figure 9-2 on page 284
shows how to change the database manager configuration using the
Configuration Assistant.

 Chapter 9. Database administration 283

Figure 9-2 DB2 Configuration Assistant

IBM Data Studio is part of the IBM Integration Management solutions for
managing your DB2 database. Data Studio simplifies the process of managing
your database objects by supporting instance and database management and by
providing the ability to run database commands and utilities. It provides a simple
user interface to invoke the database administration commands that you use to
maintain and manage your database environment. Figure 9-3 on page 285
shows how to change the database manager and database configuration using
Data Studio.

Note: The Configuration Assistant has been deprecated in Version 9.7 and
might be removed in a future release. We recommend that you use the IBM
Integration Management solutions for managing DB2 for Linux, UNIX, and
Windows data and data-centric applications.

284 MySQL to DB2 Conversion Guide

Figure 9-3 Data Studio configuration window

IBM offers a number of automatic tools and DB2 features to make database
administration effortless. You can use the Configuration Advisor to assist with
parameter configuration and to configure your database for optimal performance.
The Configuration Advisor looks at your current database, asks for user input on
the database workload, and suggests the best configuration parameters for
buffer pool size, database configuration, and database manager configuration.
Figure 9-4 on page 286 shows the suggested output for our sample inventory
database.

 Chapter 9. Database administration 285

Figure 9-4 Configuration Advisor

9.2 Database recovery

Database recovery is the action that the database system or user takes to
recuperate the database in case of system, hardware, software, or application
failure. Database recovery includes precautionary measures and resolutions.
The database systems use multiple recovery methods to avoid losing data.

9.2.1 DB2 database recovery

The DB2 recovery method is much more sophisticated than MySQL and allows
you to build an optimized backup and recovery strategy for your database
system. DB2 supports database recovery using database backup in conjunction
with three recovery logs, as shown in Figure 9-5 on page 287. The recovery log
files and the recovery history files are created automatically when a database is
created. These log files are important if you need to recover data that is lost or
damaged.

286 MySQL to DB2 Conversion Guide

The three files work in the following ways (Figure 9-5):

� Recovery log files

You use the recovery log files to recover from application or system errors. In
combination with the database backups, they are used to recover the
consistency of the database right up to the point in time when the error
occurred. Recovery log files exist for each database on the server.

� Recovery history files

The recovery history files contain a summary of the backup information that
can be used to determine recovery options, if all or part of the database must
be recovered to a certain point in time. The recovery history files track
recovery-related events, such as backup and restore operations, among
other events. The recovery history file is located in the database directory.

� Table space change history file

The table space change history files are also located in the database
directory. These files contain information that can be used to determine which
log files are required for the recovery of a particular table space.

Figure 9-5 Database recovery files

Two types of databases exist for backup and recovery: non-recoverable
databases and recoverable databases. As a database administrator, you need to
decide in which category your database fits:

� Non-recoverable database

You can store data that is easily recreated in a non-recoverable database.
This data includes data that is used for read-only applications and tables that
are not often updated. These types of databases have a small amount of
logging, which does not justify the added complexity of managing log files and
rolling forward after a restore operation.

 Chapter 9. Database administration 287

To set up a non-recoverable database, set both database configuration
parameters logarchmeth1 and logarchmeth2 to OFF. Therefore, only the crash
recovery logs are kept. These logs are known as active logs, and they contain
current transaction data. Because non-recoverable databases only support
active logs, they do not support roll-forward recovery.

� Recoverable database

Store data that cannot be easily recreated in a recoverable database. Data
that cannot be easily recreated includes data whose source is destroyed after
the data is loaded, data that is manually entered into tables, and data that is
modified by application programs or users after it is loaded into the database.

To set up a recoverable database, set both logarchmeth1 and logarchmeth2
database configuration parameters to anything other than OFF. In addition to
the active logs that are kept for crash recovery, recoverable databases also
have archived logs. These archived logs contain committed data and
therefore support crash, version, or roll-forward recovery. Recoverable
databases also support backup, restore, and roll-forward individual table
spaces.

Database backup
To back up a DB2 database, database partition, or selected table space, you can
use the DB2 backup command. Use this command to create a backup to disk,
tape, or named pipes in UNIX. DB2 supports both offline and online backup:

db2 backup database invent to /home/db2inst1/backup

You can back up an entire database, database partition, or only selected table
spaces.

In addition to backing up the entire database every time, DB2 also supports
incremental backups where you can back up large databases on a regular basis
incrementally. Incremental backups require that the trackmod database
configuration parameter is set to yes. Incremental backup can be a cumulative
backup, which stores data changes since the last successful full backup, or a
delta backup, which is the last successful backup irrespective of whether that
backup was full, delta, or cumulative. Figure 9-6 on page 289 and Example 9-2
on page 289 show the cumulative and delta backup techniques.

288 MySQL to DB2 Conversion Guide

Figure 9-6 Incremental backup

Example 9-2 Incremental backup

db2inst1@db2server:~> db2 BACKUP DATABASE invent TO /home/db2inst1/backup
db2inst1@db2server:~> db2 BACKUP DATABASE invent INCREMENTAL TO
/home/db2inst1/incBackup
db2inst1@db2server:~> db2 BACKUP DATABASE invent INCREMENTAL DELTA TO
/home/db2inst1/deltaBackup

IBM has tools to assist you with the maintenance activities configuration,
because it can be time-consuming to determine when the configuration is
required and whether maintenance activities, such as backup operations, need
to be run. You can use the Configure Automatic Maintenance wizard within Data
Studio, as shown in Figure 9-7 on page 290, or the DB2 Control Center to
configure the database maintenance activities. With automatic maintenance, you
specify your maintenance objectives, including when automatic maintenance can
run. DB2 then uses these objectives to determine if the maintenance activities
need to be done and then runs only the required maintenance activities during
the next available maintenance window (a user-defined time period for running
automatic maintenance activities).

 Chapter 9. Database administration 289

Figure 9-7 Data Studio: Configure Automatic Maintenance

Database recovery
The recover utility performs the necessary restore and roll-forward operations to
recover a database to a specified time, based on information found in the
recovery history file. When you use this utility, you specify that the database is
recovered to a certain point in time or to the end of the log files. The utility will
then select the best suitable backup image and perform the recovery operations.
Example 9-3 shows how to use the RECOVER DATABASE command.

Example 9-3 Recover database

b2inst1@db2server:~> db2 RECOVER DB invent

 Rollforward Status

 Input database alias = invent
 Number of nodes have returned status = 1

 Node number = 0
 Rollforward status = not pending
 Next log file to be read =
 Log files processed = S0000000.LOG - S0000001.LOG
 Last committed transaction = 2009-09-11-19.25.01.000000 Local

DB20000I The RECOVER DATABASE command completed successfully.

290 MySQL to DB2 Conversion Guide

There are three types of recovery:

� Crash recovery

Crash recovery protects a database from being left in an inconsistent or
unusable state, which occurs when transactions are interrupted
unexpectedly. Crash recovery rolls back incomplete transactions and
completes committed transactions that were still in memory when the crash
occurred.

The database manager performs crash recovery automatically if you set the
automatic restart (autorestart) database configuration parameter to ON with
this command:

db2inst1@db2server:~> db2 UPDATE DATABASE CONFIGURATION FOR invent USING
AUTORESTART ON

Or, you can restart the database when a database failure occurs by calling
this command:

db2inst1@db2server:~> db2 RESTART DATABASE invent

DB2 maintains log files, the recovery history file, and the table space change
history file to recover data that is lost or damaged.

� Version recovery

Version recovery is the restoration of a previous version of the database,
using an image that was created during a backup operation. You can use this
recovery option for non-recoverable databases (databases without archived
logs). You can also use this method with recoverable databases by using the
WITHOUT ROLLING FORWARD option in the RESTORE DATABASE
command. A database restore operation will restore the entire database using
a backup image that was created earlier. A database backup allows you to
restore a database to a state identical that is to the state at the time that the
backup was made. However, every unit of work from the time of the backup to
the time of the failure is lost, as shown in Figure 9-8 on page 292.

Important: It is necessary to take a backup image on a regular basis,
because this recovery method loses the changes made in the database
after the backup operation. Version recovery restores the database using
incremental, delta, or full backup.

 Chapter 9. Database administration 291

Figure 9-8 Version recovery

� Roll-forward recovery

Use Roll-forward recovery to reapply changes that were made by
transactions that were committed after a backup was made.

There are two types of roll-forward recovery:

– Database roll-forward recovery

With this type of roll-forward recovery, you can tell DB2 to roll forward
a database to the state immediately before the failure or you can
specify the local time to which you want to roll forward your database.
Figure 9-9 on page 293 shows the roll-forward recovery technique of a
DB2 database.

292 MySQL to DB2 Conversion Guide

Figure 9-9 Version Recovery: Database roll-forward recovery

– Table space roll-forward recovery

With this type of roll-forward recovery, you can tell DB2 to roll forward a
table space to either a state immediately before the failure or to a
particular point in time. Figure 9-10 shows the roll-forward recovery
technique of a DB2 table space.

Figure 9-10 Version Recovery: Table space roll-forward recovery

Figure 9-11 on page 294 shows how you can use Data Studio to recover a DB2
database.

 Chapter 9. Database administration 293

Figure 9-11 Data Studio: Recover option

Database restore
DB2 database restore is as easy as backing up the database. Use the
RESTORE utility to perform DB2 database restore. The restore database
command rebuilds the database data or table space to the state that it was in
when the backup copy was made. This utility can overwrite a database with a
separate image or restore the backup copy to a new database. You can also use
the restore utility to restore backup images in DB2 Version 9.7 that were backed
up on DB2 Universal Database Version 8, DB2 Version 9.1, or DB2 Version 9.5.

This RESTORE utility supports full and incremental database restore.
Incremental database restore can be automatic or manual. Example 9-4 shows
automatic incremental restore, and Example 9-5 on page 295 shows manual
incremental restore.

Example 9-4 Automatic incremental restore

db2inst1@db2server:~ > db2 RESTORE DATABASE invent INCREMENTAL AUTOMATIC FROM
/home/db2inst1/backup TAKEN AT 20090911214318

294 MySQL to DB2 Conversion Guide

Example 9-5 Manual incremental restore

db2inst1@db2server:~ > db2 RESTORE DATABASE invent INCREMENTAL FROM
/home/db2inst1/backup TAKEN AT 20090909
db2inst1@db2server:~ > db2 RESTORE DATABASE invent INCREMENTAL FROM
/home/db2inst1/backup TAKEN AT 20090910
db2inst1@db2server:~ > db2 RESTORE DATABASE invent INCREMENTAL FROM
/home/db2inst1/backup TAKEN AT 20090911

If at the time of the backup operation, the database was enabled for roll-forward
recovery, you can take the database to its previous state by invoking the
following ROLLFORWARD command after a successful completion of a restore
operation:

db2inst1@db2server:~ > db2 ROLLFORWARD DATABASE invent COMPLETE

You can also execute he RESTORE and ROLLFORWARD utilities from the Data
Studio. Figure 9-12 on page 296 shows the restore database window.

Tip: You can also perform DB2 backup and restore using the Data Studio.

 Chapter 9. Database administration 295

Figure 9-12 Data Studio: Restore option

9.3 Database replication

Database replication is the process of maintaining the same database under
multiple servers or systems. It involves synchronizing changes from one
database (a source) to another database (a target). This feature is extremely
useful for load sharing, fast disaster recovery, and high availability.

IBM provides two solutions that you can use to replicate data from and to
relational databases: SQL replication and Q replication. IBM also provides a
solution called event publishing for converting committed source changes into
messages in an XML or delimited format and for publishing those messages
across WebSphere MQ queues to applications.

296 MySQL to DB2 Conversion Guide

In SQL replication, committed source changes are staged in relational tables
before being replicated to target systems. Q replication is a replication solution
that can replicate large volumes of data at low levels of latency. In Q replication,
committed source changes are written in messages that are transported through
WebSphere MQ message queues to target systems.

Replication is not only supported between two DB2 systems running on separate
platforms, but replication is also supported on the following non-DB2 databases:
SQL replication supports replicating between DB2 on Linux, UNIX, Windows,
z/OS, and iSeries; Informix; Microsoft SQL Server; Oracle; Sybase; and
Teradata (target only). Q replication supports DB2 for Linux, UNIX, and
Windows, DB2 for z/OS, Informix (target only), Microsoft SQL Server (target
only), Oracle (target only), and Sybase (target only).

IBM provides three tools to assist with setting up replication:

� Replication Center

The Replication Center is a graphical user interface that you can use to
define, operate, and monitor your replication and publishing environments. It
comes with the DB2 Administration Client and runs on Linux and Windows
systems. The Replication Center provides a single interface to administer
your replication environments on various platforms across multiple systems.
The Replication Center includes these features:

– Launchpads that show you step by step how to configure basic replication
and publishing environments.

– Wizards that help you set up simple to highly customized replication and
publishing configurations.

– Profiles that you can customize that let you create replication objects with
schemas, names, and other attributes that conform to your own
conventions and storage requirements.

You invoke the Replication Center through the DB2 Control Center or by
using the db2rc command.

� ASNCLP command-line program

The ASNCLP program generates SQL scripts for defining and changing
replication and publishing environments. The program runs on Linux, UNIX,
Windows, and UNIX System Services for z/OS. The ASNCLP program does
not run natively on z/OS or System i.

You can use the ASNCLP program to administer SQL replication,
Q replication, Classic replication, event publishing, and the Replication Alert
Monitor. You can build ASNCLP input files and run them to generate SQL
scripts, or you can run ASNCLP commands interactively from an operating
system prompt. You can also run the ASNCLP program in

 Chapter 9. Database administration 297

execute-immediately mode, which is useful for operational commands, such
as START QSUB, STOP QSUB, or LIST.

� Replication Dashboard

The Replication Dashboard is a Web-based, graphical user interface that
helps you monitor and manage the health of replication and event publishing.

The dashboard provides an overall summary of replication and publishing
configurations in a convenient tabular format with high-level status indicators.
You can drill down for more detailed information about queues and queue
depth, subscriptions, latency, and exceptions, and generate detailed reports
to help track performance or diagnose problems. You can also view up to 24
moving graphs for near-real-time performance information.

You can change program parameters, start, stop, and reinitialize
subscriptions, and start and stop queues. The dashboard also provides a
convenient way to view alerts from the Replication Alert Monitor program.

9.4 Data movement

In this section, we discuss data movement support by DB2. You use the data
movement utilities to transfer data between various tables, databases, or
database systems.

9.4.1 DB2 data movement

DB2 provides fast and efficient tools and utilities for data movement across the
various systems or for reorganizing data on the same system.

EXPORT utility
DB2 EXPORT is a powerful tool to export your DB2 data quickly from DB2 to the
external file system. DB2 EXPORT uses SQL select or an XQuery statement to
export tables, views, large objects, or typed tables to one of the three external file
formats:

– .DEL: Delimited ASCII format file
– .WSF: Worksheet format, such as Lotus 1-2-3®
– .IXF: Integrated exchange format

298 MySQL to DB2 Conversion Guide

You can invoke the EXPORT utility by using the following methods:

� Through the command line processor (CLP)

You can use the EXPORT utility from CLP by supplying an SQL SELECT or
XQuery statement or by providing hierarchical information for typed tables, as
shown below:

db2inst1@db2server:~ > db2 EXPORT TO invent.ixf of ixf SELECT * FROM
admin.owners

� Data Studio

You can extract data from a DB2 database using the graphical user interface
called Data Studio. This tool allows you to set export options for each table
visually. Figure 9-13 shows the usage of the export through the DB2 Control
Center.

Figure 9-13 Data Studio: Export option

 Chapter 9. Database administration 299

� DB2 Control Center

You can use the graphical user interface called the DB2 Control Center.

� ADMIN_CMD stored procedure

Applications can use the ADMIN_CMD stored procedure to run administrative
calls, such as the export command.

� An application programming interface (API): db2Export

DB2 provides an API for exporting data that can be used to export data
programmatically by importing db2ApiDf.h and the db2Export method.

IMPORT utility
You can use the files created with the same syntax as the EXPORT utility to
populate data into a new DB2 database on the same system. Or, you can
transfer these files to another platform and import or load them to the DB2
database that resides on that platform. The IMPORT utility supports the following
file formats:

– ASC: Non-delimited ASCII format file
– .DEL: Delimited ASCII format file
– .WSF: Worksheet format, such as Lotus 1-2-3
– .IXF: Integrated exchange format

Similar to EXPORT, you can use the IMPORT utility with the following methods:

� The command line processor (CLP)

Use the IMPORT utility from CLP by supplying an SQL INSERT, INSERT
UPDATE, or REPLACE option. The example shows the simple IMPORT
statement:

db2inst1@db2server:~ > db2 IMPORT FROM invent.ixf OF ixf MESSAGES
msg.txt INSERT INTO admin.owners

� Data Studio

Use Data Studio to import data graphically. Figure 9-14 on page 301 shows
the Import wizard.

300 MySQL to DB2 Conversion Guide

Figure 9-14 Data Studio: Import option

� DB2 Control Center

Use the DB2 Control Center for importing data visually.

� ADMIN_CMD stored procedure

Applications can use the ADMIN_CMD stored procedure to run administrative
calls and run the import command.

� An application programming interface (API): db2Import

DB2 provides an API for importing data from files, such as files that have
been exported using the export tool. This API provides an option to import
programmatically by using db2ApiDf.h and the db2import method.

 Chapter 9. Database administration 301

DB2MOVE utility
You can copy data using the DB2 EXPORT and IMPORT utilities. But a more
efficient way to copy an entire DB2 database schema is by using the DB2
db2move utility. This utility queries the system catalog tables for a specified
database and exports the table structure and the contents of each table found to
a PC/IXF formatted file. You can use these files to populate another DB2
database. You can run the DB2 db2move utility in three modes:

� EXPORT mode

In this mode, the db2move utility invokes the DB2 EXPORT utility to extract
data from one or more tables and write to PC/IXF formatted files. It also
creates a db2move.lst file that contains the names of all of the exported
tables and the names of the files to which the table data was written. Use
EXPORT mode in this way:

db2inst1@db2server:~ > db2move invent EXPORT

� IMPORT mode

In this mode, the db2move utility invokes the DB2 IMPORT utility to recreate
tables and indexes from data that is stored in PC/IXF formatted files. You can
use the db2move.lst file that is generated in EXPORT mode to get
information about tables in the exported files. You can import the exported
files by using this command:

db2inst1@db2server:~ > db2move invent IMPORT

� LOAD mode

In this mode, the db2move utility invokes the DB2 LOAD utility to populate
tables that already exist with data stored in PC/IXF formatted files. Use the
db2move.lst file that is generated in EXPORT mode to get information about
tables. Load these exported files by using this command:

db2inst1@db2server:~ > db2move invent LOAD -l /home/db2inst1/export

The LOAD utility
Use the LOAD utility for moving large amounts of data into a newly created table
or into a table that already contains data. The utility can handle most data types,
including XML, large objects (LOBs), and user-defined types (UDTs). The LOAD
utility is faster than the IMPORT utility, because it writes formatted pages directly
into the database, while the IMPORT utility performs SQL INSERTs. The LOAD
utility does not fire triggers and does not perform referential or table constraints
checking (other than validating the uniqueness of the indexes). The LOAD utility
supports the following import sources:

� ASC: Non-delimited ASCII format file
� .DEL: Delimited ASCII format file
� .IXF: Integrated exchange format

302 MySQL to DB2 Conversion Guide

There are four modes in which you can execute the LOAD utility:

� INSERT

In this mode, the LOAD utility appends input data to the table without making
any changes to the existing data.

� REPLACE

In this mode, the LOAD utility deletes existing data from the table and
populates it with the input data.

� RESTART

In this mode, an interrupted load is resumed. In most cases, the load is
resumed from the phase in which it failed. If that phase was the load phase,
the load is resumed from the last successful consistency point.

� TERMINATE

In this mode, a failed load operation is rolled back.

You can use the LOAD utility with these methods:

� The command line processor (CLP)

Use the IMPORT utility from the CLP by supplying an SQL INSERT, INSERT
UPDATE, or REPLACE option. This example shows the simple IMPORT
statement:

db2inst1@db2server:~ > db2 LOAD FROM ownersdata.del OF del REPLACE INTO
admin.owner

� Data Studio

Use the Data Studio to load data graphically. Figure 9-15 on page 304 shows
the Load wizard.

 Chapter 9. Database administration 303

Figure 9-15 Data Studio LOAD option

� DB2 Control Center

Use the DB2 Control Center to load data visually.

� ADMIN_CMD stored procedure

Applications can use the ADMIN_CMD stored procedure to run administrative
calls, and the ADMIN_CMD stored procedure can be used with the LOAD
command.

� An application programming interface (API): db2load

DB2 provides an API for loading data from files. This API provides an option
to perform a load programmatically by using db2ApiDf.h and a db2load
method

9.5 High availability

High availability (HA) is a business requirement on the system to provide
services at all times and to survive disaster, system crash, and glitches without
or with minimal interruption of the service. You can achieve HA by using a
number of techniques, such as online management of the database system,
advanced instance management, suspended I/O, and clustered servers.
Failover is an advanced feature used for HA, where a workload is transferred
from one system to another system quickly and automatically in the case of a
failure.

304 MySQL to DB2 Conversion Guide

IBM provides software-based HA solutions, such as DB2 High Availability
Disaster Recovery (HADR), WebSphere Replication Server Q Replication, SQL
Replication, HA clustering software, such as High-Availability Cluster
Multi-Processing (HACMP™), and Tivoli® System Automation.

The DB2 High Availability Disaster Recovery (HADR) feature is a database
replication service that uses a TCP/IP network to propagate database changes
(Data Definition Language (DDL) and Data Manipulation Language (DML)
statements) from a primary to a standby database, which is monitored by a
heartbeat. This HA solution is targeted toward database systems with 24x7
availability and failover times in mere seconds.

With HADR enabled, a second database copy on a separate server is constantly
updated while transactions occur. Transactions are logged to ensure both
database copies are protected from data loss caused by partial or complete site
failures. In the case of an outage, the standby database on the redundant server
can quickly take over. Database clients can automatically and transparently to
the application be shifted over using the alternate client re-route feature built into
the IBM DB2 Data Server client. This solution is extremely cost-effective and
places no special requirements on the hardware. Shared storage is not required,
because the network is used to replicate all changed data from one database to
another database. The only requirement is that you need exactly two TCP/IP
network-connected servers. For enhanced redundancy, you can use multiple
network adapters. As of DB2 9.7, you can also use the standby server for
read-only transactions, therefore utilizing all of the hardware at all times.

For the automatic failover, you use the DB2-integrated component called Tivoli
System Automation for Multiplatforms (often referred to as cluster manager).
This component monitors all resources involved in both systems, that is, DB2
instances, databases, network interfaces, and other components, and initiates
the database takeover. At the same time, DB2 is aware of Tivoli System
Automation for Multiplatforms and notifies it when a planned outage is
necessary, for example, when the database is manually stopped by an
administrator. This way, a database administrator can, for the most part, use the
usual DB2 commands without having to involve the cluster manager. Every DB2
edition supporting HADR includes all of the necessary software packages, as
well as licenses for Tivoli System Automation for Multiplatforms, and offers to
install these products during the DB2 setup. DB2 also performs the configuration
of Tivoli System Automation for Multiplatforms.

Figure 9-16 on page 306 illustrates an example high availability disaster recover
scenario.

 Chapter 9. Database administration 305

Figure 9-16 High availability disaster recovery scenario

For more information and implementation steps, refer to High Availability and
Disaster Recovery Options for DB2 on Linux, UNIX, and Windows, SG24-7363.

9.6 Autonomics

Automated task management allows the automation of database management
jobs by scheduling activities according to specific requirements. Automated task
management is really useful for performing regular maintenance tasks, such as
backup, space monitoring, error checking, maintenance, and so forth.

IBM strives for autonomic computing and the development of highly intelligent
database systems. The DB2 autonomic computing environment is
self-configuring, self-healing, self-optimizing, and self-protecting. By sensing and
responding to situations that occur, autonomic computing shifts the burden of
managing a computing environment from the database administrator to the
technology. Autonomic computing provides users with improved resiliency,
higher return on investment (ROI), and lower total cost of ownership (TCO) by
accelerating the implementation of new capabilities to gain the highest value
possible.

306 MySQL to DB2 Conversion Guide

Automatic features provide a high-level summary of the capabilities that
comprise the DB2 autonomic computing environment. Next, we provide a more
detailed, categorized overview of the product’s autonomic capabilities.

Self-Tuning Memory Manager
The Self-Tuning Memory Manager feature simplifies the task of memory
configuration. This feature responds to significant changes in workload by
automatically and iteratively adjusting the values of several memory
configuration parameters, including the sizes of the buffer pools, to optimize
performance. The memory tuner dynamically distributes available memory
resources among several memory consumers, including the sort function, the
package cache, the lock list, and buffer pools. By default, Self-Tuning Memory
Manager is turned on. You can disable Self-Tuning Memory Manager after
creating a database by setting the database configuration parameter
self_tuning_mem to OFF.

Self-tuning memory manager tunes a database in two modes:
DATABASE_MEMORY tuning and no DATABASE_MEMORY tuning. With
DATABASE_MEMORY tuning, memory is taken and given back to the OS as
necessary, meaning the total amount of memory allocated to a DB2 database
can grow over time. Without DATABASE_MEMORY tuning, the overall amount
of memory for a given database does not change. Memory tuning still occurs, but
it only occurs between separate parameters within the database memory model.

There is a master switch to turn on Self-Tuning Memory Manager. To turn on
Self-Tuning Memory Manager, set the database configuration parameter
self_tuning_mem to ON (which is the default for newly created databases). Then,
you can choose which buffer pools and memory-related database parameters to
tune. You can automatically tune the following memory-related database
configuration parameters:

� database_memory: Database shared memory size
� locklist: Maximum storage for lock list
� maxlocks: Maximum percent of lock list before escalation
� pckcachesz: Package cache size
� sheapthres_shr: Sort heap threshold for shared sorts
� sortheap: Sort heap size

Example 9-6 on page 308 shows how to enable Self-Tuning Memory Manager
and how to configure each parameter to be managed by Self-Tuning Memory
Manager.

 Chapter 9. Database administration 307

Example 9-6 Self-tuning memory manager configuration

db2inst1@db2server:~ > db2 UPDATE DB CFG FOR DATABASE invent USING
SELF_TUNING_MEM ON
db2inst1@db2server:~ > db2 ALTER BUFFERPOOL bp32 SIZE AUTOMATIC
db2inst1@db2server:~ > db2 UPDATE DB CFG FOR DATABASE invent USING locklist
AUTOMATIC

After the SELF_TUNING_MEM parameter is set to ON, DB2 begins managing
and tuning all buffer pools and memory-related database elements. DB2 senses
the underlying workload on the system and adjusts the memory accordingly.
Self-tuning memory manager can adjust allocated memory from 6-120 times an
hour, depending on the changes and current settings. DB2 performs adjustments
in a clever way, allowing parameters to have a maximum growth of 50% or a
reduction of 20%. All changes are persistent and logged in the db2diag.log file
and STMM.log file.

Self-tuning memory manager is most advantageous in these scenarios:

� Unknown memory requirements

Self-tuning memory manager can tune a database to the optimal
configuration in less than an hour.

� Tuning buffer pools of multiple page sizes

Self-tuning memory manager works with buffer pools of multiple page sizes
and can easily trade memory between the buffer pools.

� Memory-varied workload

Self-tuning memory manager constantly re-evaluates the memory
requirements and will optimize the memory usage based on the currently
running workload.

Automatic Storage
The automatic storage feature simplifies storage management for table spaces.
When you create an automatic storage database, you specify the storage paths
where the database manager will place your table space data. Then, the
database manager manages the container and space allocation for the table
spaces as you create and populate them. By default, automatic storage is turned
on:

� Automatic storage databases

Automatic storage is intended to make storage management easier. Rather
than managing storage at the table space level using explicit container
definitions, storage is managed at the database level and the responsibility of
creating, extending, and adding containers is taken over by the database
manager.

308 MySQL to DB2 Conversion Guide

To create a new database or to alter an existing database to use automatic
storage, execute the following DB2 commands:

CREATE DATABASE <dbname> AUTOMATIC STORAGE YES ON <storagePaths>
ALTER DATABASE <dbname> ADD STORAGE ON <storagePaths>

� Automatic storage table spaces

With automatic storage table spaces, storage is managed automatically. The
database manager creates and extends containers as needed up to the limits
imposed by the storage paths associated with the database.

To create a new table space or to alter an existing table space to use
automatic storage, execute the following DB2 commands:

ALTER TABLESPACE <tablespacename> MANAGED BY AUTOMATIC STORAGE
CREATE TABLESPACE <tablespacename> MANAGED BY AUTOMATIC STORAGE

Automatic maintenance
The database manager provides automatic maintenance capabilities for
performing database backups, keeping statistics current, and reorganizing tables
and indexes as necessary. Performing maintenance activities on your databases
is essential in ensuring that they are optimized for performance and
recoverability.

Maintenance of your database can include part, or all, of the following activities:

� Backups

When backing up a database, the database manager takes a copy of the data
in the database and stores it on another medium in case of failure or damage
to the original. Automatic database backups help to ensure that your
database is backed up properly and regularly so that you do not have to worry
about when to back up or know the syntax of the BACKUP command.

� Data defragmentation (table or index reorganization)

This maintenance activity can increase the efficiency with which the database
manager accesses your tables. Automatic reorganization manages an offline
table and index reorganization so that you do not need to worry about when
and how to reorganize your data.

� Data access optimization (statistics collection)

The database manager updates the system catalog statistics on the data in a
table, the data in indexes, or the data in both a table and its indexes. The
optimizer uses these statistics to determine which path is necessary to
access the data. Automatic statistics collection attempts to improve the
performance of the database by maintaining up-to-date table statistics. The
goal is to allow the optimizer to choose an access plan based on accurate
statistics.

 Chapter 9. Database administration 309

� Statistics profiling

Automatic statistics profiling advises when and how to collect table statistics
by detecting outdated, missing, or incorrect statistics, and by generating
statistical profiles based on query feedback.

It can be time-consuming to determine whether and when to run maintenance
activities, which makes the automatic maintenance extremely convenient. You
can manage the enablement of the automatic maintenance features simply and
flexibly by using the automatic maintenance database configuration parameters.

The easiest way to set up automatic maintenance is to use the graphical
administrative tools. You can access the Configure Automatic Maintenance
wizard from either the Data Studio or the DB2 Control Center. We show
configuring maintenance objectives by using the Data Studio in Figure 9-7 on
page 290. The database manager uses these objectives to determine whether
the maintenance activities need to be done and runs only the required
maintenance activities during the next available maintenance window (a time
period that you define in which the server will not be as heavily used).

Configuration Advisor
You can use the Configuration Advisor to obtain recommendations for values of
the buffer pool size, database configuration parameters, and database manager
configuration parameters.

To use the Configuration Advisor, specify the AUTOCONFIGURE command for
an existing database, or specify AUTOCONFIGURE as an option of the
CREATE DATABASE command.

You can display the recommended values or apply them by using the APPLY
option of the CREATE DATABASE command. The recommendations are based
on input that you provide and system information that the Configuration Advisor
gathers.

When you create a database, this tool is automatically run to determine and set
the database configuration parameters and the size of the default buffer pool
(IBMDEFAULTBP). The values are selected based on system resources and the
intended use of the system. This initial automatic tuning means that your
database performs better than an equivalent database that you might create with
the default values. It also means that you will spend less time tuning your system
after creating the database.

You can run the Configuration Advisor at any time (even after your databases
are populated) to have the tool recommend and optionally apply a set of
configuration parameters to optimize performance based on the current system
characteristics. You can use the graphical database administration tools to run

310 MySQL to DB2 Conversion Guide

the Configuration Advisor. Figure 9-4 on page 286 shows the Data Studio
Configuration Advisor Wizard.

The values that are suggested by the Configuration Advisor are relevant for only
one database per instance. If you want to use the Configuration Advisor on more
than one database, each database must belong to a separate instance.

Data compression
You can compress both tables and indexes to save storage. Compression is fully
automatic. After you specify that a table or index must be compressed using the
COMPRESS YES clause of the CREATE TABLE, ALTER TABLE, CREATE
INDEX, or ALTER INDEX statements, there is nothing more you must do to
manage compression. Temporary tables are compressed automatically; indexes
for compressed tables are also compressed automatically, by default. We
discuss data compression further in 11.2, “Data compression” on page 386.

Monitoring database health
The health monitor is a server-side tool that proactively monitors situations or
changes in your database environment that can result in performance
degradation or a potential outage. A range of health information is presented
without any form of active monitoring on your part. If a health risk is encountered,
the database manager informs and advises you about how to proceed. The
health monitor gathers information about the system by using the snapshot
monitor and does not impose a performance penalty. Furthermore, it does not
turn on any snapshot monitor switches to gather information.

Utility throttling
This feature regulates the performance impact of maintenance utilities so that
they can run concurrently during production periods. Although the impact policy
for throttled utilities is defined by default, you must set the impact priority if you
want to run a throttled utility. The throttling system ensures that the throttled
utilities run as frequently as possible without violating the impact policy.
Currently, you can throttle statistics collection, backup operations, rebalancing
operations, and asynchronous index cleanup.

9.7 Workload management

More and more systems are consolidated due to the increasing calculating
power of CPUs. Although hardware utilization is increased and costs are
reduced, management complexity is increased, requiring more knowledge and
efficient handling for the workloads that are running on the system. When
consolidating databases from systems holding separate types of data and

 Chapter 9. Database administration 311

accessed by differently behaving workloads, a sophisticated workload
management solution is required to ensure a stable and predictable execution
environment.

As of DB2 Data Server 9.5, Workload Management is built right into the DB2
engine, allowing administrators to monitor and control database activities, such
as DDL and DML statements, over their full life cycle. Through definable rules,
you program the engine to automatically filter certain workloads and apply
execution priorities to control concurrency or activity through the setup of
thresholds. Workload Management can explicitly control CPU usage among
executing work, detect and prevent so-called “runaway” queries, which for
example are exceeding the predicted or configured number of rows returned, the
execution time, or the estimated execution costs. Specifically on the AIX
platform, DB2 workload management does not stop at a database level and can
be tightly integrated with the operating system’s workload management.

For more details and setup information, refer to the IBM DB2 9.7 for Linux, UNIX,
Windows Information Center at this Web site:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

9.8 Database management tools

In this section, we introduce the graphical tools that are available for managing
DB2 database servers. Although you can perform all of these tasks using the
command prompt, these tools play an important role in allowing administrator to
manage the database graphically.

DB2 supports an impressive suite of tools for database management and
services. You can perform all of the daily database operations easily and
effectively by using the following GUI tools and wizards:

� Control Center
� Optim Development Studio
� Optim Database Administrator
� IBM Data Studio
� Data Studio Administration Console

9.8.1 DB2 Control Center

IBM DB2 Control Center is the central point from which you can manage your
family of DB2 databases, which are running on an array of operating systems in
your workplace. A user friendly graphical interface makes your job easier by
guiding you through each of the steps in managing the DB2 database.

312 MySQL to DB2 Conversion Guide

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

DB2 Control Center provides a common interface for managing DB2 databases
on various platforms. You can run DB2 commands, create DDL statements, and
execute DB2 utilities. DB2 Control Center provides point-and-click navigation
capabilities to make it easy to find objects, whether you have hundreds or tens of
thousands of objects in your database environment. Use it to administer the
system, instances, tables, views, indexes, triggers, user-defined types,
user-defined functions, packages, aliases, users, or groups.

DB2 Control Center is tightly coupled with other DB2 tools; Figure 9-17 shows a
hierarchy of database objects on the leftmost panel and details on the rightmost
panel. You start the Control Center by entering the db2cc command.

Figure 9-17 DB2 Control Center

You can start the following tools from the Control Center Tools menu:

� Replication Center
� Satellite Administration Center Command Center
� Command Editor
� Task Center
� Health Center
� Journal
� License Center
� Configuration Assistant

 Chapter 9. Database administration 313

DB2 Control Center also provides a set of wizards for completing specific
administration tasks by taking you through each step, one at a time. The
following DB2 wizards are available through the Control Center:

� Add database partitions launchpad
� Backup wizard
� Create database wizard
� Create database with automatic maintenance
� Create table space wizard
� Create table wizard
� Design Advisor
� Load wizard
� Configuration Advisor
� Restore data wizard
� Configure database logging wizard
� Set up activity monitor wizard
� Set up high availability disaster recovery databases
� Configure automatic maintenance

9.8.2 IBM Optim and Data Studio tool suite overview

IBM Optim and Data Studio provide a new comprehensive suite of integrated
tools for development database administrators and application developers. The
tooling for each of these roles is essentially divided between the two main views
in the Data Perspective, which are the Data Project Explorer view and the Data
Source Explorer view, which is shown in Figure 9-18 on page 315. There are also
features to help team members share resources.

A benefit to these new tools is that you can have a single environment to develop
and manage your database, which required separate tools in the past. This tool
also supports multiple database servers, such as DB2 for Linux, UNIX, Windows,
i5, and z/OS, Apache Derby, Informix Dynamic Server, and other database
servers. This flexibility makes managing multiple databases much easier.

The IBM Optim and Data Studio tool suite is built on the Eclipse platform and is
an Eclipse-based development environment. The Eclipse platform is a
framework that allows you to create integrated development environments
(IDEs); plug-ins exist to allow development in Java, C/C++, PHP, COBOL, Ruby,
and more products.

314 MySQL to DB2 Conversion Guide

Figure 9-18 IBM Optim and Data Studio tool suite

There are two versions, the Optim Database Administrator and the Optim
Development Studio, that you purchase. There is one no-charge version of IBM
Data Studio.

Optim Database Administrator
Optim Database Administrator, formerly called Data Studio Administrator, is
another GUI tool under the new suite of database management GUI tools. This
tool is a powerful and flexible tool that helps you manage your database objects.
Optim Database Administrator simplifies DB2 database administration by
providing an easy-to-use interface and built-in analysis to automate complex
database changes and conversions. Its capabilities make it easy to perform
everyday tasks, such as object changes, utilities, commands, configuration
changes, and granting or revoking security privileges. Optim Database
Administrator enables immediate script execution or the ability to save the script
for later execution.

You can use Optim Database Administrator to perform common database
administration tasks within the Eclipse environment, such as:

� Starting or stopping a DB2 instance
� Backing up a database
� Creating database objects
� Modifying database objects
� Changing configuration settings

 Chapter 9. Database administration 315

� Granting and revoking security privileges
� Running DB2 commands and utilities

Optim Database Administrator provides an integrated end-to-end solution that
enables you to seamlessly work with multiple products simultaneously.

Optim Database Administrator 2.2 is on Eclipse 3.4. It can share a shell with the
following products:

� Optim Development Studio 2.2
� Optim Query Tuner 2.2
� InfoSphere Data Architect 7.5.x.x

Optim Development Studio
Optim Development Studio, which was formerly called Data Studio Developer, is
part of the new suite of GUI tools for managing DB2 data and database
applications. Optim Development Studio enables database developers to rapidly
develop high-quality code by providing a feature-rich database development
environment. This environment simplifies database development by providing
procedure building and debugging features along with database object
management, project management, and optimization tools with Optim pureQuery
Runtime.

For data application developers, Optim Development Studio provides the
following key features. Working in a data development project in the Data Project
Explorer, you can perform these tasks:

� Develop pureQuery applications in a Java project.

� Use wizards and editors to create, test, debug, and deploy routines, such as
stored procedures and user-defined functions.

� Use the SQL builder and the SQL editor to create, edit, and run SQL queries.

� Use Visual Explain to tune routines and SQL queries.

� Use the Routine debugger to debug stored procedures.

� Create Web services that expose database operations (SQL SELECT and
DML statements, XQuery expressions, or calls to stored procedures) to client
applications.

� Use wizards and editors to develop XML applications.

� Develop SQLJ applications in a Java project.

Optim Development Studio provides the following key features for database
object management. Typically, you perform these tasks on test databases that
you use to test your applications.

316 MySQL to DB2 Conversion Guide

Working in the Data Source Explorer, you can perform these tasks:

� Connect to data sources and browse data objects and their properties.

� Use editors and wizards to create and alter data objects.

� Modify privileges for data objects and authorization IDs.

� Copy database objects.

� Drop data objects from databases.

� Analyze the impact of your changes.

� Work with data, including extracting and loading data and inserting XML data
into XML columns.

� Use data diagrams to visualize the relationships between data objects.

If you work on a large team, you can use the following features to enable team
members to share resources:

� You can share data development projects using supported source code
control systems.

� You can share database connection information by importing and exporting
this information to XML files.

� You can customize the user interface to enable and disable visible controls
and defaults.

Optim Development Studio 2.2 is on Eclipse Version 3.4, and here are several
products with which it can share the shell:

� Rational Application Developer for WebSphere Software 7.5.x.x
� Optim Database Administrator 2.2
� InfoSphere Data Architect 7.5.x.x

IBM Data Studio
There is a free downloadable version called IBM Data Studio, which provides an
integrated development environment for both administering and developing with
IBM data servers. IBM Data Studio is available in two packaging options:

� The integrated development environment (IDE) package includes all
administrative capabilities, as well as an integrated Eclipse development
environment for Java, XML, and Web services.

� The new stand-alone package is a more basic offering that is designed
specifically for administrators to get up and running quickly and easily. This
package does not include several of the data development capabilities
available in the IDE package and cannot be installed with other products to
extend its capabilities.

 Chapter 9. Database administration 317

For more information and to download the software, go to this Web site:

http://www.ibm.com/software/data/optim/

IBM Data Studio administration console
IBM Data Studio Administration Console provides a no-charge rich Web
interface for monitoring your DB2 servers. Use its database health and
availability monitoring features to get a summary of system health, view
dashboard matrixes, investigate alerts, and troubleshoot problems using expert
recommendations. The Data Server Administration Console monitors the health
and availability of your connected DB2 data server databases on Linux, UNIX,
Windows, and z/OS systems.

With the Data Studio Administration Console, you can perform these tasks:

� View system health at a glance:

– Connect to and monitor multiple databases across various platforms from
a single console.

– Configure thresholds for warnings and alerts for key performance
indicators.

� Drill down into alerts and warnings for a database:

– Examine the details when problems occur with key performance
indicators.

– Filter the display of statistics by time period, database, or application.

� Browse alert history:

– Collect and retain alert history for 72 hours.

– Filter the display of statistics by time period, database, or alert type.

� Use expert recommendations for problem solving:

– Review expert recommendations to help solve the problems that are
causing a specific alert.

– View the system and database parameters and statistics associated with a
warning or alert.

You can also use Data Studio Administration Console to monitor Q replication
and event publishing, generate replication health reports, and perform basic
replication operations.

You can launch Data Studio Administration Console from the IBM Data Studio
Developer user interface so that you can monitor IBM data servers for status,
including database availability, dashboards, and alerts. Figure 9-19 on page 319
shows the Data Studio Administration Console dashboard.

318 MySQL to DB2 Conversion Guide

http://www.ibm.com/software/data/optim/

Figure 9-19 Data Studio Administration Console: Dashboard view

 Chapter 9. Database administration 319

320 MySQL to DB2 Conversion Guide

Chapter 10. Testing and tuning

In this chapter, we discuss the steps to verify that data and application
functionality were ported completely and correctly, including:

� Test planning
� Data checking
� Code and application testing
� Troubleshooting

We also provide information about how you can check that system behavior has
not changed in an undesired way.

Furthermore, we discuss the methods and tools available for DB2 to tune the
database in order to achieve optimal performance.

10

© Copyright IBM Corp. 2009. All rights reserved. 321

10.1 Test planning

The test planning stages detail the activities, dependencies, and efforts that are
required to conduct the test of the converted solution.

10.1.1 Principles of software tests

Remember the following principles of software tests in general:

� It is not possible to test a non-trivial system completely.

� Tests are optimizing processes regarding completeness.

� Always test against expectations.

� Each test must have reachable goals.

� Test cases have to contain reachable and non-reachable data.

� Test cases must be repeatable.

� Test cases have to be archived in the configuration management system, as
well as the source code and documentation.

10.1.2 Test documentation

The test documentation is an extremely important part of the project. The
American National Standards Institute (ANSI)/Institute of Electrical and
Electronics Engineers (IEEE) Standard 829-1998 for Software Test
Documentation describes the exact content of the test document. Refer to this
document for more details.

10.1.3 Test phases

A series of well-designed tests must validate all of the stages of the conversion
process. A detailed test plan must describe all the test phases, the scope of the
tests, and the validation criteria, and specify the time frame. To ensure that the
applications operate in the same manner as they did in the source database, the
test plan must include data conversion, functional and performance tests, as well
as the following other post-conversion assessments:

� Data conversion testing
� Functional testing
� Integration testing
� Performance testing
� Volume/load stress testing

322 MySQL to DB2 Conversion Guide

� Acceptance testing
� Post-conversion tests

10.1.4 Time planning and time exposure

The time planning must be based on realistic and validated estimates. If the
estimates for the conversion of the application and database are inaccurate, the
entire project plan will slip.

It is always best to tie all test dates directly to their related conversion activity
dates, which prevents the test team from being perceived as the cause of a
delay. For example, if system testing is to begin after the delivery of the final
build, system testing begins the day after delivery. If the delivery is late, system
testing starts from the day of delivery, not on a specific date. This approach is
called dependent or relative dating.

Figure 10-1 shows the test phases during a typical conversion project. The
definition of the test plans happen at an extremely early moment. The test cases,
and all subsequent tasks, must be done for all test phases.

Figure 10-1 Test phases during a conversion project

The time exposure of tests depends on the availability of an existing test plan
and already prepared test items. The efforts depend also on the degree of
changes during the application and database conversion.

Create Test Plan

Create Test Cases

Prepare Test Items

Prepare Infrastructure

Compare Test Results

Test Run in
MySQL Environment

Test Run in
DB2 Environment

 Chapter 10. Testing and tuning 323

10.2 Data checking techniques

Data movement is the first focus for any conversion project. Without having all
your tables and data properly moved over, all other conversion testing is in vain.

The testing process must detect if all rows were imported into the target
database, ensure that all data type conversions were successful, and check
random data byte-by-byte. The data checking process must be automated by
appropriate scripts. When testing data conversion results, you must perform
these steps:

� Check IMPORT/LOAD messages for errors and warnings.

� Count the number of rows in the source and target databases and compare
them.

� Prepare scripts that perform data checks.

� Involve data administration staff familiar with the application and its data to
perform random checks.

10.2.1 IMPORT/LOAD messages

You must always check the messages generated by the IMPORT or LOAD
commands. Example 10-1 presents messages that are generated by the sample
IMPORT command. Read not only the summary at the end of the listing, but also
pay attention to the warning messages.

Example 10-1 Sample IMPORT message

db2inst1@db2server:~> db2 IMPORT FROM table01Data.txt OF DEL REPLACE INTO
table01

SQL3109N The utility is beginning to load data from file "table01Data.txt".

SQL3148W A row from the input file was not inserted into the table. SQLCODE "-545" was
returned.

SQL0545N The requested operation is not allowed because a row does not
satisfy the check constraint "DB2INST1.TABLE01.SQL090915100543100".
SQLSTATE=23513

Note: Test efforts can range between 50% and 70% of the total conversion
effort.

324 MySQL to DB2 Conversion Guide

SQL3185W The previous error occurred while processing data from row "2" of the input
file.

SQL3117W The field value in row "3" and column "1" cannot be converted to a SMALLINT
value. A null was loaded.

SQL3125W The character data in row "4" and column "2" was truncated because the data is
longer than the target database column.

SQL3110N The utility has completed processing. "4" rows were read from the input file.

SQL3221W ...Begin COMMIT WORK. Input Record Count = "4".

SQL3222W ...COMMIT of any database changes was successful.

SQL3149N "4" rows were processed from the input file. "3" rows were
successfully inserted into the table. "1" rows were rejected.

Number of rows read = 4
Number of rows skipped = 0
Number of rows inserted = 3
Number of rows updated = 0
Number of rows rejected = 1
Number of rows committed = 4

As shown in the summary, during the import process one record from the input
file was rejected, and three records were inserted into the database. To
understand the nature of the warnings, you must look into the data source file
and the table definition (use the db2look command). The table definition for
Example 10-1 on page 324 is shown in Example 10-2, and the data file for
Example 10-1 on page 324 is shown in Example 10-3.

Example 10-2 Table definition for Example 10-1

db2> CREATE TABLE TABLE01 (
C1 SMALLINT,
C2 CHAR(3),
C3 SMALLINT CHECK(C3 IN (1,2,3)))

Example 10-3 Data file for Example 10-1

1,"abc",1
2,"abc",4
32768,"abc",2
4,"abcd",3

 Chapter 10. Testing and tuning 325

The first row from the input file (Example 10-3 on page 325) was inserted without
any warnings. The second row was rejected, because it violated check
constraints (warnings SQL3148W, SQL0545N, and SQL3185W). A value of 32768 from
the third row was changed to null, because it was out of the SMALLINT data type
range (warning SQL3117W) and string abcd from the last row was truncated to abc,
because it was longer than the relevant column definition (warning SQL3125W).

The LOAD utility generates messages in a similar format, but because it is
designed for speed, it bypasses the SQL engine and inserts data directly into
table spaces without constraint checking. Inserting the same table01.unl file
(Example 10-3 on page 325) into table01 (Example 10-2 on page 325) with the
LOAD utility generates messages without SQL3148W, SQL0545N, and SQL3185W
warnings, as shown in Example 10-4.

Example 10-4 LOAD messages

db2inst1@db2server:~> db2 LOAD FROM table01Data.txt OF DEL REPLACE INTO table02

SQL3109N The utility is beginning to load data from file
"/home/db2inst1/DB2Scripts/chp10/table01Data.txt".

SQL3500W The utility is beginning the "LOAD" phase at time "09/15/2009
10:15:23.814793".

SQL3519W Begin Load Consistency Point. Input record count = "0".

SQL3520W Load Consistency Point was successful.

SQL3117W The field value in row "F0-3" and column "1" cannot be converted to a SMALLINT
value. A null was loaded.

SQL3125W The character data in row "F0-4" and column "2" was truncated
because the data is longer than the target database column.

SQL3227W Record token "F0-3" refers to user record number "3".

SQL3227W Record token "F0-4" refers to user record number "4".

SQL3110N The utility has completed processing. "4" rows were read from the
input file.

SQL3519W Begin Load Consistency Point. Input record count = "4".

SQL3520W Load Consistency Point was successful.

SQL3515W The utility has finished the "LOAD" phase at time "09/15/2009
10:15:23.836019".

SQL3107W There is at least one warning message in the message file.

Number of rows read = 4
Number of rows skipped = 0

326 MySQL to DB2 Conversion Guide

Number of rows loaded = 4
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 4

A table that has been created with constraints is left by the LOAD command in
check pending state. Accessing the table with SQL queries generates a warning:

SQL0668N Operation not allowed for reason code "1" on table <TABLE_NAME>.
SQLSTATE=57016.

You need to use the SET INTEGRITY SQL statement to move loaded tables into
a usable state. Example 10-5 shows a way to validate constraints. All rows that
violated constraints will be moved to exception table table01_e.

Example 10-5 Turning integrity checking on

db2inst1@db2server:~> db2 CREATE TABLE table02_exp LIKE table02
db2inst1@db2server:~> db2 SET INTEGRITY FOR table02 IMMEDIATE CHECKED FOR
EXCEPTION IN table02 USE table02_exp
SQL3602W Check data processing found constraint violations and moved them to
exception tables. SQLSTATE=01603

The SET INTEGRITY statement has many options, such as turning integrity on
only for new data, turning integrity off, or specifying exception tables with
additional diagnostic information. To read more about the SET INTEGRITY
command, refer to this Web site:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

IBM Data Movement Tool LOAD messages and the SET
INTEGRITY script
When using the IBM Data Movement Tool to convert, it is simple to review the
data conversion logs. The IBM Data Movement Tool uses the DB2 LOAD
command to load the converted data into DB2. All load output logs are located in
the msg directory in the conversion project output directory. There is a file for
each table that was loaded and the log output is in the same format as described
in Example 10-4 on page 326.

The IBM Data Movement Tool also generates a script called
db2checkpending.sql in the conversion project output directory, which, when
executed, runs the SET INTEGRITY script on each of the tables.

 Chapter 10. Testing and tuning 327

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

10.2.2 Data checking

Scripts performing logical data integrity checks automate the data verification
process and save administration efforts. For small tables (with fewer that 50,000
rows), you can write a program that compares data byte-by-byte. The program
can extract sorted rows from MySQL and DB2 to files in the same ASCII format.
Then, perform a binary comparison on the files (on Linux, use the diff
command) and check to determine if the files are the same. For larger tables,
comparing all rows byte-by-byte can be extremely inefficient. Evaluate the data
conversion by comparing aggregate values, such as the number of rows; you can
create a special table for storing the information about the number of rows in the
source MySQL database. You can use table ck_row_count, which is shown in
Example 10-6, for that purpose.

Example 10-6 Table for storing number of rows (MySQL)

CREATE TABLE ck_row_count (
tab_name VARCHAR(30), -- table name
row_count INT, -- number of rows
sys_name CHAR(3), -- code to distinguish the system: MYS or DB2
time_ins DATE -- time when the count was performed

)

For each table, you must count the number of rows and store the information in
the CK_ROW_COUNT table. You can use the following INSERT statement for
that purpose:

INSERT INTO ck_row_count SELECT 'tab_name', COUNT(*), 'MYS', sysdate() FROM
tab_name

You can manually convert the table ck_row_count and its data to the target DB2
database. Example 10-7presents the DB2 version of the table.

Example 10-7 Table for storing number of rows (DB2)

CREATE TABLE ck_row_count (
tab_name VARCHAR(30),
row_count INT,
sys_name CHAR(3),
time_ins TIMESTAMP

)

On the DB2 system, repeat the counting process with the equivalent INSERT
statement:

INSERT INTO ck_row_count SELECT 'tab_name', COUNT(*), 'DB2', CURRENT
TIMESTAMP FROM tab_name

328 MySQL to DB2 Conversion Guide

After performing the described steps, DB2 table CK_ROW_COUNT will contain
information about the number of rows counted in the MySQL and DB2
databases. The records in the table will look similar to Example 10-8.

Example 10-8 Sample table ck_row_count contents

SELECT * FROM ck_row_count

TAB_NAME ROW_COUNT SYS_NAME TIME_INS
------------- ---------- -------- --------------------------
inventory 703 DB2 2009-09-15-10.53.46.573998
services 808 DB2 2009-09-15-10.55.18.782980
groups 6 DB2 2009-09-15-10.55.45.852181
owners 502 DB2 2009-09-15-10.56.02.341948
locations 140 DB2 2009-09-15-10.56.15.269177
severity 5 DB2 2009-09-15-10.56.31.337119
status 7 DB2 2009-09-15-10.56.51.599962

Having the information about the number of rows in an SQL table is convenient,
because with a single query, you can get the table names that contain a different
number of rows in the source and target database:

SELECT tab_name FROM (SELECT DISTINCT tab_name, row_count FROM
ck_row_count) AS t_temp GROUP BY t_temp.tab_name HAVING(COUNT(*) > 1)

You can extend this approach for comparing the number of rows for additional
checking, such as comparing the sum of numeric columns. Here are the steps
that summarize the technique:

1. Define check sum tables on the source database and characterize the scope
of the computation.

2. Perform the computation and store the results in the appropriate check sum
tables.

3. Convert the check sum tables just as you convert the other user tables.

4. Perform equivalent computations on the target system, and store the
information in the converted check sum tables.

5. Compare the computed values.

Table 10-1 on page 330 provides computations for selected database types. The
argument for the DB2 SUM() function is converted to DECIMAL type, because, in
most cases, the SUM() function returns the same data type as its argument,
which can cause arithmetic overflow. For example, when calculating the sum on
an INTEGER column, if the result exceeds the INTEGER data type range, error
SQL0802N is generated: Arithmetic overflow or other arithmetic exception
occurred. Converting the argument to DECIMAL eliminates the error.

 Chapter 10. Testing and tuning 329

Table 10-1 Aggregations for data conversion verification

Data checking with IBM Data Movement Tool
The IBM Data Movement Tool can simplify the process of data checking your
converted data. The tool generates a script called rowcount in the conversion
project output directory. When executed, this script connects to the MySQL and
DB2 databases and counts the rows for each table in each database. The output
is logged into a <database_name>.tables.rowcount file for easy comparison.
Example 10-9 shows the output file for our sample conversion.

Example 10-9 Sample output inventory.tables.rowcount

db2inst1@db2server:/opt/ibm/IBMDataMovementTool/migr> cat
inventory.tables.rowcount
mysql db2
mysql.groups : 6 "ADMIN"."GROUPS" : 6
mysql.inventory : 703 "ADMIN"."INVENTORY" : 703
mysql.locations : 140 "ADMIN"."LOCATIONS" : 140
mysql.owners : 502 "ADMIN"."OWNERS" : 502
mysql.services : 808 "ADMIN"."SERVICES" : 808
mysql.severity : 5 "ADMIN"."SEVERITY" : 5
mysql.status : 7 "ADMIN"."STATUS" :
7

10.3 Code and application testing

The most important part of the testing process is to verify that each component of
the system functions as it did prior to conversion. You must verify the
functionality of all of the components of the relational database management
system (RDBMS).

Data type MySQL operation DB2 operation

numeric(<precision>,<scale>) sum(val) sum(cast(val as
decimal(31,<scale>)))

date sum(trunc(val - to_date
('0001/01/02','yyyy/mm/dd')))

sum(cast(days(val) as
decimal(31,1)))

variable length character sum(length(val)) sum(cast(length(val) as
decimal(31,0)))

fixed length character sum(length(rtrim(val))) sum(cast(length(rtrim(val))as
decimal(31,0)))

330 MySQL to DB2 Conversion Guide

10.3.1 Checking the application code

The scope of application testing depends on the converted application. For
self-built applications, you must start the testing process with the application
queries. You must test all of the queries independently to ensure that they return
the expected results. With the application queries successfully converted, you
must rebuild the surrounding client programs and test the application against the
target database. You need to run each module of the application and possibly
each form on each window and check them for errors or improper functionality.
You must check all supported interfaces also.

An important issue is documentation of all the test conditions, including
operations performed, application windows opened, input data used for testing,
and results. For larger projects, the documenting component can become
overwhelming, increasing the need for specialized software. By definition, new
applications cannot be fully tested. In the conversion project, the application
testing is an iterative process of planning, designing test cases, executing the
test cases, and finally evaluating and analyzing the results.

Along with the functional testing, you must also check the application against
performance requirements. Because there are many architectural differences
between MySQL and DB2, certain SQL operations might require further
optimization. Observing the performance differences in the early testing stages
increases the chance of preparing more optimal code for the new environment.

Before going into production, you must verify the converted database under high
volumes and loads. These tests must emulate the production environment, and
these tests can determine if further application or database tuning is necessary.
The stress load can also reveal other hidden problems, such as locking issues,
which can be observed only in a production environment.

10.3.2 Security testing

Before going into production, you must verify security. MySQL handles security
differently than DB2, so it is not trivial to compare the user rights between the two
systems.

MySQL users and privileges are resolved in DB2 with operating system users
and groups. You must compare the list of MySQL users to the equivalent DB2
operating system users. You must verify all of DB2’s authorities to allow the
correct individuals to connect to the database. You must verify all of the
privileges for all database objects.

 Chapter 10. Testing and tuning 331

10.4 Troubleshooting

The first step of problem determination is to know what information is available to
you. When DB2 performs an operation, an associated return code is returned.
The return code is displayed to the user in the form of an informational or error
message. These messages are logged into diagnostic files depending on the
diagnostic level that is set in the DB2 configuration. In this section, we discuss
the DB2 diagnostic logs, error message interpretations, and tips, which might
help with problem determination, troubleshooting, and resolutions to specific
problems.

Perform the following actions when experiencing a DB2-related problem:

� Check related messages.

� Explain error codes.

� Check documentation.

� Search through available Internet resources.

� Review authorized program analysis reports (APARs) for the current fix pack
level.

� Use the available tools to narrow the problem.

� Ask IBM for support.

10.4.1 Interpreting DB2 informational messages

Start your investigation from the return code. DB2 provides a return code for
every operation performed in the form of CCCnnnnnS. The prefix CCC identifies
the DB2 component that is returning the message; the nnnnn is a three to five
digit error code, which is also referred to as the SQLCODE; and the S is a
severity indicator. For example, in SQL0289N, the SQL identifier represents a
message from the Database Manager, the SQLCODE is 0289, and N indicates
an error message.

Here is the complete list for DB2 error messages to prefix your reference:

� ASN: Replication messages
� CCA: Client Configuration Assistant messages
� CLI: Call level interface messages
� DB2: Command line processor messages
� DBA: Control Center and Database Administration Utility messages
� DBI: Installation or configuration messages
� EXP: Explain utility messages
� FLG: Information Catalog Manager messages

332 MySQL to DB2 Conversion Guide

� LIC: DB2 license manager messages
� SAT: Satellite messages
� SPM: Synch Point Manager messages
� SQJ: Embedded SQLJ in Java messages
� SQL: Database Manager messages

The two severity indicators are:

� W: Indicates warning or informational messages
� N: Indicates error messages

DB2 also provides detailed information for each message. The full error
message describes the nature of the problem in detail along with potential user
responses. To display the full message for the DB2 return code, you can use the
DB2 command db2 ? error-code in Linux or AIX. Because the question mark
(?) is a special character, you must separate the DB2 command and the error
code with a double quotation mark ("). See Example 10-10.

Example 10-10 Explaining error codes

db2 "? sql0289"
SQL0289N Unable to allocate new pages in tablespace "<tablespace-name>".

Explanation:

Explanation:

One of the following conditions is true on one or more database partitions:

1 One of the containers assigned to this SMS table space has
 reached the maximum file size. This is the likely cause of the
 error.

2 All the containers assigned to this DMS table space are full.
 This is the likely cause of the error.
 [...]

You can find the complete information about the DB2 message format and a
listing of all the messages in the Messages Reference, Volume 1,
SC27-2450-00, and Messages Reference, Volume 2, SC27-2451-00, which are
available online at this Web site:

http://www.ibm.com/support/docview.wss?rs=71&uid=swg27015148

 Chapter 10. Testing and tuning 333

http://www.ibm.com/support/docview.wss?rs=71&uid=swg27015148

10.4.2 DB2 tools for troubleshooting

The following tools are available to help collect, format, or analyze diagnostic
data. We discuss several of these tools in more detail in the next sections:

� db2dart

Use the db2dart command to verify the architectural correctness of
databases and their associated objects. It can also be used to display the
contents of database control files in order to extract data from tables that
might otherwise be inaccessible.

� db2diag

The db2diag tool serves to filter and format the volume of information that is
available in the db2diag log files. Filtering records in db2diag log files can
reduce the time that is required to locate the records needed when
troubleshooting problems.

� db2greg

You can view and edit the Global Registry with the db2greg tool.

� db2level

The db2level command helps you determine the version and service level
(build level and fix pack number) of your DB2 instance.

� db2look

There are many times when it is advantageous to be able to create a
database that is similar in structure to another database. For example, rather
than testing new applications or recovery plans on a production system, it
makes more sense to create a test system that is similar in structure and data
and perform tests against the test system without adversely affecting the
production system. You can use the db2look tool to extract the required DDL
statements that are needed to reproduce the database objects of one
database in another database. The tool can also generate the required SQL
statements to replicate statistics from one database to another database, and
any other statements needed to replicate the database configuration,
database manager configuration, and registry variables.

� db2ls

With the ability to install multiple copies of DB2 products on your system and
with the extended flexibility to install particular DB2 products and features in
any paths of your choice, you need a tool to help you keep track of what is
installed and where it is installed. On supported Linux and UNIX operating
systems, the db2ls command lists the DB2 products and features that are
installed on your system, including the DB2 Version 9 HTML documentation.

334 MySQL to DB2 Conversion Guide

� db2pd

Use the db2pd tool for troubleshooting, because it can return quick and
immediate information from the DB2 memory sets.

� db2support

When collecting information for a DB2 problem, the most important DB2 utility
is db2support. The db2support utility automatically collects all of the DB2 and
system diagnostic information that is available. It also has an optional
interactive “Question and Answer” session, which poses questions about the
circumstances of your problem.

� Traces

If you experience a recurring and reproducible problem with DB2, tracing
sometimes allows you to capture additional information about it. Under
normal circumstances, only use a trace when asked by IBM Software Support
to use a trace. The process of taking a trace entails setting up the trace
facility, reproducing the error, and collecting the data.

10.4.3 DB2 diagnostic logs

DB2 logs every return code in diagnostic logs based on the diagnostic level set in
the database manager configuration. When investigating DB2 problems, you can
obtain the essential information in diagnostic log files that are generated by DB2:

� Administration Notification log or Windows Event log
� The db2diag.log file
� Trap files
� DB2 dump files
� Core files (Linux/UNIX only)

Administration notification log
DB2 also provides diagnosis information to the administration notification log in
the case of a failure. On Linux and UNIX platforms, the administration notification
log is a text file called the <instance>.nfy file, where <instance> is the name of
the DB2 instance. It is located in the $HOME/sqllib/db2dump directory. On
Windows, all administration notification messages are written to the Event Log.

The DBM configuration parameter NOTIFYLEVEL specifies the level of
information to be recorded:

� 0 - No administration notification messages captured (not recommended)
� 1 - Fatal or unrecoverable errors
� 2 - Immediate action required
� 3 - Important information, no immediate action required (default)
� 4 - Informational messages

 Chapter 10. Testing and tuning 335

DB2 is not the only product that can write to the notification logs, tools such as
the Health Monitor, Capture and Apply programs, and user applications can also
write to these logs using the db2AdminMsgWrite API function.

db2diag.log
The db2diag.log file is most frequently used file for DB2 problem investigation.
You can find this file in the DB2 diagnostic directory, defined by the DIAGPATH
variable in the database manager configuration. If the DIAGPATH parameter is
not set, by default, the directory is located at this path for Linux and UNIX:

$HOME/sqllib/db2dump

$HOME is the home directory of the DB2 instance.

The directory is located at this path for Windows:

<INSTALL PATH>\<DB2INSTANCE>

<INSTALL PATH> is the directory where DB2 is installed, and <DB2INSTANCE> is the
name of the DB2 instance.

The database manager configuration parameter DIAGLEVEL controls how much
information is logged to the db2diag.log file. Valid values can range from 0 - 4:

� 0 - No diagnostic data captured
� 1 - Severe errors only
� 2 - All errors
� 3 - All errors and warnings (default)
� 4 - All errors, warnings, and informational messages

Most of the time, the default value is sufficient for problem determination. In
certain cases, especially on development or test systems, you can set the
parameter to 4 to collect all informational messages. However, ensure that you
focus on the database activities and the size that is available on the file system,
because this information can cause performance issues due to the large
amounts of data recorded in the file. Setting DIAGLEVEL to 4 can also make the
file extremely large and harder to read.

This db2diag.log file includes this information:

� A diagnostic message (beginning with DIA) explaining the reason for the error

� Application identifiers, which allow you to match error entries with
corresponding application or DB2 server processes

� Any available supporting data, such as SQLCA data structures, and pointers
to the location of any extra dump or trap files

� Administrative events, such as backup and restore start and finish

336 MySQL to DB2 Conversion Guide

Example 10-11 contains an extract of a db2diag.log file taken at DIAGLEVEL 3.

Example 10-11 Example of a db2diag.log file

1 2007-05-18-14.20.46.973000-240 2 I27204F655 3 LEVEL: Info
4 PID : 3228 5 TID : 8796 6 PROC : db2syscs.exe
7 INSTANCE: DB2MPP 8 NODE : 002 9 DB : WIN3DB1
10 APPHDL : 0-51 11 APPID: 9.26.54.62.45837.070518182042
12 AUTHID : UDBADM
13 EDUID : 8796 14 EDUNAME: db2agntp (WIN3DB1) 2
15 FUNCTION: DB2 UDB, data management, sqldInitDBCB, probe:4820
16 DATA #1 : String, 26 bytes
Setting ADC Threshold to:
DATA #2 : unsigned integer, 8 bytes
1048576

We next explain the db2diag.log file entries. The numbers bolded in the
example correspond to the following numbers:

1. A time stamp and time zone for the message.

2. The record ID field. The recordID of the db2diag log file specifies the file
offset at which the current message is being logged (for example, “27204”)
and the message length (for example, “655”) for the platform where the DB2
diagnostic log was created.

3. The diagnostic level associated with an error message, for example, Info,
Warning, Error, Severe, or Event.

4. The process ID.

5. The thread ID.

6. The process name.

7. The name of the instance generating the message.

8. For multi-partition systems, the database partition generating the message.
(In a non-partitioned database, the value is “000”.)

9. The database name.

10.The application handle. This value aligns with that used in db2pd output and
lock dump files. It consists of the coordinator partition number followed by the
coordinator index number, separated by a dash.

11.Identification of the application for which the process is working. In this
example, the process generating the message is working on behalf of an
application with the ID 9.26.54.62.45837.070518182042.

The TCP/IP-generated application ID is composed of three sections:

i. IP address: It is represented as a 32-bit number displayed as a
maximum of 8 hexadecimal characters.

 Chapter 10. Testing and tuning 337

ii. Port number: It is represented as 4 hexadecimal characters.

iii. A unique identifier for the instance of this application.

12.The authorization identifier.

13.The engine dispatchable unit identifier.

14.The name of the engine dispatchable unit.

15.The product name (“DB2”), component name (“data management”), and
function name (“sqlInitDBCB”) that is writing the message (as well as the
probe point (“4820”) within the function).

16.The information returned by a called function. There might be multiple data
fields returned.

Trap files
The database manager generates a trap file if it cannot continue processing due
to a trap, segmentation violation, or exception.

All signals or exceptions received by DB2 are recorded in the trap file. The trap
file also contains the function sequence that was running when the error
occurred. This sequence is sometimes referred to as the “function call stack” or
“stack trace.” The trap file also contains additional information about the state of
the process when the signal or exception was caught.

A trap file is also generated when an application is forced off the system while
running a fenced thread-safe routine. The trap occurs as the process is shutting
down. This trap file is not a fatal error, and it is nothing to be concerned about.

The files are located in the directory specified by the DIAGPATH database
manager configuration parameter.

On all platforms, the trap file name begins with a process identifier (PID),
followed by a thread identifier (TID), followed by the partition number (000 on
single partition databases), and concludes with .trap.txt.

There are also diagnostic traps, which are generated by the code when certain
conditions occur that do not warrant crashing the instance, but where it might be
useful to verify values within the stack. These traps are named with the PID in
decimal format, followed by the partition number (0 in a single partition
database).

The following example resembles a trap file with a process identifier (PID) of
6881492 and a thread identifier (TID) of 2.

6881492.2.000.trap.txt

338 MySQL to DB2 Conversion Guide

The following example is a trap file whose process and thread are running on
partition 10.

6881492.2.010.trap.txt

You can generate trap files on demand using the db2pd command with the -stack
all or -dump option. In general, though, only run this command as requested by
IBM Software Support.

Dump files
When DB2 determines that extra information is required for collection due to an
error, it often creates binary dump files in the diagnostic path. The binary dump
file is named with the process or thread ID that failed, the node where the
problem occurred, and ends with the .dump.bin extension, as shown in this
example:

6881492.2.010.dump.bin

When a dump file is created or appended, an entry is made in the db2diag.log
file indicating the time and the type of data that is written.

Core files (Linux/UNIX)
If a program terminates abnormally, a core file is created by the system to store
a memory image of the terminated process. Errors, such as memory address
violations, illegal instructions, bus errors, and user-generated quit signals, cause
core files to be dumped.

These files are located in the directory that is specified by the DIAGPATH
database manager configuration parameter.

10.4.4 DB2 support information

Identifying what information is required to resolve problems is another important
step. All conditions that define the problem are essential when you try to find the
solution by searching through the available Internet resources or contacting DB2
support.

Maintenance version
You can use the db2level utility to check the current version of DB2. As shown in
Figure 10-2 on page 340, the utility returns information about the installed
maintenance updates (fix packs), the word length used by the instance (32-bit or
64-bit), the build date, and other code identifiers. We recommend that you
periodically check to determine if the newest available fix packs are installed.

 Chapter 10. Testing and tuning 339

DB2 maintenance updates are freely available at:

ftp://ftp.software.ibm.com/ps/products/db2/fixes

Figure 10-2 Sample db2level output

The db2support utility
The db2support utility is designed to automatically collect all DB2 and system
diagnostic data. This program generates information about a DB2 server,
including information that is related to the configuration and the system
environment.

The output of the program is stored in a single compressed file named
db2support.zip, which is located in the directory specified as part of the
db2support command options.

In one simple step, the tool can gather database manager snapshots,
configuration files, and operating system parameters, which can help you
determine the problem more quickly. This example is a sample call of the utility:

db2support . -d invent -c

The dot represents the current directory where the output file is stored. The rest
of the command options are not required and can be omitted. The -d and -c
clauses instruct the utility to connect to the invent database and to gather
information about database objects, such as table spaces, tables, or packages.

DB2 Technical Support site
An invaluable place to look when experiencing a problem is the DB2 Technical
Support site for Linux, Windows, and UNIX, which is located on the Web at this
Web site:

http://www.ibm.com/software/data/db2/support/db2_9/

The Web site has the most recent copies of documentation, a knowledge base to
search for technical recommendations or DB2 defects, links for product updates,
the latest support news, and other useful DB2-related links.

340 MySQL to DB2 Conversion Guide

ftp://ftp.software.ibm.com/ps/products/db2/fixes
ftp://ftp.software.ibm.com/ps/products/db2/fixes
http://www-01.ibm.com/software/data/db2/support/db2_9/

To find related problems, prepare words that describe the issues, such as the
commands that were run, symptoms, or tokens from the diagnostic messages.
You can use these words as search terms in the DB2 Knowledge Base. The
Knowledge Base offers an option to search through DB2 documentation,
TechNotes, and DB2 defects (APARs). TechNotes are recommendations and
solutions for specific problems.

Authorized Program Analysis Reports (APARs) are defects in the DB2 code that
have been discovered by clients and that require a fix. APARs have unique
identifiers and are always specific to a particular version, but they can affect
multiple products in the DB2 family that run on multiple platforms. Fixes for
APARs are provided through the DB2 fix packs.

On the DB2 support site, you can search for closed, open, and HIPER APARs. A
closed status for an APAR indicates that a resolution for a problem has been
created and included in a specific fix pack. Open APARs represent DB2 defects
that are currently being addressed or are waiting to be included in the next
available fix pack. High-Impact or PERvasive (HIPER) APARs are critical
problems that you must review to assess the potential affect of staying at a
particular fix pack level.

The DB2 Technical Support site offers e-mail notification of critical or pervasive
DB2 client support issues, including HIPER APARs and fix pack alerts. To
subscribe to it, follow the DB2 Alert link on the Technical Support main page.

You can also send DB2 for Linux, UNIX, and Windows questions to:
askdata@ca.ibm.com.

Calling the IBM Software Support Center
If the problem appears too complex to solve on your own, you can contact the
IBM Software Support Center. In order to understand and resolve your support
service request in the most expedient way, it is important that you gather
information about the problem and have it available when you talk to the software
specialist.

Guidelines and reference materials (which you might need when calling IBM
support), as well as the telephone numbers, are available in the IBM Software
Support Guide at this Web site:

http://techsupport.services.ibm.com/guides/handbook.html

 Chapter 10. Testing and tuning 341

http://techsupport.services.ibm.com/guides/handbook.html

10.4.5 Monitoring tools

Tuning and troubleshooting a database can be a complex process. DB2 comes
with various tools, functions, and applications that make this task much easier.
One of the monitoring tools is the DB2 monitoring utility, which can collect
information about many system activities, such as the usage of buffer pools,
locks held by applications, sorts performed by the system, activities on tables,
connections, transaction statistics, or statements run on the system. There are
three major methods of monitoring:

� Monitoring table functions
� Snapshot™ monitoring
� Event monitoring

Monitoring table functions
Starting with DB2 Version 9.7, you can access monitor data through a simpler
alternative to the traditional system monitor. You can use monitor table functions
to collect and view data for systems, activities, or data objects.

Data for monitored elements continually accumulates in memory and is available
for querying. You can choose to receive data for a single object (for example,
service class A or table TABLE1) or for all objects.

When using these table functions in a database partitioned environment, you can
choose to receive data for a single partition or for all partitions. If you choose to
receive data for all partitions, the table functions return one row for each partition.
Using SQL, you can sum the values across partitions to obtain the value of a
monitor element across partitions.

Monitor table functions can be divided into three categories, depending on the
information that they monitor:

� System: The system monitoring perspective includes the complete volume of
work and effort expended by the data server to process application requests.
This perspective helps you determine all of the data server activities, as well
as the activities for a particular subset of application requests. The following
list shows the table functions for retrieving system information:

– MON_GET_SERVICE_SUBCLASS
– MON_GET_SERVICE_SUBCLASS_DETAILS
– MON_GET_WORKLOAD
– MON_GET_WORKLOAD_DETAILS
– MON_GET_CONNECTION
– MON_GET_CONNECTION_DETAILS
– MON_GET_UNIT_OF_WORK
– MON_GET_UNIT_OF_WORK_DETAILS

342 MySQL to DB2 Conversion Guide

� Activities: The activity monitoring perspective focuses on the subset of data
server processing that is related to executing activities. In the context of SQL
statements, the term activity refers to the execution of the section for an SQL
statement. You use the following table functions to access current data for
activities:

– MON_GET_ACTIVITY_DETAILS
– MON_GET_PKG_CACHE_STMT

� Data objects: The data object monitoring perspective provides information
about operations that are performed on data objects, such as tables, indexes,
buffer pools, table spaces, and containers. Use the following table functions
to access the current details for data objects:

– MON_GET_BUFFERPOOL
– MON_GET_TABLESPACE
– MON_GET_CONTAINER
– MON_GET_TABLE
– MON_GET_INDEX

Example 10-12 shows an example of how you can use the MON_GET_TABLE
function to retrieve the rows read, inserted, updated, and deleted from all tables
in the ADMIN schema.

Example 10-12 Monitor table function

db2inst1@db2server:~> db2 "SELECT varchar(tabschema,20) as tabschema,
 varchar(tabname,20) as tabname,
 sum(rows_read) as total_rows_read,
 sum(rows_inserted) as total_rows_inserted,
 sum(rows_updated) as total_rows_updated,
 sum(rows_deleted) as total_rows_deleted
FROM TABLE(MON_GET_TABLE('ADMIN','',-1)) AS t
GROUP BY tabschema, tabname
ORDER BY total_rows_read
DESC"

Snapshot monitoring
Snapshot monitoring describes the state of database activity at a particular point
in time when a snapshot is taken. Snapshot monitoring is useful in determining
the current state of the database and its applications. Taken at regular intervals,
the snapshots are useful for observing trends and foreseeing potential problems.

You can take snapshots from the command line, by using custom APIs, or
through SQL by using table functions. Example 10-13 on page 344 shows an
extract from a sample snapshot invoked from the command line.

 Chapter 10. Testing and tuning 343

Example 10-13 Example snapshot

db2inst1@db2server:~> db2 GET SNAPSHOT FOR DATABASE ON invent

 Database Snapshot

Database name = INVENT
Database path =
/home/db2inst1/invent/db2inst1/NODE0000/SQL00001/
Input database alias = INVENT
Database status = Active
Catalog database partition number = 0

[...]

High water mark for connections = 9
Application connects = 767
Secondary connects total = 7
Applications connected currently = 1
Appls. executing in db manager currently = 0
Agents associated with applications = 7
Maximum agents associated with applications= 9
Maximum coordinating agents = 9

[...]

Buffer pool data logical reads = Not Collected
Buffer pool data physical reads = Not Collected
Buffer pool temporary data logical reads = Not Collected
Buffer pool temporary data physical reads = Not Collected

 [...]

In Example 10-13, the snapshot has collected database-level information for the
INVENT database. Several of the returned parameters display point-in-time
values, such as the number of currently connected applications:

Applications connected currently = 1

Certain parameters represent cumulative values, such as the number of connect
statements that are issued against the database:

Application connects = 767

Other parameters can contain historical values, such as the maximum number of
concurrent connections that have been observed on the database:

High water mark for connections = 9

Cumulative or historical values are used to relate to the point in time during the
last initialization of counters. The counters can be reset to zero by the RESET
MONITOR command or by the appropriate DB2 event. In Example 10-13,

344 MySQL to DB2 Conversion Guide

database deactivation and activation reset all of the database-level counters.
Example 10-14 shows how to reset monitors for an entire instance and for the
specific database.

Example 10-14 Resetting snapshot monitor counters

db2 RESET MONITOR ALL
db2 RESET MONITOR FOR DATABASE invent

To optimize database performance in a default DB2 configuration, most of the
snapshot monitor elements are not collected. In Example 10-12 on page 343, the
value Not Collected was displayed for the buffer pool statistics. DB2 contains
monitor switches to provide database administrators with the option of
constraining the collection of monitor elements. You can display the current
monitor switches that are set for the session from the command line with the
GET MONITOR SWITCHES command, as shown in Example 10-15.

Example 10-15 Displaying monitor switches

db2inst1@db2server:~> db2 GET MONITOR SWITCHES

 Monitor Recording Switches

Switch list for db partition number 0
Buffer Pool Activity Information (BUFFERPOOL) = OFF
Lock Information (LOCK) = OFF
Sorting Information (SORT) = OFF
SQL Statement Information (STATEMENT) = OFF
Table Activity Information (TABLE) = OFF
Take Timestamp Information (TIMESTAMP) = ON 09/11/2009 22:10:34.801069
Unit of Work Information (UOW) =
OFF

The monitor switches can be turned on at the instance level or the application
level. To switch the monitors at the instance level, modify the appropriate
database manager parameter. After modifying the DFT_MON_BUFPOOL
parameter, as shown in Example 10-16, all users with SYSMAINT, SYSCTRL, or
SYSADM authorities are able to collect buffer pool statistics on any database in
the instance.

Example 10-16 Updating monitor switches at the instance level

db2 UPDATE DBM CFG USING DFT_MON_BUFPOOL ON

 Chapter 10. Testing and tuning 345

To switch the monitors at the application level, issue the UPDATE MONITOR
SWITCHES command using the command line. The changes only are applicable
to that particular prompt window. Example 10-17 shows how to update the
suitable monitor switch for collecting buffer pool information.

Example 10-17 Updating monitor switches at the application level

db2 UPDATE MONITOR SWITCHES USING BUFFERPOOL ON

Table 10-2 shows the complete list of monitor switches and related database
manager (DBM) parameters.

Table 10-2 List of monitor switches and related DBM parameters

Sample snapshots
The database manager snapshot (Example 10-18) captures information specific
to the instance level. The information centers around the total amount of memory
that is allocated to the instance and the number of agents that are currently
active on the system.

Example 10-18 Database manager snapshot

db2 GET SNAPSHOT FOR DATABASE MANAGER

The lock snapshot (Example 10-19 on page 347) is useful in determining what
locks an application currently holds and the locks that other applications are
waiting on. The snapshot lists all applications on the system and the locks that
each of these applications holds. Each lock is given a unique identifier number,
and each application is given a unique identifier number.

Database manager
parameter

Monitor switch Information provided

DFT_MON_BUFPOOL BUFFERPOOL Number of reads and
writes and time taken

DFT_MON_LOCK LOCK Number of locks held and the number of
deadlocks

DFT_MON_SORT SORT Number of heaps used, overflows, and
sort performance

DFT_MON_STMT STATEMENT Start/stop time and
statement identification

DFT_MON_TABLE TABLE Measure of activity (rows
read/written)

DFT_MON_UOW UOW (Unit Of Work) Start/end times and completion status

DFT_MON_TIMESTAMP TIMESTAMP Timestamps for operations

346 MySQL to DB2 Conversion Guide

Example 10-19 Lock snapshot

db2 GET SNAPSHOT FOR LOCKS ON invent

The table snapshot (Example 10-20) contains information about the usage and
creation of all tables. This information is useful in determining how much work is
being run against a table and how much the table data changes. You can use
this information to decide how to lay out your data physically.

Example 10-20 Table snapshot

db2 GET SNAPSHOT FOR TABLES ON invent

The table space and buffer pool snapshots (Example 10-21) contain similar
information. The table space snapshot returns information regarding the layout of
the table space and the amount of space that is used. The buffer pool snapshot
contains information about the amount of space currently allocated for buffer
pools and the amount of space that is required when the database is next reset.
Both snapshots contain a summary of the way in which data is accessed from
the database. This access can be done from a buffer pool, directly from tables on
disk, or through a direct read or write for LOBs or LONG objects.

Example 10-21 Table space and buffer pool snapshots

db2 GET SNAPSHOT FOR TABLESPACES ON invent
db2 GET SNAPSHOT FOR BUFFERPOOLS ON invent

The dynamic SQL snapshot (Example 10-22) is used extensively to determine
how well SQL statements perform. This snapshot summarizes the behavior of
the various dynamic SQL statements that are run. The snapshot does not
capture static SQL statements, so anything that was pre-bound does not show
up in this list. The snapshot is an collection of the information concerning the
SQL statements. If an SQL statement is executed 102 times, there is one entry,
which encapsulates a summary of the behavior of all 102 executions.

Example 10-22 Dynamic SQL snapshot

db2 GET SNAPSHOT FOR DYNAMIC SQL ON invent

Snapshot table functions
Authorized users can also capture snapshot monitoring information for an
instance by using snapshot table functions or snapshot administrative views. The
snapshot table functions allow you to request data for specific database
partitions, globally aggregated data, or data from all database partitions. Certain
snapshot table functions allow you to request data from all active databases. The

 Chapter 10. Testing and tuning 347

snapshot administrative views provide a simple means of accessing data for all
database partitions of the connected database.

Example 10-23 and Example 10-24 show how to get similar monitoring
information using the table functions and views as we did from Example 10-17 by
using the GET SNAPSHOT command. Example 10-23 demonstrates a query
that captures the snapshot of lock information for the currently connected
database. Example 10-24 is a query that captures a snapshot of lock information
about the SAMPLE database for the currently connected database partition.

Example 10-23 Sample snapshot table function

db2inst1@db2server:~> SELECT * FROM SYSIBMADM.SNAPLOCK

Example 10-24 Sample snapshot table function

db2inst1@db2server:~>SELECT * FROM TABLE(SNAP_GET_LOCK('invent',-1)) AS
SNAPLOCK

Table 10-3 lists the snapshot table functions, administrative views, and return
information that can be used to monitor your database system. All administrative
views belong to the SYSIBMADM schema.

Table 10-3 Common snapshot table functions and administrative views

Monitor
level

Snapshot table function Administrative view Information returned

DBM SNAP_GET_DBM_V95 SNAPDBM Retrieve the database manager-level
information.

SNAP_GET_FCM SNAPFCM Retrieve the fcm logical data group
snapshot information.

SNAP_GET_FCM_PART SNAPFCM_PART Retrieve the fcm_node logical data
group snapshot information.

SNAP_GET_SWITCHES SNAPSWITCHES Retrieve database snapshot switch state
information.

SNAP_GET_DBM_MEMOR
Y_POOL

SNAPDBM_MEMORY_
POOL

Retrieve database manager-level memory
usage information.

DB SNAP_GET_DB_V95 SNAPDB Retrieve snapshot information from the
database logical group.

SNAP_GET_DB_MEMORY_
POOL

SNAPDB_MEMORY_
POOL

Retrieve database-level memory usage
information.

SNAP_GET_HADR SNAPHADR Retrieve HADR logical data group
snapshot information.

348 MySQL to DB2 Conversion Guide

APP SNAP_GET_APPL_V95 SNAPAPPL Retrieve application logical data group
snapshot information.

SNAP_GET_APPL_INFO_
V95

 SNAPAPPL_INFO Retrieve appl_info logical data group
snapshot information.

SNAP_GET_LOCKWAIT SNAPLOCKWAIT Retrieve lockwait logical data group
snapshot information.

SNAP_GET_STMT SNAPSTMT Retrieve statement snapshot information.

SNAP_GET_AGENT SNAPAGENT Retrieve agent logical data group
application snapshot information.

SNAP_GET_SUBSECTION SNAPSUBSECTION Retrieve subsection logical monitor group
snapshot information.

SNAP_GET_AGENT_
MEMORY_POOL

SNAPAGENT_MEMORY
_POOL

Retrieve memory_pool logical data group
snapshot information.

Table SNAP_GET_TAB_V91 SNAPTAB Retrieve table logical data group snapshot
information.

SNAP_GET_TAB_REORG SNAPTAB_REORG Retrieve table reorganization snapshot
information.

Lock SNAP_GET_LOCK SNAPLOCK Retrieve lock logical data group snapshot
information.

Table
space

SNAP_GET_TBSP_V91 SNAPTBSP Retrieve table space logical data group
snapshot information.

SNAP_GET_TBSP_PART_
V91

 SNAPTBSP_PART Retrieve tablespace_nodeinfo logical data
group snapshot information.

SNAP_GET_TBSP_
QUIESCER

SNAPTBSP_QUIESCER Retrieve quiescer table space snapshot
information.

SNAP_GET_CONTAINER_
V91

SNAPCONTAINER Retrieve tablespace_container logical data
group snapshot information.

SNAP_GET_TBSP_RANGE SNAPTBSP_RANGE Retrieve range snapshot information.

Buffer
pool

SNAP_GET_BP_V95 SNAPBP Retrieve buffer pool logical group snapshot
information.

SNAP_GET_BP_PART SNAPBP_PART Retrieve bufferpool_nodeinfo logical data
group snapshot information.

Dynamic
SQL

SNAP_GET_DYN_SQL_V95 SNAPDYN_SQL Retrieve dynsql logical group snapshot
information.

DB SNAP_GET_UTIL SNAPUTIL Retrieve utility_info logical data group
snapshot information.

SNAP_GET_UTIL_PROGRE
SS

SNAPUTIL_PROGRESS Retrieve progress logical data group
snapshot information.

SNAP_GET_DETAILLOG_
V91

SNAPDETAILLOG Retrieve snapshot information from the
detail_log logical data group.

SNAP_GET_STORAGE_
PATHS

SNAPSTORAGE_PATHS Retrieve automatic storage path
information.

 Chapter 10. Testing and tuning 349

The SQL table functions have two input parameters:

� database name

VARCHAR(255). If you enter NULL, the name of the currently connected
database is used.

� partition number

SMALLINT. For the partition number parameter, enter the integer (a value
between 0 and 999) corresponding to the partition number that you must
monitor. To capture a snapshot for the currently connected partition, enter a
value of -1 or a NULL. To capture a global snapshot, enter a value of -2.

For the following list of snapshot table functions, if you enter NULL for the
currently connected database, you get snapshot information for all databases in
the instance:

� SNAP_GET_DB_V95
� SNAP_GET_DB_MEMORY_POOL
� SNAP_GET_DETAILLOG_V91
� SNAP_GET_HADR
� SNAP_GET_STORAGE_PATHS
� SNAP_GET_APPL_V95
� SNAP_GET_APPL_INFO_V95
� SNAP_GET_AGENT
� SNAP_GET_AGENT_MEMORY_POOL
� SNAP_GET_STMT
� SNAP_GET_SUBSECTION
� SNAP_GET_BP_V95
� SNAP_GET_BP_PART

The database name parameter does not apply to the database manager-level
snapshot table functions; they have an optional parameter for database partition
number.

Event monitoring
Event monitors are used to monitor the performance of DB2 over a fixed period
of time. The information that can be captured by an event monitor is similar to the
snapshots, but in addition to snapshot-level information, event monitors also
examine transition events in the database, and they consider each event as an
object. Event monitors can capture information about DB2 events in the following
areas:

� Statements: A statement event is recorded when an SQL statement ends. The
monitor records the statement’s start and stop time, CPU used, text of
dynamic SQL, the return code of the SQL statement, and other matrixes,
such as the fetch count.

350 MySQL to DB2 Conversion Guide

� Connections: A connection event is recorded whenever an application
disconnects from the database. The connection event records all
application-level counters.

� Database: An event of database information is recorded when the last
application disconnects from the database. This event records all
database-level counters.

� Buffer pools: A buffer pool event is recorded when the last application
disconnects from the database. The information captured contains the type
and volume of use of the buffer pool, use of prefetchers and page cleaners,
and whether direct I/O was used.

� Table spaces: A table space event is recorded when the last application
disconnects from the database. This monitor captures information regarding
counters for buffer pool, prefetchers, page cleaners, and direct I/O for each
table space.

� Tables: All active table events are recorded when the last application
disconnects from the database. An active table is a table that has been
altered or created since the database was activated. The monitor captures
the number of rows read and written to the table.

� Activities: An activity event is recorded on the completion of an activity that
executed in a service class, workload, or work class that has had its
COLLECT ACTIVITY DATA option turned on. Data is also collected for the
targeted activity in the instant that the
WLM_CAPTURE_ACTIVITY_IN_PROGRESS stored procedure is executed.
Data can also be collected if the activity violates a threshold that has the
COLLECT ACTIVITY DATA option enabled. The activity event monitor
records activity-level data. If the WITH DETAILS option was specified as part
of the COLLECT ACTIVITY DATA statement, this collected data includes
statement and compilation environment information for those activities that
have it. If AND VALUES was also specified, this collected data also includes
input data values for those activities that have it.

� Statistics: A statistics event is recorded every xx minutes, where xx is the
length of time over which statistics are gathered. This period is defined in the
WLM_COLLECT_INT database configuration parameter. Data can also be
collected when the WLM_COLLECT_STATS stored procedure is called. The
statistics captured are activities that executed with each service class,
workload, or work class that exists on the system.

� Threshold violations: A threshold violation event is recorded upon detection
of a threshold violation. The threshold violations event monitor records a
description of the threshold that was violated (the identifier, maximum value,
and so on), identification of the activity that violated the threshold, the unit of
work identifier, and the time that the threshold was violated.

 Chapter 10. Testing and tuning 351

� Locking: The locking event monitor is new and can replace the deprecated
deadlock event monitor. A locking event is recorded upon detection of any of
the following event types, depending on the configuration: lock timeout,
deadlock, or lock wait beyond a specified duration. The information captured
from this event monitor focuses on the locks involved in the failure and the
applications that own them.

� Unit of work: The unit of work is a new event monitoring type to DB2 9.7 and
replaces the deprecated transaction event monitor. A unit of work event is
recorded upon the completion of a unit of work. The unit of work event
records a variety of information, including attributes at the database level,
connection level, and unit of work level.

Event monitors are created with the CREATE EVENT MONITOR SQL
statement. Information about event monitors is stored in the system catalog
table, and it can be reused later.

Example 10-25 shows a sequence of statements that illustrate how to collect
Event Monitor information using commands.

Example 10-25 Working with event monitors

1 db2inst1@db2server:~> db2 "CREATE EVENT MONITOR mymon1 FOR DATABASE,
STATEMENTS WRITE TO FILE '/home/db2inst1/temp'"
DB20000I The SQL command completed successfully.

2 db2inst1@db2server:~> db2 SET EVENT MONITOR mymon1 STATE=1

3 db2inst1@db2server:~/> db2 "SELECT * FROM amdin.services"
[…]

4 db2inst1@db2server:~/> db2 SET EVENT MONITOR mymon1 STATE=0

5 db2inst1@db2server:~/> db2 DROP EVENT MONITOR mymon1
DB20000I The SQL command completed successfully.

6 db2inst1@db2server:~/> db2evmon -path /home/db2inst1/temp

The numbers bolded in Example 10-25 correspond to the following descriptions:

1. This line is the statement used to create the event monitor mymon1, which
specifically collects DATABASE and STATEMENT events.

2. This line is turning the event monitor on. Values for this statement can be 0
for off and 1 for on.

3. This line is used as an SQL statement that must be captured by the event
monitor.

4. This line turns off the event monitor.

352 MySQL to DB2 Conversion Guide

5. This line drops the event monitor mymon1.

6. The db2evmon utility converts the event monitor binary files to a user
readable form. Example 10-26 shows the output from this utility.

Example 10-26 db2evmon output

EVENT LOG HEADER
 Event Monitor name: MYMON1
 Server Product ID: SQL09070
 Version of event monitor data: 10
 Byte order: LITTLE ENDIAN
 Number of nodes in db2 instance: 1
 Codepage of database: 1208
 Territory code of database: 1
 Server instance name: db2inst1
--
--
 Database Name: INVENT
 Database Path: /home/db2inst1/invent/db2inst1/NODE0000/SQL00001/
 First connection timestamp: 09/16/2009 15:16:33.138148
 Event Monitor Start time: 09/17/2009 10:12:14.573251
--

3) Connection Header Event ...
 Appl Handle: 4195
 Appl Id: *LOCAL.db2inst1.090917034642
 Appl Seq number: 00029
 DRDA AS Correlation Token: *LOCAL.db2inst1.090917034642
 Program Name : db2bp
 Authorization Id: DB2INST1
 Execution Id : db2inst1
 Codepage Id: 1208
 Territory code: 1
 Client Process Id: 12152
 Client Database Alias: INVENT
 Client Product Id: SQL09070
 Client Platform: Unknown
 Client Communication Protocol: Local
 Client Network Name: db2server
 Connect timestamp: 09/16/2009 23:46:42.964073

 [...]

 Chapter 10. Testing and tuning 353

10.4.6 Visual Explain

An access plan is a cost estimation of resource usage for a query, based on
available information, such as statistics for tables and indexes, instance and
database configuration parameters, bind options and query optimization level,
and so on. An access plan also specifies the order of operations for accessing
the data.

The access plan that is acquired from Visual Explain helps you to understand
how individual SQL or XQuery statements are executed. You can use the
information displayed in the Visual Explain graph to tune SQL and XQuery
queries to optimize performance.

You can start Visual Explain from the Control Center or from the Optim Data
Studio toolset. From Data Studio, create or open SQL or XQuery statement. In
the Main panel view, right-click and select Open Visual Explain, as shown in
Figure 10-3.

Figure 10-3 Opening Visual Explain in Data Studio

A configuration window appears where you can specify the general settings and
the values for Visual Explain to use for special registers when fetching explain
data.

354 MySQL to DB2 Conversion Guide

Figure 10-4 shows an example of an access plan graph. To get the details,
right-click the desired graph element.

Figure 10-4 Visual Explain access plan graph

You can use Visual Explain to perform these tasks:

� View the statistics that were used at the time of optimization. You can
compare these statistics to the current catalog statistics to help you determine
whether rebinding the package might improve performance.

� Determine whether or not an index was used to access a table. If an index
was not used, Visual Explain can help you determine which columns might
benefit from being indexed.

� View the effects of performing various tuning techniques by comparing the
before and after versions of the access plan graph for a query.

� Obtain information about each operation in the access plan, including the
total estimated cost and the number of rows retrieved (cardinality).

 Chapter 10. Testing and tuning 355

10.5 Initial tuning

Performance of a DB2 database application can be influenced by many factors,
such as the type of workload, application design, database design, capacity
planning, and instance and database configuration. Initial tuning has become
easier with the introduction of autonomic computing and automatic features that
are turned on by default with DB2. However, you still might need to modify a few
settings to fit your environment. This section focuses on a number of DB2
performance tuning tips that can be used for initial configuration.

10.5.1 Table space design

At database creation time, three table spaces are created:

� SYSCATSPACE: Catalog table space for storing information about all the
objects in the database.

� TEMPSPACE1: System temporary table space for storing internal temporary
data required during SQL operations, such as sorting, reorganizing tables,
creating indexes, and joining tables.

� USERSPACE1: For storing user-defined tables.

By default, SYSCATSPACE and USERSPACE1 table spaces are created as
Database Managed Space (DMS), which means that the database manager
controls the storage space. The TEMPSPACE1 table space is created as System
Managed Space (SMS), meaning that the regular operating system functions are
used for handling I/O operations.

For simple databases, the default configurations might be sufficient for your
needs. However, in most cases, you might want to add additional table spaces.
The benefit of multiple table spaces is that you can assign separate database
objects to separate table spaces and assign the table spaces to dedicated
physical devices. Using this method allows each table object to utilize the
hardware allocated to the table space to which it belongs. This approach
essentially allows for table-level backup.

You can create an SMS table space using the MANAGED BY SYSTEM clause in
the create table space definition. The benefit of using an SMS table space is that
it does not require initial storage; space is not allocated by the system until it is
required. Creating a table space with SMS requires less initial work, because you
do not have to predefine the containers.

However, with SMS table spaces, the file system of the operating system
decides where each logical file page is physically stored. Pages might not be
stored contiguously on disk, because the storage placement depends on the file

356 MySQL to DB2 Conversion Guide

system algorithm and on the level of activity on the file system. And, the
performance of an SMS table space can be negatively affected. Therefore, SMS
table spaces are ideal for small databases that require low maintenance and
monitoring and that grow and shrink rapidly.

With DMS, the database manager can ensure that pages are physically
contiguous, because it bypasses operating system I/O and interfaces with the
disk directly. This approach can improve performance significantly. You can
create a DMS table space by using the MANAGED BY DATABASE clause in the
create table space definition.

The disadvantage is that a DMS table space requires more tuning and
administrative effort, because you must add more storage containers as the table
space fills with data. However, you can easily add new containers, drop, or
modify the size of existing containers. The database manager then automatically
rebalances existing data into all the containers belonging to the table space.
Therefore, DMS table spaces are ideal for performance-sensitive applications,
particularly applications that involve a large number of INSERT operations.

If a database is enabled for automatic storage (which is enabled by default),
there is a third option when creating a table space. You can specify automatic
management by using the MANAGED BY AUTOMATIC STORAGE clause in
the CREATE TABLESPACE definition. With this option, DB2 decides what type
of table space to create. There is no need to specify container details, because
DB2 assigns the containers and manages table space creation automatically.

For optimal performance, you must place large volume data and indexes within
DMS table spaces; if possible, split them to separate raw devices. Initially,
system temporary table spaces need to be of the SMS type. In an online
transaction processing (OLTP) environment, there is no need to create large
temporary objects to process SQL queries, so the SMS system temporary table
space is a good starting point. The easiest way to optimize your table spaces is
to use table spaces that are managed by automatic storage.

10.5.2 Physical placement of database objects

When creating a database, the first important decision is the storage
architecture. The ideal situation is to have the fastest disks possible and at least
five to ten disks per processor (for a high I/O OLTP workload, use even more
disks per processor). The reality is that hardware is often chosen based on other
considerations, so to achieve optimal performance, carefully plan the placement
of database objects.

Refer to Figure 10-5 on page 358 for an explanation of logical logs.

 Chapter 10. Testing and tuning 357

Figure 10-5 Explaining logical logs

As shown in Figure 10-5, all data modifications are not only written to table space
containers, but they are also logged to ensure recoverability. Because every
INSERT, UPDATE, or DELETE statement is replicated in the transactional log,
the flushing speed of the logical log buffer can be crucial for the entire database
performance. To understand the importance of logical log placement, remember
that the time necessary to write data to disk depends on the physical data
distribution on disk. The more random reads or writes that are performed, the
more disk head movements are required, and therefore, the slower the writing
speed. Flushing the logical log buffer to disk is by its nature sequential, and other
operations must not interfere with it. Locating logical log files on separate devices
isolates them from other processes and ensures uninterrupted sequential writes.

To change logical log files to a new location, you must modify the
NEWLOGPATH database parameter, as shown in Example 10-27. The logs are
relocated to the new path on the next database activation (it takes time to create
the files).

Example 10-27 Relocation of logical logs

db2 UPDATE DB CFG FOR SAMPLE USING NEWLOGPATH /db2/logs

358 MySQL to DB2 Conversion Guide

When creating a DMS table space with many containers, DB2 automatically
distributes the data across the containers in a round-robin fashion, similar to the
striping method that is available in disk arrays. To achieve the best possible
performance, place each table space container on a dedicated physical device.
For parallel asynchronous writes and reads from multiple devices, you must
adjust the number of database page cleaners (NUM_IO_CLEANERS) and I/O
servers (NUM_IOSERVERS). The best value for these two parameters depends
on the type of workload and available resources. You can start your configuration
with the following values:

� NUM_IOSERVERS = Number of physical devices, not less than three and no
more than five times the number of CPUs

� NUM_IO_CLEANERS = Number of CPUs

However, the most effective way to configure these parameters is to set them to
automatic and let DB2 manage them, as shown in Example 10-28.

Example 10-28 Updating I/O-related processes

db2 UPDATE DB CFG FOR sample USING NUM_IOSERVERS AUTOMATIC
db2 UPDATE DB CFG FOR sample USING NUM_IOCLEANERS AUTOMATIC

If there are a relatively small number of disks available, it can be difficult to keep
logical logs, data, indexes, system temporary table spaces (more important for
processing large queries in a data warehousing environment), backup files, or
the operating system paging file on separate physical devices. A compromise
solution is to have one large file system striped by a disk array (RAID device) and
create table spaces with only one container. The load balancing is shifted to the
hardware, and you do not have to worry about space utilization. If you want
parallel I/O operations on a single container, you must set the
DB2_PARALLEL_IO registry variable before starting the DB2 engine.

If this registry variable is set, and the prefetch size of the table is not
AUTOMATIC, the degree of parallelism of the table space is the prefetch size
divided by the extent size. If this registry variable is set, and the prefetch size of
the table space is AUTOMATIC, DB2 automatically calculates the prefetch size
of a table space. Table 10-4 on page 360 summarizes the available options and
how parallelism is calculated for each situation.

 Chapter 10. Testing and tuning 359

Table 10-4 Calculating parallelism

10.5.3 Buffer pools

The default size for buffer pools is relatively small: only 250 pages (~ 1 MB) for
Windows and 1,000 pages (~ 4 MB) for Linux and UNIX platforms. The overall
buffer size has a great effect on DB2 performance by significantly reducing I/O,
which is the most time-consuming operation. We recommend that you increase
these default values. However, the total buffer pool size must not be set too high,
because there might not be enough memory to allocate the desired size. To
calculate the maximum buffer size, all other DB2 memory-related parameters,
such as database heap, the agent’s memory, and storage for locks, as well as
the operating system and any other applications, must be considered.

Initially, set the total size of buffer pools to 10% to 20% of available memory. You
can monitor the system later and correct it. DB2 allows changing buffer pool
sizes without shutting down the database. The ALTER BUFFERPOOL statement
with the IMMEDIATE option takes effect right away, except when there is not
enough reserved space in the database-shared memory to allocate new space.
This feature can be used to tune database performance according to periodical
changes in use, for example, switching from daytime interactive use to nighttime
batch work.

When the total available size is determined, this area can be divided into
separate buffer pools to improve utilization. Having more than one buffer pool
can preserve data in the buffers. For example, let us suppose that a database
has many frequently used smaller tables, which normally reside in the buffer in
their entirety, and thus, are accessible quickly. Now, let us suppose that there is
a query running against a very large table using the same buffer pool and
involving reads of more pages than the total buffer size. When this query runs,
the pages from the small, frequently used tables will be lost, making it necessary
to reread them when they are needed again.

Prefetch size of table space DB2_PARALLEL_IO setting Parallelism is equal to

AUTOMATIC Not set Number of containers

AUTOMATIC Table space ID Number of containers x 6

AUTOMATIC Table space ID:n Number of containers x n

Not AUTOMATIC Not set Number of containers

Not AUTOMATIC Table space ID Prefetch size/extent size

Not AUTOMATIC Table space ID:n Prefetch size/extent size

360 MySQL to DB2 Conversion Guide

At the start, you can create additional buffer pools for caching data and leave the
IBMDEFAULTBP for system catalogs.

Creating an extra buffer pool for system temporary data can also be valuable for
the system performance, especially in an OLTP environment where the
temporary objects are relatively small. Isolated temporary buffer pools are not
influenced by the current workload, so it takes less time to find free pages for
temporary structures, and it is likely that the modified pages will not be swapped
out to disk.

In a data warehousing environment, the operations on temporary table spaces
are considerably more intensive, so the buffer pools need to be larger, or
combined with other buffer pools if there is not enough memory in the system
(one pool for caching data and temporary operations).

Example 10-29 shows how to create buffer pools, assuming that an additional
table space named DATASPACE for storing data and indexes was already
created and that there is enough memory in the system. Use this example as a
starting buffer pool configuration for a 2 GB RAM system.

Example 10-29 Increasing buffer pools

connect to sample;
-- creating two buffer pools 256 MB and 64 MB
CREATE BUFFERPOOL data_bp IMMEDIATE SIZE 65536 pagesize 4k;
CREATE BUFFERPOOL temp_bp IMMEDIATE SIZE 16384 pagesize 4k;

-- changing size of the default buffer pool
ALTER BUFFERPOOL ibmdefaultbp IMMEDIATE SIZE 16384;

-- binding the tablespaces to buffer pools
ALTER TABLESPACE dataspace BUFFERPOOL data_bp;
ALTER TABLESPACE tempspace1 BUFFERPOOL temp_bp;

-- checking the results
SELECT
substr(bs.bpname,1,20) AS bpname
,bs.npages
,bs.pagesize
,substr(ts.tbspace,1,20) as TBSPACE
FROM syscat.bufferpools bs JOIN syscat.tablespaces ts ON
bs.bufferpoolid = ts. bufferpoolid;

The results:
BPNAME NPAGES PAGESIZE TBSPACE
-------------------- ----------- ----------- --------------------
IBMDEFAULTBP 16384 4096 SYSCATSPACE
IBMDEFAULTBP 16384 4096 SYSTOOLSPACE

 Chapter 10. Testing and tuning 361

IBMDEFAULTBP 16384 4096 USERSPACE1
DATA_BP 65536 4096 DATASPACE
TEMP_BP 16384 4096 TEMPSPACE1

Although you can tune your buffer pools manually, using the Self-Tuning Memory
Manager is an easier and more effective way of tuning the buffer pools for
optimal performance. As we discussed in 9.6, “Autonomics” on page 306, the
Self-Tuning Memory Manager can tune database memory parameters and buffer
pools without any DBA intervention. The Self-Tuning Memory Manager works
with buffer pools of multiple page sizes and can easily trade memory between
the buffer pools as needed. You can turn on the Self-Tuning Memory Manager
for a specific buffer pool by issuing commands in Example 10-30.

Example 10-30 Self-tuning memory manager and tuning buffer pools

db2inst1@db2server:~ > db2 UPDATE DB CFG FOR DATABASE invent USING
SELF_TUNING_MEM ON
db2inst1@db2server:~ > db2 ALTER BUFFERPOOL bp32 SIZE AUTOMATIC

The first command in Example 10-30 turns the Self-Tuning Memory Manager on,
which is the default. The second command tells DB2 to automatically tune the
buffer pool BP32. You can tune individual buffer pools or all of the buffer pools
with the Self-Tuning Memory Manager.

The CHNGPGS_THRESH parameter specifies the percentage of changed
pages at which the asynchronous page cleaners will be started. Asynchronous
page cleaners write changed pages from the buffer pool to disk. The default
value for the parameter is 60%. When that threshold is reached, certain users
might experience a slower response time. Having larger buffer pools means
more modified pages in memory and more work to be performed by page
cleaners, as shown in Figure 10-6 on page 363.

362 MySQL to DB2 Conversion Guide

Figure 10-6 Visualizing CHNGPGS_THRESH parameter

For databases with a heavy update transaction workload, you can generally
ensure that there are enough clean pages in the buffer pool by setting the
parameter value to be equal-to or less-than the default value. A percentage
larger than the default can help the performance of your database if there are a
small number of extremely large tables. To change the default parameter, you
can use the following command:

db2 update db cfg for sample using CHNGPGS_THRESH 40

10.5.4 Large transactions

By default, databases are created with a relatively small space for transactional
logs. There are only three log files of 250 pages each on Windows and of 1,000
pages on Linux and UNIX.

A single transaction must fit into the available log space to be completed; if it
does not fit, the transaction is rolled back by the system (SQL0964C The
transaction log for the database is full). To process transactions that
modify large numbers of rows, adequate log space is needed.

Currently, you can calculate the total log space that is available for transactions
by multiplying the size of one log file (database parameter LOGFILSIZ) and the
number of logs (database parameter LOGPRIMARY).

 Chapter 10. Testing and tuning 363

From a performance perspective, it is better to have a larger log file size because
of the cost of switching from one log to another log. When log archiving is
switched on, the log size also indicates the amount of data for archiving. In this
case, a larger log file size is not necessarily better, because a larger log file size
can increase the chance of failure or cause a delay in archiving or log shipping
scenarios. You need to balance the log size and the number of logs.

Example 10-31 allocates 400 MB of total log space.

Example 10-31 Resizing the transactional log

db2 UPDATE DB CFG FOR sample USING logfilsiz 5120
db2 UPDATE DB CFG FOR sample USING logprimary 20

Locking is the mechanism that the database manager uses to control concurrent
access to data in the database by multiple applications. Each database has its
own list of locks (a structure stored in memory that contains the locks held by all
applications concurrently connected to the database). The size of the lock list is
controlled by the LOCKLIST database parameter.

The default storage for LOCKLIST on Windows and UNIX is set to AUTOMATIC.
On 32-bit platforms, each lock requires 48 or 96 bytes of the lock list, depending
on whether other locks are held on the object. On 64-bit platforms, each lock
requires 64 or 128 bytes of the lock list, depending on whether other locks are
held on the object.

When this parameter is set to AUTOMATIC, it is enabled for self-tuning, which
allows the memory tuner to dynamically size the memory area controlled by this
parameter as the workload requirements change. Because the memory tuner
trades memory resources among separate memory consumers, there must be at
least two memory consumers enabled for self-tuning in order for self-tuning to be
active.

The value of LOCKLIST is tuned together with the MAXLOCKS parameter.
Therefore, disabling the self-tuning of the LOCKLIST parameter automatically
disables the self-tuning of the MAXLOCKS parameter. Enabling the self-tuning of
the LOCKLIST parameter automatically enables the self-tuning of the
MAXLOCKS parameter.

Automatic tuning of this configuration parameter only occurs when self-tuning
memory is enabled for the database (the SELF_TUNING_MEM database
configuration parameter is set to ON).

When the maximum number of lock requests has been reached, the database
manager replaces existing row-level locks with table locks (lock escalation). This
operation reduces the requirements for lock space, because transactions will

364 MySQL to DB2 Conversion Guide

hold only one lock on the entire table instead of many locks on every row. Lock
escalation has a negative performance impact, because it reduces concurrency
on shared objects. Other transactions must wait until the transaction holding the
table lock commits or rolls back work. Setting LOCKLIST to AUTOMATIC avoids
this situation, because the lock list will increase synchronously to avoid lock
escalation or a “lock list full” situation.

To check the current usage of locks, use snapshots, as shown in Example 10-32.

Example 10-32 Invoking a snapshot for locks on the invent database

db2 get snapshot for locks on invent

The snapshot collects the requested information at the time that the command
was issued. Issuing the get snapshot command later can produce other results,
because, in the mean time, the applications might commit the transaction and
release the locks. To check lock escalation occurrences, look at the db2diag.log
file.

Log buffer
Log records are written to disk when one of the following situations occurs:

� A transaction commits or a group of transactions commit, as defined by the
mincommit configuration parameter.

� The log buffer is full.

� Another internal database manager event occurs, which results in log records
being written to disk.

This log buffer size must also be less than or equal to the dbheap parameter.
Buffering the log records results in more efficient logging file I/O, because the log
records are written to disk less frequently and a greater quantity of log records
are written out at each time.

The default size for the log buffer is 256 4 KB pages. In most cases, the log
records are written to disk when one of the transactions issues a COMMIT or
when the log buffer is full. We recommend that you increase the size of this
buffer area if there is considerable read activity on a dedicated log disk or if there
is high disk utilization. Increasing the size of the log buffer can result in more
efficient I/O operations, especially when the buffer is flushed to disk. The log
records are written to disk less frequently, and more log records are written each
time.

When increasing the value of this parameter, also consider increasing the
DBHEAP parameter, because the log buffer area uses space that is controlled by
the DBHEAP parameter.

 Chapter 10. Testing and tuning 365

At a later time, you can use the get snapshot for applications command to
check the current usage of log space by transactions, as shown in
Example 10-33.

Example 10-33 Current usage of log space by applications

$db2 UPDATE MONITOR SWITCHES USING UOW ON
$db2 GET SNAPSHOT FOR APPLICATIONS ON sample | grep "UOW log"

UOW log space used (Bytes) = 478
UOW log space used (Bytes) = 21324
UOW log space used (Bytes) = 110865

Before running the application snapshot, switch on the Unit Of Work monitor. In
Example 10-33, at the time that the snapshot was issued, you can see that there
are only three applications running on the system. The first transaction uses 478
bytes of log space, the second transaction uses 21,324 bytes of log space, and
the last transaction uses 110,865 bytes of log space, which is roughly 28 pages
more than the default log buffer size. The snapshot gives only the current values
from the moment that the command was issued. To get more valuable
information about the usage of log space by transactions, run the snapshot
multiple times.

10.5.5 SQL execution plan

DB2 prepares an access plan whenever an SQL or XQuery statement is issued
against the database. This plan specifies the order of operation for accessing the
data. The access plan is created at prep/bind time for static statements and at
run time for dynamic statements.

You can use an access plan to view statistics for selected tables, indexes, or
columns; properties for operators; global information, such as table space and
function statistics; and configuration parameters that are relevant to optimization.
With Visual Explain, you can view the access plan for an SQL or XQuery
statement in graphical form.

It is important to understand that an access plan is an estimate based on the
information that is available. The optimizer bases its estimations on the following
types of information:

� Statistics in system catalog tables (if statistics are not current, update them
using the RUNSTATS command)

� Configuration parameters

� Bind options

� The query optimization class

366 MySQL to DB2 Conversion Guide

After many changes to table data, logically sequential data might reside on
non-sequential data pages, so that the database manager must perform
additional read operations to access data.

Additional read operations are also required if many rows have been deleted. In
this case, consider reorganizing the table to match the index and to reclaim
space. You can also reorganize the system catalog tables.

Because reorganizing a table usually takes more time than updating statistics,
you can execute the RUNSTATS command to refresh the current statistics for
your data and then rebind your applications. If refreshed statistics do not improve
performance, reorganization might help.

You can execute the RUNSTATS command against a table from the command
line. Example 10-34 shows how to execute the RUNSTATS command against our
sample inventory table.

Example 10-34 Executing RUNSTATS on the inventory table

db2inst1@db2server:~> db2 "RUNSTATS ON TABLE ADMIN.INVENTORY"
DB20000I The RUNSTATS command completed successfully.

It is also possible to update statistics using the Data Studio tool. Within the
Database Explorer View, connect to your database and drill down the database
object folders until you find the table for which you want to update the statistics.
In our example, we connect to the invent database, and then, we drop down the
invent database folder, the schema folder, the ADMIN schema folder, and the
Tables folder to a list of tables in the invent database in the ADMIN schema. To
pull up the table options, we right-click the INVENTORY table icon, as shown in
Figure 10-7 on page 368.

 Chapter 10. Testing and tuning 367

Figure 10-7 Running RUNSTATS on the INVENT table

Figure 10-8 shows the output of the update statistics.

Figure 10-8 Output of RUNSTATS on the INVENT table

368 MySQL to DB2 Conversion Guide

In certain scenarios, you might need more than current statistics on a table to
improve performance. The following factors can indicate if your database will
benefit from table reorganization:

� A high volume of insert, update, and delete activity has occurred against
tables that are accessed by queries.

� Significant changes have occurred in the performance of queries that use an
index with a high cluster ratio.

� Executing the RUNSTATS command to refresh table statistics does not
improve performance.

� Output from the REORGCHK command indicates a need for table
reorganization.

You can access the table reorganization option from the Data Studio by
right-clicking the table, as shown in Figure 10-7 on page 368. After selecting the
REORG Table option in the drop-down menu, the reorganization table wizard
opens in the main view. Figure 10-9 on page 370 shows the reorganization table
wizard. You can select the parameters for the REORG command, and select Run
to execute the command.

 Chapter 10. Testing and tuning 369

Figure 10-9 Reorganization table wizard

It can be time-consuming to constantly monitor the database to see when
statistics need to be refreshed. As discussed in 9.6, “Autonomics” on page 306,
DB2 autonomics can this job easier for you. With autonomics, you can create a
schedule for DB2 to perform regular table or index reorganization, statistics
collection, and profiling. Figure 10-10 on page 371 shows the Configure
Automatic Maintenance wizard within the Data Studio GUI tool. To open this
wizard, right-click the database for which you want to configure automatic
maintenance, and select Update statistics, as highlighted in Figure 10-7 on
page 368.

370 MySQL to DB2 Conversion Guide

Figure 10-10 Automatic maintenance wizard

DB2 comes with an extremely powerful query optimization algorithm. This
cost-based algorithm attempts to determine the least expensive way to perform a
query against a database. Items, such as the database configuration, database
physical layout, table relationships, and data distribution are all considered when
finding the optimal access plan for a query. To check the current execution plan,
you can use the Explain utility.

10.5.6 Configuration Advisor

The Configuration Advisor wizard is a tool that can be helpful in preparing the
DB2 initial configuration. The wizard requests information about the database, its
data, and the purpose of the system, and then, it recommends new configuration
parameters for the database and the instance. You can run the Configuration
Advisor wizard manually, through a GUI or command-line interface, and
automatically during database creation.

By default in DB2 9, any new databases run the Configuration Advisor in the
background and have the configuration recommendations automatically applied.
To disable this feature, or to explicitly enable it, you must use the db2set
command, as shown in Example 10-35 on page 372.

 Chapter 10. Testing and tuning 371

Example 10-35 Configuring the default behavior of the Configuration Advisor

db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=NO
db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=YES

In any case, you can run the Configuration Advisor manually at any time against
a database to update the current configuration, regardless of the
DB2_ENABLE_AUTOCONFIG_DEFAULT setting. All recommendations are
based on the input that you provide and the system information that the
Configuration Advisor gathers. The generated recommendations can be applied
or simply displayed.

It is important to point out that the values that are suggested by the Configuration
Advisor are relevant for only one database per instance. If you want to use this
advisor on more than one database, each database must belong to a separate
instance.

The Configuration Advisor can be manually invoked with the AUTOCONFIGURE
command from the command line processor (CLP), either stand-alone or as part
of the CREATE DATABASE command. Additionally, it can also be run via a GUI
that is available in the Control Center, by calling the db2AutoConfig API, or
finally, by using the ADMIN_CMD stored procedure.

To invoke this wizard from the DB2 Control Center, expand the object tree until
you find the database that you want to tune. Select the icon for the database,
right-click, and select Configuration Advisor. Through several dialog windows,
the wizard collects the following information:

� Percentage of memory that is dedicated to DB2
� Type of workload
� Number of statements per transaction
� Transaction throughput
� Trade-off between recovery and database performance
� Number of applications
� Isolation level of applications that are connected to the database

Based on the supplied answers, the wizard proposes configuration changes and
gives you the option to apply the recommendations or to save them as a task for
the Task Center for later execution, as shown in Figure 10-11 on page 373.
Figure 10-12 on page 374 shows the resulting recommendations.

372 MySQL to DB2 Conversion Guide

Figure 10-11 Scheduling Configuration Advisor

 Chapter 10. Testing and tuning 373

Figure 10-12 Configuration Advisor recommendations

You can also acquire the initial configuration recommendations through the
text-based AUTOCONFIGURE command (Example 10-36).

Example 10-36 Sample AUTOCONFIGURE command

db2 AUTOCONFIGURE USING mem_percent 40 tpm 300 num_local_apps 80 isolation CS
apply none

[...]

Current and Recommended Values for Database Configuration

Description Parameter Current Value Recommended Value

 Default application heap (4KB) (APPLHEAPSZ) = 256 256
Catalog cache size (4KB) (CATALOGCACHE_SZ) = 33 91
 Changed pages threshold (CHNGPGS_THRESH) = 80 80
 Database heap (4KB) (DBHEAP) = 1200 3552
 Degree of parallelism (DFT_DEGREE) = 1 1
 Default tablespace extentsize (pages) (DFT_EXTENT_SZ) = 32 32

[...]

374 MySQL to DB2 Conversion Guide

Table 10-5 lists all of the AUTOCONFIGURE command parameters.

Table 10-5 Parameters for the AUTOCONFIGURE command

10.5.7 Design Advisor

Well-designed indexes are essential to database performance. DB2 comes with
the Index Advisor utility, which recommends indexes for specific SQL queries.
Index Advisor can be invoked either using the db2advis command or using the
Design Advisor wizard from the Command Center or Control Center. This utility
accepts one or more SQL statements and their relative frequency, which is
known as a workload.

The Index Advisor utility provides several benefits:

� Finding the best indexes for a problem query

� Finding the best indexes for a specified workload. When specifying the
workload, you can use the frequency parameter to prioritize the queries.
You can also limit the disk space for the target indexes.

� Testing an index on a workload without having to create the index

Keyword Valid values Default
value

Explanation

mem_percent 1–100 25 Percentage of memory to dedicate to
DB2

Workload_type simple, mixed, or
complex

mixed Type of workload: simple for
transaction processing or complex for
data warehousing

num_stmts 1–1 000 000 10 Number of statements per unit of work

Tpm 1–200 000 60 Transactions per minute

admin_priority performance,
recovery, or both

both Optimize for better performance or
better recovery time

is_populated yes, no yes Is the database populated with data?

num_local_apps 0–5 000 0 Number of connected local
applications

num_remote_apps 0–5 000 10 Number of connected remote
applications

Isolation RR, RS, CS, UR RR Isolation levels: Repeatable Read,
Read Stability, Cursor Stability, or
Uncommitted Read

bp_resizeable yes, no yes Are buffer pools re-sizeable?

 Chapter 10. Testing and tuning 375

To execute the index advisor against a specific database, we first must specify
the workload that will be run against the database. From the command line, we
create a file that defines the workload. Example 10-37 shows the queries to run
against the SAMPLE database.

Example 10-37 The db2advis.in input file

--#SET FREQUENCY 100
 SELECT COUNT(*) FROM EMPLOYEE;
 SELECT * FROM EMPLOYEE WHERE LASTNAME='HAAS';
 --#SET FREQUENCY 1
 SELECT AVG(BONUS), AVG(SALARY) FROM EMPLOYEE
 GROUP BY WORKDEPT ORDER BY WORKDEPT;
 --#SET FREQUENCY 50
select FIRSTNME, lastname, deptname from department d, employee e where
d.deptno = e.workdept and e.lastName like 'W%'

We can then run the db2advis command and specify the db2advis.in file as
the workload input script. Example 10-38 shows the syntax and output to execute
the index advisor. For more options, run db2advis -h from the command line.

Example 10-38 Finding indexes for a particular query

db2inst1@db2server:~/ > db2advis -d sample -i db2advis.in -t 5

Using user id as default schema name. Use -n option to specify schema
execution started at timestamp 2009-09-18-02.38.35.785903
found [3] SQL statements from the input file
Recommending indexes...
total disk space needed for initial set [0.000] MB
total disk space constrained to [29.459] MB
Trying variations of the solution set.
 0 indexes in current solution
 [813.2663] timerons (without recommendations)
 [813.2663] timerons (with current solution)
 [0.00%] improvement
--
--
-- LIST OF RECOMMENDED INDEXES
-- ===========================
-- no indexes are recommended for this workload.
--
--
-- RECOMMENDED EXISTING INDEXES
-- ============================
-- RUNSTATS ON TABLE "DB2INST1"."EMPLOYEE" FOR SAMPLED DETAILED INDEX "DB2INST1"."XEMP2"
;
-- COMMIT WORK ;
--
--
-- UNUSED EXISTING INDEXES

376 MySQL to DB2 Conversion Guide

-- ============================
-- DROP INDEX "DB2INST1"."XEMP2";
-- ===========================
--
-- ====ADVISOR DETAILED XML OUTPUT=============
-- ==(Benefits do not include clustering recommendations)==
--
--<?xml version="1.0"?>
--<design-advisor>
--<statement>
--<statementnum>0</statementnum>
--<statementtext>
-- SELECT COUNT(*) FROM EMPLOYEE
--</statementtext>
--<objects>
--<identifier>
--<name>EMPLOYEE</name>
--<schema>DB2INST1</schema>
--</identifier>
--<identifier>
--<name>XEMP2</name>
--<schema>DB2INST1</schema>
--</identifier>
--</objects>
--<benefit>0.000000</benefit>
--<frequency>100</frequency>
--</statement>
--<statement>
--<statementnum>1</statementnum>
--<statementtext>
-- SELECT * FROM EMPLOYEE WHERE LASTNAME='HAAS'
--</statementtext>
--<objects>
--<identifier>
--<name>EMPLOYEE</name>
--<schema>DB2INST1</schema>
--</identifier>
--</objects>
--<benefit>0.000000</benefit>
--<frequency>100</frequency>
--</statement>
--<statement>
--<statementnum>2</statementnum>
--<statementtext>
-- SELECT AVG(BONUS), AVG(SALARY)
-- FROM EMPLOYEE GROUP BY WORKDEPT ORDER BY
-- WORKDEPT
--</statementtext>
--<objects>
--<identifier>
--<name>EMPLOYEE</name>
--<schema>DB2INST1</schema>
--</identifier>
--<identifier>

 Chapter 10. Testing and tuning 377

--<name>XEMP2</name>
--<schema>DB2INST1</schema>
--</identifier>
--</objects>
--<benefit>0.000000</benefit>
--<frequency>1</frequency>
--</statement>
--</design-advisor>
-- ====ADVISOR DETAILED XML OUTPUT=============
--

27 solutions were evaluated by the advisor
DB2 Workload Performance Advisor tool is finished.

Launching the Index Advisor in a GUI environment
You can also invoke the Index Advisor as a GUI tool. From the Control Center,
expand the object tree to find the Database folder and right-click the desired
database to select Design Advisor. The wizard guides you through all of the
necessary steps and also helps you to construct a workload by looking for
recently executed SQL and XQuery queries or by looking through the recently
used packages. In order to get accurate recommendations, it is important to have
the current catalog statistics. With the Design Advisor, there is an option to
collect the required basic statistics. However, this option increases the total
calculation time. Figure 10-13 on page 379 presents a sample Design Advisor
window.

378 MySQL to DB2 Conversion Guide

Figure 10-13 Design Advisor

 Chapter 10. Testing and tuning 379

380 MySQL to DB2 Conversion Guide

Chapter 11. Advanced DB2 features

In this chapter, we discuss the advanced features that are offered by DB2 in
detail. During conversion of your database from MySQL to DB2, consider the
DB2 features and functions that are explained within this chapter to enhance
your application.

We discuss these features in this chapter:

� XML
� Compression
� Partitioning
� Multidimensional clustering (MDC)
� Materialized query tables (MQT)
� User-defined data types (UDT)

11

© Copyright IBM Corp. 2009. All rights reserved. 381

11.1 DB2 pureXML

DB2 pureXML allows native storage of XML data in a pre-parsed tree format
within a database table by using a special XML column data type. However,
unlike other databases on the market, DB2 does not store XML data simply as
character strings, as the character large object (CLOB) data type, or shred it into
relational data. When inserting XML data into a DB2 database, the data gets
parsed and fragmented with node-level granularity, preserving the tree structures
of the original XML data. Moreover, during this process, you can enable DB2 to
validate XML data against an XML schema that is registered with the database
and thus make sure that the data is always in the format that is required by the
the applications.

DB2 pureXML provides superior performance when managing and manipulating
XML data. XML documents do not need to be parsed at query run time, and the
advanced indexing technology that is available with XML in DB2 speeds up the
searches across and within the already parsed documents.

DB2 pureXML is fully integrated with relational processing, allowing you to
seamlessly query various types of data at one time using SQL, XML, or
SQL/XML mixed query languages. And unlike other database vendors, there is
no internal translation of XQuery into SQL.

Figure 11-1 on page 383 illustrates a simple example of how relational and XML
data are integrated within a single table. As shown in Figure 11-1 on page 383,
when creating a table within a DB2 database, you can specify both relational and
XML data types in separate column definitions. This specification creates a table,
where for every row of relational data, there will be an XML document associated
with that row.

Because it is possible that the large size of XML documents will be stored, they
are physically stored in separate objects, by default. These objects are called the
XML Data Area (XDA) objects. For most application scenarios, XDA objects
provide excellent performance. However, you have the option of storing the XML
documents in the same physical space as the relational data by using the SET
INLINE LENGTH clause in the CREATE or ALTER statement. For more
information, refer to the IBM DB2 Information Center:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

382 MySQL to DB2 Conversion Guide

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

Figure 11-1 SQL and XML data integration

In order to query and update SQL and XML data, you can use SQL and XQuery
statements (SQL/XML: International Organization for Standardization (ISO)
standard ISO/International Electrotechnical Commission (IEC) 9075-14:2003).
Several operations are available to directly modify not only full documents, but
also parts or subtrees of XML documents without having to read, modify, and
reinsert them. Using the XQuery language, you can directly modify single values
and nodes within the XML document. XQuery is a fairly new, standardized query
language supporting path-based expressions. You can obtain more information
about XQuery at this Web site:

http://www.w3.org/TR/2007/REC-xquery-20070123/

With pureXML, applications are not only able to combine statements from both
languages to query SQL and XML data; you can express many queries in plain
XQuery, in SQL/XML, or XQuery with embedded SQL. In certain cases, one of
the options to express your query logic might be more intuitive than another
option. In general, you must choose the correct approach for querying XML data
on a case-by-case basis, taking the application’s requirements and
characteristics into account. Example 11-1 on page 384 shows a simple XQuery
command.

 Chapter 11. Advanced DB2 features 383

http://www.w3.org/TR/2007/REC-xquery-20070123/

Example 11-1 XQuery command

db2 => XQUERY db2-fn:xmlcolumn('CUSTOMER.INFO')/customerinfo/name

1
--
<name>Kathy Smith</name>
<name>Kathy Smith</name>
<name>Jim Noodle</name>
<name>Robert Shoemaker</name>
<name>Matt Foreman</name>
<name>Larry Menard</name>

 6 record(s) selected.

Example 11-2 illustrates, in a table format, a combined SQL/XML statement that
is used to retrieve the XML data.

Example 11-2 SQL/XQuery command

db2 => SELECT T.* FROM CUSTOMER C, XMLTABLE('$cu/customerinfo' PASSING C.INFO
as "cu" COLUMNS "NAME" VARCHAR (30) PATH 'name',"STREET" VARCHAR (30) PATH
'addr/street', "CITY" VARCHAR (30) PATH 'addr/city') AS T

NAME STREET CITY
------------------------------ ------------------------------ ------------
Kathy Smith 5 Rosewood Toronto
Kathy Smith 25 EastCreek Markham
Jim Noodle 25 EastCreek Markham
Robert Shoemaker 1596 Baseline Aurora
Matt Foreman 1596 Baseline Toronto
Larry Menard 223 NatureValley Road Toronto

 6 record(s) selected.

Example 11-3 shows how to use a combined XQuery/SQL statement to retrieve
XML data based on specific relational data.

Example 11-3 XQuery with embedded SQL

db2 => XQUERY db2-fn:sqlquery("SELECT INFO FROM CUSTOMER WHERE
CID=1001")/customerinfo/name

1
<name>Kathy Smith</name>

 1 record(s) selected.

384 MySQL to DB2 Conversion Guide

DB2 pureXML technology
DB2 pureXML technology includes these features:

� Reduced development time (no XML parsing any longer, validation and
schema repository building)

� DB2 pureXML data type and storage techniques for efficient management of
hierarchical structures that are common in XML documents

� DB2 pureXML indexing technology to speed up searches of subsets of XML
documents

� New query language support (for XQuery and SQL/XML) that is based on
industry standards and new query optimization techniques

� Industry-leading support for managing, validating, and evolving XML
schemes

� Comprehensive administrative capabilities, including extensions to popular
database utilities

� Integration with popular application programming interfaces (APIs) and
development environments

� XML shredding and publishing facilities for working with existing relational
models

� Enterprise-proven reliability, availability, scalability, performance, security,
and maturity that you have come to expect from DB2

Benefits of DB2 pureXML technology
DB2 pureXML technology provides these benefits:

� Reduces development time and costs (no XML parsing any longer, validation
and schema repository building)

� Avoids breaking down XML to relational data (directly query and update XML)

� Increases agility through versatile XML schema evolution

� Improves insight by exploiting previously unmanaged XML data and process
queries more quickly through XML-optimized storage and indexing

� Improves application performance

� Simplifies the operating environment

� Results in lower storage costs

 Chapter 11. Advanced DB2 features 385

11.2 Data compression

Data compression is a feature in DB2, which compresses row data to reduce
storage requirements, improve I/O efficiency, and provide quicker data access
from the disk. By enabling data compression with DB2, you can save up to 80%
of the storage space and greatly increase performance in database systems with
high disk I/O activity. Considering the fact that disk storage can often be the most
expensive component of a database system, this feature can result in
tremendous cost savings. These savings also extend to backup disk space and
more.

Two forms of data compression are currently available to you:

� Value compression involves removing duplicate entries for a value, storing
only one copy, and keeping track of the location of any references to the
stored value.

� Row compression involves replacing repeating patterns that span multiple
column values within a row with shorter symbol strings. The row compression
logic scans a table that is to be compressed for repetitive and duplicate data.
A compression dictionary contains short, numeric keys to that data, and in a
compressed row, these keys replace the actual data. We discuss this type of
compression in this section.

Before you consider turning on row compression, you can inspect your tables to
see what potential savings to expect. Compressing data and decompressing
data are effortless.

To enable row compression, you can use the COMPRESS YES keywords in
either the CREATE or ALTER TABLE statement, as shown in Example 11-4.

Example 11-4 Enabling row compression

db2inst1@db2server:~> db2 ALTER TABLE admin.owners COMPRESS YES
DB20000I The SQL command completed successfully.

After enabling row compression and loading or inserting 1 - 2 MB of data, DB2
automatically creates the compression dictionary. This dictionary contains the
frequently occurring patterns with an associated shorter 12-bit symbol. These
symbols then are used to replace the original data.

386 MySQL to DB2 Conversion Guide

On heavily CPU-utilized systems, the compression and decompression can
cause overhead and decrease performance. In cases where the system is
mainly I/O-bound, fewer pages need to be read from disk, which results in a
performance gain. Data compression can also reduce the amount of buffer pool
memory that is needed, because pages fetched from disk stay compressed in
main memory while the page is actively used.

Figure 11-2 illustrates the mapping of repeating patterns in two table rows to
dictionary symbols representing those patterns. The end result is a compressed
data record that is shorter in length than the original uncompressed record -
which is depicted by the yellow rectangles representing the rows beneath the
table.

Figure 11-2 Row compression

As of DB2 9.7, data compression had been extended to include all temporary
tables. Data compression for temporary tables reduces the amount of temporary
disk space that is required for large and complex queries, increasing query
performance.

Index objects and indexes on compressed temporary tables can also be
compressed to reduce storage costs. This compressions is especially useful for
large online transaction processing (OLTP) and data warehousing environments,
where it is common to have many large indexes. In both cases, index
compression can cause significant performance improvements in I/O-bound
environments and little or no performance decrements in CPU-bound systems.

If compression is enabled on a table with an XML column, the XML data that is
stored in the XDA object is also compressed. A separate compression dictionary
for the XML data is stored in the XDA object. XDA compression is not supported
for tables whose XML columns were created prior to this version; for such tables,
only the data object is compressed.

 Chapter 11. Advanced DB2 features 387

11.3 Partitioning features

In this section, we introduce DB2 partitioning features.

11.3.1 Database partitioning feature

If you require increased processing power or scalability of your data beyond the
capabilities of a single server, you can achieve this increased processing power
or scalability with database partitioning. Database Partitioning Feature (DPF)
allows partitioning of a database across multiple physical servers or within a
large symmetric multiprocessor (SMP) server, as shown in Figure 11-3. DPF
offers scalability, because you can add new servers and spread your database
across them. DPF offers more CPU, more memory, and more disk and is ideal
for the larger databases that are used for data warehousing, data mining, and
online analytical processing (OLAP) or for working with online transaction
processing (OLTP) workloads.

Figure 11-3 Database partitioning feature

The database partitioning feature uses a shared-nothing architecture. All data
can be distributed and split across the participating nodes. From a client
perspective, when a DB2 database is split across separate nodes using DPF,
applications and administrators will still see a single database copy and access
data within it as though it was never partitioned. When scanning through data,

388 MySQL to DB2 Conversion Guide

DB2 will automatically parallelize queries by splitting them up and sending them
directly to the nodes that hold the parts of the data that was requested.

These systems can also be made highly available when using shared storage. In
this case, two or more nodes can share the file systems holding the table spaces.
If an outage occurs, the surviving node can immediately access the failed node’s
table spaces and continue processing.

Remember you can use database partitioning efficiently in combination with table
partitioning and multidimensional clustering.

11.3.2 Table partitioning

Table partitioning allows for the organization of table data into multiple storage
objects called data partitions. The table can be organized based on one or more
column values. The major benefit of table partitioning is that the partitions can be
distributed onto multiple table spaces and can greatly increase the table capacity
limit. While the data externally appears as a single table, internally DB2 can
increase query performance by optimizing the access plans to use the method of
partition elimination. Most importantly, table partitioning makes managing table
data easier using roll-in and roll-out operations.

To partition a particular table, specify the PARTITION BY RANGE clause and the
partitioning columns. You can specify multiple columns and generated columns.
The column must be a base type, no large objects (LOBS), LONG VARCHARS,
and so forth. Figure 11-4 on page 390 describes the various syntax for creating
the same table partitions. The first CREATE table statement creates a table with
three partitions on the c1 column. This statement creates a partition to hold data
for each of the following ranges: 1 - 33, 34 - 66 and 67 - 99. We refer to this
CREATE table statement as short form, because it allows DB2 to create, name,
and distribute the partitions over three table spaces. In the second CREATE
TABLE statement, the user specifies the partition names by using the
PARTITION or PART key word. In this example, the user also specifies the table
spaces, in which each partition must be stored.

 Chapter 11. Advanced DB2 features 389

Figure 11-4 Syntax for creating a range-partitioned table

After creating a partitioned table, open INSERT, UPDATE, or LOAD into the
table, and DB2 automatically inserts rows into the appropriate table partition
according to the specified range. If the inserted data does not fit within the
ranges of any of the partitions, DB2 produces an error.

Traditionally, in order to archive older data, you moved data to the archived
locations, and you issued delete statements to remove the data from the current
table. This effort results in a full table scan to find all rows belonging to the
requested range. By using table partitioning, each table partition can be quickly
separated from the table using the DETACH PARTITION key words in the
ALTER TABLE statement. Example 11-5 describes the syntax for dropping a
particular table partition.

Example 11-5 Detaching a table partition

db2> ALTER TABLE sales DETACH PARTITION Q4_2009 INTO TABLE OldMonthSales

db2> COMMIT

db2> EXPORT OldMonthSales; DROP OldMonthSales

Physically, there is no impact to the system when using the ALTER table
DETACH PARTITION command. The command is extremely fast, because no

390 MySQL to DB2 Conversion Guide

data movement takes place. As you can see in Figure 11-5, the table containing
the detached partition resides in the same table space as the original table
partition. The DETACH only changes catalog entries to let DB2 know that the
table partition is no longer a part of the main table. After the statement is
committed, the detached data is available from the new table name. From now
on, the table is a regular table, and you can perform actions on it.

Figure 11-5 Detaching a table partition

The ATTACH command is similar to DETACH. For more details, visit the IBM
DB2 Information Center:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

Another advantage to table partitioning is table partition elimination. Table
partition elimination is possible, because DB2 uses the partition definition to see
which partitions contain the requested values. DB2 only queries those partitions
with matching ranges. Figure 11-6 illustrates how DB2 uses query definitions for
partition elimination.

Figure 11-6 Example of a range-partitioned table

Remember that you can use table partitioning efficiently in combination with
database partitioning and multidimensional clustering.

 Chapter 11. Advanced DB2 features 391

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

11.3.3 Multidimensional clustering

Multidimensional Clustering (MDC) provides a powerful method for improving
the performance of SELECT, INSERT, UPDATE, and DELETE statements.
Multidimensional clustering provides a way to organize data physically on disk
according to provided dimensions. The data stays clustered on disk, which can
significantly improve query performance and maintenance operations
(table/index reorganization). This feature is best suited for data warehousing,
OLTP, and large database environments.

The indexes for each dimension are block-based, not record-based, thus
reducing their size (and the effort that is needed for logging and maintaining)
dramatically. Reorganization of the table in order to re-cluster is unnecessary.

Example 11-6 shows the CREATE TABLE statement of an MDC table clustered
in three columns: itemId, nation, and orderDate. The block indexes for each
dimension are created automatically.

Example 11-6 Creating an MDC table

CREATE TABLE Orders(
itemId INT, nation varchar(30), orderDate date,
A INT, B INT, C Date, D INT …)
IN Tablespace X, Tablespace Y, Tablespace Z …
INDEX IN Tablespace Y
ORGANIZE BY DIMENSIONS (itemId, nation, orderDate)

Figure 11-7 on page 393 shows the data clustering according to the three
dimensions as defined in Example 11-6.

392 MySQL to DB2 Conversion Guide

Figure 11-7 MDC table and indexes

When organizing by dimensions, you can specify one or more table columns.
DB2 places all inserted rows with the same values for specific columns into a
physical location close to one another. This special physical location is called a
block. A block (extent) is a set of contiguous pages on disk, so access to these
records is sequential and accessed with minimal I/O operations. If an existing
block is filled, a new block is allocated. All blocks with the same combination of
dimension values are grouped into cells. With this internal organization, DB2 can
quickly find data along dimensions or find all rows for a specific combination of
dimension values.

Benefits of multidimensional clustering
Multidimensional clustering tables include these advantages:

� Dimension block index lookups can identify the required portions of the table
and quickly scan only the required blocks.

� Block indexes are smaller than record identifier (RID) indexes, thus, lookups
are faster.

� Index ANDing and ORing can be performed at the block level and combined
with RIDs.

� Data is guaranteed to be clustered on extents, which makes retrieval faster.

� Rows can be deleted faster when rollout can be used.

 Chapter 11. Advanced DB2 features 393

Note that you can use MDC efficiently in combination with database partitioning
and table partitioning.

11.4 Materialized query tables

A materialized query table (MQT) is a table whose definition is based on the
result of a query, and whose data is in the form of precomputed results that are
taken from one or more tables on which the materialized query table definition is
based. The DB2 optimizer can use these tables to determine whether a query
can best be served by accessing an MQT instead of base tables.

MQTs are a powerful way to improve response time for complex queries,
especially queries that might require several of the following operations:

� Aggregates data over one or more dimensions

� Joins and aggregates data over a group of tables

� Includes data from a commonly accessed subset of data, that is, from a “hot”
horizontal or vertical database partition

� Repartitions data from a table, or part of a table, in a partitioned database
environment

Knowledge of MQTs is integrated into the SQL and XQuery compiler. During
compilation, the query rewrites phases, and the optimizer matches queries with
MQTs to determine whether substitution of an MQT for a query that accesses the
base tables is required. If an MQT is used, the EXPLAIN facility can provide
information about which MQT was selected.

Because MQTs behave like regular tables in many ways, the same guidelines as
MQTs apply for optimizing data access using table space definitions, creating
indexes, and issuing RUNSTATS.

As an example, assume a database warehouse contains a set of customers and
a set of credit card accounts. The data warehouse records the set of transactions
that are made with the credit cards. Each transaction contains a set of items that
are purchased together. This schema is classified as a multi-star schema,
because it has two large tables: one table containing transaction items and the
other table identifying the purchase transactions.

We use three hierarchical dimensions to describe a transaction in our example:
product, location, and time. The product hierarchy is stored in two normalized
tables representing the product group and the product line. The location
hierarchy contains city, state, and country or region information and is
represented in a single denormalized table. The time hierarchy contains day,

394 MySQL to DB2 Conversion Guide

month, and year information and is encoded in a single date field. The date
dimensions are extracted from the date field of the transaction using built-in
functions. Other tables in this schema represent account information for
customers and customer information.

An MQT is created with the sum and count of sales for each level of the following
hierarchies:

� Product
� Location
� Time, composed of year, month, day

Many queries can be satisfied from this stored aggregate data. The following
example shows how to create an MQT that computes the sum and the count of
sales along the product group and line dimensions; along the city, state, and
country dimension; and along the time dimension. It also includes several other
columns in its GROUP BY clause. Example 11-7 is an example of the CREATE
TABLE statement that will create an MQT table.

Example 11-7 Create MQT statement

CREATE TABLE dba.PG_SALESSUM
 AS (
 SELECT l.id AS prodline, pg.id AS pgroup,
 loc.country, loc.state, loc.city,
 l.name AS linename, pg.name AS pgname,
 YEAR(pdate) AS year, MONTH(pdate) AS month,
 t.status,
 SUM(ti.amount) AS amount,
 COUNT(*) AS count
 FROM cube.transitem AS ti, cube.trans AS t,
 cube.loc AS loc, cube.pgroup AS pg,
 cube.prodline AS l
 WHERE ti.transid = t.id
 AND ti.pgid = pg.id
 AND pg.lineid = l.id
 AND t.locid = loc.id
 AND YEAR(pdate) > 1990
 GROUP BY l.id, pg.id, loc.country, loc.state, loc.city,
 year(pdate), month(pdate), t.status, l.name, pg.name
)
 DATA INITIALLY DEFERRED REFRESH DEFERRED;

 REFRESH TABLE dba.PG_SALESSUM;

 Chapter 11. Advanced DB2 features 395

The cost of computing the answer using the MQT can be significantly less than
using a large base table, because a portion of the answer is already computed.
MQTs can reduce expensive joins, sorts, and the aggregation of base data.

The larger the base tables become, the greater the improvements in response
time can be, because the MQT grows more slowly than the base table. MQTs
can effectively eliminate overlapping work among queries by performing the
computation after the MQTs are built and refreshed, as well as reusing their
content for many queries.

11.5 User-defined data types

In certain cases, existing built-in data types might not meet the needs of your
application. User-defined types (UDTs) allow you to create or extend existing
data types to your application needs.

There are six types of UDTs:

� Distinct type

A distinct type is a user-defined data type that is based on an existing built-in
data type. Internally, it is stored as an existing data type, but it is considered
as a separate and incompatible type. The major advantages of using distinct
types are extensibility, strong typing, encapsulation, and customization.

A distinct type can be created by issuing the CREATE DISTINCT TYPE
statement. The following statement defines a new distinct type for our sample
application where we want all of the identification numbers to have common
properties and functions. To achieve this goal, we create a distinct type ID,
which contains INTEGER values:

db2> CREATE DISTINCT TYPE id AS integer with comparisons

� Structured type

A structured type is a user-defined data type that has a well defined structure
consisting of existing built-in or user-defined data types. A structured type has
the attributes and methods defined. The attribute defines its data storage
properties, and methods define its behavior.

A structured type can be used as the type of a table, view, or column. When
used as a type for a table or view, that table or view is known as a typed table
or typed view. For typed tables and typed views, the names and data types of
the attributes of the structured type become the names and data types of the
columns of this typed table or typed view. Rows of the typed table or typed
view can be thought of as a representation of instances of the structured type.
When used as a data type for a column, the column contains values of that

396 MySQL to DB2 Conversion Guide

structured type (or values of any of that type’s subtypes, as defined next).
Methods are used to retrieve or manipulate attributes of a structured column
object.

A structured type can be created using the CREATE TYPE statement. For
example, we can define a product and sku type, which can be used to create
typed tables, as shown in Example 11-8. Figure 11-8 shows its hierarchy.

Figure 11-8 User-defined data types

Example 11-8 Structured types and typed tables

db2>CREATE TYPE product_type AS (
 name VARCHAR(20), description VARCHAR(200), brand VARCHAR(30))

instantiable ref using integer mode db2sql

db2>CREATE TYPE sku_type
 UNDER product_type AS (quantity integer)
 instantiable mode db2sql

db2>CREATE TABLE product
 OF product_type (ref is id user generated)

db2>CREATE TABLE sku of sku_type
 UNDER product inherit select privileges

db2>CREATE TABLE order(id ID,sku sku_type)

We can also use this type as a type for a column, as shown in the last
statement of Example 11-8.

ID

Product

Distinct type

Structure type Typed table

use Product_type

SKU

Typed table

SKU_type

Structure type

Order

 Chapter 11. Advanced DB2 features 397

� Reference type

A reference type is a companion type to a structured type. Similar to a distinct
type, a reference type is a scalar type that shares a common representation
with one of the built-in data types. This same representation is shared for all
types in the type hierarchy. The reference type representation is defined
when the root type of a type hierarchy is created. When using a reference
type, a structured type is specified as a parameter of the type. This parameter
is called the target type of the reference.

The target of a reference is always a row in a typed table or a typed view.
When a reference type is used, it can have a scope defined. The scope
identifies a table (called the target table) or view (called the target view) that
contains the target row of a reference value. The target table or view must
have the same type as the target type of the reference type. An instance of a
scoped reference type uniquely identifies a row in a typed table or typed view,
which is called the target row.

� Array type

A user-defined array type is a data type that is defined as an array with
elements of another data type. Every ordinary array type has an index with
the data type of INTEGER and has a defined maximum cardinality. Every
associative array has an index with the data type of INTEGER or VARCHAR
and does not have a defined maximum cardinality.

� Row type

A row type is a data type that is defined as an ordered sequence of named
fields, each with an associated data type, which effectively represents a row.
A row type can be used as the data type for variables and parameters in SQL
PL to provide simple manipulation of a row of data.

� Cursor data type

A user-defined cursor type is a user-defined data type that is defined with the
keyword CURSOR and optionally with an associated row type. A user-defined
cursor type with an associated row type is a strongly typed cursor type;
otherwise, it is a weakly typed cursor type. A value of a user-defined cursor
type represents a reference to an underlying cursor.

398 MySQL to DB2 Conversion Guide

Appendix A. Mapping MySQL built-in
functions and operators

In this appendix, we provide the full list of MySQL built-in functions and operators
and the DB2 equivalent function or solution. This appendix includes the
background and examples for the built-in functions and operators.

A

© Copyright IBM Corp. 2009. All rights reserved. 399

A.1 Grouping related functions
Table A-1 lists the differences in two databases and provides conversion
examples.

Table A-1 MySQL and DB2 grouping related functions

MySQL function MYSQL example DB2 function DB2 example Notes

AVG([DISTINCT]
expression)

mysql> SELECT a,
AVG(b)
 FROM t1
 GROUP BY a

AVG ([DISTINCT | ALL]
expression)

db2 " SELECT a,
AVG(b)
 FROM t1
 GROUP BY a"

Returns the
average set of
numbers

COUNT([DISTINCT]
expression,
expression,...)

mysql> SELECT a,
COUNT(b)
 FROM t1
 GROUP BY a

COUNT([DISTINCT|
ALL] expression).

DB2 allows only one
expression:
Use CONCAT for
character data type or
CHAR and CONCAT on
numeric data types

db2 " SELECT a,
COUNT(b)
 FROM t1
 GROUP BY a"

Returns the
number of rows or
values in a set of
rows or values

MAX ([DISTINCT]
expression)

mysql> SELECT a,
MAX(b)
 FROM t1
 GROUP BY a

MAX ([DISTINCT | ALL]
expression)

db2 "SELECT a,
MAX(b)
 FROM t1
 GROUP BY a"

Returns the
maximum value in
a set of values

MIN ([DISTINCT]
expression)

mysql> SELECT a,
MIN(b)
 FROM t1
 GROUP BY a

MIN ([DISTINCT | ALL]
expression)

db2 "SELECT a, MIN(b)
 FROM t1
 GROUP BY a"

Returns the
minimum value in a
set of values

STDDEV (expression) /
STDDEV_POP
(expression)

mysql> SELECT
STDDEV (a),a
 FROM t1
 GROUP BY a

STDDEV ([DISTINCT |
ALL] expression)

db2 " SELECT
stddev(a),a
 FROM t1
 GROUP BY a"

Returns the
standard deviation
(/n) of a set of
numbers

SUM([DISTINCT]
expression)

mysql> SELECT a,
SUM(b)
 FROM t1
 GROUP BY a

SUM([DISTINCT | ALL]
expression)

db2 " SELECT a,
sum(b)
 FROM t1
 GROUP BY a"

Returns the sum of
a set of numbers

VAR_POP(expression) /
VARIANCE(expression)

mysql> SELECT
VAR_POP(a)
 FROM t1
 GROUP BY a

VARIANCE ([DISTINCT |
ALL] expression)

db2 " SELECT
VARIANCE(a)
 FROM t1
 GROUP BY a"

Returns the
variance of a set of
numbers

BIT_AND (expression)
This function is an
extension to SQL standards

mysql> SELECT
BIT_AND(a), a
 FROM t1
 GROUP BY a

No equivalent function.
Implement using
user-defined function
(UDF).

Refer to UDF B.1,
“Sample code for
BIT_AND” on
page 414.

Returns the value
of the bitwise
logical AND
operation

BIT_OR (expression)
This function is an
extension to SQL standards

mysql> SELECT
BIT_OR(a), a
 FROM t1
 GROUP BY a

No equivalent function.
Implement using UDF.

Refer to UDF B.1,
“Sample code for
BIT_AND” on
page 414.

Returns the value
of the bitwise
logical OR
operation

BIT_XOR (expression)
This function is an
extension to SQL standards

mysql> SELECT
BIT_XOR(a), a
 FROM t1
 GROUP BY a

No equivalent function.
Implement using UDF.

Refer to UDF B.1,
“Sample code for
BIT_AND” on
page 414.

Returns the value
of the bitwise
logical XOR
operation

400 MySQL to DB2 Conversion Guide

GROUP_CONCAT(expr
ession)
This function is an
extension to SQL
standards

mysql> SELECT a,
 GROUP_CONCAT(b)
 FROM t1 group by a

No equivalent function.
Implement using UDF.

Returns a
concatenated
variable for all
values

STD
This function is an
extension to SQL standards

mysql> SELECT
STD(a),a
 FROM t1
 GROUP BY a

STDDEV ([DISTINCT |
ALL] expression)

db2 "SELECT
stddev(a), a
 FROM t1
 GROUP BY a"

Returns the
standard deviation
(/n) of a set of
numbers

Not Available CORRELATION
(expression, expression)

db2 " SELECT
CORRELATION(a, b)
 FROM t1
 WHERE c = 52“

Returns the
coefficient of
correlation of a set
of number pairs

Not Available COVARIANCE
(expression, expression)

db2 “SELECT
COVARIANCE(a, b)
 FROM t1
 WHERE c = 52 “

Returns the
(population)
covariance of a set
of number pairs

Not Available GROUPING(expression) db2 " SELECT a, b,
 SUM(c) AS x,
 GROUPING(a) AS
y,
 GROUPING(b) AS z
 FROM t1
 GROUP BY CUBE
(a, b)
 ORDER BY a, b”

Returns a value
that indicates
whether a row
returned in a
GROUP BY answer
set is a row
generated by a
grouping set that
excludes the
column
represented by
expression

GROUP BY on alias mysql> SELECT a as x
 FROM a
 GROUP BY x;

Use column name for
grouping.

db2 " SELECT a
 FROM t1
 GROUP BY a"

GROUP BY on position mysql> SELECT a
 FROM t1
 GROUP BY 1

Use column name for
grouping.

db2 " SELECT a
 FROM t1
 GROUP BY a"

HAVING on alias mysql> SELECT a as x
 FROM t1
 GROUP BY a
 HAVING x > 0

Use column name in
having clause.

db2 " SELECT a
 FROM t1
 GROUP BY a
 HAVING a > 0”

 Appendix A. Mapping MySQL built-in functions and operators 401

A.2 String functions
Table A-2 provides an overview of MySQL string-related functions and how to
convert these functions to DB2.

Table A-2 MySQL and DB2 string functions

MySQL
function

MYSQL example DB2 function DB2 example Notes

ASCII(string) mysql> SELECT ascii('a');
+------------+
| ascii('a') |
+------------+
| 97 |
+------------+
1 row in set (0.00 sec)

ASCII(string) db2 "VALUES ascii('a') "

1

 97

 1 record(s) selected.

Returns ASCII
code value

BIN(integer) mysql> SELECT bin(5);
+--------+
| bin(5) |
+--------+
| 101 |
+--------+
1 row in set (0.00 sec)

No equivalent
function.
Alternative use
UDF

Returns the binary
value of the string

BIT_LENGTH(
string)

mysql> SELECT bit_length('Hello') ;
+---------------------+
| bit_length('Hello') |
+---------------------+
| 40 |
+---------------------+
1 row in set (0.00 sec)

LENGTH(string,
CODEUNITS16|
CODEUNITS32|
OCTETS)

db2 "VALUES
 length('Hello')*8 "

1

 40

 1 record(s) selected.

Result depends on
the
encoding scheme
used for
character data:
single byte,
double byte,
UTF-8

CHAR_LENGT
H(string) /
CHARACTER_
LENGTH(string
)

mysql> SELECT
CHAR_LENGTH('Orange');
+-----------------------+
| CHAR_LENGTH('Orange') |
+-----------------------+
| 6 |
+-----------------------+
1 row in set (0.00 sec)

CHARACTER_L
ENGTH(string,
CODEUNITS16|
CODEUNITS32|
OCTETS),/
CHAR_LENGT
H(string,
CODEUNITS16|
CODEUNITS32|
OCTETS)

db2 " VALUES
CHAR_LENGTH('Orange',
CODEUNITS32)"

1

 6

 1 record(s) selected.

Returns the
number of
bytes for
expression. For
double-byte
character set
(DBCS), the
number of
DBCS characters
is
returned

CHAR(int,
[USING
character set])

mysql> SELECT char(97);
+----------+
| char(97) |
+----------+
| a |
+----------+
1 row in set (0.00 sec)

CHR(string) db2 "VALUES chr('97') "

1
-
a

 1 record(s) selected.

Returns the
character that has
the ASCII code
value specified by
the argument

402 MySQL to DB2 Conversion Guide

CONCAT_WS(
separator,
string,
string,…)

mysql> SELECT CONCAT_WS('-',
firstname, lastname, loginname) as
FULLNAME from owners where id =
501;
+-------------------------+
| FULLNAME |
+-------------------------+
| Angela-Carlson-acarlson |
+-------------------------+
1 row in set (0.01 sec)

Use || to
implement
CONCAT(list).

db2 "SELECT (firstName || '-' ||
lastName || '-' || loginName) as
fullName from admin.owners
where id = 501"

FULLNAME

Angela-Carlson-acarlson

 1 record(s) selected.

Returns the
concatenation of
string arguments
with separator

CONCAT(strin
g, string,…)

mysql> SELECT
CONCAT(firstname, ' ', lastname) as
FULLNAME from owners where id =
501;
+----------------+
| FULLNAME |
+----------------+
| Angela Carlson |
+----------------+
1 row in set (0.00 sec)

 Use
CONCAT(string,
string) or || to
implement
CONCAT(list).

db2 "SELECT (firstName || ' ' ||
lastName) as fullName from
admin.owners where id = 501"

FULLNAME

Angela Carlson
 1 record(s) selected.

Returns the
concatenation of
string arguments

ELT(int,str1,str
2,str3,...)

mysql> SELECT ELT(2, firstname,
lastname, loginname) as
FULLNAME from owners where id =
501;
+----------+
| FULLNAME |
+----------+
| Carlson |
+----------+
1 row in set (0.00 sec)

No equivalent
function.
Alternative use
CASE
expression or
UDF.

Returns the nth
string or
NULL

EXPORT_SET(
bit, onString,
offString,
length)

mysql> SELECT
EXPORT_SET(12,'ON','OFF','|',4);
+---------------------------------+
| EXPORT_SET(12,'ON','OFF','|',4) |
+---------------------------------+
| OFF|OFF|ON|ON |
+---------------------------------+
1 row in set (0.00 sec)

No equivalent
function.
Alternative use
UDF

Returns a string
representation for
each of the bit
values of a binary
value

FIELD(string,st
ring1,string2,str
ing3,...))

mysql> SELECT FIELD('Carlson',
firstname, lastname, loginname) as
FULLNAME from owners where id =
501;
+----------+
| FULLNAME |
+----------+
| 2 |
+----------+
1 row in set (0.00 sec)

No equivalent
function.
Alternative use
CASE
expression or
UDF

Returns the
position of the
matching string

FIND_IN_SET(
expr)

mysql> SELECT
FIND_IN_SET('Doe','John,Doe,Stas
ie,Smith') as POSITION;
+----------+
| POSITION |
+----------+
| 2 |
+----------+
1 row in set (0.01 sec))

No equivalent
function.
Implement using
UDF.

Returns the
position in the set
of the matching
string

 Appendix A. Mapping MySQL built-in functions and operators 403

FORMAT(doub
le, integer)

FORMAT:
select
format(1234.5555, 2)
returns 1,234.56

No equivalent
function.
Implement using
UDF.

Refer to UDF B.2, “Sample
code for FORMAT function” on
page 415.

Returns the
rounded string

HEX(string) mysql> SELECT HEX(255);
+----------+
| HEX(255) |
+----------+
| FF |
+----------+
1 row in set (0.00 sec)

HEX(string) db2 "VALUES
HEX(00000255)"

1

FF000000

 1 record(s) selected.

Returns a
hexadecimal
representation of a
value as a
character string

INSERT(string,
position, length,
substring)

mysql> SELECT INSERT('original',
2, 2, 'NEW');
+---------------------------------+
| INSERT('original', 2, 2, 'NEW') |
+---------------------------------+
| oNEWginal |
+---------------------------------+
1 row in set (0.00 sec)

INSERT(string,
position, length,
substring)

db2 "VALUES
INSERT('original', 2, 2, 'NEW')"
1

oNEWginal
1 record(s) selected.

Inserts a string
into an existing
string

INSTR
(substring,
string)
/LOCATE(subs
tring, string,
[position])
/POSITION(su
bstring, string)

mysql> SELECT LOCATE('N',
'DINING')
 -> ;
+-----------------------+
| LOCATE('N', 'DINING') |
+-----------------------+
| 3 |
+-----------------------+
1 row in set (0.00 sec)

LOCATE(substri
ng, string, [start],
[CODEUNITS16
|
CODEUNITS32|
OCTETS])

db2 " SELECT LOCATE('N',
'DINING')
 FROM
SYSIBM.SYSDUMMY1"
1

 3
 1 record(s) selected.

Returns the
starting position of
the first
occurrence of one
string within
another string

LCASE(string) /
LOWER(string)

mysql> SELECT LCASE('JOB');
+--------------+
| LCASE('JOB') |
+--------------+
| job |
+--------------+
1 row in set (0.00 sec)

LCASE(string) db2 " SELECT LCASE('JOB')
 FROM
SYSIBM.SYSDUMMY1"
1

job
 1 record(s) selected.

Returns a string in
which all
characters have
been converted to
lowercase
characters

LEFT(string1,
strin2)

mysql> SELECT LEFT('Inventory',
6);
+----------------------+
| LEFT('Inventory', 6) |
+----------------------+
| Invent |
+----------------------+
1 row in set (0.00 sec)

LEFT(string1,
integer)

db2 "SELECT
LEFT('Inventory', 6) FROM
SYSIBM.SYSDUMMY1"
1

Invent
 1 record(s) selected.

Returns a string
consisting of the
leftmost String up
to the integer
position

LENGTH(string
) /
OCTECT_LEN
TH(string)

mysql> select LENGTH('Jürgen') ;
+-------------------+
| LENGTH('Jürgen') |
+-------------------+
| 7 |
+-------------------+
1 row in set (0.00 sec)

LENGTH(string)
/
OCTET_LENGT
H(string)

db2 "select LENGTH('Jürgen')
from admin.owners where id =
501"
1

 7
 1 record(s) selected.

Returns the length
of string in the
implicit or explicit
string unit

LOAD_FILE(dir
String)

update blobTBL SET data =
LOAD_FILE('/tmp/AquaBlue.jpg')
WHERE id = 6;

Use the LOAD
command with
LOBS FROM
<lob_directory>.

Inserts the file into
the database

404 MySQL to DB2 Conversion Guide

LPAD(string,
length,
substring) /
RDAP(string,
length,
substring)

mysql> SELECT
LPAD('TEST',6,'!!!');
+----------------------+
| LPAD('TEST',6,'!!!') |
+----------------------+
| !!TEST |
+----------------------+
1 row in set (0.00 sec)

No equivalent
function.
Implement
using UDF.

Refer to UDF B.3, “Sample
code for RPAD and LPAD
functions” on page 416.

Returns the string
of the given length.
If the length is
longer than the
string, the
substring
characters will be
added to the left or
right end.

LTRIM(string) mysql> SELECT LTRIM(' Apple');
+------------------+
| LTRIM(' Apple') |
+------------------+
| Apple |
+------------------+
1 row in set (0.00 sec)

LTRIM(string) db2 "SELECT LTRIM(' Apple')
FROM
SYSIBM.SYSDUMMY1"
1

Apple

Removes blanks
from the beginning
of
string-expression

MAKE_SET(bit
s, string,
string,....)

mysql> SELECT MAKE_SET(2|4,
"HELLO", "BYE", "GOOD DAY",
"GOOD NIGHT") as OUTPUT;
+--------------+
| OUTPUT |
+--------------+
| BYE,GOOD DAY |
+--------------+
1 row in set (0.00 sec)

No equivalent
function.
Alternative use
UDF

Returns a set of
strings based on
the bit

OCT(expressio
n)

mysql> select oct(22);
+---------+
| oct(22) |
+---------+
| 26 |
+---------+

No equivalent
function.
Alternative use
UDF

Returns the octal
value of the
expression

QUOTE(string) mysql> SELECT quote(firstname)
from owners where id = 501;
+------------------+
| quote(firstname) |
+------------------+
| 'Angela' |
+------------------+
1 row in set (0.00 sec)

SELECT with || db2 "select ('''' || firstname || '''')
from admin.owners where id =
501"

1

'Angela'

 1 record(s) selected.

Returns string with
single quotes

REPEAT(string
, integer)

mysql> select REPEAT('REPEAT
THIS ', 5);
+--
----------------+
| REPEAT('REPEAT THIS ', 5)
|
+--
----------------+
| REPEAT THIS REPEAT THIS
REPEAT THIS REPEAT THIS
REPEAT THIS |
+--
----------------+
1 row in set (0.00 sec)

REPEAT(string,
integer)

db2 "VALUES
REPEAT('REPEAT THIS ', 5)"

1

REPEAT THIS REPEAT THIS
REPEAT THIS REPEAT THIS
REPEAT THIS
 1 record(s) selected.

Returns the
repeated string N
times

 Appendix A. Mapping MySQL built-in functions and operators 405

REPLACE(strin
g1, string2,
string3)

mysql> SELECT REPLACE
('DINING', 'N', 'VID');
+--------------------------------+
| REPLACE ('DINING', 'N', 'VID') |
+--------------------------------+
| DIVIDIVIDG |
+--------------------------------+
1 row in set (0.00 sec)

REPLACE(strin
g1, string2,
string3)

db2 "VALUES REPLACE
('DINING', 'N', 'VID') "
1

DIVIDIVIDG
1 record(s) selected.

Returns as string
with all
occurrences of
string2 in string1
with string3

REVERSE(stri
ng1, S)

mysql> SELECT REVERSE('abc');
+----------------+
| REVERSE('abc') |
+----------------+
| cba |
+----------------+
1 row in set (0.00 sec)

SET (RESTSTR, LEN) =
(INSTR,
LENGTH(INSTR));
WHILE LEN > 0 DO
SET (REVSTR, RESTSTR,
LEN)=
(SUBSTR(RESTSTR, 1, 1) ||
REVSTR,SUBSTR(RESTSTR,
2,
LEN - 1),LEN - 1);
END WHILE;

Returns the
reverse order of
the string.
Implement UDF.
For the complete
code of the
example, refer to
IBM DB2 SQL
Reference,
Volume 1, V8,
SC10-4249.

RIGHT(string,
length)

mysql> SELECT RIGHT('Inventory',
4);
+-----------------------+
| RIGHT('Inventory', 4) |
+-----------------------+
| tory |
+-----------------------+
1 row in set (0.00 sec)

RIGHT(string,
length)

db2 "VALUES
RIGHT('Inventory', 4) "
1

tory
 1 record(s) selected.

Returns a string
consisting of the
rightmost String
starting from the
integer position

RTRIM(string) mysql> SELECT RTRIM('PEAR ');
+------------------+
| RTRIM('PEAR ') |
+------------------+
| PEAR |
+------------------+
1 row in set (0.00 sec)

RTRIM(string) db2 "VALUES RTRIM('PEAR
') "

1

PEAR
 1 record(s) selected.

Removes blanks
from the end of
string

SOUNDEX(stri
ng)

mysql> SELECT
SOUNDEX('apple');
+------------------+
| SOUNDEX('apple') |
+------------------+
| A140 |
+------------------+
1 row in set (0.00 sec)

SOUNDEX(strin
g)

db2 "VALUES
SOUNDEX('apple')"
1

A140
 1 record(s) selected.

Returns a
4-character code
representing the
sound of the words
in the argument.
MySQL: String1
SOUNDS LIKE
string2 can be
ported to
SOUNDEX(String
1) =
SOUNDEX(string
2) in DB2

SPACE(expres
sion)

mysql> SELECT space(30);
+--------------------------------+
| space(30) |
+--------------------------------+
| |
+--------------------------------+
1 row in set (0.00 sec)

SPACE(express
ion)

db2 " VALUES space(3)"
1

Returns a
character string
consisting of
blanks with length
specified by the
second argument

406 MySQL to DB2 Conversion Guide

STRCMP(strin
g, string)

mysql> SELECT STRCMP('test',
'testing');
+----------------------------+
| STRCMP('test', 'testing') |
+----------------------------+
| -1 |
+----------------------------+
1 row in set (0.00 sec)

CASE Implement using CASE
expression and VALUES
statement.

Returns -1 if the
first string is
smaller, 0 if the
strings are the
same length, 1 if
the second string
is smaller

SUBSTRING_I
NDEX()

mysql> SELECT
SUBSTRING_INDEX('This is a
test...', 't', 2);
+--
+
| SUBSTRING_INDEX('This is a
test...', 't', 2) |
+--
+
| This is a test |
+--
+
1 row in set (0.00 sec)

No equivalent
function.
Implement
using UDF.

Refer to UDF B.7, “Sample
code for SUBSTRING_INDEX”
on page 432.

SUBSTRING(st
ring, position,
length) / MID
(string,
position,
length) /
SUBSTR(string
, position,
[length])

mysql> select substring('abcdef', 2,
3);
+---------------------------+
| substring('abcdef', 2, 3) |
+---------------------------+
| bcd |
+---------------------------+
1 row in set (0.00 sec)

SUBSTR(string,
position, length)

db2 "VALUES('abcdef', 2, 3)”
1

bcd

 1 record(s) selected.

Returns a
substring of a
string

TRIM([Both |
Leading |
trailing
[substring]
FROM] string)

mysql> select trim(trailing from
trim(LEADING FROM ' abc ')) as
OUTPUT;
+--------+
| OUTPUT |
+--------+
| abc |
+--------+
1 row in set (0.00 sec)

TRIM([Both |
Leading | trailing
[substring]
FROM] string)

db2 "VALUES trim(trailing from
trim(LEADING FROM ' abc '))"

OUTPUT

abc

 1 record(s) selected.

Removes blanks
or occurrences of
another specified
character from the
end or the
beginning of a
string expression

UCASE(string)
/ UPPER
(String)

mysql> SELECT UPPER('jobs');
+---------------+
| UPPER('jobs') |
+---------------+
| JOBS |
+---------------+
1 row in set (0.00 sec)

UCASE(string) /
UPPER (String)

db2 "VALUES UPPER('jobs')"
1

JOBS
 1 record(s) selected.

Returns a string in
which all
characters have
been converted to
uppercase
characters

UNHEX() mysql> SELECT
UNHEX('546F646179');
+---------------------+
| UNHEX('546F646179') |
+---------------------+
| Today |
+---------------------+
1 row in set (0.00 sec)

No equivalent
function.
Alternative use
UDF

Converts
hexadecimal digits
to a character
string

 Appendix A. Mapping MySQL built-in functions and operators 407

A.3 Numeric functions
Table A-3 lists numeric functions that are specific to manipulating numbers.

Table A-3 Numeric functions

MySQL command MySQL example DB2 command DB2 example

ABS(expression) mysql> SELECT
ABS(-51234);

ABS(expression) db2 "VALUES ABS(-51234)"

ACOS(expression) mysql> SELECT COS(1); ACOS(expression) db2 "VALUES COS(1)"

ASIN(expression) mysql> SELECT ASIN(1); ASIN(expression) db2 "VALUES ASIN(1)"

ATAN(expression,
expression), ATAN2(
expression, expression)

mysql> SELECT
ATAN2(1,-1);

ATAN(expression),
ATAN2(expression,
expression),

db2 "VALUES ATAN2(-1,1)"

CEIL(expression),
CEILING(expression)

mysql> SELECT
CEILING(3.35);

CEIL(expression),
CEILING(expression)

db2 "VALUES Ceiling(3.35)"

COS(expression) mysql> SELECT cos(0); COS(expression) db2 "VALUES COS(0)"

COT(expression) mysql> SELECT coT(1); COT(expression) db2 "VALUES COT(1)"

DEGREES(expression) mysql> SELECT
DEGREES(3);

DEGREES(expression) db2 "VALUES DEGREES(3)"

EXP(expression) mysql> SELECT EXP(3); EXP(expression) db2 "VALUES EXP(3)"

FLOOR(expression) mysql> SELECT
FLOOR(3.35);

FLOOR(expression) db2 "VALUES FLOOR(3.35)"

LN(expression) mysql> SELECT
LN(100);

LN(expression) db2 "VALUES LN(100)"

LOG10(expression) mysql> SELECT
LOG10(100);

LOG10(expression) db2 "VALUES LOG10(100)"

LOG(expression,
[expression])

mysql> SELECT
LOG(100);

LOG(expression) db2 "VALUES LOG(100)"

MOD(expression,
expression)

mysql> SELECT
MOD(125, 50);

MOD(expression,
expression)

db2 "VALUES MOD(125, 50)"

POW(expression,
expression),
POWER(expression,
expression)

mysql> SELECT
POWER(5, 2);

POWER(expression,
expression)

db2 "VALUES POWER(5, 2)"

RADIANS(expression) mysql> SELECT
RADIANS(180);

RADIANS(expression) db2 "VALUES
RADIANS(180)"

RAND([expression]) mysql> SELECT RAND(); RAND([expression]) db2 "VALUES RAND()"

ROUND(expression,
expression)

mysql> SELECT
ROUND(873.726, 1);

ROUND(expression,
expression)

db2 "VALUES
ROUND(873.726, 1)"

SIGN(expression) mysql> SELECT
SIGN(6453);

SIGN(expression) db2 "VALUES SIGN(6453)"

408 MySQL to DB2 Conversion Guide

A.4 Date and time functions

Table A-4 lists date and time-related functions.

Table A-4 Date and time-related functions

SIN(expression) mysql> SELECT SIN(3); SIN(expression) db2 "VALUES SIN(3)"

SQRT(expression) mysql> SELECT
SQRT(25);

SQRT(expression) db2 "VALUES SQRT(25)"

TAN(expression) mysql> SELECT TAN(2); TAN(expression) db2 "VALUES TAN(2)"

TRUNCATE(expression,
expression)

mysql> SELECT
TRUNCATE(873.726,2);

TRUNCATE(expression,
expression)

db2 "VALUES
TRUNCATE(873.726,2)"

MySQL command MySQL example DB2 command DB2 example

MySQL command MySQL example DB2 command DB2 example

ADDDATE(),
DATE_ADD(),DATE_SUB(),
SUBDATE()

mysql> SELECT
DATE_ADD('2009-8-31',
INTERVAL 15 DAY);

DATE + expression db2 "VALUES DATE('2009-8-31')
+ 15 days"

CURDATE(),
CURRENT_DATE(),
CURRENT_DATE

mysql> SELECT
CURDATE();

CURRENT DATE db2 "VALUES CURRENT DATE"

CURRENT_TIME(),
CURRENT_TIME,
CURTIME()

mysql> SELECT
CURRENT_TIME();

CURRENT TIME db2 "VALUES CURRENT TIME”

DAYOFMONTH
(expression),
DAY(expression)

mysql> SELECT
DAYOFMONTH('2009-0
8-31 05:06:00');

Day(expression) db2 "VALUES DAY('2009-08-31
05:06:00')"

EXTRACT (unit FROM
expression)

mysql> SELECT
EXTRACT(YEAR_MON
TH from '2009-08-31
05:06:00');

Use concatenate different date
stripping functions (DAY, YEAR,
MONTH, DAYNAME,
DAYOFWEEK, and so on).

db2 "VALUES (YEAR('2009-08-31
05:06:00') || MONTH('2009-08-31
05:06:00'))"

HOUR(expression) mysql> SELECT
HOUR('2009-08-31
05:06:00');

MIDNIGHT_SECONDS
(expression)/60/60

db2 "VALUES
MIDNIGHT_SECONDS('2009-08-
31 05:06:00')/60/60"

SEC_TO_TIME() UDF OR SELECT with time
Arithmetic with HOUR, MINUTE,
SECOND

SEC_TO_TIME(arg INTEGER)
RETURNS TIME CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC RETURN
TIME('00:00:00') + (arg / 3600)
HOURS + MOD(arg / 60, 60)
MINUTES + MOD(arg, 3600)
SECONDS "

STR_TO_DATE(expression,
format)

mysql> SELECT
STR_TO_DATE('15,03,2
009','%d,%m,%Y');

DATE and TO_DATE db2 "VALUES
DATE(TO_DATE('15,3,2009','DD,
MM,YYYY'))"

WEEK(expression)
WEEKOFYEAR
(expression, mode)

mysql> SELECT
week('2009-08-31
05:06:00');

WEEK(expression) db2 "VALUES WEEK('2009-08-31
05:06:00')"

 Appendix A. Mapping MySQL built-in functions and operators 409

A.5 Comparing operators and other functions

Table A-5 shows MySQL and DB2 operators.

Table A-5 MySQL and DB2 operator comparison

WEEKDAY(expression) mysql> SELECT
weekday('2009-08-31
05:06:00');

DAYOFWEEK(expression) db2 " VALUES
DAYOFWEEK('2009-08-31
05:06:00')"
db2 " VALUES
DAYOFWEEK_ISO
('2009-08-31 05:06:00')"

MySQL command MySQL example DB2 command DB2 example

MySQL DB2 Comments

logical NOT as '!' in
SELECT list

VALUES CASE WHEN
1!=1 THEN 0 ELSE 1 END

Implement using CASE expression and VALUES
statement

% MOD In MySQL, % is a synonym for modulo

& (bitwise and) Not available. Implement using UDF. Refer to UDF B.1, “Sample code for BIT_AND” on
page 414.

logical AND as '&&' in
SELECT list

CASE Implement using CASE expression and VALUES
statement.

not equal, <> or != in
SELECT list:select 1<>1

SELECT CASE
WHEN 1<> 1
THEN x
ELSE y
END

Implement using CASE expression.

Function = in SELECT list:
select (1=1)

CASE Implement using CASE expression and VALUES
statement.

BETWEEN in SELECT CASE Implement using CASE
expression and VALUES
statement.

<< and >> (bitwise shifts) No equivalent Implement using power function:
MySQL:
SELECT (x>>y)
SELECT(x<<y)
DB2 :
SELECT(x/power(2,y))
SELECT(x*power(2,y)):

BIT_COUNT No equivalent, implement using UDF Refer to UDF B.6, “Sample code for BIT_COUNT” on
page 431.

ENCRYPT ENCRYPT DB2 requires encryption password.

FIELD CASE Implement using CASE expression and VALUES
statement.

GREATEST FnGratst Refer to UDF B.4, “Sample code for GREATEST
function” on page 422.

IF CASE Implement using CASE expression and VALUES
statement.

410 MySQL to DB2 Conversion Guide

IN on numbers in SELECT CASE Implement using CASE expression and VALUES
statement.

IN on strings in SELECT CASE Implement using CASE expression and VALUES
statement.

LOCATE as INSTR LOCATE Arguments are swapped.

INTERVAL CASE Implement using CASE expression and VALUES
statement.

LAST_INSERT_ID IDENTITY_VAL_LOCAL DB2 returns NULL.
MySQL returns the most recently assigned value for an
identity column.

LEAST FnLeastN See UDF example in B.5, “Sample code for LEAST” on
page 427.

LIKE in SELECT CASE with LIKE Implement using CASE expression and VALUES
statement.

LIKE ESCAPE in SELECT CASE with LIKE and ESCAPE Implement using CASE expression and VALUES
statement.

LOG(m,n) LOG(m)/LOG(n) To convert logarithm to an arbitrary base

NOT in SELECT CASE Implement using CASE expression and VALUES
statement.

NOT BETWEEN in SELECT CASE Implement using CASE expression and VALUES
statement.

NOT LIKE in SELECT CASE Implement using CASE expression and VALUES
statement.

PASSWORD ENCRYPT For encryption

POW POWER Returns value of arg1 to the power of arg2

REGEXP in SELECT No equivalent See article on developerWorks® for workaround:
http://www-106.ibm.com/developerworks/db2/librar
y/techarticle/0301stolze/0301stolze.html

VERSION db2level To retrieve installed version of database management
system (DBMS)

 Appendix A. Mapping MySQL built-in functions and operators 411

http://www-106.ibm.com/developerworks/db2/library/techarticle/0301stolze/0301stolze.html

412 MySQL to DB2 Conversion Guide

Appendix B. Sample code for
user-defined functions

In this appendix, we provide sample code to implement various MySQL built-in
functions that are not provided by DB2. We want to thank the respective authors
of the user-defined functions (UDFs).

B

© Copyright IBM Corp. 2009. All rights reserved. 413

B.1 Sample code for BIT_AND
Example B-1 shows conversion code for the MySQL BIT_AND function.

Example: B-1 User-defined function to map BIT_AND

--
-- DB2 UDF(User-Defined Function) Samples for conversion
--
-- 2001/08/29
--
-- Name of UDF: BIT_AND (N1 Integer, N2 Integer)
--
-- Used UDF: None
--
-- Description: Returns bit by bit and of both parameters.
--
-- Author: TOKUNAGA, Takashi
--
--
CREATE FUNCTION BITAND (N1 Integer, N2 Integer)
 RETURNS Integer
 SPECIFIC BITANDMySQL
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC
 RETURN
WITH
Repeat (S, M1, M2, Ans) AS
(Values (0, N1, N2, 0)
Union All
Select S+1, M1/2, M2/2, Ans+MOD(M1,2)*MOD(M2,2)*power(2,S)
 From Repeat
 Where M1 > 0
 AND M2 > 0
 AND S < 32
)
SELECT ANS
 FROM Repeat
 WHERE S = (SELECT MAX(S)
 FROM Repeat)
;

Example B-2 shows the results of the BITAND user-defined function.

Example: B-2 Results for UDF BITAND

SQL0347W The recursive common table expression "DB2ADMIN.REPEAT"
may contain an infinite loop. SQLSTATE=01605

--
values bitand(10,8);

1

 8

--
values bitand(14,3);

414 MySQL to DB2 Conversion Guide

1

 2

--
values bitand(1038,78);

1

 14

B.2 Sample code for FORMAT function
This section provides the UDF for FORMAT function. Example B-3 shows the
code for a user-defined function emulating FORMAT.

Example: B-3 FORMAT user-defined function

--
-- DB2 UDF(User-Defined Function) Samples for conversion
--
-- Created: 2004/02/29
--
-- Name of UDF: FORMAT (X Decimal(31,10), D Integer)
--
-- Used UDF: None
--
-- Description: Returns truncated to the precision specified by D and a "," for each 3 digits as a
separator.
--
-- Author: TOKUNAGA, Takashi
--

------------------------------ Command Entered ------------------------------
CREATE FUNCTION FORMAT (X Decimal(31,10), D Integer)
 RETURNS VARCHAR(50)
 LANGUAGE SQL
 SPECIFIC FORMAT_MySQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC
BEGIN ATOMIC
DECLARE XN DECIMAL(21,0);
DECLARE RetVal VARCHAR(50);
SET RetVal = SUBSTR(CHAR(MOD(ABS(X), 1)), 22, D+1);
SET XN = ABS(X);

Main_Loop:
WHILE XN > 0 DO
 SET RetVal = SUBSTR(CHAR(MOD(XN,1000)),19,3) || RetVal;
 SET XN = XN/1000;
 IF XN > 0 THEN
 SET RetVal = ',' || RetVal;
 ELSE
 LEAVE Main_Loop;
 END IF;
END WHILE;

RETURN CASE WHEN X < 0 THEN '-' ELSE '' END

 Appendix B. Sample code for user-defined functions 415

 || TRANSLATE(LTRIM(TRANSLATE(RetVal,' ','0')),'0',' ');
END
!

Example B-4 shows the results of the converted FORMAT.

Example: B-4 Converted FORMAT UDF result

------------------------------ Command Entered ------------------------------
SELECT N
 , FORMAT(N, 2)
 , FORMAT(N, 0)
 FROM (VALUES 12.34567, -12.34567, 120034.567, 123400123456789.) S(N)!

--Return result

N 2 3
-------------------------- ----------------------- -----------------------
 12.34567 12.34 12.
 -12.34567 -12.34 -12.
 120034.56700 120,034.56 120,034.
 23400123456789.00000 123,400,123,456,789.00 123,400,123,456,789.

 4 record(s) selected.

B.3 Sample code for RPAD and LPAD functions
This section provides the UDFs for the LPAD and RPAD functions. Example B-5
shows code for a user-defined function emulating RPAD.

Example: B-5 CREATE FUNCTION RPAD and sample usage

-- DB2 UDF(User-Defined Function) Samples for conversion
--
-- 2001/08/27, 09/27, 11/06
--
-- Name of UDFs: RPAD (C1 VarChar(4000), N integer, C2 VarChar(4000))
-- RPAD (I1 Integer, N integer, C2 Varchar(4000))
-- LPAD (C1 VarChar(4000), N integer, C2 Varchar(4000))
-- LPAD (I1 Integer, N integer, C2 Varchar(4000))
--
-- Used UDF: None
--
-- Description: Add repeatedly C2 to the right(RPAD) or left(LPAD) of parameter 1 (C1 or I1)
-- and return N byte.
--
-- Author: TOKUNAGA, Takashi
--

--
CREATE FUNCTION RPAD (C1 VarChar(4000), N integer, C2 VarChar(4000))
 RETURNS VARCHAR(4000)
 LANGUAGE SQL
 SPECIFIC RPADBase
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN

416 MySQL to DB2 Conversion Guide

 substr(C1 ||
repeat(C2,((sign(N-length(C1))+1)/2)*(N-length(C1)+length(C2))/(length(C2)+1-sign(length(C2)))),1,N)
;

Example B-6 shows the results of the converted RPAD function.

Example: B-6 Usage of UDF RPAD

SELECT char(rpad('ABCDE',12,'*.'),20) FROM SYSIBM.SYSDUMMY1;

1

ABCDE*.*.*.*

 1 record(s) selected.
--
SELECT char(rpad('ABCDE',3,'*.'),20) FROM SYSIBM.SYSDUMMY1;

1

ABC

 1 record(s) selected.

--
SELECT char(rpad('ABCDE',20,'') || 'X',50) FROM SYSIBM.SYSDUMMY1;

1
--
ABCDE X
1 record(s) selected.

UDF RPAD with the third parameter omitted is shown in Example B-7.

Example: B-7 RPAD omitting the third parameter

CREATE FUNCTION RPAD (C1 VarChar(4000), N integer)
 RETURNS VARCHAR(4000)
 LANGUAGE SQL
 SPECIFIC RPADVarCharParm2
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
 RPAD(C1,N,' ')
;

Running the RPAD function gives you the results that are shown in Example B-8.

Example: B-8 Results of RPAD omitting the third parameter

SELECT char(rpad('ABCDE',15) || 'X',50) FROM SYSIBM.SYSDUMMY1;

1
--
ABCDE X

 Appendix B. Sample code for user-defined functions 417

 1 record(s) selected.

--
SELECT char(rpad('ABCDE',3) || 'X',50) FROM SYSIBM.SYSDUMMY1;

1
--
ABCX

 1 record(s) selected.

Function RPAD allows a set of different input arguments. Example B-9 shows two
more RPAD UDFs.

Example: B-9 RPAD with first parameter as integer, 2, and 3 parameters

CREATE FUNCTION RPAD (I1 Integer, N integer, C2 Varchar(4000))
 RETURNS VARCHAR(4000)
 LANGUAGE SQL
 SPECIFIC RPADIntParm3
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
 RPAD(rtrim(char(I1)),N,C2)
;

CREATE FUNCTION RPAD (I1 Integer, N integer)
 RETURNS VARCHAR(4000)
 LANGUAGE SQL
 SPECIFIC RPADIntParm2
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
 RPAD(rtrim(char(I1)),N,' ')
;

And, Example B-10 shows the results of the previous UDFs.

Example: B-10 Results of RPAD with first parameter as integer, 2, and 3 parameters

SELECT char(rpad(927,12,'*.'),50) FROM SYSIBM.SYSDUMMY1;

1
--
927*.*.*.*.*

 1 record(s) selected.

--
SELECT char(rpad(927,12,'') || 'X',50) FROM SYSIBM.SYSDUMMY1;

418 MySQL to DB2 Conversion Guide

1
--
927 X

 1 record(s) selected.

--
SELECT char(rpad(9021,3),20) FROM SYSIBM.SYSDUMMY1;

1

902

 1 record(s) selected.

The counterpart for RPAD are the LPAD functions, which are shown in
Example B-11.

Example: B-11 LPAD: CREATE FUNCTION and sample usage

CREATE FUNCTION LPAD (C1 VarChar(4000), N integer, C2 VarChar(4000))
 RETURNS VARCHAR(4000)
 LANGUAGE SQL
 SPECIFIC LPADBase
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
 CASE
 WHEN N > length(C1) THEN
substr(repeat(C2,(N-length(C1)+length(C2))/(length(C2)+1-sign(length(C2)))),1,N-length(C1)) || C1
 ELSE substr(C1,1,N)
 END
;

The results of LPAD look like Example B-12.

Example: B-12 Results of LPAD: CREATE FUNCTION and sample usage

SELECT char(lpad('ABCDE',15,'*.'),50) FROM SYSIBM.SYSDUMMY1;

1
--
..*.*.*.ABCDE

 1 record(s) selected.

--
SELECT char(lpad('ABCDE',3,'*.'),50) FROM SYSIBM.SYSDUMMY1;

1
--
ABC

 Appendix B. Sample code for user-defined functions 419

 1 record(s) selected.

--
SELECT char(lpad('ABCDE',15,'') || 'X',50) FROM SYSIBM.SYSDUMMY1;

1
--
 ABCDEX

 1 record(s) selected.

Because RPAD allows LPAD a different number and data type for input
arguments, Example B-13 shows LPAD without the third parameter.

Example: B-13 LPAD: Omitting the third parameter

CREATE FUNCTION LPAD (C1 VarChar(4000), N integer)
 RETURNS VARCHAR(4000)
 LANGUAGE SQL
 SPECIFIC LPADParm2
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
 LPAD(C1,N,' ')
;

The results of Example B-13 must look like those results in Example B-14.

Example: B-14 Result of LPAD: Omitting the third parameter

SELECT char(lpad('ABCDE',15),20) FROM SYSIBM.SYSDUMMY1;

1

 ABCDE

 1 record(s) selected.

--
SELECT char(lpad('ABCDE',3),20) FROM SYSIBM.SYSDUMMY1;

1

ABC

 1 record(s) selected.

Two more LPAD UDFs with different characteristics are shown in Example B-15.

Example: B-15 LPAD: The first parameter is integer, 2, and 3 parameters

CREATE FUNCTION LPAD (I1 Integer, N integer, C2 Varchar(4000))

420 MySQL to DB2 Conversion Guide

 RETURNS VARCHAR(4000)
 LANGUAGE SQL
 SPECIFIC LPADIntParm3
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
 LPAD(rtrim(char(I1)),N,C2)
;

--

CREATE FUNCTION LPAD (I1 Integer, N integer)
 RETURNS VARCHAR(4000)
 LANGUAGE SQL
 SPECIFIC LPADIntParm2
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
 LPAD(rtrim(char(I1)),N,' ')
;

The results are shown in Example B-16.

Example: B-16 Results of LPAD: The first parameter is integer, 2, and 3 parameter

SELECT char(lpad(9021,15,'*.'),50) FROM SYSIBM.SYSDUMMY1;

1
--
..*.*.*.*9021

 1 record(s) selected.

--
SELECT char(lpad(9021,15,''),50) FROM SYSIBM.SYSDUMMY1;

1
--
 9021

 1 record(s) selected.

--
SELECT char(lpad(9021,3),20) FROM SYSIBM.SYSDUMMY1;

1

902

 1 record(s) selected.

 Appendix B. Sample code for user-defined functions 421

B.4 Sample code for GREATEST function
Example B-17 is a set of UDF examples emulating the behavior of the MySQL
GREATEST function. The various UDFs accept input parameters in varchar and
from 2 - 10 input parameters.

Example: B-17 User-defined functions to map GREATEST

--
-- DB2 UDF(User-Defined Function) Samples for conversion
--
-- 2001/08/28, 08/29
--
-- Name of UDF: GREATEST (P1 VarChar(254), P2 VarChar(254), ...)
--
--
-- Used UDF: None
--
-- Description: Returns greatest value of list of data.
--
-- Author: TOKUNAGA, Takashi
--
--
CREATE FUNCTION GREATEST (P1 VarChar(254), P2 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC GREATESTOracle2
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
CASE
WHEN P1 >= P2 THEN P1
ELSE P2
END
;

--
-- GREATEST function with three parameters
--
--
CREATE FUNCTION GREATEST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC GREATESTOracle3
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
CASE
WHEN P1 >= P2
THEN CASE
 WHEN P1 >= P3 THEN P1
 ELSE P3
 END
ELSE CASE
 WHEN P2 >= P3 THEN P2
 ELSE P3
 END
END
;

--
-- GREATEST function with four parameters

422 MySQL to DB2 Conversion Guide

--
--
CREATE FUNCTION GREATEST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC GREATESTOracle4
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
CASE
WHEN P1 >= P2
THEN CASE
 WHEN P1 >= P3
 THEN CASE
 WHEN P1 >= P4 THEN P1
 ELSE P4
 END
 ELSE CASE
 WHEN P3 >= P4 THEN P3
 ELSE P4
 END
 END
ELSE CASE
 WHEN P2 >= P3
 THEN CASE
 WHEN P2 >= P4 THEN P2
 ELSE P4
 END
 ELSE CASE
 WHEN P3 >= P4 THEN P3
 ELSE P4
 END
 END
END
;

--
-- GREATEST function with five parameters
--
--
CREATE FUNCTION GREATEST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4 VarChar(254), P5
VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC GREATESTOracle5
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
CASE
WHEN P1 >= P2
THEN CASE
 WHEN P1 >= P3
 THEN CASE
 WHEN P1 >= P4
 THEN CASE
 WHEN P1 >= P5 THEN P1
 ELSE P5
 END
 ELSE CASE
 WHEN P4 >= P5 THEN P4
 ELSE P5
 END
 END
 ELSE CASE
 WHEN P3 >= P4

 Appendix B. Sample code for user-defined functions 423

 THEN CASE
 WHEN P3 >= P5 THEN P3
 ELSE P5
 END
 ELSE CASE
 WHEN P4 >= P5 THEN P4
 ELSE P5
 END
 END
 END
ELSE CASE
 WHEN P2 >= P3
 THEN CASE
 WHEN P2 >= P4
 THEN CASE
 WHEN P2 >= P5 THEN P2
 ELSE P5
 END
 ELSE CASE
 WHEN P4 >= P5 THEN P4
 ELSE P5
 END
 END
 ELSE CASE
 WHEN P3 >= P4
 THEN CASE
 WHEN P3 >= P5 THEN P3
 ELSE P5
 END
 ELSE CASE
 WHEN P4 >= P5 THEN P4
 ELSE P5
 END
 END
 END
END
;

--
-- GREATEST function with six parameters
--
--
CREATE FUNCTION GREATEST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4 VarChar(254)
 , P5 VarChar(254), P6 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC GREATESTOracle6
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
GREATEST(GREATEST(P1,P2,P3),GREATEST(P4,P5,P6))
;

--
-- GREATEST function with seven parameters
--
--
CREATE FUNCTION GREATEST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4 VarChar(254)
 , P5 VarChar(254), P6 VarChar(254), P7 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC GREATESTOracle7
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN

424 MySQL to DB2 Conversion Guide

GREATEST(GREATEST(P1,P2,P3,P4),GREATEST(P5,P6,P7))
;

--
-- GREATEST function with eight parameters
--
--
CREATE FUNCTION GREATEST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4 VarChar(254)
 , P5 VarChar(254), P6 VarChar(254), P7 VarChar(254), P8 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC GREATESTOracle8
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
GREATEST(GREATEST(P1,P2,P3,P4),GREATEST(P5,P6,P7,P8))
;

--
-- GREATEST function with nine parameters
--
--
CREATE FUNCTION GREATEST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4 VarChar(254)
 , P5 VarChar(254), P6 VarChar(254), P7 VarChar(254), P8 VarChar(254)
 , P9 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC GREATESTOracle9
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
GREATEST(GREATEST(P1,P2,P3,P4,P5),GREATEST(P6,P7,P8,P9))
;

--
-- GREATEST function with ten parameters
--
--
CREATE FUNCTION GREATEST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4 VarChar(254)
 , P5 VarChar(254), P6 VarChar(254), P7 VarChar(254), P8 VarChar(254)
 , P9 VarChar(254),P10 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC GREATESTOracle10
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
 GREATEST(GREATEST(P1,P2,P3,P4,P5),GREATEST(P6,P7,P8,P9,P10))
;

Example B-18 shows the results of UDFs GREATEST.

Example: B-18 Result of UDFs mapping GREATEST

SELECT char(greatest('abcdefg','abcfgh'),20) FROM sysibm.sysdummy1;

1

abcfgh

 Appendix B. Sample code for user-defined functions 425

 1 record(s) selected.

--
SELECT char(greatest('abcdefg','defgh','abcfgh'),20) FROM sysibm.sysdummy1;

1

defgh

 1 record(s) selected.

--
SELECT char(greatest('abcdefg','defgh','abcfgh','endof...'),20) FROM sysibm.sysdummy1;

1

endof...

 1 record(s) selected.

--
SELECT char(greatest('abcdefg','defgh','abcfgh','endof...','add on'),20) FROM sysibm.sysdummy1;

1

endof...

 1 record(s) selected.

--
SELECT char(greatest('abcdefg','defgh','abcfgh','endof...','add on','extra'),20) FROM
sysibm.sysdummy1;

1

extra

 1 record(s) selected.

--
SELECT char(greatest('abcdefg','defgh','abcfgh','endof...','add on','extra','a bit of'),20) FROM
sysibm.sysdummy1;

1

extra

 1 record(s) selected.

--
SELECT char(greatest('abcdefg','defgh','abcfgh','endof...','add on','extra','a bit of','more'),20)
FROM sysibm.sysdummy1;

1

more

 1 record(s) selected.

--

426 MySQL to DB2 Conversion Guide

SELECT char(greatest('abcdefg','defgh','abcfgh','endof...','add on','extra','a bit of','more','more
and '),20) FROM sysibm.sysdummy1;

1

more and

 1 record(s) selected.

--
SELECT char(greatest('abcdefg','defgh','abcfgh','endof...','add on','extra','a bit of','more','more
and ',' something'),20) FROM sysibm.sysdummy1;

1

more and

 1 record(s) selected.

B.5 Sample code for LEAST
Example B-19 is a set of UDF examples emulating the behavior of the MySQL
LEAST function. The various UDFs accept input parameters in varchar and from
2 - 10 input parameters.

Example: B-19 User-defined functions to map LEAST

-- DB2 UDF(User-Defined Function) Samples for conversion
--
-- 2001/08/28, 08/29
--
-- Name of UDF: LEAST (P1 VarChar(254), P2 VarChar(254))
--
--
-- Used UDF: None
--
-- Description: Returns least value of list of data.
--
-- Author: TOKUNAGA, Takashi
--
--
CREATE FUNCTION LEAST (P1 VarChar(254), P2 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC LEASTOracle2
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
CASE
WHEN P1 <= P2 THEN P1
ELSE P2
END
;

--
-- LEAST function with three parameters
--

 Appendix B. Sample code for user-defined functions 427

--
CREATE FUNCTION LEAST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC LEASTOracle3
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
CASE
WHEN P1 <= P2
THEN CASE
 WHEN P1 <= P3 THEN P1
 ELSE P3
 END
ELSE CASE
 WHEN P2 <= P3 THEN P2
 ELSE P3
 END
END
;

--
-- LEAST function with four parameters
--
--
CREATE FUNCTION LEAST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC LEASTOracle4
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
CASE
WHEN P1 <= P2
THEN CASE
 WHEN P1 <= P3
 THEN CASE
 WHEN P1 <= P4 THEN P1
 ELSE P4
 END
 ELSE CASE
 WHEN P3 <= P4 THEN P3
 ELSE P4
 END
 END
ELSE CASE
 WHEN P2 <= P3
 THEN CASE
 WHEN P2 <= P4 THEN P2
 ELSE P4
 END
 ELSE CASE
 WHEN P3 <= P4 THEN P3
 ELSE P4
 END
 END
END
;

--
-- LEAST function with five parameters
--
--
CREATE FUNCTION LEAST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4 VarChar(254)
 , P5 VarChar(254))

428 MySQL to DB2 Conversion Guide

 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC LEASTOracle5
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
CASE
WHEN P1 <= P2
THEN CASE
 WHEN P1 <= P3
 THEN CASE
 WHEN P1 <= P4
 THEN CASE
 WHEN P1 <= P5 THEN P1
 ELSE P5
 END
 ELSE CASE
 WHEN P4 <= P5 THEN P4
 ELSE P5
 END
 END
 ELSE CASE
 WHEN P3 <= P4
 THEN CASE
 WHEN P3 <= P5 THEN P3
 ELSE P5
 END
 ELSE CASE
 WHEN P4 <= P5 THEN P4
 ELSE P5
 END
 END
 END
ELSE CASE
 WHEN P2 <= P3
 THEN CASE
 WHEN P2 <= P4
 THEN CASE
 WHEN P2 <= P5 THEN P2
 ELSE P5
 END
 ELSE CASE
 WHEN P4 <= P5 THEN P4
 ELSE P5
 END
 END
 ELSE CASE
 WHEN P3 <= P4
 THEN CASE
 WHEN P3 <= P5 THEN P3
 ELSE P5
 END
 ELSE CASE
 WHEN P4 <= P5 THEN P4
 ELSE P5
 END
 END
 END
END
;

--
-- LEAST function with six parameters
--
--
CREATE FUNCTION LEAST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4 VarChar(254)

 Appendix B. Sample code for user-defined functions 429

 , P5 VarChar(254), P6 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC LEASTOracle6
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
LEAST(LEAST(P1,P2,P3),LEAST(P4,P5,P6))
;

--
-- LEAST function with seven parameters
--
--
CREATE FUNCTION LEAST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4 VarChar(254)
 , P5 VarChar(254), P6 VarChar(254), P7 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC LEASTOracle7
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
LEAST(LEAST(P1,P2,P3,P4),LEAST(P5,P6,P7))
;

--
-- LEAST function with eight parameters
--
--
CREATE FUNCTION LEAST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4 VarChar(254)
 , P5 VarChar(254), P6 VarChar(254), P7 VarChar(254), P8 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC LEASTOracle8
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
LEAST(LEAST(P1,P2,P3,P4),LEAST(P5,P6,P7,P8))
;

--
-- LEAST function with nine parameters
--
--
CREATE FUNCTION LEAST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4 VarChar(254)
 , P5 VarChar(254), P6 VarChar(254), P7 VarChar(254), P8 VarChar(254)
 , P9 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC LEASTOracle9
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
LEAST(LEAST(P1,P2,P3,P4,P5),LEAST(P6,P7,P8,P9))
;

--
-- LEAST function with ten parameters
--
--
CREATE FUNCTION LEAST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4 VarChar(254)
 , P5 VarChar(254), P6 VarChar(254), P7 VarChar(254), P8 VarChar(254)
 , P9 VarChar(254),P10 VarChar(254))

430 MySQL to DB2 Conversion Guide

 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC LEASTOracle10
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
LEAST(LEAST(P1,P2,P3,P4,P5),LEAST(P6,P7,P8,P9,P10))
;

Example B-20 shows the results of UDF LEAST.

Example: B-20 Results of UDFs mapping LEAST

SELECT least('HARRY','HARRIOT','HAROLD') FROM sysibm.sysdummy1;

1

HAROLD

 1 record(s) selected

B.6 Sample code for BIT_COUNT
Example B-21 is a UDF example emulating the behavior of MySQL’s
BIT_COUNT function. It returns the number of set bits in the parameter (the
number of 1 in the binary value of the parameter) assuming that the parameter is
a 32-bit INTEGER.

Example: B-21 User-defined function to map BIT_COUNT

CREATE FUNCTION BIT_CNT (N1 Integer)
 RETURNS Integer
 SPECIFIC BITCNTMySQL
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC
 RETURN
WITH
 Repeat (S, M1, Ans) AS
(Values (0, N1, 0)
Union All
Select S+1, M1/2, Ans+MOD(M1,2)
 From Repeat
 Where M1 <> 0
 AND S < 32
)
SELECT case when ANS > 0 then ANS else 32 + ANS end
 FROM Repeat
 WHERE S = (SELECT MAX(S)
 FROM Repeat)
;

 Appendix B. Sample code for user-defined functions 431

Example B-22 shows the sample output.

Example: B-22 Sample output of BIT_CNT

db2> values bit_cnt(64)

1

 1

 1 record(s) selected.

db2> values bit_cnt(63)

1

 6

 1 record(s) selected.

db2> values bit_cnt(-7)

1

 29

 1 record(s) selected.

B.7 Sample code for SUBSTRING_INDEX
Example B-23 is a UDF example emulating the behavior of MySQL’s
SUBSTRING_INDEX function. It returns the substring from the input string
before counting occurrences of the delimiter.

Example: B-23 User-defined function to map SUBSTRING_INDEX

create function SUBSTRING_INDEX(In varchar(2000),delimit varchar(200), n Int)
returns varchar(2000)
deterministic no external action contains sql
begin atomic

declare out varchar(2000);
declare dem varchar(2000);
declare num int;
declare pos int;
declare temp varchar(2000);
set dem=delimit;
set temp=In;
set num=n;
set pos=1;
if(num<0) then

while(locate(delimit,temp)!=0) do
set temp=substr(temp,locate(delimit,temp)+1);
set num=num+1;

end while;
set num=num+1;
set temp=In;

end if;
while (num>0) do

set pos=pos+locate(delimit,temp)-1;

432 MySQL to DB2 Conversion Guide

set temp=substr(temp,locate(delimit,temp)+1);
set num=num-1;

end while;
if(n>0) then

return substr(In,1,pos);
else

return substr(In,pos+1);
end if;

end

B.8 Sample code for UNIX_TIMESTAMP
Example B-24 shows UDF examples emulating the behavior of MySQL’s
UNIX_TIMESTAMP function.

Example: B-24 UNIX_TIMESTAMP

CREATE FUNCTION UNIX_TIMESTAMP ()
RETURNS INTEGER
RETURN
SELECT TIMESTAMPDIFF(2,CHAR(CURRENT_TIMESTAMP – TIMESTAMP('1970-01-01-00.00.00.000000')))
FROM SYSIBM.SYSDUMMY1;

CREATE FUNCTION UNIX_TIMESTAMP (ts VARCHAR(255))
RETURNS INTEGER
RETURN
SELECT TIMESTAMPDIFF(2,CHAR(CAST(ts AS TIMESTAMP) – TIMESTAMP('1970-01-01-00.00.00.000000')))
FROM SYSIBM.SYSDUMMY1;

 Appendix B. Sample code for user-defined functions 433

434 MySQL to DB2 Conversion Guide

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics that are covered in this book.

IBM Redbooks publications

For information about ordering these publications, see “How to get IBM
Redbooks publications” on page 439. Note that several of the documents
referenced here might be available in softcopy only.

� Developing PHP Applications for IBM Data Servers, SG24-7218

� MySQL to DB2 UDB Conversion Guide, SG24-7093

� Up and Running with DB2 on Linux, SG24-6899

� Oracle to DB2 Conversion Guide for Linux, UNIX, and Windows, SG24-7048

Other publications

These publications are also relevant as further information sources:

� IEEE Standard for Software Test Documentation (829-1998),
ISBN 0-7381-1444-8

� Understanding DB2, Learning Visually with Examples, Second Edition,
ISBN-13:978-0-13-158018-3

� Installing IBM Data Server Clients, GC27-2454-00

� Installing DB2 Servers, GC27-2455-00

� Getting Started with DB2 Installation and Administration on Linux and
Windows, GI11-9411-00

� Database Administration Concepts and Configuration Reference,
SC27-2442-00

� Database Monitoring Guide and Reference, SC27-2458-00

� Database Security Guide, SC27-2443-00

� Partitioning and Clustering Guide, SC27-2453-00

� Troubleshooting and Tuning Database Performance, SC27-2461-00

© Copyright IBM Corp. 2009. All rights reserved. 435

� pureXML Guide, SC27-2465-00

� Data Movement Utilities Guide and Reference, SC27-2440-00

� Data Recovery and High Availability Guide and Reference, SC27-2441-00

� Workload Manager Guide and Reference, SC27-2464-00

� Getting Started with Database Application Development, GI11-9410-00

� Developing ADO.NET and OLE DB Applications, SC27-2444-00

� Developing Embedded SQL Applications, SC27-2445-00

� Developing Java Applications, SC27-2446-00

� Developing Perl, PHP, Python, and Ruby on Rails Applications,
SC27-2447-00

� SQL Procedural Languages: Application Enablement and Support,
SC27-2470-00

� Administrative API Reference, SC27-2435-00

� Administrative SQL Routines and Views, SC27-2436-00

� Command Reference, SC27-2439-00

� Message Reference Vol.1, SC27-2450-00

� Message Reference Vol.2, SC27-2451-00

� SQL Reference Vol.1, SC27-2456-00

� SQL Reference Vol.2, SC27-2457-00

� XQuery Reference, SC27-2466-00

� Introduction to Replication and Event Publishing, GC19-1028-02

� SQL Replication Guide and Reference, SC19-1030-02

� MySQL 5.0 Certification Study Guide, ISBN-0-672-32812-7

Online resources

These Web sites are also relevant as further information sources:

DB2

� Database Management

http://www.ibm.com/software/data/management/

� DB2

http://www.ibm.com/software/data/db2/

436 MySQL to DB2 Conversion Guide

http://www.ibm.com/software/data/management/
http://www.ibm.com/software/data/db2/

� DB2 Express-C

http://www.ibm.com/software/data/db2/express/
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=805

� IBM DB2 Database for Linux, UNIX, and Windows Information Center

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

� DB2 Application Development

http://www.ibm.com/software/data/db2/ad/

� DB2 Bootcamp Training

http://www.ibm.com/developerworks/data/bootcamps

� DB2 Linux Validation

http://www.ibm.com/software/data/db2/linux/validate/

� DB2 9.7 manuals

http://www1.ibm.com/support/docview.wss?rs=71&uid=swg27015148

� DB2 9.7 features and benefits

http://www-01.ibm.com/software/data/db2/9/features.html

� DB2 Migration Now

http://www.ibm.com/db2/migration

� IBM Data Movement Tool

http://www.ibm.com/developerworks/data/library/techarticle/dm-0906datamovem
ent/

� DB2 Technical Support

http://www.ibm.com/software/data/db2/support/db2_9/

� Integrated Data Management

http://www.ibm.com/software/data/optim/

� IBM developerWorks

http://www.ibm.com/developerworks/

� IBM PartnerWorld

http://www.ibm.com/partnerworld

� Software Migration Project Office

http://www.ibm.com/software/solutions/softwaremigration/

� Leveraging MySQL skills to learn DB2 Express: DB2 versus MySQL
administration and basic tasks

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0602tham2/

 Related publications 437

http://www.ibm.com/software/data/db2/express/
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=805
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp
http://www.ibm.com/software/data/db2/ad/
http://www.ibm.com/developerworks/data/bootcamps
http://www.ibm.com/software/data/db2/linux/validate/
http://www1.ibm.com/support/docview.wss?rs=71&uid=swg27015148
http://www-01.ibm.com/software/data/db2/9/features.html
http://www.ibm.com/db2/migration
http://www.ibm.com/developerworks/data/library/techarticle/dm-0906datamovement/
http://www.ibm.com/software/data/db2/support/db2_9/
http://www.ibm.com/software/data/optim/
http://www.ibm.com/developerworks/
http://www.ibm.com/partnerworld
http://www.ibm.com/software/solutions/softwaremigration/
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0602tham2/

� Leverage MySQL skills to learn DB2 Express: DB2 versus MySQL backup
and recovery

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0606tham/

� Leverage MySQL skills to learn DB2 Express, Part 3: DB2 versus MySQL
graphical user interface

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0608tham/

� Leverage MySQL skills to learn DB2 Express, Part 4: DB2 versus MySQL
data movement

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0610tham/

� Convert from MySQL or PostSQL to DB2 Express-C

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0606khatri/

� DB2 Basics: Fun with Dates and Times

http://www.ibm.com/developerworks/data/library/techarticle/0211yip/0211yip3
.html

MySQL

� MySQL home page

http://www.mysql.com/

� MySQL 5.1 Reference Manual

http://dev.mysql.com/doc/refman/5.1/en/index.html

� PHP MyAdmin

http://www.phpmyadmin.net/home_page/index.php

Others

� VMware

http://www.vmware.com/

� SUSE Linux Enterprise

http://www.novell.com/linux/

� PHP

http://www.php.net/

� PHP PECL extension

http://pecl.php.net/

� PHP Manual - Database extensions

http://ca2.php.net/manual/en/refs.database.php

438 MySQL to DB2 Conversion Guide

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0606tham/
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0608tham/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0610tham/
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0606khatri/
http://www.ibm.com/developerworks/data/library/techarticle/0211yip/0211yip3.html
http://www.ibm.com/developerworks/data/library/techarticle/0211yip/0211yip3.html
http://www.mysql.com/
http://dev.mysql.com/doc/refman/5.1/en/index.html
http://www.phpmyadmin.net/home_page/index.php
http://www.vmware.com/
http://www.novell.com/linux/
http://www.php.net/
http://ca2.php.net/manual/en/refs.database.php
http://pecl.php.net/

� APACHE

http://www.apache.org/

� Perl

http://www.perl.org/

� Comprehensive Perl Archive Network

http://www.cpan.org

� Ruby

http://www.ruby-lang.org/en/

� IBM and Ruby

http://rubyforge.org/projects/rubyibm

� MySQL and Ruby

http://rubyforge.org/projects/mysql-ruby/
http://tmtm.org/en/ruby/mysql/README_en.html
http://www.tmtm.org/en/mysql/ruby/

� Java.sql Package Documentation

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/package-summary.html

� UnixODBC

http://www.unixodbc.org/

How to get IBM Redbooks publications

You can search for, view, or download IBM Redbooks publications, Redpapers,
Technotes, draft publications and Additional materials, as well as order hardcopy
IBM Redbooks publications, at this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

 Related publications 439

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.unixodbc.org/
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/package-summary.html
http://www.tmtm.org/en/mysql/ruby/
http://tmtm.org/en/ruby/mysql/README_en.html
http://rubyforge.org/projects/mysql-ruby/
http://rubyforge.org/projects/rubyibm
http://www.ruby-lang.org/en/
http://www.cpan.org
http://www.perl.org/
http://www.apache.org/

440 MySQL to DB2 Conversion Guide

Index

Symbols
.FRM file 124
.MRG file 124
.MYD file 124
.MYI file 124

Numerics
2-tier 25
32-bit 4
64-bit 4

A
access control 178
access package 29
access path 17
access plan 28, 354
access right 167
accessctrl authority 184, 187
accesslist table 268
account detail 79
ActiveX Data Object 32
address space 10
administrative interface 37
administrative views 348
ADO 32
ADO.NET 32
aggregate function 221
all privileges privilege 188
alter privilege 188
alterin privilege 188
AMD workstation 4
ANSI mode 210
ANSI92 standard 217
applaccess table 268
applet 30
application architecture 56, 62
application assessment 62
application client 26
application data 68
application developer 2
application development 92
application environment 56

© Copyright IBM Corp. 2009. All rights reserved.
application flow 76
application function 56
application interface 37, 56
application porting 56
application profile 56
application server 26
application user account 177
archive storage engine 47
ASNCLP command 297
assignment 213
async i/o 14
audit statement 183
authentication 181
autocommit 274
automated backup 6
automatic storage 127
autonomic computing daemon 10

B
background process 10
backup compression 5
bash shell 147
batch application 25
big integer 118
binary data 175
binary large object 175
bind command 28
bind commands 277
bindadd privilege 187
binding 27
blackhole storage engine 47
BLOB 175
block device 14
buffer pool 15, 164
buffers 39
built-in data 116
built-in function 160
business intelligence 7, 57

C
C client library 38
C/C++ 62
cache 39

 441

cache size 127
Cartesian product 208
catalog 18
catalog command 24
catalog table space 128
catalog view 13
certification 60
character data type 216
check constraint 120
check pending state 327
client code 10
client connection 91
client layer 37
client library 248
client support 91
client-server application 7
comma separated value 47
command line interface 66
command line mode 150
commercial license 36
commit 129
common client 3
communication 88
communication encryption 8
communication protocol 92
compact installation type 90
compile time 27
compressed format 47
compressed row 16
compressed table 46
compression rate 58
concurrency 71
concurrent insert 129
concurrent versions system 23
configuration file 12, 108
configuration parameter 127
configure command 106
configure script 106
connect privilege 187
connection pool 38
connection protocol 37
connection statement 223
connection string 232
console 144
console mode 152
container 14
context switch 9
control center 90
control privilege 186, 188

conversion task 143
Copy index data 173
core file 335
crash recovery 38, 129, 291
create procedure syntax 161
create trigger statement 160
create_external_routine privilege 187
create_not_fenced_routine privilege 187
createin privilege 188
createtab privilege 187
cross join 208
CSV storage engine 47
cursor stability 273
custom installation type 90
CVS 23
CVS storage engine 130

D
dascrt 103
dasupdt 101
data compression 2
data definition language 67
data dictionary 41
data extraction 144
data file 41
data manipulation language 71
data movement utility 279
data page 14
data porting 56
data recovery 279
data recovery module 57
data server 2, 91
data type mapping 115
data types 175
data warehouse 58
dataaccess authority 184, 187
database 11
database activity 91
database administration 38, 103
database administrator 2, 59
database architecture 62
database authority 184
database backup 72
database configuration 279
database configuration parameters

database_memory 307
locklist 307
logarchmeth1 288

442 MySQL to DB2 Conversion Guide

logarchmeth2 288
maxlocks 307
pckcachesz 307
sheapthres_shr 307
sortheap 307
trackmod 288

database design 60
database discovery 25
database driver 223, 232
database element 145
database feature 2
database interface 62
database managed space 13
database management system 11, 57
database management utility 39
database manager 29
database manager configuration parameter 127
database modeling tool 147
database node 125
database object 13, 18, 123
database partition 12, 125
database partition group 12
database recovery 286
database replication 279, 296
database server 38
database structure 145
database system monitor 182
database user account 177
date and time data type

date 118
datetime 119
time 119
timestamp 119
year 119

DB2 commands
b2admin 20
dasauto 20
dascrt 20
dasdrop 20
dasmigr 20
db2acd 10
db2ca 104, 283
db2cc 20
db2dart 20, 334
db2icrt 19, 103
db2idrop 19
db2ilist 19, 281
db2imigr 19
db2import 301

db2isetup 20
db2iupd 101
db2iupdt 19
db2level 20
db2load 304
db2look 20, 325
db2ls 334
db2pd 20, 335
db2rc 297
db2set 281
db2setup 20, 101
db2sqljcustomize 278
db2start 19
db2stop 19

DB2 dump file 335
DB2 privilege level

database l 187
row or column 188
table space 188

DB2 system controller 10
DB2 watch dog 10
db2comm 24
db2diag tool 334
db2diag.log 335
db2fmp 10
db2greg tool 334
db2isetup command 102
db2jcc4.jar 23, 30
db2level command 334
db2move utility 302
db2setup.err 102
db2setup.log 102
DB2Sqlca 263
db2support 335
db2sysc 10
db2systm file 282
db2wdog 10
DBADM authority 183, 187
dbheap 365
DBI 33
DBI interface 222
DBMS 57
DDL 67, 122
deadlocks 274
decompress table 16
default password 77
delete privilege 188
delimited ASCII format file 298
design advisor 6

 Index 443

desktop system 8
destination server 86
device name 14
diagnostic level 282
direct I/O 14
directory name 14
discover_db parameter 25
discover_inst parameter 25
disk space 90
distinctrow keyword 207
distributed platform 2
DML 71
double precision 118
driver code 3
dropin privilege 188
dynamic query 187
dynamic SQL 187
dynamic sql statement 28
dynamic table 46
dynamic warehouse 7

E
e-business 57
EDU 10
education opportunity 60
EJB 240
embedded analytical feature 7
embedded SQL statement 27
embedded system 3
employee inventory 76
encrypted password 168
engine dispatchable unit 10
engine infrastructure 10
Enterprise JavaBean 240
execute privilege 184
explain authority 183, 187
export mode 302

F
failover 57
federated storage engine 47, 130
file name 14
file system 90, 123
fixed term license 5
floating-point number 118
foreign key 48, 162
foreign key constraint 47
foriegn key 142

formatted page 173
frm extension 43
full table scan 17

G
global level profile registry 280
global levels 280
global variable Privilege 184
go to label 264
grant command 179
grant table buffer 39
granting privilege 70
graphical interface 38
graphical tool 90

H
hashed index 133
health and fault monitor 6
heap size 127
heap storage engine 130
heap table 46
High availability 279
high availability 4
host information 25
host language variable 27
host name 39

I
I/O bound workload 16
ibm_db2 226
implicit casting 213
implicit privilege 186
implicit_schema privilege 187
import command 168
import mode 302
IMS 2
incremental backup 288
independent software vendor 5
index 136
index blocks 39
Index privilege 184
index privilege 188
indexe 13
InnoDB engine 162
InnoDB table 124
insert privilege 188
installation method 92

444 MySQL to DB2 Conversion Guide

installation option 101
installation program 90
installation status 101
installation type 90
installFixPak command 101
instance 11
instance level profile registry 280
instance node level profile registry 280
instance owner 193
instance owner information 98
integrated exchange format 298
integrity information 18
interactive deployment mode 153
interprocess communication 23
inventory 77
inventory location 82
inventory type 82
IP address 227
IPC 23
isolation level 71, 272, 276
isolation option 277

J
Java 62
Java code 31
Java enabled browser 30
JavaServer Page 240
join order 206
JSP 240

K
key buffer 39

L
label based access control 2, 180
language flag 102
large object 13
LBAC 180
LBAC rule exemption privilege 188
licensing model 36
lightweight deployment solution 23
lightweight security audit mechanism 58
Linux distribution 88
list command 141
ln command 107
load authority 184
load mode 302

load privilege 187
local connection 23
local tools catalog 100
localhost 150
lock escalation 274
lock time-out 274
lock wait 274
locking 71
locklist 164
log file 101, 199
log file path 127
log files location 282
log information 41
logical model 68
loopback 24

M
main process 10
mainframe 2
maintenance window 164
make command 107
manageability 59
management tool 59
materialized query 133
memory 91
memory cache 39
memory model 4
memory storage engine 46
memory table 133
merge storage 46
merge storage engine 130
merge table 124
method privileges 188
migration assessment 56
migration project 56
migration task 56
mincommit 365
mobile device 8
module 184
module privilege 184
mounting option 123
MQT 134
multi-byte character set 33
multiple database 140
multi-user version 5
mv command 109
MYD extension 43
MYI extension 43

 Index 445

MyISAM table 124
myisamchk 51
myisampack 51
mysql 50
MySQL Administrator 51
MySQL index

fulltext 136
non-unique 136
primary key 136
spatial 136
unique 136

MySQL Query Browser 51
MySQL server program

comp_err 50
innochecksum 51
make_binary_distribution 50
make_win_bin_dist 50
msql2mysql 51
my_print_defaults 51
myisamlog 51
mysql.server 50
mysql_config 51
mysql_fix_privilege_tables 50
mysql_install_db 50
mysql_secure_installation 50
mysql_tzinfo_to_sql 50
mysql_upgrade 50
mysqlbug 50
mysqld 50
mysqld_multi 50
mysqld_safe 50
mysqld-debug 50
mysqld-max 50
mysqld-nt 50
mysqlmanager 50
perror 51
replace 51

mysql.columns_priv table 179
mysql.procs_priv table 179
mysql.tables_priv table 179
mysql.user table 177, 179
mysql_convert_table_format 51
mysql_fix_extensions 51
mysql_setpermissions 51
mysql_tableinfo 51
mysql_waitpid 51
mysql_zap 51
mysqlaccess 51
mysqladmin 50

mysqlbinlog 51
mysqlcheck 50
mysqldump 40, 51, 145, 168
mysqldump options

--help 169
--no-create-info 169–171
--no-data 169
--password 169
--tab 170
--tab= 169
--user 169

mysqlhotcopy 40, 51, 172
mysqlhotcopy script 168
mysqlimport 51
mysqlshow 51

N
named pipe 39
national language support 71
natural join 208
nickname privilege 184
node 25, 125
non-recoverable database 287
non-transaction-safe storage engine 45
null value 217
numeric data type 216

bigint 118
bit 117
bool 117
boolean 117
decimal 118
double 118
fixed 118
float 118
int 118
integer 118
numeric 118
real 118
smallint 117
tinyint 117

numeric values 215

O
object privileges 18
object-oriented extension 107
ODBC driver manager 29
OLAP 7, 57
OLE DB provider 32

446 MySQL to DB2 Conversion Guide

OLTP 57
on-line analytical processing 57
online memory tuning 164
on-line transaction processing 57
optimizer 39, 206

P
package 65
package cache 164
package cache size 307
package privilege 184, 188
parallel database system 11
parse tree 39
Parser 38
partition group 126
partitioned database environment 125
password 77
payload file deployment 92
PDO 226
pdo_ibm 33
performance 9
Perl 62
permission 186
PHP 62
PHP data object 226
PHP source 106
phpinfo() 107
physical resource 39
physical storage device 14
physical structure 12
plug-in 23
policy 311
port address 24
port number 103
Porting preparation 56
precision 117
precompile option 272
precompiled package 107
pre-compiling 27
PREP 277
pre-parsed tree 11
primary key 162
primary keys 65, 142
privilege 13, 167, 186
privilege level

column 179
database 179
global level 179

routine 179
table 179

procedural interface 107
process identifier 338
profile 180
profile registry 282
profile registry variables 280
pureXML, autonomics 2

Q
query cache 39
query interface 37
query optimization class 206
query performance 134
query syntax 39
query users 37
quiesce_connect privilege 187

R
range-clustered table 135
raw device 14
raw disk partitions 47
RDO 32
read stability 273
rebuildconf command 110
recover history file 287
recoverable database 288
recovery log 125
recovery log file 287
recovery logs file 286
recovery method 286
Redbooks Web site 439

Contact us xv
reference type 398
REFERENCES privilege 188
Referential integrity 48
referential integrity 162
register variable

db2_compatibility_vector 219
registered user 77
registry variable 24, 219, 280
relational modeling 2
remote connection 23, 36
remote data object 32
repeatable read 273
replication service 4
reserved words 145
resource tuning database technology 59

 Index 447

response file 101
response file installation 92
restore utility 294
result output file 144
revoke command 179
roll forward recovery 292
rollback 129
rollforward utility 295
root privilege 180
root table 135
root type 398
routine privilege 184
routines 184
row compression 131, 386
row trigger 137
runstats command 199
runtime support 23

S
schema 43, 128
Schema level 187
Schema privilege 184
secadm authority 183, 187
security 11, 13
security label privilege 188
security model 181
security system 177
select privilege 188
self tuning memory manager 6
self-tuning memory manager 59, 164–165
sequence privilege 184, 188
server code 10
server privilege 184
service request 77
service ticket 76, 81
service type 82
servlets 240
setup wizard 90
severity level 84
shared memory networking protocol 39
shared-nothing architecture 48
single byte integer 117
single precision 118
single-tier 25
slave database 40
slave system 40
small integer 117
sort heap 164

sort heap size 307
sort heap threshold 307
source code language 62
source distribution 41
source table 203
sources package 109
special group 186
SQL 2
SQL interface 38
SQL replication 5
SQL statements 183
sqladm authority 183, 187
SQLCODE 259
SQLj 240
SQLj applet 31
SQLj translator 31
SQLSTATE 259
standard interface 25
statement trigger 137
static sql statement 27
static tables 46
statistical data 41
status 144
STMM 6
storage device 126
storage engine 39–40, 129
storage engines 45
storage optimization 4
stored procedure 22, 84
straight_join keyword 206, 208
string and character data type

binary 119
blob 120
char 119
enum 120
longblob 120
longtext 120
mediumblob 120
mediumtext 120
set 120
tinyblob 120
tinytext 120
varbinary 119
varchar 119

string function 211
strong typing 213
structured query language 123
structured type 398
subquery 209

448 MySQL to DB2 Conversion Guide

subtable 135
summary table 134
supertable 135
symbolic link 123
synchronous event 14
synonym 117, 207
sysadm authority 181
syscat catalog view 18
sysctrl authority 181
sysmaint authority 182
sysmon authority 182
sysstat catalog view 18
system catalog 11
system catalog table 13, 128
system directory 11
system managed space 13
system monitor 182
system planning 60
system requirement 90

T
table column 11
table descriptor 39
table hierarchy 135
table partitioning 2
table space change history file 287
table space privilege 184
table spaces 12
table-level encryption 8
tar file 105
target system 56, 63
TCP/IP communication 100
temporary table 128
temporary table space 128
text 145
threaded engine 2
threaded model 9
throttled utility 311
throttling system 311
timestamp 215
trace file 101
transaction isolation 271
transaction processing 57
transaction safe 129
transaction-safe storage engines 45
TRG extension 43
trigger 65, 137
TRN extension 43

truncate statement 218
two-tier architecture 63
type 4 driver 30
typed tables 135
typical installation type 90

U
uncommitted read 273
underscore 178
Unified ODBC 234
unique key 142, 162
unit of work 276
unload script 173
update privilege 188
updateable view 175
use privilege 188
user account 77, 98
user account information 39, 177
user account management 167, 177
User data 68
user data 167
user defined function 10
user defined table 128
user privilege 40
user table space 128
user-defined data type 116
user-defined partitioning 124

V
validation program 88
value compression 386
vector I/O 14
version recovery 291
view 13

W
warehouse architect 59
Web server 26
Web service 22
Web-browser 26
whenever statement 263
wildcard 178
wlmadm authority 183, 187
work sheet format 298
workload 164
workload management 2
workload manager 279

 Index 449

workload privilege 184

X
XML support 71
XSR object privilege 184

450 MySQL to DB2 Conversion Guide

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

M
ySQL to DB2 Conversion Guide

®

SG24-7093-01 ISBN 0738433659

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

MySQL to DB2 Conversion
Guide

Guides you through a
MySQL database and
application
conversion to DB2

Enriches
applications through
advanced DB2
features

Converts an
application with
detailed examples

Switching database vendors is often considered an
exhausting challenge for database administrators and
developers. Complexity, total cost, and the risk of downtime
are often the reasons that restrain IT decision makers from
starting the migration project. The primary goal of this book
is to show that, with the proper planning and guidance,
converting from MySQL to IBM DB2 is not only feasible but
straightforward.

If you picked up this book, you are most likely considering
converting to DB2 and are probably aware of several of the
advantages of to converting to DB2 data server. In this IBM
Redbooks publication, we discuss in detail how you can take
advantage of this industry leading database server.

This book is an informative guide that describes how to
convert the database system from MySQL 5.1 to DB2 V9.7 on
Linux and the steps that are involved in enabling the
applications to use DB2 instead of MySQL.

This guide also presents the best practices in conversion
strategy and planning, conversion tools, porting steps, and
practical conversion examples. It is intended for technical
staff that is involved in a MySQL to DB2 conversion project.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team who wrote this book
	Become a published author
	Comments welcome

	Summary of changes
	December 2009, Second Edition

	Executive summary
	Chapter 1. DB2 for Linux, UNIX, and Windows
	1.1 Introduction
	1.2 Product overview
	1.2.1 DB2 Data Server Editions for the production environment
	1.2.2 Products for accessing System z and System i host data
	1.2.3 DB2 for pervasive platforms
	1.2.4 Additional DB2 data server features

	1.3 DB2 for Linux, UNIX, and Windows architecture
	1.3.1 DB2 9.7 threaded architecture and process model
	1.3.2 DB2 database objects
	1.3.3 DB2 catalog

	1.4 DB2 utilities
	1.5 DB2 database access
	1.5.1 DB2 clients and drivers
	1.5.2 Application access
	1.5.3 DB2 application programming interfaces

	Chapter 2. MySQL database
	2.1 MySQL licensing overview
	2.2 MySQL architecture overview
	2.2.1 Database client and non-client utilities
	2.2.2 Database server

	2.3 MySQL design and SQL compliance
	2.3.1 MySQL directory structure
	2.3.2 MySQL storage engines
	2.3.3 MySQL standard SQL compliance

	2.4 MySQL utilities
	2.4.1 Overview of the MySQL server-side programs and utilities
	2.4.2 Overview of the MySQL client-side programs and utilities

	2.5 MySQL application programming interfaces

	Chapter 3. Planning the conversion from MySQL to DB2
	3.1 Conversion project planning overview
	3.1.1 Benefits of converting to DB2
	3.1.2 IBM conversion support
	3.1.3 Education

	3.2 Application assessment
	3.3 System planning
	3.3.1 Software
	3.3.2 Hardware
	3.3.3 Conversion tools

	3.4 The conversion process
	3.4.1 Preparing for the installation
	3.4.2 Porting the database structure
	3.4.3 Data porting
	3.4.4 Application porting
	3.4.5 Basic administration
	3.4.6 Testing and tuning

	Chapter 4. Conversion scenario
	4.1 Application structure
	4.1.1 Application flow

	4.2 Database structure
	4.3 System environment

	Chapter 5. Installation
	5.1 DB2 Express-C 9.7 on Linux
	5.1.1 System requirements
	5.1.2 Installation procedure
	5.1.3 Instance creation
	5.1.4 Client setup on Linux

	5.2 Other software products
	5.2.1 Apache2 installation with DB2 support
	5.2.2 PHP installation with DB2 support

	5.3 IBM Data Movement Tool installation and usage
	5.3.1 IBM Data Movement Tool prerequisites
	5.3.2 IBM Data Movement Tool installation

	Chapter 6. Database conversion
	6.1 Data type mapping
	6.2 Data definition language differences
	6.2.1 Database manipulation
	6.2.2 Table manipulation
	6.2.3 Index manipulation
	6.2.4 Trigger manipulation
	6.2.5 Procedures and function manipulation

	6.3 Other considerations
	6.4 Converting the database
	6.4.1 Automatic conversion using porting tools
	6.4.2 Manual conversion
	6.4.3 Metadata transport

	6.5 Sample database conversion
	6.5.1 Converting database objects with the IBM Data Movement Tool
	6.5.2 Manual database object conversion and enhancements

	Chapter 7. Data conversion
	7.1 Data porting considerations
	7.1.1 Data porting commands and tools
	7.1.2 Differences in data formats
	7.1.3 Differences in the user account management

	7.2 Sample project: Data porting
	7.2.1 Export user data from MySQL
	7.2.2 Map MySQL user data to DB2 user data
	7.2.3 Create DB2 user
	7.2.4 Export MySQL application data
	7.2.5 Convert MySQL application data to DB2 format
	7.2.6 Import application data into DB2
	7.2.7 Basic data checking

	Chapter 8. Application conversion
	8.1 Data Manipulation Language differences and similarities
	8.1.1 SELECT syntax
	8.1.2 JOIN syntax
	8.1.3 UNION syntax
	8.1.4 Subquery syntax
	8.1.5 Grouping, having, and ordering
	8.1.6 Strings
	8.1.7 Implicit casting of data types
	8.1.8 String concatenation and NULL values
	8.1.9 Record deletion
	8.1.10 Built-in functions and operators

	8.2 Application source conversion
	8.2.1 Converting MySQL Perl applications to DB2
	8.2.2 Converting MySQL PHP applications to DB2
	8.2.3 Converting MySQL Ruby on Rails applications to DB2
	8.2.4 Converting MySQL Java applications to DB2
	8.2.5 Converting MySQL C/C++ applications to DB2
	8.2.6 Converting Connector/ODBC applications to DB2
	8.2.7 Condition handling in DB2
	8.2.8 Special conversions

	8.3 Additional application considerations
	8.3.1 The purpose of locking
	8.3.2 Concurrency control and transaction isolation
	8.3.3 DB2 isolation levels
	8.3.4 Locking
	8.3.5 Specifying the isolation level in DB2

	Chapter 9. Database administration
	9.1 Database configuration
	9.1.1 DB2 configuration

	9.2 Database recovery
	9.2.1 DB2 database recovery

	9.3 Database replication
	9.4 Data movement
	9.4.1 DB2 data movement

	9.5 High availability
	9.6 Autonomics
	9.7 Workload management
	9.8 Database management tools
	9.8.1 DB2 Control Center
	9.8.2 IBM Optim and Data Studio tool suite overview

	Chapter 10. Testing and tuning
	10.1 Test planning
	10.1.1 Principles of software tests
	10.1.2 Test documentation
	10.1.3 Test phases
	10.1.4 Time planning and time exposure

	10.2 Data checking techniques
	10.2.1 IMPORT/LOAD messages
	10.2.2 Data checking

	10.3 Code and application testing
	10.3.1 Checking the application code
	10.3.2 Security testing

	10.4 Troubleshooting
	10.4.1 Interpreting DB2 informational messages
	10.4.2 DB2 tools for troubleshooting
	10.4.3 DB2 diagnostic logs
	10.4.4 DB2 support information
	10.4.5 Monitoring tools
	10.4.6 Visual Explain

	10.5 Initial tuning
	10.5.1 Table space design
	10.5.2 Physical placement of database objects
	10.5.3 Buffer pools
	10.5.4 Large transactions
	10.5.5 SQL execution plan
	10.5.6 Configuration Advisor
	10.5.7 Design Advisor

	Chapter 11. Advanced DB2 features
	11.1 DB2 pureXML
	11.2 Data compression
	11.3 Partitioning features
	11.3.1 Database partitioning feature
	11.3.2 Table partitioning
	11.3.3 Multidimensional clustering

	11.4 Materialized query tables
	11.5 User-defined data types

	Appendix A. Mapping MySQL built-in functions and operators
	A.1 Grouping related functions
	A.2 String functions
	A.3 Numeric functions
	A.4 Date and time functions
	A.5 Comparing operators and other functions

	Appendix B. Sample code for user-defined functions
	B.1 Sample code for BIT_AND
	B.2 Sample code for FORMAT function
	B.3 Sample code for RPAD and LPAD functions
	B.4 Sample code for GREATEST function
	B.5 Sample code for LEAST
	B.6 Sample code for BIT_COUNT
	B.7 Sample code for SUBSTRING_INDEX
	B.8 Sample code for UNIX_TIMESTAMP

	Related publications
	IBM Redbooks publications
	Other publications
	Online resources
	How to get IBM Redbooks publications
	Help from IBM

	Index
	Back cover

