
1

CS 0413 – VLSI AND EMBEDDED SYSTEM DESIGN

 LABARATORY MANUAL

 SEMESTER VII

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SRM UNIVERSITY
(Under Section 3 of the UGC Act, 1956)

S.R.M NAGAR, KATTANKULATHUR – 603203.

KANCHEEPURAM DISTRICT

YEAR: 2015-2016

2

Department of Electronics and Communication Engineering

CS0413

VLSI and Embedded System Design Lab

Laboratory Manual
Course Team

 Mr. S. Nivash
 Mr. B.Srinath
 Mrs. P.Niraimathi
 Mrs. J.Subhashini
 Mrs. P.Radhika
 Mrs. V.Sarada
 Mrs. E.Chitra
 Mrs. V.K.Daliya
 Mrs .K.Suganthi
 Mrs. A.Ruhanbevi

June 2015

 REVISION: 05

3

LIST OF EXPERIMENTS

SI.No Title of the Experiments

1 Design of Logic gates

2 Design of Binary Adders

3 Design of Multiplexers and De-multiplexers

4 Design of Encoders and Decoders

5 Flip Flops

6 Counters

7

Toggle a Port bit in 8051

8 Bitwise Operators Using 8051

9 Arithmetic Operations using 8051

10 Delay Operators in 8051

4

Course Handout

SRM University
Faculty of Engineering and Technology

Department of Electronics and Communication Engineering
 CS0413 VLSI & EMBEDDED SYSTEM DESIGN

LAB
Seventh Semester, 2015-16 (odd semester)

Course (Catalog) description

The course explores the design aspects of an introduction to the characteristics of digital logic,
design, construction, testing and debugging of simple digital circuits using Verilog HDL. and also
provide an introduction to the development of application using microcontrollers.

Compulsory/Elective course: Compulsory for CSE students.

Credit hours: 2 credits.

Laboratory

 DSP Lab- TP9L3, Embedded System Lab - TP 11L1,
 VLSI Simulation Lab- TP11L4, VLSI Design Lab- TP12L4

Course coordinator(s):

 Mr.S.Nivash, Assistant. Professor, Department of ECE

Instructor(s)

Class / Lab schedule: one 150 minutes lab session per week, for 14-15 weeks

Name of the instructor Class Venue Class hours

Email

(domain:
@ktr.srmuniv.ac.in)

Mr.S.Nivash X1 TP11L1
Day 1-7,8

Day 2-3,4

nivash.s@ktr.srmuni
v.ac.in

Mr.B.Srinath X2

TP11L1

Day 1 - 5,6

Day 3 - 7,8

srinath.b@ktr.srmuni
v.ac.in

Mrs.P.Niraimathi X3

TP11L1

Day 4 -7,8

Day 5 -7,8

niraimathi.p@ktr.srm
univ.ac.in

5

Name of the instructor Class Venue Class hours

Email

(domain:
@ktr.srmuniv.ac.in)

Mrs.J.Subashini X4

TP11L1

Day 2 - 5,6

Day 5 - 3,4

subashini.j@ktr.srmu
niv.ac.in

Mrs.P.Radhika X5

TP11L4

Day 1 - 5,6

Day 2 - 5,6

radhika.p@ktr.srmun
iv.ac.in

Mrs.V.Sarada Y1

TP11L1

Day 1 - 3,4

Day 2 - 7,8

sarada.v@ktr.srmuni
v.ac.in

Mrs.E.Chitra Y2

TP11L4

Day 2 - 7,8

Day 3 - 3,4

chitra.e@ktr.srmuniv
.ac.in

Mrs.V.K.Daliya Y3

TP9L3

Day 1 - 5,6

Day 2 - 5,6

daliya.vk@ktr.srmun
iv.ac.in

Mrs.K.Suganthi Y4

TP11L4

Day 1 - 3,4

Day 4 – 3,4

suganthi.k@ktr.srmu
niv.ac.in

Dr.A.Ruhan Bevi Y5

TP10L1

Day 1- 5,6

Day 2 - 5,6

ruhanbevi.a@ktr.srm
univ.ac.in

Relationship to other courses

 Pre-requisites: Digital Computer Fundamentals

 Assumed knowledge: Digital Computer Fundamentals, Verilog and Programming
in Keil C

 Following courses: Nil

Required Text Books:

1. Samir Palnitkar, “Verilog HDL: A guide to Digital Design and Synthesis”, 2nd edition, Pearson
Education.

2. Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic, "Digital Integrated Circuits",
Second Edition, Prentice-Hall.

3. Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. McKinlay, “The 8051 Microcontroller
and Embedded systems”, Person Education, 2004.

4. Rajkamal, “Embedded Systems: Architecture, Programming and Design”, Tata McGraw-Hill
Education, 2008.

5. Lab manual; additional materials posted on SRM web.

Web Resources:

1. www.asic-world.com
2. www.keil.com/c51/

6

Computer usage
Modelsim is used to simulate the design and to verify the functionality.

1. Modelsim 5.7

2. Xilinx ISE 7.1

3. Keil C

Professional component
 General - 0%
 Basic Sciences - 0%
 Engineering sciences & Technical arts - 0%
 Professional subject - 100%

Broad area: VLSI | Embedded

Hardware Laboratory Usage
Each laboratory station is equipped with computer with the simulation software loaded.
Students work individually and maintain individual laboratory notebooks and submit
individual reports.

Course objectives

The objectives of this course is to Correlates to Program
Objective

 To gain expertise in design and development and
simulation of digital circuits with Verilog. (3), (4)

Course Learning Outcome

This course provides the design of various digital circuits using
different VLSI simulation software tools like Modelsim, Keil
C. The outcome of this course to learn Verilog language, Keil
C and also learn the usage of different tools.

Correlates to
program outcome

H M L

1. To design and simulate list of combinational and
sequential digital circuits using Modelsim & Xilinx –
Verilog language

d,f c b,k

2. To design and simulate the operations of systems like
verilog using Modelsim & Toggle, Bitwise, Delay and
any Control Logic Design in 8051.

d,f

3. To design Toggle, Bitwise, Arithmetic, Delay using
Keil C. f

H: high correlation, M: medium correlation, L: low correlation

7

Course Topics

SI.No. Lab Experiments

I.Design and simulate using Modelsim/Xilinx-Verilog Language

1 Design of Logic gates

2 Design of Binary Adders

3 Design of Multiplexers and De-multiplexers

4 Design of Encoders and Decoders

5 Flip Flops

6 Counters

II. Design and simulate using Keil µversion - 8051

7 Toggle a Port bit in 8051

8 Bitwise Operators Using 8051

9 Arithmetic Operations using 8051

10 Delay Operators in 8051

Evaluation methods

 Attendance - 5%
 Pre-lab questions - 10%
 In-lab experiment - 15%
 Post-lab questions - 10%
 Report - 15%
 Model exam - 20%
 Final exam - 25%

8

Laboratory Policies and Report Format

Reports are due at the beginning of the lab period. The reports are intended to be a complete
documentation of the work done in preparation for and during the lab. The report should be complete
so that someone else familiar with digital communication could use it to verify your work. The prelab
and postlab report format is as follows:

1. A neat thorough prelab must be presented to your Staff Incharge at the beginning of your scheduled
lab period. Lab reports should be submitted on A4 paper. Your report is a professional
presentation of your work in the lab. Neatness, organization, and completeness will be rewarded.
Points will be deducted for any part that is not clear.

2. In this laboratory students will work in teams of three. However, the lab reports will be written
individually. Please use the following format for your lab reports.

a. Cover Page: Include your name, Subject Code, Section No., Experiment No. and Date.

b.Objectives: Enumerate 3 or 4 of the topics that you think the lab will teach you. DO NOT REPEAT
the wording in the lab manual procedures. There should be one or two sentences per objective.
Remember, you should write about what you will learn, not what you will do.

c. Design and simulation: This part contains all the steps required to arrive at your final
stage. This should include all input and output waveforms, explanations, etc.

d.This section should also include a clear and error free program description of your design
process. Simply including a circuit schematic is not sufficient.

e. Questions: Specific questions(Prelab and Postlab) asked in the lab should be answered
here. Retype the questions presented in the lab and then formally answer them.
3. Your work must be original and prepared independently. However, if you need any guidance or
have any questions or problems, please do not hesitate to approach your staff incharge during office
hours. Copying any prelab/postlab will result in a grade of 0. The incident will be formally reported to
the University and the students should follow the dress code in the Lab session.

4. Each laboratory exercise (simulation results) must be completed and demonstrated to
your Staff In-charge in order to receive working design model credit. This is the procedure
to follow:

a. Design model works: If the design model works during the lab (2 periods), call your
staff in-charge and he/she will sign and date it. This is the end of this lab, and you will get
a complete grade for this portion of the lab.

b. Design model does not work: If the Design model does not work, you must make use
of the open times for the lab room to complete your experiment. When your design model
is ready, contact your staff in-charge to set up a time when the two of you can meet to
check your simulation.

9

5. Attendance at your regularly scheduled lab period is required. An unexpected absence
will result in loss of credit for your lab. If for valid reason a student misses a lab, or makes
a reasonable request in advance of the class meeting, it is permissible for the student to do
the lab in

a different section later in the week if approved by the staff in-charge of both the sections.
Habitually late students (i.e., students late more than 15 minutes more than once) will
receive 10 point reductions in their grades for each occurrence following the first.

6.Final grade in this course will be based on laboratory assignments. All labs have an equal
weight in the final grade. Grading will be based on pre-lab work, laboratory reports, post-
lab and in-lab performance (i.e., completing lab, answering laboratory related questions,
etc.,).The Staff In-charge will ask pertinent questions to individual members of a team at
random. Labs will be graded as per the following grading policy:

Attendance - 5%
 Pre-lab questions - 10%
 In-lab experiment - 15%
 Post-lab questions - 10%
 Report - 15%
 Model exam - 20%

Final exam - 25%
7. Reports Due Dates: Reports are due one week after completion of the corresponding lab. A late
lab report will have 10% of the points deducted for being one day late.

8. Systems of Tests: Regular laboratory class work over the full semester will carry a weightage of
75%. The remaining 25% weightage will be given by conducting an end semester practical
examination for every individual student if possible or by conducting a 1 to 1 ½ hours duration
common written test for all students, based on all the experiment carried out in the semester.

Prepared by: S.Nivash, Assistant Professor, Department of ECE

Dated: 23.06 .2015 Revision No.: 05 Date of revision: NA

10

Program Educational Objectives

(i) To prepare students to compete for a successful career in Electronics and
Communication Engineering profession through global education standards.

(ii) To enable the students to aptly apply their acquired knowledge in basic sciences and
mathematics in solving Electronics and Communication Engineering problems.

(iii) To produce skillful graduates to analyze, design and develop a system/component/
process for the required needs under the realistic constraints.

(iv) To train the students to approach ethically any multidisciplinary engineering
challenges with economic, environmental and social contexts

(v) To create awareness among the students about the need for life long learning to
succeed in their professional career as Electronics and Communication Engineers.

 Program Outcomes

a. an ability to apply knowledge of mathematics, science, and engineering
b. an ability to design and conduct experiments, as well as to analyze and interpret data
c. an ability to design a system, component, or process to meet desired needs within realistic

constraints such as economic, environmental, social, political, ethical, health and safety,
manufacturability, and sustainability

d. an ability to function on multidisciplinary teams
e. an ability to identify, formulate, and solve engineering problems
f. an understanding of professional and ethical responsibility
g. an ability to communicate effectively
h. the broad education necessary to understand the impact of engineering solutions in a global,

economic, environmental, and societal context
i. a recognition of the need for, and an ability to engage in life-long learning
j. a knowledge of contemporary issues
k. an ability to use the techniques, skills, and modern engineering tools necessary for

engineering practice.

11

Name of the Staff Group Signature

Mr.S.Nivash

I

Mr.B.Srinath

Mrs.P.Niraimathi

Mrs.J.Subashini

Mrs.P.Radhika

Mrs.V.Sarada

II

Mrs.E.Chitra

Mrs.V.K.Daliya

Mrs.K.Suganthi

Dr.A.Ruhan Bevi

Course Co-ordinator Professor In-charge

 (Mr.S.Nivash) (Mr.V.Natrajan)

12

Syllabus of VLSI & Embedded System Design Lab

CS0413

 L T P C

VLSI & Embedded System Design Lab 0 0 3 2

Total Contact Hours – 45
Prerequisite: Nil

PURPOSE
The purpose of the lab is to train the students to design to know and understand Verilog and design circuits
using it.
INSTRUCTIONAL OBJECTIVES

1. To gain expertise in design and development and simulation of digital
circuits with Verilog.

LIST OF EXPERIMENTS

1. Design of Logic gates
2. Design of Binary Adders
3. Design of Multiplexers and De-multiplexers

4. Design of Encoders and Decoders

5. Flip Flops

6. Counters

7. Toggle a Port bit in 8051

8. Bitwise Operators Using 8051

9. Arithmetic Operations using 8051

10. Delay Operators in 8051

13

REFERENCES

6. “LAB MANUAL”, Department of ECE, SRM University
7. Samir Palnitkar, “Verilog HDL: A guide to Digital Design and Synthesis”, 2nd edition, Pearson

Education.
8. Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic, "Digital Integrated Circuits",

Second Edition, Prentice-Hall.
9. Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. McKinlay, “The 8051 Microcontroller

and Embedded systems”, Person Education, 2004.
10. Rajkamal, “Embedded Systems: Architecture, Programming and Design”, Tata McGraw-

Hill Education, 2008.

VLSI & Embedded System Design Lab
Course designed by Department of Electronics and Communication Engineering

1 Student outcome A b c d e f g h i j k
 X X X X X

2

Mapping of
Instructional
Objectives with
student outcome

 1 1 1 1 1

3 Category
General
(G)

Basic
Sciences (B)

Engineering Sciences &
Technical Arts (E)

Professional
Subjects (P)

 X

4 Broad area
Commun
ication

Signal
Processing Electronics VLS

I Embedded

 X X X
5 Approval

14

S.R.M University

Faculty of Engineering and Technology

Department of Electronics and Communication Engineering

Sub Code : CS 0413 Semester : VII

Sub Title : VLSI & EMBEDDED SYSTEM DESIGN LAB Course Time : Jun - Nov’15

Pre Requisite : CS0102 Digital Computer Fundamentals

Course Requisite : CS0405 VLSI Design & Embedded System

Program Outcome

b. Graduate will demonstrate the ability to identify, formulate and solve engineering problems.

c. Graduate will demonstrate the ability to design and conduct experiments, analyze and
interpret data.

Experiments in VLSI Devices and Design will satisfy the program outcome b and c.

d. Graduate will demonstrate the ability to design a system, component or process as per needs
and specification

Experiment 7, 8 and 9: To understand the operations of systems like Toggle, Bitwise, Delay and any
Control Logic Design in 8051.

f. Graduate will demonstrate the skills to use modern engineering tools, software’s and
equipment to analyze problems.

Experiments in VLSI Devices and Design will satisfy the program outcome f.

k. Graduate will show the ability to participate and try to succeed in competitive examinations

To participate in placement exams of most of the software companies.

15

S.R.M University

Faculty of Engineering and Technology

Department of Electronics and Communication Engineering

Sub Code : CS 0413 Semester : VII

Sub Title : VLSI & EMBEDDED SYSTEM DESIGN LAB Course Time : Jun - Nov’15

Pre Requisite : CS0102 Digital Computer Fundamentals

Course Requisite : CS0405 VLSI Design & Embedded System

Instructional Objective and Program Outcome

S.No. Instructional
Objective

Program Outcome Experiment Details

 To gain expertise in
design and development
and simulation of digital
circuits with Verilog.

b. Graduate will demonstrate the
ability to identify, formulate and
solve engineering problems.

c. Graduate will demonstrate the
ability to design and conduct
experiments, analyze and
interpret data.

d. Graduate will demonstrate the
ability to design a system,
component or process as per
needs and specification

f. Graduate will demonstrate the
skills to use modern engineering
tools, software’s and equipment
to analyze problems.

k. Graduate will show the ability
to participate and try to succeed
in competitive examinations

Experiments in VLSI Devices and Design
will satisfy the program outcome b and c.

xperiment 7, 8 and 9: To understand the
operations of systems like Toggle, Bitwise,
Delay and any Control Logic Design in
8051.

Experiments in VLSI Devices and Design
will satisfy the program outcome f.

To participate in placement exams of most
of the software companies.

16

S.R.M University

Faculty of Engineering and Technology

Department of Electronics and Communication Engineering

Sub Code : CS 0413 Semester : VII

Sub Title : VLSI & EMBEDDED SYSTEM DESIGN LAB Course Time : Jun - Nov’15

Pre Requisite : CS0102 Digital Computer Fundamentals

Course Requisite : CS0405 VLSI Design & Embedded System

EXPERIMENTS DETAILS

SI.No. Lab Experiments

I.Design and simulate using Modelsim/Xilinx-Verilog Language

1 Design of Logic gates

2 Design of Binary Adders

3 Design of Multiplexers and De-multiplexers

4 Design of Encoders and Decoders

5 Flip Flops

6 Counters

II. Design and simulate using Keil µversion - 8051

7 Toggle a Port bit in 8051

8 Bitwise Operators Using 8051

9 Arithmetic Operations using 8051

10 Delay Operators in 8051

Specifications:

 HP Computer P4 Processor – 2.8 GHz, 2GB RAM, 160 GB Hard Disk

 Softwares: Modelsim - 5.7c, Xilinx - 6.1i. QestaSim, Keil µversion – 8051.

17

Laboratory Report Cover Sheet

SRM University
Faculty of Engineering and Technology

Department of Electronics and Communication Engineering
CS 0413

VLSI Design & Embedded System Lab
Seventh Semester, 2015 (Odd semester)

Name :

Register No. :

Venue : DSP Lab- TP9L3, Embedded Systems Lab-TP11L1,
 VLSI Simulation Lab- TP11L4, VLSI Design Lab- TP12L4

Title of Experiment :

Date of Conduction :

Date of Submission :

Particulars Max.
Marks Marks Obtained

Pre-lab 10

Post-lab 10

In Lab Performance 15

Lab Report 15

 Total 50

REPORT VERIFICATION

 Date :

 Staff Name :

 Signature :

18

CS0413 VLSI AND EMBEDDED SYSTEM DESIGN LAB

Contents

List of Experiments:

SI. No Experiments Page. No

1 Design of Logic gates 1

2 Design of Binary Adders 8

3 Design of Multiplexers and
De-multiplexers 15

4 Design of Encoders and Decoders 26

5 Flip Flops 33

6 Counters 42

7

Toggle a Port bit in 8051

46

8 Bitwise Operators Using 8051 50

9 Arithmetic Operations using 8051 53

10 Delay Operators in 8051 56

19

Introduction to Combinational Circuit Design

EXP:1 Design of Logic gates

1.1 Introduction

The purpose of this experiment is to simulate the behavior of several of the basic logic gates and you
will connect several logic gates together to create simple digital model.

1.2 Software tools Requirement

Equipments:

Computer with Modelsim Software

Specifications:

HP Computer P4 Processor – 2.8 GHz, 2GB RAM, 160 GB Hard Disk

Softwares: Modelsim - 5.7c, Xilinx - 6.1i.

Algorithm	

STEP 1: Open ModelSim XE II / Starter 5.7C

 STEP 2: File -> Change directory -> D:\<register number>

STEP 3: File -> New Library -> ok

STEP 4: File -> New Source -> Verilog

STEP 5: Type the program

STEP 6: File -> Save -> <filename.v>

STEP 7: Compile the program

STEP 8: Simulate -> expand work -> select file -> ok

STEP 9: View -> Signals

STEP 10: Select values -> Edit -> Force -> input values

STEP 11: Add -> Wave -> Selected signals -> Run

STEP 12: Change input values and run again

20

1.3 Logic Gates and their Properties

Gate Description Truth Table Logic Symbol Pin Diagram

OR

The output is active high
if any one of the input is
in active high state,
Mathematically,

Q = A+B

A

0

0

1

1

B

0

1

0

1

Output Q

0

1

1

1

AND

The output is active high
only if both the inputs
are in active high state,
Mathematically,

Q = A.B

A

0

0

1

1

B

0

1

0

1

Output Q

0

0

0

1

NOT

In this gate the output is
opposite to the input
state, Mathematically,

Q = A

A

0

1

Output Q

1

0

NOR

The output is active high
only if both the inputs
are in active low state,
Mathematically,

Q = (A+B)’

A

0

0

1

1

B

0

1

0

1

Output Q

1

0

0

0

NAND

The output is active high
only if any one of the
input is in active low
state, Mathematically,

Q = (A.B)’

A

0

0

1

1

B

0

1

0

1

Output Q

1

1

1

0

21

XOR

The output is active high
only if any one of the
input is in active high
state, Mathematically,

Q = A.B’ + B.A’

A

0

0

1

1

B

0

1

0

1

Output Q

0

1

1

0

7486

1.4 Pre lab Questions

1. What is truth table?

2. Which gates are called universal gates?

3. A basic 2-input logic circuit has a HIGH on one input and a LOW on the other input, and the output
is HIGH. What type of logic circuit is it?

4. A logic circuit requires HIGH on all its inputs to make the output HIGH. What type of logic circuit
is it?

5. Develop the truth table for a 3-input AND gate and also determine the total number of possible
combinations for a 4-input AND gate.

VERILOG Program

a) AND Gate

Structural Model Data Flow Model BehaviouralModel
moduleandstr(x,y,z);

inputx,y;

output z;

and g1(z,x,y);

endmodule

moduleanddf(x,y,z);

inputx,y;

output z;

assign z=(x&y);

endmodule

module andbeh(x,y,z);

input x,y;

output z;

reg z;

always @(x,y)

z=x&y;

endmodule

22

b) NAND Gate

c) OR Gate

Structural Model Data Flow Model BehaviouralModel
module orstr(x,y,z);

inputx,y;

output z;

or g1(z,x,y);

endmodule

module ordf(x,y,z);

inputx,y;

output z;

assign z=(x|y);

endmodule

module orbeh(x,y,z);

input x,y;

output z;

reg z;

always @(x,y)

z=x|y;

endmodule
d) NOR Gate

Structural Model Data Flow Model BehaviouralModel
modulenorstr(x,y,z);

inputx,y;

output z;

nor g1(z,x,y);

endmodule

modulenordf(x,y,z);

inputx,y;

output z;

assign z= !(x|y);

endmodule

Modulenorbeh(x,y,z);

input x,y;

output z;

reg z;

always @(x,y)

z=!(x|y);

endmodule

Structural Model Data Flow Model BehaviouralModel
modulenandstr(x,y,z);

inputx,y;

output z;

nand g1(z,x,y);

endmodule

modulenanddf(x,y,z);

inputx,y;

output z;

assign z= !(x&y);

endmodule

module nandbeh(x,y,z);

input x,y;

output z;

reg z;

always @(x,y)

z=!(x&y);

endmodule

23

e) XOR Gate

Structural Model Data Flow Model BehaviouralModel
module xorstr(x,y,z);

inputx,y;

output z;

xor g1(z,x,y);

endmodule

module xordf(x,y,z);

inputx,y;

output z;

assign z=(x^y);

endmodule

module xorbeh(x,y,z);

input x,y;

output z;

reg z;

always @(x,y)

z=x^y;

endmodule
f) XNOR Gate

g) NOT Gate

Structural Model Data Flow Model BehaviouralModel
module notstr(x,z);

input x;

output z;

not g1(z,x);

endmodule

module notdf(x,z);

input x;

output z;

assign z= !x;

endmodule

module notbeh(x,z);

input x;

output z;

reg z;

always @(x)

z=!x;

endmodule

Structural Model Data Flow Model BehaviouralModel
modulexnorstr(x,y,z);

inputx,y;

output z;

xnor g1(z,x,y);

endmodule

modulexnordf(x,y,z);

inputx,y;

output z;

assign z= !(x^y);

endmodule

module xnorbeh(x,y,z);

input x,y;

output z;

reg z;

always @(x,y)

z=!(x^y);

endmodule

24

Out put waveforms
AND Gate:

OR Gate:

NOT Gate:

NOR Gate:

NAND Gate:

XOR Gate:

25

1.5 Post lab Questions

1. What is meant by ports?

2. Write the different types of port modes.

3. What are different types of operators?

4. What is difference b/w <= and := operators?

5. What is meant by simulation?

1.6 Lab Report

Each individual will be required to submit a lab report. Use the format specified in the "Lab

Report Requirements” document available on the class web page. Be sure to include the following
items in your lab report:

Lab cover sheet with staff verification sign.

Answer the pre-lab questions

Complete VERILOG code design for all logic gates and output signal waveforms

Answer the post-lab questions

1.7 Grading	

Pre-lab Work 20 points

Lab Performance 30 points

Post-lab Work 20 points

Lab report 30 points

For the lab performance - at a minimum, demonstrate the operation of all the logic gates to your staff
in-charge:

The lab report will be graded as follows (for the 30 points):

VERILOG code for each logic gates 15 points

Output signal waveform for all logic gates and its truth table 15 points

26

EXP:2 Design of Binary Adders

2.1 Introduction

The purpose of this experiment is to introduce the design of simple combinational circuits, in this case
half adders, half subtractors, full adders and full subtractors.

2.2 Software tools Requirement

Equipments:

Computer with Modelsim Software

 Specifications:

HP Computer P4 Processor – 2.8 GHz, 2GB RAM, 160 GB Hard Disk

Softwares: Modelsim - 5.7c, Xilinx - 6.1i.

Algorithm	

STEP 1: Open ModelSim XE II / Starter 5.7C

 STEP 2: File -> Change directory -> D:\<register number>

STEP 3: File -> New Library -> ok

STEP 4: File -> New Source -> Verilog

STEP 5: Type the program

STEP 6: File -> Save -> <filename.v>

STEP 7: Compile the program

STEP 8: Simulate -> expand work -> select file -> ok

STEP 9: View -> Signals

STEP 10: Select values -> Edit -> Force -> input values

STEP 11: Add -> Wave -> Selected signals -> Run

STEP 12: Change input values and run again

27

2.3 Logic Diagram

Figure 2.3.1Half adder

Figure 2.3.2 Full adder

Figure 2.3.3Halfsubtractor

28

Figure 2.3.4 Full subtractor

2.4 Pre lab Questions

1. What is meant by combinational circuits?

2. Write the sum and carry expression for half and full adder.

3. Write the difference and borrow expression for half and full subtractor.

4. What is signal? How it is declared?

5. Design a one bit adder.

VERILOG Program

HALF ADDER:

Structural model Dataflow model Behaviouralmodel
modulehalfaddstr(sum,carry,a,b);

outputsum,carry;

inputa,b;

xor(sum,a,b);

and(carry,a,b);

endmodule

modulehalfadddf(sum,carry,a,b);

outputsum,carry;

inputa,b;

assign sum = a ^ b;

assign carry=a&b;

endmodule

modulehalfaddbeh(sum,carry,a,b);

outputsum,carry;

inputa,b;

regsum,carry;

always @(a,b);

sum = a ^ b;

carry=a&b;

endmodule

29

FULL ADDER:

Structural model Dataflow model Behaviouralmodel
module
fulladdstr(sum,carry,a,b,c);

outputsum,carry;

inputa,b,c;

xor g1(sum,a,b,c);

and g2(x,a,b);

and g3(y,b,c);

and g4(z,c,a);

or g5(carry,x,z,y);

endmodule

modulefulladddf(sum,carry,a,b,c);

outputsum,carry;

inputa,b,c;

assign sum = a ^ b^c;

assign carry=(a&b) | (b&c) |
(c&a);

endmodule

modulefulladdbeh(sum,carry,a,b,c);

outputsum,carry;

inputa,b,c;

regsum,carry;

always @ (a,b,c)

sum = a ^ b^c;

 carry=(a&b) | (b&c) | (c&a);

endmodule

HALF SUBTRACTOR:

Structural model Dataflow Model BehaviouralModel
modulehalfsubtstr(diff,borrow,a,b);

outputdiff,borrow;

inputa,b;

xor(diff,a,b);

and(borrow,~a,b);

endmodule

modulehalfsubtdf(diff,borrow,a,b);

outputdiff,borrow;

inputa,b;

assign diff = a ^ b;

assign borrow=(~a&b);

endmodule

modulehalfsubtbeh(diff,borrow,a,b);

outputdiff,borrow;

inputa,b;

regdiff,borrow;

always @(a,b)

 diff = a ^ b;

borrow=(~a&b);

endmodule

30

FULL SUBTRACTOR:

Structural model Dataflow Model BehaviouralModel
module
fullsubtstr(diff,borrow,a,b,c);

outputdiff,borrow;

inputa,b,c;

wire a0,q,r,s,t;

not(a0,a);

xor(x,a,b);

xor(diff,x,c);

and(y,a0,b);

and(z,~x,c);

or(borrow,y,z);

endmodule

modulefullsubtdf(diff,borrow,a,b,c);

outputdiff,borrow;

inputa,b,c;

assign diff = a^b^c;

assign borrow=(~a&b)|(~(a^b)&c);

endmodule

modulefullsubtbeh(diff,borrow,a,b,c);

outputdiff,borrow;

inputa,b,c;

outputdiff,borrow;

always@(a,b,)

 diff = a^b^c;

borrow=(~a&b)|(~(a^b)&c);

endmodule

Output waveforms:
Half Adder:

Half subtractor:

31

Full adder Dataflow modeling:

Full adder structural modeling:

Full Subtractor Dataflow modeling:

2.5 Post lab Questions

1. What are the signal assignment statements?

2. What are the concurrent statements?

3. Write short notes on: a) Process statement b) Block statement

4. Write about sequential statements.

5. What is the difference b/w high impedance state of the signal (Z) and unknown state of the
signal(X).

32

2.6 Lab Report

Each individual will be required to submit a lab report. Use the format specified in the "Lab

Report Requirements” document available on the class web page. Be sure to include the following
items in your lab report:

Lab cover sheet with staff verification sign.

Answer the pre-lab questions

Complete VERILOG code design for all logic gates and output signal waveforms

Answer the post-lab questions

2.7 Grading

Pre-lab Work 20 points

Lab Performance 30 points

Post-lab Work 20 points

Lab report 30 points

For the lab performance - at a minimum, demonstrate the operation of all the logic gates to your staff
in-charge

The lab report will be graded as follows (for the 30 points):

VERILOG code for each experiments 15 points

Output signal waveform for all experiments and its truth table 15 points

33

EXP:3 Design of Multiplexers and Demultiplexers

3.1 Introduction

 The purpose of this experiment is to write and simulate a VERILOG program for Multiplexers
and Demultiplexers.

3.2 Software tools Requirement:

Equipments:

Computer with Modelsim Software

 Specifications:

HP Computer P4 Processor – 2.8 GHz, 2GB RAM, 160 GB Hard Disk

Softwares: Modelsim - 5.7c, Xilinx - 6.1i.

Algorithm	

STEP 1: Open ModelSim XE II / Starter 5.7C

 STEP 2: File -> Change directory -> D:\<register number>

STEP 3: File -> New Library -> ok

STEP 4: File -> New Source -> Verilog

STEP 5: Type the program

STEP 6: File -> Save -> <filename.v>

STEP 7: Compile the program

STEP 8: Simulate -> expand work -> select file -> ok

STEP 9: View -> Signals

STEP 10: Select values -> Edit -> Force -> input values

STEP 11: Add -> Wave -> Selected signals -> Run

STEP 12: Change input values and run again

34

3.3 Logic Diagram

 Function Table

Figure 3.3.1 4:1 Multiplexer Block diagram

Figure 3.3.2 1:4 Demux Symbol Function Table

Logic Diagram

Figure 3.3.3 2:1 Multiplexer

35

Figure 3.3.4 4:1 Multiplexer

3.4 Pre lab Questions

1. Define mux and demux.
2. Write their applications.
3. What is the relationship b/w input lines and select lines.
4. Design 4:1 mux and 1:4 demux.
5. Write brief notes on case statement.

36

VERILOG Program

Multiplexers 2:1 MUX

Structural Model Dataflow Model BehaviouralModel
module mux21str(i0,i1,s,y);

input i0,i1,s;

output y;

wire net1,net2,net3;

not g1(net1,s);

and g2(net2,i1,s);

and g3(net3,i0,net1);

or g4(y,net3,net2);

endmodule

module mux21df(i0,i1,s,y);

input i0,i1,s;

output y;

assign y =(i0&(~s))|(i1&s);

endmodule

module mux21beh(i0,i1,s,y);

input i0,i1,s;

output y;

reg y;

always@(i0,i1)

 begin

 if(s==0) y=i1;

 if(s==1)y=i0;

 end

endmodule

4:1 MUX

Structural Model Dataflow Model BehaviouralModel
module
mux41str(i0,i1,i2,i3,s0,s1,y);
input i0,i1,i2,i3,s0,s1;

 wire a,b,c,d;

output y;

 and g1(a,i0,s0,s1);

 and g2(b,i1,(~s0),s1);

and g3(c,i2,s0,(~s1));

and g4(d,i3,(~s0),(~s1));

or(y,a,b,c,d);

endmodule

module
mux41df(i0,i1,i2,i3,s0,s1,y);

input i0,i1,i2,i3,s0,s1;

output y;

assign
y=((i0&(~(s0))&(~(s1)))|

(i1&(~(s0))&s1)|

|(i2&s0&(~(s1)))|

(i3&s0&s1);

endmodule

module mux41beh(in,s,y);
output y ;
input [3:0] in ;
input [1:0] s ;
reg y;
always @ (in,s)
begin
if (s[0]==0&s[1]==0)
y = in[3];
else if (s[0]==0&s[1]==1)
y = in[2];
else if (s[0]l==1&s[1]==0)
y = in[1];
else
y = in[0];
end
endmodule

37

Logic Diagram

Figure 3.3.5 8:1 Multiplexer

38

VERILOG Program

8:1 MUX

Structural Model Dataflow Model BehaviouralModel
modulemux81str(i0,i1,i2,i3,i4,i5,i6,i7,s
0,s1,s2,y);

 input i0,i1,i2,i3,i4,i5,i6,i7,s0,s1,s2;

wire a,b,c,d,e,f,g,h;

output y;

and g1(a,i7,s0,s1,s2);

and g2(b,i6,(~s0),s1,s2);

and g3(c,i5,s0,(~s1),s2);

and g4(d,i4,(~s0),(~s1),s2);

and g5(e,i3,s0,s1,(~s2));

 and g6(f,i2,(~s0),s1,(~s2));

and g7(g,i1,s0,(~s1),(s2));

and g8(h,i0,(~s0),(~s1),(~s2));

or(y,a,b,c,d,e,f,g,h);

endmodule

modulemux81df(y,i,s)
;

output y;

input [7:0] i;

input [2:0] s;

wire se1;

assign
se1=(s[2]*4)|(s[1]*2)|
(s[0]);

assign y=i[se1];

endmodule

modulemux81beh(s,i0,i1,i2,i3,i4,i5

,i6,i7,y);

input [2:0] s;

input i0,i1,i2,i3,i4,i5,i6,i7;

regy;

always@(i0,i1,i2,i3,i4,i5,i6,i7,s) be

gin

case(s) begin

3'd0:MUX_OUT=i0;

3'd1:MUX_OUT=i1;

3'd2:MUX_OUT=i2;

3'd3:MUX_OUT=i3;

3'd4:MUX_OUT=i4;

3'd5:MUX_OUT=i5;

3'd6:MUX_OUT=i6;

3'd7:MUX_OUT=i7;

endcase

end

endmodule

39

Logic Diagram

 Figure 3.3.6 1:4 Demultiplexer

 Figure 3.3.7 1:8 Demultiplexer

40

VERILOG Program

1:4 DEMUX

Structural Model Dataflow Model BehaviouralModel
module
demux14str(in,d0,d1,d2,d3,s0,s1);

output d0,d1,d2,d3;

input in,s0,s1;

and g1(d0,in,s0,s1);

and g2(d1,in,(~s0),s1);

and g3(d2,in,s0,(~s1));

and g4(d3,in,(~s0),(~s1));

endmodule

module demux14df(

in,d0,d1,d2,d3,s0,s1);

output d0,d1,d2,3;

input in,s0,s1;

assign s0 = in & (~s0) & (~s1);

assign d1= in & (~s0) & s1;

assign d2= in & s0 & (~s1);

assign d3= in & s0 & s1;

endmodule

module demux14beh(
din,sel,dout);
output [3:0] dout ;
reg [3:0] dout ;
input din ;
wire din ;
input [1:0] sel ;
wire [1:0] sel ;
always @ (din or sel) begin
case (sel)
0 : dout = {din,3'b000};
1 : dout = {1'b0,din,2'b00};
2 : dout = {2'b00,din,1'b0};
default : dout = {3'b000,din};
endcase

end

endmodule

41

1:8 DEMUX

Structural Model Dataflow Model BehaviouralModel
module
demux18str(in,s0,s1,s2,d0,d1,d2
,d3,d4,d5,d6,d7);

input in,s0,s1,s2;

output d0,d1,d2,d3,d4,d5,d6,d7;

and g1(d0,in,s0,s1,s2);

and g2(d1,in,(~s0),s1,s2);

and g3(d2,in,s0,(~s1),s2);

and g4(d3,in,(~s0),(~s1),s2);

and g5(d4,in,s0,s1,(~s2));

and g6(d5,in,(~s0),s1,(~s2));

and g7(d6,in,s0,(~s1),(~s2));

and g8(d7,in,(~s0),(~s1),(~s2));

endmodule

module
demux18df(in,s0,s1,s2,i0,d1,d2,d3,d4,d5
,d6,d7);

input in,s0,s1,s2;

output d0,d1,d2,d3,d4,d5,d6,d7;

assign d0 = in & s0 & s1 & s2;

assign d1 = in & (~s0) & s1 & s2;

assign d2 = in & s0 & (~s1) & s2;

assign d3 = in & (~s0) &(~s1) & s2;

assign d4 = in & s0 & s1 & (~s2);

assign d5 = in & (~s0) & s1 & (~s2);

assign d6 = in & s0 & (~s1) & (~s2);

assign d7 = in & (~s0) & (~s1) & (~s2);

endmodule

module demux18beh(i,
sel, y);

 input i;

input [2:0] sel;

 output [7 :0] y ;

 reg [7:0] y;

always@(i,sel)

 begin

 y=8'd0;

 case(sel)

 3'd0:y[0]=i;

 3'd1:y[1]=i;

 3'd2:y[2]=i;

 3'd3:y[3]=i;

 3'd4:y[4]=i;

 3'd5:y[5]=i;

 3'd6:y[6]=i;

default:y[7]=i;

endcase

end

endmodule

42

Output Wave forms:
2 X 1 MUX:

4 X 1 MUX DATAFLOW MODELING

4 X 1 MUX STRUCTURAL MODELING

MUX 8:1 Using 4:1 & 2:1

1 TO 4 DEMUX BEHAVIOURAL MODELING

43

3.5 Post Lab questions

1. Implement the function f(A,B,C)=Σm(0,1,3,5,7) by using Mux.

2. Write the VERILOG code for the above design

3. Write the VERILOG code for full subtractor using Demux.

3.6 Lab Report

Each individual will be required to submit a lab report. Use the format specified in the "Lab

Report Requirements" document available on the class web page. Be sure to include the following
items in your lab report:

Lab cover sheet with staff verification sign.

Answer the pre-lab questions

Complete VERILOG code design for all logic gates and output signal waveforms

Answer the post-lab questions

3.7 Grading

Pre-lab Work 20 points

Lab Performance 30 points

Post-lab Work 20 points

Lab report 30 points

For the lab performance - at a minimum, demonstrate the operation of all the logic gates to your staff
in-charge

The lab report will be graded as follows (for the 30 points):

VERILOG code for each experiments 15 points

Output signal waveform for all experiments and its truth table 15 points

44

EXP:4 Design of Encoders and Decoders

4.1 Introduction

The purpose of this experiment is to introduce you to the basics of Encoders and Decoders. In this lab,
you have to implement Priority Encoder and the Boolean function using Decoders.

4.2 Software tools Requirement

Equipments:

Computer with Modelsim Software

 Specifications:

HP Computer P4 Processor – 2.8 GHz, 2GB RAM, 160 GB Hard Disk

Softwares: Modelsim - 5.7c, Xilinx - 6.1i.

Algorithm	

STEP 1: Open ModelSim XE II / Starter 5.7C

 STEP 2: File -> Change directory -> D:\<register number>

STEP 3: File -> New Library -> ok

STEP 4: File -> New Source -> Verilog

STEP 5: Type the program

STEP 6: File -> Save -> <filename.v>

STEP 7: Compile the program

STEP 8: Simulate -> expand work -> select file -> ok

STEP 9: View -> Signals

STEP 10: Select values -> Edit -> Force -> input values

STEP 11: Add -> Wave -> Selected signals -> Run

STEP 12: Change input values and run again

45

4.3 Logic Diagram

Figure 4.3.1 4-to-2 bit Encoder

Figure 4.3.2 2-to-4 Binary Decoders

4.4 Pre lab Questions

1. What is difference b/w encoder and data selector?
2. What is the difference b/w decoder and data distributor?
3. Give the applications of encoder and decoder.
4. Write short notes on “with – select” statement.
5. What are the different logic state systems in Verilog?

Logic Diagram

Figure 4.3.3 8:3 Encoder

46

 VERILOG Program

8:3 Encoder

Structural Model Data Flow Model BehaviouralModel
Module
enc83str(d0,d1,d2,d3,d4,d5,d
6,d7,q0,q1,q2);

Input
d0,d1,d2,d3,d4,d5,d6,d7;

Output q0,q1,q2;

Or g1(q0,d1,d3,d5,d7);

Or g2(q1,d2,d3,d6,d7);

Or g3(q2,d4,d5,d6,d7);

Endmodule

Module
enc83df(d0,d1,d2,d3,d4,d5,d6,
d7,q0,q1,q2);

Input d0,d1,d2,d3,d4,d5,d6,d7;

Output q0,q1,q2;

Assign q0=d1|d3|d5|d7;

Assign q1=d2|d3|d6|d7;

Assign q2=d4|d5|d6|d7;

Endmodule

module enc83beh (din,a,b,c);

input [0:7]din;

outputa,b,c;

rega,b,c;

always@(din)

case(din)

8'b10000000:begin
a=1'b0;b=1'b0,c=1'b0;end

 8'b01000000:begin
a=1'b0;b=1'b0;c=1'b1;end

 8'b00100000:begin
a=1'b0;b=1'b1;c=1'b0;end

 8'b00010000:begin
a=1'b0;b=1'b1;c=1'b1;end

 8'b10001000:begin
a=1'b1;b=1'b0,c=1'b0;end

 8'b10000100:begin
a=1'b1;b=1'b0,c=1'b1;end

 8'b10000010:begin
a=1'b1;b=1'b1,c=1'b0;end

 8'b10000001:begin
a=1'b1;b=1'b1,c=1'b1;end

endcase

endmodule

47

Logic Diagram

 Figure 4.3.4 3:8 Decoder

48

VERILOG Program

3:8 Decoder

Output Wave forms:

ENCODER 8:3 Data Flow Modeling

Structural Model Data Flow Model BehaviouralModel
module
decoder38str(z0,z1,z2,z3,z4,z5,z
6,z7,a0,a1,a2);

output z0,z1,z2,z3,z4,z5,z6,z7;

input a0,a1,a2;

not (s0,a0);

not (s1,a1);

 not (s2,a2);

 and (z0,s0,s1,s2);

and (z1,a0,s1,s2);

and (z2,s0,a1,s2);

 and z3,a0,a1,s2);

and (z4,s0,s1,a2);

 and (z5,a0,s1,a2);

and (z6,s0,a1,a2);

 and (z7,a0,a1,a2);

endmodule

module decoder38df(z,a0,a1,a2);

output [7:0] z;

input a0,a1,a2;

assign z[0] = ~a0 & ~a1 & ~a2;

assign z[1] = ~a0& ~a1& a2;

assign z[2] = ~a0& a1& ~a2;

assign z[3] = ~a0& a1& a2;

assign z[4] = a0& ~a1& ~a2;

assign z[5] = a0& ~a1& a2;

assign z[6] = a0& a1& ~a2;

assign z[7] = a0& a1& a2;

endmodule

module decoder38beh(s
el,out1);

input [2:0] sel;
outputreg [7:0] out1;

always @(sel,out1)
case (sel)
 3’b000 : out1 =
8’b00000001;
 3’b001 : out1 =
8’b00000010;
 3’b010 : out1 =
8’b00000100;
 3’b011 : out1 =
8’b00001000;
 3’b100 : out1 =
8’b00010000;
 3’b101 : out1 =
8’b00100000;
 3’b110 : out1 =
8’b01000000;
default : out1 =
8’b10000000;
endcase

endmodule

49

ENCODER 8:3 Behavioral Modeling

ENCODER 8:3 Structural Modeling

DECODER 2:4 Structural Modeling

DECODER 3:8 Structural Modeling

4.5 Post Lab questions

1. Implement full adder by using suitable decoder.

2. Write the VERILOG code for the above design

3. Write the VERILOG code for 3 bit Gray to binary code converter.

4. Write short notes on “test bench” with examples.

50

4.6 Lab Report

Each individual will be required to submit a lab report. Use the format specified in the "Lab

Report Requirements"document available on the class web page. Be sure to include the following
items in your lab report:

Lab cover sheet with staff verification sign.

Answer the pre-lab questions

Complete VERILOG code design for all logic gates and output signal waveforms

Answer the post-lab questions

4.7 Grading

Pre-lab Work 20 points

Lab Performance 30 points

Post-lab Work 20 points

Lab report 30 points

For the lab performance - at a minimum, demonstrate the operation of all the logic gates to your staff
in-charge

The lab report will be graded as follows (for the 30 points):

VERILOG code for each experiments 15 points

Output signal waveform for all experiments and its truth table 15 point

51

EXP 5: Flip Flops

5.1 Introduction

The purpose of this experiment is to introduce you to the basics of flip-flops. In this lab, you will test
the behavior of several flip-flops and you will connect several logic gates together to create simple
sequential circuits.

5.2 Software tools Requirement

Equipments:

Computer with Modelsim Software

 Specifications:

HP Computer P4 Processor – 2.8 GHz, 2GB RAM, 160 GB Hard Disk

Softwares: Modelsim - 5.7c, Xilinx - 6.1i.

Algorithm	

STEP 1: Open ModelSim XE II / Starter 5.7C

 STEP 2: File -> Change directory -> D:\<register number>

STEP 3: File -> New Library -> ok

STEP 4: File -> New Source -> Verilog

STEP 5: Type the program

STEP 6: File -> Save -> <filename.v>

STEP 7: Compile the program

STEP 8: Simulate -> expand work -> select file -> ok

STEP 9: View -> Signals

STEP 10: Select values -> Edit -> Force -> input values

STEP 11: Add -> Wave -> Selected signals -> Run

STEP 12: Change input values and run again

52

5.3 Flip-Flops Logic diagram and their properties

Flip-flops are synchronous bitable devices. The term synchronous means the output changes state
only when the clock input is triggered. That is, changes in the output occur in synchronization with
the clock.

 A flip-flop circuit has two outputs, one for the normal value and one for the complement value of the
stored bit. Since memory elements in sequential circuits are usually flip-flops, it is worth summarizing
the behavior of various flip-flop types before proceeding further.

 All flip-flops can be divided into four basic types: SR, JK, D and T. They differ in the number of
inputs and in the response invoked by different value of input signals. The four types of flip-flops are
defined in the Table 5.1. Each of these flip-flops can be uniquely described by its graphical symbol,
its characteristic table, its characteristic equation or excitation table. All flip-flops have output signals
Q and Q'.

Flip-
Flop
Name

Flip-Flop
Symbol Characteristic Table Characteristic

Equation Excitation Table

SR

S R Q(next)

0 0 Q

0 1 0

1 0 1

1 1 ?

Q(next) = S + R’Q

SR = 0

Q Q(next) S R
0 0 0 X
0 1 1 0
1 0 0 1
1 1 X 0

JK

J K Q(next)
0 0 Q
0 1 0
1 0 1
1 1 Q’

Q(next) = JQ’ + K’Q

Q Q(next) J K
0 0 0 X
0 1 1 X
1 0 X 1
1 1 X 0

D

D Q(next)
0 0
1 1

Q(next) = D

Q Q(next) D
0 0 0
0 1 1
1 0 0
1 1 1

T

T Q(next)
0 Q
1 Q’

Q(next) = TQ’ + T’Q

Q Q(next) T
0 0 0
0 1 1
1 0 1
1 1 0

Table 5.3 Flip-flops and their properties

53

Figure 5.3.1 D- Flip Flop

Figure 5.3 .2 JK Flip Flop

Figure 5.3.3 T Flip Flop

Figure 5.3.4 T Flip Flop

54

5. 4 Pre-lab Questions

1. Describe the main difference between a gated S-R latch and an edge-triggered S-R flip-flop.

2. How does a JK flip-flop differ from an SR flip-flop in its basic operation?

3. Describe the basic difference between pulse-triggered and edge-triggered flip-flops.

4. What is use of characteristic and excitation table?

5. What are synchronous and asynchronous circuits?

6. How many flip flops due you require storing the data 1101?

S-R Flip Flop

Dataflow Modelling Structural Modelling Behavioral
Modelling

modulesr_df (s, r, q, q_n); module sr_st(s,r,q,q_n); module sr_beh(s,r,q,q_n);

input s, r; input s, r; input s, r;

output q, q_n; output q, q_n; output q, q_n;

assignq_n = ~(s | q); or g1(q_n,~s,~q); regq, q_n;

assign q = ~(r | q_n); or g2(q,~r,~q_n); always@(s,r)

endmodule endmodule begin

 q,n = ~(s|q);

 assign q = ~(r | q_n);

 endmodule

55

T Flip Flop

Behavioral Modelling Structural Modelling Dataflow Modelling

module t_beh(q,q1,t,c); module t_st(q,q1,t,c); module t_df(q,q,1,t,c);

output q,q1; output q,q1; output q,q1;

inputt,c; input t,c; input t,c;

reg q,q1; wire w1,w2; and g1(w1,t,c,q);

initial assign w1=t&c&q; and g2(w2,t,c,q1);

begin assign w2=t&c&q1; nor g3(q,w1,q1);

q=1'b1; assign q=~(w1|q1); nor g4(q1,w2,q);

q1=1'b0; assign q1=~(w2|q); endmodule

end endmodule
always @ (c)

begin

if(c)

begin

 if (t==1'b0) begin q=q; q1=q1; end

 else begin q=~q; q1=~q1; end

end

end

endmodule

56

D Flip Flop

Behavioral Modelling Dataflow Modelling Structural Modelling

Module dff_async_reset(data, clk,
reset ,q);

input data, clk, reset ;
output q;
reg q;
always @ (posedgeclk or negedge
reset)

if (~reset) begin

 q <= 1'b0;

end

else begin

 q <= data;

end

endmodule

module dff_df(d,c,q,q1);

input d,c;

output q,q1;

assign w1=d&c;

assign w2=~d&c;

q=~(w1|q1);

q1=~(w2|q);

endmodule

module dff_df(d,c,q,q1);

input d,c;

output q,q1;

and g1(w1,d,c);

and g2(w2,~d,c);

nor g3(q,w1,q1);

nor g4(q1,w2,q);

endmodule

57

JK Flip Flop

Behavioral Modelling Dataflow Modelling

Structural Modelling

module jk(q,q1,j,k,c);
output q,q1;
input j,k,c;
reg q,q1;
initial begin q=1'b0; q1=1'b1; end
always @ (posedge c)
 begin
 case({j,k})
 {1'b0,1'b0}:begin
q=q; q1=q1; end
 {1'b0,1'b1}: begin
q=1'b0; q1=1'b1; end
 {1'b1,1'b0}:begin
q=1'b1; q1=1'b0; end
 {1'b1,1'b1}: begin
q=~q; q1=~q1; end
 endcase
 end
endmodule

module jkflip_df (j,k,q,qn);

input j,k,q;

output qn;

wire w1,w2;

assign w1=~q;

assign w2=~k;

assign qn=(j & w1 | w2 &
q);

endmodule

module jkflip_st(j,k,q,qn);

input j,k,q;

output qn;

and g1(w1,j,~q);

and g2(w2,~k,q);

or g3(qn,w1,w2);

endmodule

Output Waveforms :

SR flip flop

JK flip flop

58

D flip flop

T flip flop

5.5 Post lab

1. Discuss the application of flip-flops in data storage.

2. Draw the logic diagram of Master Slave JK flip-flop.

3. A flip-flop is presently in the RESET state and must go to the SET state on the next clock pulse.
What must J and K be?

4. What do you know about clk and clk event in VERILOG?

5. Convert the following.

 a. JK to T f/f

 b. SR to D

6. Write the VERILOG code for question no 5.

59

5.6 Lab Report

Each individual will be required to submit a lab report. Use the format specified in the "Lab

Report Requirements" document available on the class web page. Be sure to include the following
items in your lab report:

Lab cover sheet with staff verification for circuit diagram

Answer the pre-lab questions

Complete paper design for all three designs including K-maps and minimized equations and the truth
table for each of the output signals.

Answer the post-lab questions

5.7 Grading

Pre-lab Work 20 points

Lab Performance 30 points

Post-lab Work 20 points

Lab report 30 points

For the lab performance - at a minimum, demonstrate the operation of all the circuits to your staff in-
charge

The lab report will be graded as follows (for the 30 points):

VERILOG code for each experiments 15 points

Output signal waveform for all experiments and its truth table 15 points

60

EXP 6: Counters

6.1 Introduction

 The purpose of this experiment is to introduce the design of Synchronous Counters. The student
should also be able to design n-bit up/down Counter.

6.2 Software tools Requirement

Equipments:

Computer with Modelsim Software

 Specifications:

HP Computer P4 Processor – 2.8 GHz, 2GB RAM, 160 GB Hard Disk

Softwares: Modelsim - 5.7c, Xilinx - 6.1i.

Algorithm	

STEP 1: Open ModelSim XE II / Starter 5.7C

 STEP 2: File -> Change directory -> D:\<register number>

STEP 3: File -> New Library -> ok

STEP 4: File -> New Source -> Verilog

STEP 5: Type the program

STEP 6: File -> Save -> <filename.v>

STEP 7: Compile the program

STEP 8: Simulate -> expand work -> select file -> ok

STEP 9: View -> Signals

STEP 10: Select values -> Edit -> Force -> input values

STEP 11: Add -> Wave -> Selected signals -> Run

STEP 12: Change input values and run again

61

6.3 Logic Diagram

 Figure 6.3.1 Updown Counter

6.4 Pre Lab questions

1. How does synchronous counter differ from asynchronous counter?

2. How many flip-flops do you require to design Mod-6 counter.

3. What are the different types of counters?

4. What are the different types of shift registers?

5. How many f/fs are needed for n-bit counter?

6. What is meant by universal shift register?

62

VERILOG Program

Up Down Counter

moduleupdown(out,clk,reset,updown);

output [3:0]out;

inputclk,reset,updown;

reg [3:0]out;

always @(posedgeclk)

if(reset) begin

out<= 4'b0;

end else if(updown) begin

out<=out+1;

end else begin

out<=out-1;

end

endmodule

Output Waveform:

UP COUNTER

DOWN COUNTER

63

6.5 Post Lab questions

1. Write the use of enable and reset signal.

2. What are the different types of shift registers?

3. How many f/fs are needed for n-bit counter?

4. What is the function of generic statement?

5. Design mod-6 counter using d flf and write the VERILOG code.

6.6 Lab Report

Each individual will be required to submit a lab report. Use the format specified in the Lab

Report Requirements document available on the class web page. Be sure to include the following
items in your lab report:

Lab cover sheet with staff verification for circuit diagram

Answer the pre-lab questions

Complete paper design for all three designs including K-maps and minimized equations and the truth
table for each of the output signals.

Answer the post-lab questions

6.7 Grading

Pre-lab Work 20 points

Lab Performance 30 points

Post-lab Work 20 points

Lab report 30 points

For the lab performance - at a minimum, demonstrate the operation of all the circuits to your staff in-
charge

The lab report will be graded as follows (for the 30 points):

VERILOG code for each experiments 15 points

Output signal waveform for all experiments and its truth table 15 points

64

EXP 7: Toggle a Port bit in 8051

7.1 Introduction

The purpose of this experiment is to Toggle a Port bit in 8051. The student should also be able to
control Port Pin in 8051.

7.2 Software tools Requirement

Equipments:

Computer with Keil µversion II Software

 Specifications: HP Computer P4 Processor – 2.8 GHz, 2GB RAM, 160 GB Hard Disk

Softwares: Keil µversion II

7.3 Pin Description of 8051

65

7.4 Pre lab questions

1. Write an 8051 C program to toggle bits of P1 continuously forever with some delay.

2. What is the use of Watchdog timer?

3. What is sbit, sbyte?

4. What is DPTR?

5. What is Power ON Reset?

7.5 Embedded C Program

#include<reg51.h>

sbit Mybit=P1^0;

void main()

{

while(1)

{

unsigned int z;

Mybit=0;

for(z=0;z<=5000;z++);

Mybit=1;

for(z=0;z<=5000;z++);

}

}

66

7.6 Post lab:

1. A door sensor is connected to the P1.1 pin, and a buzzer is connected

to P1.7. Write an 8051 C program to monitor the door sensor, and

when it opens, sound the buzzer. You can sound the buzzer by

sending a square wave of a few hundred Hz.

2. Write an 8051 C program to get the status of bit P1.0, save it, and

send it to P2.7 continuously.

67

7.7 Lab Report

Each individual will be required to submit a lab report. Use the format specified in the "Lab

Report Requirements" document available on the class web page. Be sure to include the following
items in your lab report:

Lab cover sheet with staff verification for circuit diagram

Answer the pre-lab questions

Complete paper design for all three designs including K-maps and minimized equations and the truth
table for each of the output signals.

Answer the post-lab questions

7.8 Grading

Pre-lab Work 20 points

Lab Performance 30 points

Post-lab Work 20 points

Lab report 30 points

For the lab performance - at a minimum, demonstrate the operation of all the circuits to your staff in-
charge

The lab report will be graded as follows (for the 30 points):

Embedded C code for each experiments 15 points

Output signal for all experiments and its model calculation 15 points

68

EXP 8: Bitwise Operators Using 8051

 8.1 Introduction

The purpose of this experiment is to implement bitwise operators using 8051. The student should also
be able to implement Logical Operations in 8051.

8.2 Software tools Requirement

Equipments:

Computer with Keil µversion II Software

 Specifications: HP Computer P4 Processor – 2.8 GHz, 2GB RAM, 160 GB Hard Disk

Softwares: Keil µversion II

8.3 Pin Description of 8051

8.4 Pre lab questions

1. What are the advantages of using Bitwise operations ?

2. Which bitwise operator is suitable for turning off a particular bit in a number?

3. Which bitwise operator is suitable for checking whether a particular bit is on or off?

69

8.5 Embedded C Program

#include<reg51.h>

void main()

{

unsigned int z;

P0=0x35&0x04;

P1=0x35|0x04;

P2=0x35^0x04;

P3=~0x04;

for(z=0;z<=50000;z++);

P0=0x35>>0x04;

P1=0x35<<0x04;

}

70

8.6 Post lab:

1. Which bitwise operator is suitable for turning on a particular bit in a number?.

2. Write the Embedded C Program for Bit Operations.

8.7 Lab Report

Each individual will be required to submit a lab report. Use the format specified in the "Lab

Report Requirements" document available on the class web page. Be sure to include the following
items in your lab report:

Lab cover sheet with staff verification for circuit diagram

Answer the pre-lab questions

Complete paper design for all three designs including K-maps and minimized equations and the truth
table for each of the output signals.

Answer the post-lab questions

8.8 Grading

Pre-lab Work 20 points

Lab Performance 30 points

71

Post-lab Work 20 points

Lab report 30 points

For the lab performance - at a minimum, demonstrate the operation of all the circuits to your staff in-
charge

The lab report will be graded as follows (for the 30 points):

Embedded C code for each experiments 15 points

Output signal for all experiments and its model calculation 15 points

EXP 9: Arithmetic Operations using 8051

 9.1 Introduction

The purpose of this experiment is to implement Arithmetic Operations in 8051. The student should
also be able to implement Logical Operations in 8051.

9.2 Software tools Requirement

Equipments:

Computer with Keil µversion II

Software Specifications: HP Computer P4 Processor – 2.8 GHz, 2GB RAM, 160 GB Hard Disk

Softwares: Keil µversion II

9.3 Pin Description of 8051

72

9.4 Pre lab questions

1. What are the basic units of a microprocessor ?

2. List the features of 8051.

3. What are the types of serial communication ?

4. Define Program Counter.

9.5 Embedded C Program

#include<reg51.h>

void main()

{

int a,b,c;

while(1)

{

a=P0;

b=P1;c=P2;

switch(c)

{

73

case 0X00:

P3=a+b;

break;

case 0x01:

P3=a-b;

break;

case 0x02:

3=a*b;

break;

case 0x03:

P3=a*a;

break;

}

}

}

9.6 Postlab:

1. List the various registers used in 8051.

2. What is program status word.

3. Define stack pointer.

9.7 Lab Report

Each individual will be required to submit a lab report. Use the format specified in the "Lab

Report Requirements" document available on the class web page. Be sure to include the following
items in your lab report:

Lab cover sheet with staff verification for circuit diagram

Answer the pre-lab questions

Complete paper design for all three designs including K-maps and minimized equations and the truth
table for each of the output signals.

74

Answer the post-lab questions

9.8 Grading

Pre-lab Work 20 points

Lab Performance 30 points

Post-lab Work 20 points

Lab report 30 points

For the lab performance - at a minimum, demonstrate the operation of all the circuits to your staff in-
charge

The lab report will be graded as follows (for the 30 points):

Embedded C code for each experiments 15 points

Output signal for all experiments and its model calculation 15 points

EXP 10: Delay Operators in 8051

10.1 Introduction

The purpose of this experiment is to introduce delay operators 8051. The student should also be able
to write ISR for various Interrupts in 8051.

10.2 Software tools Requirement

Equipments:

Computer with Keil µversion II Software

 Specifications:

HP Computer P4 Processor – 2.8 GHz, 2GB RAM, 160 GB Hard Disk

Softwares: Keil µversion II

75

10.3 Pin Description of 8051

10.4 Pre lab questions

1. Write an 8051 C program to gets a single bit of data from P1.7 and sends it to P1.0.

2. What is ISR?

3. Name the two ways to access Interrupts?

4. What is Power ON Reset?

10.5 Embedded C Program

#include<reg51.h>

void todelay(void)

{

TMOD=0x01;

TL0=0x08;

76

TR0=1;

TH0=0xEF;

}

void main()

{

while(1)

{

P1=0xAA;

todelay();

}

 }

10.6 Postlab:

1. Compare Microprocessor and Microcontroller.

77

2. What are the basic units of a microcontroller.?

3. Define instruction set.

10.7 Lab Report

Each individual will be required to submit a lab report. Use the format specified in the "Lab

Report Requirements" document available on the class web page. Be sure to include the following
items in your lab report:

Lab cover sheet with staff verification for circuit diagram

Answer the pre-lab questions

Complete paper design for all three designs including K-maps and minimized equations and the truth
table for each of the output signals.

Answer the post-lab questions

10.8 Grading

Pre-lab Work 20 points

Lab Performance 30 points

Post-lab Work 20 points

Lab report 30 points

For the lab performance - at a minimum, demonstrate the operation of all the circuits to your staff in-
charge

78

The lab report will be graded as follows (for the 30 points):

Embedded C code for each experiments 15 points

Output signal for all experiments and its model calculation 15 points

