Annex 3

Manual

Analysis of cyanobacterial toxins

Twinning Light Project EE06-IB-TWP-ESC-01 "Reducing the health risks from algal toxins in drinking and bathing waters"

Workshop

Analysis of cyanobacterial toxins

23.09. - 25.09.2008

National Institute of Chemical Physics and Biophysics, Tallinn (Estonia)

Twinning Light Project EE06-IB-TWP-ESC-01 "Reducing the health risks from algal toxins in drinking and bathing waters"

Compendium compiled by:			
Jussi Meriluoto	Åbo Akademi University, Turku (Finland)		
Lisa Spoof	Åbo Akademi University, Turku (Finland)		
Pia Vesterkvist	Åbo Akademi University, Turku (Finland)		
Project manager and responsible for translation into Estonian:			
Jüri Ruut	Health Protection Inspectorate, Tallinn (Estonia)		
Project leader in Germany:			
Wido Schmidt	Water Technology Center (TZW) Karlsruhe, branch Dresden (Germany)		
Expert:			
Risto Tanner	National Institute of Chemical Physics and Biophysics, Tallinn (Estonia)		

Külli Kangur (Estonian University of Life Sciences, Tartu, Estonia), Geoffrey A. Codd (University of Dundee, UK) and James S. Metcalf (University of Dundee, UK) are gratefully acknowledged for their contributions.

Contents

Dictionary	2
Vesterkvist: Mikrotsüstiinide ja tsülindrospermopsiinide detekteerimine ELISA-ga – põhimõtted ja nõuanded	5
Vesterkvist: ELISA in microcystin and cylindrospermopsin detection – principles and advise	8
Meriluoto: Analüüsiprotsess	12
Meriluoto: Selection of analytical methodology	14
Codd, Metcalf: Rakendused ja tulemuste olulisus	16
Tööjuhis: Mikrotsüstiinide ekstraheerimine klaaskiudfiltril filtreeritud biomassist või külmkuivatatud sinivetikate biomassist	23
SOP: Extraction of microcystins in biomass filtered on glass-fibre filters or in freeze-dried cyanobacterial biomass	26
Tööjuhis: Mikrotsüstiinide tahkefaasiekstraktsioon veeproovidest	29
SOP: Solid phase extraction of microcystins in water samples	33
Tööjuhend: Mikrotsüstiinide vedelikkromatograafiline analüüs dioodrividetektoriga	37
SOP: Analysis of microcystins by high-performance liquid chromatography with photodiode-array detection	48
Tööjuhend: Anatoksiin-a või tsülindrospermopsiini ekstraheerimine klaaskiudfiltril olevast sinivetikamassist	59
Tööjuhend: Mikrotsüstiinide analüüs keskkonnast võetud sinivetikaproovides ELISA abil	62

Annex:

Meriluoto: Ülevaade tavaliste mage- ja riimveesinivetikate toksiinidest

Toxin structures

Meriluoto: Overview of common freshwater and brackish-water cyanobacterial toxins

Spoof: Sinivetikatoksiinide analüüsi meetodid

Spoof: Methods for cyanobacterial toxin analysis

Dictionary

English term	Eestikeelne vaste		
abundance	arvukus		
alert level	häiretase		
aliquote	alikvoot		
alluvial scums	ujukõntsasete		
analyte	analüüt		
analytic run	analüüsitsükkel		
anatoxin	anatoksiin		
autosampler	proovi automaatsisestaja		
back-pressure	vasturõhk		
beaker	keeduklaas		
bile acid	sapphape		
biovolume	biomaht		
borosilicate tube	borosilikaatkatseklaas		
brackish water	riimvesi		
carcinogen	kantserogeen		
cell integrity	raku terviklikkus		
column oven	kolonnitermostaat		
compartmentation	iaotumine		
condition (tegusõna)	töökorda seadma		
conditioning	konditsioneerimine,		
	töökorda seadmine		
cyanobacteria	sinivetikad (eelist.)		
	tsüanobakterid		
cyanotoxins	tsüanotoksiinid (eelist.)		
	vetikamürgid		
	sinivetikamürgid		
cylindrospermopsin	tsülindrospermopsiin		
cytoskeleton	tsütoskelett		
degassing	gaasiärastus		
depth profiling	sügavusprofiilide		
	koostamine		
desiccator	eksikaator		
elute	elueerima, välja pesema		
elution solvent	eluent		
exposure	ekspositsioon		
	kokkupuude		
filament	rakuahel		
flask	kolb		
fluorescent in situ	in situ		
hybridisation (FISH)	fluorestsentshübridisatsioon		
	(FISH)		
freeze-drying	külmkuivatus,		
	sublimatsioonkuivatus		
freeze-thawing	külmutamine ja sulatamine		

gastrointestinal	seedeelundkonna-
glass-fibre filter	klaaskiudfilter
guard column	eelkolonn
guideline value	sihtväärtus
gyre	spiraal
health incidents	terviserikked
heater block	kuumutusplokk
HPLC grade	HPLC-puhas
insert	siseanum
intervention level	sekkumistase
interventions	meetmed, sekkumine
inverse microscope	inversioonmikroskoop
LPS	lipopolüsahhariidid (LPS)
macroporous	suurepooriline
mats	matid
microcentrifuge tube	mikrotsentrifuugiküvett
microcystin	mikrotsüstiin
mobile phase	liikuvfaas
nodularin	nodulariin
piston	kolb, kolb-
polymerase chain reaction	polümeraasi ahelreaktsioon
	(PCR)
population	populatsioon
positive displacement	kolbpipett
pipette	
preparative separation	preparatiivne lahutamine
priming	pumba täitmine
protein sequence analysis	valgujärjestusanalüüsi-
grade	puhas
proteins	valgud
resolution	lahutusvõime
retention time	retentsiooniaeg
reversed-phase	pöördfaasiline
saxitoxins	saksitoksiinid
scums	ujukõnts
sedimentation chamber	settekamber
silica cartridge	silikageelkolonn
solid phase extraction	tahkefaasiekstraktsioon
SOP, standard operating	SOP, standardne töökord,
procedure	tööjuhis
stopcock	korkkraan
subsample	alamproov
supernatant	supernatant
taxa	taksonid
taxonomic	taksonoomiline
toxigenic	toksigeenne
transmission microscope	transmissioonmikroskoop
treatment train	(vee) käitlusahel

trifluoroacetic acid	trifluoroäädikhape
trigger level	käivituslävi
tumor promoter	kasvajapromootor
ultrasonic probe	ultrahelihomogenisaator
ultrasonication	ultrahelihomogeniseerimine
vacuum manifold	vaakumkollektor
vial	pudelike
vortex	vibratsioonsegisti

Keemiaterminite sõnastik: http://lisa.chem.ut.ee/~koit/kemterm/

Mikrotsüstiinide ja tsülindrospermopsiinide detekteerimine ELISA-ga – põhimõtted ja nõuanded

Pia Vesterkvist, Åbo Akademi Ülikool, Turu, Soome

Kuna tsüanotoksiinid kahjustavad inimeste ja loomade tervist, on vajalik nende üliväikeste koguste avastamine keskkonnas. Meetodiks, mis ei vaja mingisugust proovi eelkäitlust, näiteks kontsentreerimist, on immunoloogiline analüüs, mille puhul toksiinide identifitseerimine toimub spetsiifiliste antikehade abil, mis tekitavad detekteeritava signaali. Selle põhjal saab leida toksiini koguse. Immunoloogilised meetodid, näiteks ELISA, võimaldavad veeproovide vahetut analüüsimist. Mikrotsüstiini ja tsülindrospermopsiini puhul on avastamispiiriks 0,05..0,1 µg liitris vees.

Tänapäeval ELISA komplektides kasutatavad antikehad on polüklonaalsed või monoklonaalsed. Monoklonaalsed antikehad pärinevad ühestainsast kloonist ja nad on spetsiifilised ainult ühe epitoobi (antigeense toimega molekuliosa) suhtes. Näiteks on välja töötatud mikrotsüstiinides leiduva unikaalse aminohappe Adda spetsiifilised monoklonaalsed antikehad (Fischer et al., 2001). Polüklonaalsed antikehad koosnevad erinevate antikehade heterogeensest segust, millest igaühel on oma epitoobispetsiifiline koht. See võib kaasa tuua valepositiivsete tulemuste saamise riski. Imuunanalüüsil saab kasutada ka antikehadega sarnaseid molekule, näiteks antikehade fragmente.

Antikeha ja antigeeni vahelise reaktsiooni spetsiifilisus sõltub suuresti ristreaktsioonidest: antikehadele seonduvad ka veidi erineva keemilise struktuuriga antigeenid, kaasa arvatud toksiinide konjugaadid. Kuna mikrotsüstiinid on suur sarnase struktuuriga ühendite perekond, võib ristreaktsioone nende puhul pidada kasulikuks nähtuseks. Kuna ühtede mikrotsüstiinide afiinsus on suur, teistel jällegi madal, ei saa ELISA abil tavaliselt proovi üldist toksilisust hinnata. Ka ei saa olemasolevate ELISA komplektide abil eristada üksikuid mikrotsüstiinide variante. mikrotsüstiinide See põhjuseks. miks hulka väliendatakse on mikrotsüstiiniekvivalentidena ning spetsiifilsema mikrotsüstiin-LR ekvivalendina.

ELISA puhul toimub signali detekteerimine ensüümi (mädarõika peroksidaasi, HRP) abil, mis substraadiga koos tekitab värvilise saaduse. Sõltuvalt meetodi liigist on ensüümiga märgistatud kas antikeha või antigeen. Neli viiest saadaolevast kaubanduslikust ELISA komplektist kasutavad otsest võistlevat immunoloogilist meetodit. Otsese võistleva testi puhul on antikehad fikseeritud mikrotiiterplaadi aukudesse (vt. joonist), millesse lisatakse proov ja märgistatud antigeen, mis hakkavad võistlema seondumiskohtade pärast. Pesemisega eemaldatakse ühendid, lisatakse substraat, mis reageerib mittespetsiifilised pärast seda ensüümmärgistatud antigeeniga ja tekitab detekteeritava saaduse. Seetõttu on värvilise kontsentratsioon pöördvõrdeline mikrotsüstiinide kontsentratsiooniga saaduse proovis. Proov, mis sisaldab suurt hulka mikrotsüstiine või tsülindrospermopsiine tõrjub välja märgistatud antigeeni ning tekitab vähemintensiivsema värvuse, kuna suur osa märgistatud antigeenist pestakse minema. Lühidalt: vähem värvust tähendab rohkem toksiini.

Mikrotsüstiinide ja tsülindrospermopsiinide kvantitatiivne määramine põhineb teadaolevate kontsentratsioonide põhjal koostatud kalibreerimiskõveral. Kalibreerimiskõver tuleb koostada iga kord, kui proovist toksiine määratakse, kuna antikehade ja antigeenide vaheline reaktsioon on kriitilise tähtsusega. Seetõttu tuleb iga analüüsistaadium, näiteks pipeteerimine, segamine, inkubeerimine ja pesemine, läbi viia hoolikalt.

Suureks ELISA eeliseks on asjaolu, et kogu analüüsi on kerge teha, ei ole vaja immunoloogiaalaseid teadmisi või koolitust. Meetod on suure tundlikkusega ja sobib eriti skriininguuringuteks. Siiski peaks kasutaja olema teadlik meetodi nõrkustest. sageli kasutatakse mikrotsüstiinide Metanool. mida ekstraheerimiseks sinivetikarakkudest ja lahustina, võib kontsentratsioonil üle 5% hakata segama ja põhjustada valepositiivseid tulemusi. Mõned plastmassid, näiteks polüpropüleen, adsorbeerivad vees lahustunud mikrotsüstiine (kuid mitte tsülindrospermopsiine), mistõttu leitud kontsentratsioon on tegelikust väiksem. Teatud komplektid kalduvad väiksemat mikrotsüstiinide kontsentratsiooni kõrgema pH näitama korral. Tsülindrospermopsiini määramise kohta kõrge pH juures andmed puuduvad.

Viis kaubanduslikult saadaolevat ELISA komplekti mikrotsüstiini jaoks on:

Analüüsi käik, Beacon Microcystin Plate Kit:- lühikokkuvõte

- Lisage igasse auku 50 μl ensüümikonjugaadi lahust (kui võimalik, kasutage mitmekanalilist pipetti)
- 2. Lisage aukudesse duplikaatidena 50 μl standardlahust, kontrollproov ja proovid.
- 3. Lisage igasse auku 50 µl antikehade lahust (mitmekanalilise pipetiga).
- 4. Katke augud, segage nende sisu ja inkubeerige 30 minuti jooksul.
- 5. Peske 5 korda, kasutades 250 µl vett augu kohta.
- 6. Lisage 100 µl substraatlahust (mitmekanalilise pipetiga)
- 7. Katke augud, inkubeerige 30 minuti jooksul.
- 8. Lisage 100 µl stopplahust (multikanalilise pipetiga).
- 9. 15 minuti möödumisel registreerige neeldumine 450 nm juures.

ELISA in microcystin and cylindrospermopsin detection – principles and advise

Pia Vesterkvist, Åbo Akademi University, Turku, Finland

Since cyanotoxins are threatening human and animal health, very tiny amounts in the environment should be detected. A method that do not usually need any sample prehandling, e.g. concentration steps, are immunoassays, where specific antibodies identify the toxins, the antigens, and gives rise to a detectable signal from where quantitative results can be made. Immunoassays, like ELISA, allow water samples to be used directly and toxin concentrations of 0.05-0.1 μ g microcystin or cylindrospermopsin per liter water can be detected.

Antibodies used in ELISA kits today are polyclonal or monoclonal. For research and diagnostic use, and therapeutic purposes, monoclonal antibodies are usually preferred. However, their production is much more laborious compared to polyclonal antibodies. Monoclonal antibodies originate from a single clone and are specific for one epitope, antigen-binding site, only. For example, Fischer et al., 2001 developed monoclonal antibodies specific to Adda, a unique amino acid in microcystins. Polyclonal antibodies comprise of a heterogenous mixture of different antibodies, all with their own epitope specific site, but this might increase the risk to get false positive results. Molecules related to antibodies, for example parts of an antibody, can also be used in immunoassays.

The specificity of the antibody-antigen reaction depends largely on cross reactivity, i.e. antigens with slightly different chemical structure, including toxin conjugates, will also bind to the antibodies. Since microcystins constitutes of a large family of similar structures, cross reactions can be considered as a benefit. Some microcystins can be recognized with high affinity and others with low affinity so the overall *toxicity* of the sample can usually not be correctly evaluated with ELISA. Neither can determination of individual microcystin variants be done with existing ELISA kits. That is the reason why the amount of microcystin is given as microcystin equivalents, and more specific microcystin-LR equivalents.

Detection of the signal in ELISA is accomplished with an enzyme (Horse Radish Peroxidase, HRP) that together with a substrate, gives rise to a coloured product. Depending on the type of assay either the antigen or the antibody is labeled with the enzyme. Four of the five commercially available microcystin ELISA kits are direct competitive immunoassays. In direct competitive immunoassays antibodies are immobilized in the microtiter wells (see figure). The sample and the labeled antigen are added to microtiter wells. These compete with each other for antibody binding sites. Washing removes non-specific compounds after which a substrate is added that reacts with the enzyme-labeled antigen providing a detectable product. The coloured product is therefore inversely proportional to the concentration of microcystin in the sample. A sample containing large amounts of microcystins or cylindrospermopsin out-compete the labeled antigen, and give rise to a less intense color since a major part of the labeled antigens are washed away. To put it short: less colour means more toxin.

Quantitative determination of microcystins and cylindrospermopsin in immunoassays is made according to a standard curve of known concentrations. The standard curve has to be done every time samples are examined for toxins since the reaction between antibodies and antigens is critical. Therefore each step when performing the assay has to be done with care, e.g. pipeting, mixing, incubation and washing.

The great advantage of ELISA is, nevertheless, that the whole assay is easy to perform, no special knowledge or training in immunology is required. It is highly sensitive and particularly suitable for screening purposes. However, the user should be aware of the methods susceptibilities. Methanol, often used for extraction of cyanobacterial cells and a common solvent for microcystins, can at concentrations higher than 5% interfere and give rise to false positive microcystin concentrations. High salinity is also troublesome and gives rise to weak false positive concentrations. Matrix effects are quite usual and give false positive results. Some plastics, like polypropen, absorbs microcystins (not cylindrospermopsin) dissolved in water and the detected concentration is lower than it should be. Certain kits are also prone to give a lower microcystin concentration with increased pH, no data exist regarding cylindrospermopsin kits and high pH.

The five commercially available microcystin ELISA kits are:

Assay procedure for Beacon Microcystin Plate Kit - in short

- 1. Add 50 μ l of enzyme conjugate solution into each well (if possible, use a multi-channel pipette)
- 2. Add 50 μl of standard solutions, control and samples into the wells as duplicates
- 3. Add 50 µl antibody solution into each well (multi-channel pipette)
- 4. Cover the wells, mix the contents, incubate for 30 min
- 5. Wash 5 times, 250 µl/well
- 6. Add 100 µl substrate solution (multi-channel pipette)
- 7. Cover the wells, incubate 30 min
- 8. Add 100 µl stop solution (multi-channel pipette)
- 9. Read the absorbance at 450 nm within 15 min

The following texts have been translated into Estonian language from the publication

TOXIC : Cyanobacterial Monitoring and Cyanotoxin Analysis

ISBN 951-765-259-3

(c) Åbo Akademi University Press, 2005

with the kind permission of the publisher.

When the original English and the translated Estonian versions are found to be conflicting, the English version must be regarded as valid.

7 Analüüsiprotsess

Jussi Meriluoto, Åbo Akademi Ülikool (AAU), Turu, Soome

Selles peatükis on kujutatud mikrotsüstiinide, anatoksiin-a ja tsülindrospermopsiini analüüsiprotsess. Kõrgrõhuvedelikkromatograafia (HPLC) abil määratakse üksikuid analüüte, ning analüütide identifitseerimiseks on vaja kasutada autentseid toksiinistandardeid. Proteiinfosfataasi inhibeerimistest (PPIA) ja ensüümne immunosorbenttest (ELISA) on rühmaspetsiifilised ja suure tundlikkusega skriiningmeetodid. Lisaks mikrotsüstiinidele ja nodulariinidele suudab PPIA avastada ka teisi proteiinfosfataasiinhibiitoreid.

Joonis 7.1: Töö käik mikrotsüstiinide analüüsil

Joonis 7.2: Töö käik anatoksiin-a analüüsil.

Joonis 7.3: Töö käik tsülindrospermopsiini analüüsil.

7 Selection of analytical methodology

Jussi Meriluoto, Åbo Akademi University, Turku, Finland

(modified from an earlier version printed in TOXIC : Cyanobacterial Monitoring and Cyanotoxin Analysis, ISBN 951-765-259-3, (c) Åbo Akademi University Press, 2005)

This chapter provides schematic workflows for the analyses of microcystins, anatoxin-a and cylindrospermopsin. High-performance liquid chromatography (HPLC) targets individual analytes and it requires access to authentic toxin standards for analyte identification. Protein phosphatase inhibition assay (PPIA) and enzyme-linked immunosorbent assay (ELISA) are group-specific, highly sensitive screening methods. In addition to microcystins and nodularins, PPIA also detects other protein phosphatase inhibitors.

Figure 7.1: Workflow for the analysis of microcystins.

Figure 7.2: Workflow for the analysis of anatoxin-a.

Figure 7.3: Workflow for the analysis of cylindrospermopsin.

8 Rakendused ja tulemuste olulisus

Geoffrey A. Codd ja James S. Metcalf, Dundee Ülikool (UDU), Suurbritannia

8.1 Sissejuhatus

Sinivetikate seiret veekogudes ja tsüanotoksiinide analüüse tehakse erinevatel põhjustel, mis ulatuvad fundamentaaluuringutest ja toorvee (näiteks suplusvee, vesikultuuride ja potentsiaalsete joogiveevarude) kvaliteedi ja ohutuse hindamisest, kuni uuringuteni töödeldud joogivee kvaliteedi ja ohutuse tagamiseks. Seire- ja analüüsiskeemid varieeruvad ulatuselt ja keerukuselt, hõlmates nii veekogudest kord aastas võetavaid üksikproove kui ka intensiivprogramme. Viimastesse võib olla lülitatud sagedane proovivõtmine, näiteks mitu korda nädalas, sügavusprofiilidel ja/või erinevates kohtades üksikveekogudes ja kogu käitlusahela ulatuses. Selliste seire- ja analüüsiprogrammide kavandamine mõjutab oluliselt saadud tulemuste väärtust, seda nii teaduslikust kui ka toorvee ja töödeldud vee riski hindamise aspektist [1]. Veelgi enam, analüüsi- ja seireandmete adekvaatne tõlgendamine nõuab nii küllaldast taustateavet veekogu kohta kui ka detailseid andmeid kasutatud analüüsi- ja seiremeetodite kohta.

8.2 Seire- ja analüüsimeetodid

Sinivetikapopulatsioonide seire ja tsüanotoksiinide analüüs nõuab üldjuhul teadus- ja tehnikaalaseid kogemusi, transporti, laboritarvikuid ja –reaktiive ning nii lihtsaid kui ka keerulisi selleotstarbelisi seadmeid. Et põhivajadusi rahuldada ja samas tagada tulemuste kasutatavus usaldusväärseks riskianalüüsiks, tuleks hinnata seire ja analüüside toimumise asjaolusid (meetodeid) ning põhjusi, miks neid tehakse. Seiret võib teha nii reaktiivsel (tagasitoimival) kui ka ennetaval (proaktiivsel) viisil, ehkki viimast võib modifitseerida vastavalt sündmusele, kui see on juba toimunud.

Reaktiivne proovivõtt ja analüüs võib toimuda olukorras, kus pole veel rakendatud korrapäraselt (rutiinselt) või ennetavalt toimivat süsteemi. See võib leida aset järgmistel juhtudel:

- ootamatu ulatuslik sinivetikapopulatsioonide areng;
- inimeste, loomade, lindude või kalade terviserikked, mille (oletatavaks) põhjuseks on sinivetikad;
- joogivee töötlusprotsessi parameetrite muutused;
- veetarbijate kaebused või nõuded, kaasa arvatud järjest teadlikumaks muutuvalt kogukonnalt.

Reaktiivne seire on suurema tõenäosusega kui struktureeritud ennetav (proaktiivne) süsteem *ad hoc* protseduur. Definitsioonist tulenevalt võetakse reaktiivne meetod kasutusele pärast sündmust, mistõttu see annab esinduslike proovide ja taustaandmete puudumise tõttu tõenäoliselt ebatäieliku pildi. Sellele vaatamata on korduvalt näidatud, et tagasiulatuv (reaktiivne) proovivõtmine ja analüüs suudavad anda väärtusliku panuse tervise ja veevarude kaitsmiseks, kui ennetavat süsteemi pole veel

sisse seatud (näiteks sinivetikate ja sinivetikamürkidega seotud tervisehäirete tagasiulatuvad uuringud, sellistest näidetest ülevaate saamiseks vt. [2]).

Ennetavat (struktureeritud) seiret ja analüüsi tuleks strateegiana eelistada juhtudel, kui varem on esinenud sinivetikate massilist paljunemist, kui sellega seotud probleemid jätkuvad või on oodata nende tekkimist tulevikus. See seiremeetod on:

- vajalik igas süsteemis, mis on ette nähtud eelhoiatuseks, kui sinivetikate masspaljunemine võib põhjustada probleeme veekäitlusseadmete toimimisel, vee-elustiku keskkonnale ja joogi- või suplusvee kaudu inimeste tervisele.
- nõutav veemajandussüsteemides, kus häiretase käivitab tegevused sinivetikate arengu pärssimiseks, tsüanotoksiinidega kokkupuute vähendamiseks ning veevarude ja tervise kaitseks.
- nõutav järjest rohkearvulisemates riski juhtimise ja tervisekaitse eeskirjades, mis on avaldatud nii kohalikul kui ka riiklikul tasemel õigusaktides või juhendites.

Põhimõtteliselt ei tohiks tsüanotoksiinide nii laboris tehtud analüüside tulemuste kui ka tulevikus üha enam otse järve ääres tehtud analüüside usaldusväärsust mõjutada see, kas proovide kogumisel kasutati tagasiulatuvat (reaktiivset) või ennetavat (proaktiivset) meetodit. Mõlemal juhul saab kasutada samu reaktiive, standardeid, meetodeid ja seadmeid. Praktilises elus võimaldavad ennetavad (proaktiivsed) programmid siiski mineviku- ja olevikusituatsiooni igakülgsemat hindamist ja annavad suurema kindluse tulemuste tõlgendamiseks. Näiteid sinivetikarakkude ja – mürkide struktureeritud proovide kogumise ja analüüsi tähtsusest otsustusalgoritmides on toodud kirjanduses [3,4]. Neis on toodud sekkumis- ja tegutsemistasemed, et vähendada veetarbijate ja –kasutajate kokkupuutumist mürgiste sinivetikatega ja tsüanotoksiinidega. Järjest kasvavad uurimisprogrammide käigus koostatud ning keskkonnaametite ja veekäitlejate poolt kasutatavad andmebaasid sinivetikate ja tsüanotoksiinide esinemise analüüsitulemuste kohta.

8.3 Seire eesmärgid ning tulemuste rakendamine ja analüüs

Klassikalises limnoloogias on juba aastakümneid määratud sinivetikate liigilist kuuluvust, arvukust ja esinemiskohta. Siiski tuleb seire puhul, mille eesmärgiks on hinnata sinivetikaõitsengute ja –mürkide kahjulikku mõju, määrata järgmised parameetrid:

- Sinivetikate asurkonna liigiline, ajaline ja ruumiline areng. Selle tulemusena tekkida võivate tsüanotoksiinide ligikaudne tüüp ja kontsentratsioon ning potentsiaalsete terviseriskide raskusaste (Tabel 8.1).
- Sinivetikarakkude. Kui sinivetikad on vegetatiivse kasvu varases faasis ja ei ilmuta märke rakkude lagunemisest (lüüsist), siis saab mikrotsüstiinide ja nodulariinide puhul eeldada, et enamus toksiine asub rakkudes, ning suhteliselt vähe (vähem kui 10%) rakuväliselt lahustunud kujul. Kui mikrotsüstiini või nodulariini tootvad rakud on lagunemisfaasis, olgu siis looduslike tingimuste või inimtoime tõttu (näiteks algitsiididega töötlemise või mehhaanilise mõjutamise tõttu), siis kogu või peaaegu kogu mikrotsüstiin

või nodulariin võib esineda rakuvälisena. Seosed sinivetikarakkude struktuurse terviklikkuse ja anatoksiin-a, anatoksiin-a(S) ja saksitoksiinide jaotumise vahel pole nii selged, ehkki arvestades, et tegemist on väikeste veeslahustuvate molekulidega, võib oodata nende looduslikku esinemist rakusiseses ja -välises lahustunud fraktsioonis. Rakkude terviklikkust ei kasutada saa tsülindrospermopsiini rakusisese või -välise esinemise ennustamiseks, kuna suur osa (üle 50%) selle mürgi koguhulgast esineb rakuvälisena isegi siis, kui seda tootvad rakud on väliselt kahjustamata [6,7]. Tsüanotoksiinide jaotumine rakkude ja vee vahel mõjutab ilmselt võimalusi nende eemaldamiseks või lagundamiseks vee töötlemisel.

- Kas on ületatud maksimaalse vastuvõetava sinivetikarakkude esinemistiheduse piir- või sihtväärtused, kui neid kasutatakse riskide hindamisel?
- Kas veekogude ja veevarude sinivetikate esinemise vähendamise meetmetele toorvees ning veekäitlusahelas on olnud? Meetmed võivad ulatuda veehaarde valgla tasandilt veekogusiseste ja veekäitlusmeetoditeni.

mage-

ja

riimvees

kui

sinivetikaperekondadest tsüanotoksiinide võimaliku produktsiooni indikaatoritest

Tsüanotoksiin	Toksigeenne perekond
Mikrotsüstiinid	Microcystis, Anabaena, Nostoc, Anabaenopsis,
	Planktothrix, Oscillatoria, Phormidium, Radiocystis
Nodulariinid	Nodularia
Tsülindrospermopsiinid	Cylindrospermopsis, Umezakia, Aphanizomenon,
	Anabaena, Raphidiopsis
Anatoksiin-a ja	Anabaena, Planktothrix, Oscillatoria, Phormidium,
homoanatoksiin-a	Aphanizomenon, Raphidiopsis
Anatoksiin-a(S)	Anabaena
Saksitoksiinid	Aphanizomenon, Anabaena, Lyngbya,
	Cylindrospermopsis, Planktothrix
lipopolüsahhariidid	kõik?
(LPS)	

a, Vt. [2,8]; b, mitte kõik perekonna liigid ei ole toksigeensed, mõnes perekonnas on siiani teada ainult üks liik, kellel on toksigeensed tüved.

Kohtades, kus puuduvad tsüanotoksiinide analüüsiks ressursid või vajalikud teadmised, või kui veekogude või proovide arv on liiga suur, või kui asjakohased veekogud pole prioriteetsed, siis võib sinivetikatoksiinide analüüs olla võimatu või vähepõhjendatud. Sellisel juhul tuleb sinivetikarakkude seirele osutada teravdatud tähelepanu kui veekogu seisundi ja potentsiaalsete terviseriskide indikaatorile. Sinivetikarakkude arvukuse käivituslävi tegevuskavades (Tabel 8.3) põhineb praegu mikrotsüstiinide oletatavale kontsentratsioonile, mida saab seostada sinivetikarakkude teatud arvukusega, ning vähestele uurimisaruannetele inimeste haigestumise kohta nende kokkupuutel teatud hulgal sinivetikaid sisaldavaveega.

klorofüll-a Sinivetikataksonite, rakkude kontsentratsiooni, biomahu ja kontsentratsiooni (kui veekogus domineerivad sinivetikad) määramine võib anda varast hoiatusteavet sinivetikate olemasolust ja tsüanotoksiinide võimaliku produktsiooni kohta. Sellist indikatiivset lähenemist võib täiendada mikrotsüstiini ja tsülindrospermopsiini sünteesi määravate geenide tuvastamine, rakendades eraldatud

Tabel

8.1:

Näited

sinivetika-DNA-le? polümeraasi ahelreaktsiooni (PCR) või in situ fluorestsentshübridisatsiooni (FISH), et teha mikroskoobi abil kindlaks tsüanotoksiinigeenide esinemine rakkudes. Siiski tuleks sellistesse asendusvõtetesse sinivetikamürkide tegeliku esinemise ja kontsentratsiooni hindamisel suhtuda tsüanotoksiinide kuna tootmise ulatus ettevaatusega, (a) üksikute sinivetikaperekondade ja -liikide poolt pole veel täiesti selge; (b) peale mikrotsüstiinide puuduvad teadmised sinivetikamürgi kontsentratsiooni seostest rakkude arvukuse ja biomahuga; (c) pole teada geenid, mis reguleerivad peale mikrotsüstiinide, nodulariinide ja tsülindrospermopsiinide teiste tsüanotoksiinide tootmist; ja (d) kõigi tsüanotoksiinide puhul ei saa alati eeldada geenide avaldumist (ekspressiooni). Seetõttu on tsüanotoksiinide tegeliku kontsentratsiooni ja esinemise hindamiseks vaja neid analüüsida.

Tsüanotoksiinide osas saadud analüüsiandmestik, mida on täiendatud keskkonna-, veekäitlus- või terviseandmetega, võib pakkuda järgmist informatsiooni:

- Veekogudes, veekäitlusjaamades ja veejaotusvõrkudes leiduvate tsüanotoksiinide liigituse, kontsentratsiooni ja jaotumise kohta.
- Keskkonnatingimuste ja tsüanotoksiinide produtseerimise vaheliste seoste kohta.
- Jaotumise ja püsivuse kohta toorvees ja veekäitlusel. (Lisaks mitmesugusele rakusisese ja välise jaotumise võimalustele, lagunevad tsüanotoksiinid erineval määral ka keemiliste ja bioloogiliste mõjurite ning valguse toimel).
- Tsüanotoksiinide, vee kvaliteedi ja tervise vaheliste seose kohta koos hinnanguga inimeste ja loomade kaitstuse tasemele.
- Tsüanotoksiinide sihtväärtuste leidmiseks joogivee kvaliteedi hindamisel ja nende häiretaseme lülitamiseks veeseire ning joogiveevõtu ja – käitluskavadesse.
- Seire- ja otsustusskeemide asjakohasuse ja nende kaasajastamisvajaduse määratlemiseks.
- Vastavuse tagamiseks riiklike või regionaalsete juhendite ja õigusaktidega.

8.4 Sinivetikarakke ja tsüanotoksiine puudutavate andmete olulisus terviseriskide hindamisel

Teadmised sinivetikate ja tsüanotoksiinide kahjulikust mõjust inimeste ja loomade tervisele ning ökosüsteemi "tervisele", kaasa arvatud veekoosluste bioloogilisele mitmekesisusele, on lünklikud. Siiski on kõigi Tabelis 8.1 esitatud tsüanotoksiinigruppide toksilisust erineval määral uuritud loomkatsetega, vähem rakukultuuride ja ensüümide abil. Veelgi enam, kõik nimekirjas olevad toksiinirühmad on kahtlustatavad või vastutavad inimeste ja loomade surma või haigestumise eest veekaudse ekspositsiooni tõttu [2,4,15]. Seetõttu peab iga nimekirjas oleva tsüanotoksiini avastamisele toorvee või käideldud vee proovides järgnema riskide olulisuse hindamine, võttes arvesse vee kasutusotstarvet, tsüanotoksiinide kontsentratsioone ja inimeste või loomade ekspositsiooni tõenäosust ja ulatust. Potentsiaalsed ekspositsioonikeskkonnad (kaasa arvatud vesi) ja -teed on kokkuvõtlikult esitatud Tabelis 8.2 Sinivetikarakkude arvukuse ja klorofüll-a

sisalduse sihtväärtusi suplusvees mõjutab tõenäoline kokkupuuteaeg, ning need on esialgsed. Need on mõeldud võimalike tervisekahjustuste vähendamiseks ja nende kokkuvõte on esitatud Tabelis 8.3.

Ekspositsiooni-	Ekspositsiooni-	Riskitegevused ja -rühmad		
keskkond	tee			
Vesi	Suukaudne	Toorvee või käideldud vee joomine, suplemisel		
		juhuslik vee allaneelamine.		
Vesi	Nahakaudne	Suplemine, töötegemine, duši all käimine,		
		kümblemine.		
Vesi	Sissehingamine	Suplemine, töötegemine, duši all käimine.		
vesi	Hemodialüüs	Hemodialüüsipatsiendid		
Toit	Suukaudne	Kalade, karpide (limuste) ja veelindude ^b		
		söömine, mis sisaldavad veetekkelisi		
		tsüanotoksiine. Taimetoitude söömine, mis on		
		varem niisutuse kaudu eksponeeritud		
		tsüanotoksiinidele.		
Toidulisandid	Suukaudne	Sinivetikaid sisaldavate toodete tarvitamine, kui		
		neis esineb tsüanotoksiine		

Tabel 8.2: Tsüanotoksiinide poolt põhjustatavate tervisekahjustuste
ekspositsioonikeskkonnad ja –teed. ^a

a, Kokkuvõte kirjandusest: [16], b, [17]

Tabel 8.3: Sinivetikarakkude arvukuse	e esialgsed sihtväärtused suplusvees.
---------------------------------------	---------------------------------------

		0		-
Riskitase	Kahjulikkude	Sihtväärtus		Tõenäoline
	tervisemõjude hinnang	Rakke/ml	µg chl-a	mikrotsüstiini
			/ liitris	kontsentratsioon
Kõrge	Äge mürgistus, pikaajaline	Kämbud, irdunud		>1 mg/l
	haigus, lühiajaline või kerge	matid		
	haigus			
Keskmine	Pikaajaline haigus,	100000	50	10-20 µg/l
	lühiajaline või kerge haigus			(võimalik 50 µg/l)
Madal	Lühiajaline või kerge haigus	20000	10	2-4 µg /l
				(võimalik 10 µg/l)

Kokkuvõte kirjandusest [15]

Sinivetikamürkide toksilisuse andmed nende suukaudsel manustamisel imetajatele, mida võib teatud usaldusväärsusega kasutada sihtväärtuste (SV) kehtestamiseks inimese joogiveele, on kättesaadavad ainult mikrotsüstiin-LR kohta [12], hiljuti ka tsülindrospermopsiinide kohta [19]. Nüüdseks on laialdaselt teada Maailma Tervishoiuorganisatsiooni töörühmade poolt väljatöötatud sihtväärtus 1 µg/l mikrotsüstiin-LR jaoks [12,18]. Kasutatav võib olla ka samasugune tsülindrospermopsiini sihtväärtus joogivee jaoks [19]. Kuna mikrotsüstiin-LR on imetajate jaoks üks toksilisemaid sinivetikamürke, ning hetkel puuduvad adekvaatsed sihtväärtused teiste sinivetikamürkide kohta, siis tundub kõige kohasem olevat mikrotsüstiin-LR sihtväärtuste rakendamine ka teiste tsüanotoksiinide jaoks kuni uute andmete saamiseni.

On möödapääsmatu, et tsüanotoksiinide kohta käivate andmete olulisust tõlgendatakse mikrotsüstiin-LR sihtväärtustest lähtuvalt. Siiski on selliste andmete kasutamine riskihindamisel alles kujunemas. Mitmed maailma riigid on juba vett käsitlevates rahvuslikes õigusaktides tarvitusele võtnud või kohandanud WHO poolt pakutavat mikrotsüstiin-LR sihtväärtust. Teised eelistavad seda sihtväärtust käsitleda vaid soovituslikuna, võttes arvesse, et ohutustegurid on sihtväärtuse tuletamisel juba arvesse võetud [12,15]. Siinkohal pole kohane eelistada üht või teist lähenemisviisi, pigem tuleks rõhutada, et neid sihtväärtusi tuleb joogivee puhul arvesse võtta [18]. Tsüanotoksiinide sihtväärtused joogivees:

- näitavad tsüanotoksiinide kontsentratsiooni, mis ei põhjusta joogivee tarbijale eluaja jooksul olulist terviseriski.
- on soovituslikud.
- on tuletatud, võttes arvesse määramatust ja ohutusfaktoreid nende arvutamisel.
- on esialgsed ja vajavad läbivaatamist vastavalt alusteadmiste ja praktiliste kogemuste täienemisele.
- ei ole mõeldud soovitusliku piirkontsentratsioonina, milleni tsüanotoksiine sisaldava vee omadusi võib lubada halveneda.
- on vahend tsüanotoksiinide riskihindamise meetodite arendamiseks ja rakendamiseks, võttes arvesse praktilisust, teostatavust ja tervise ning veeressursside kaitset.

8.5 Kirjandusviited

- Codd, G. A., Chorus, I., Burch, M. : Design of monitoring programmes. In Chorus, I., Bartram, J. (Eds.), Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring, and Management, pp. 313-328, E & FN Spon, London (1999).
- Codd, G.A., Lindsay, J., Young, F.M., Morrison, L. F, Metcalf, J. S.: Harmful cyanobacteria: from mass mortalities to management measures. In *Huisman, J., Matthijs, H. C. P., Visser, P. M.* (Eds.), Harmful Cyanobacteria, pp. 1-23, Springer, Dordrecht (2005).
- 3. Burch, M. D.: Blue-green algal blooms an alert levels framework for water supply contingency plans. In *Steffensen D. A., Nicholson, B. C.* (Eds.), Toxic Cyanobacteria. Current Status of Research and Management, pp. 133-139, Australian Centre for Water Quality Research, Adelaide (1994).
- 4. Bartram, J., Burch, M., Falconer, I. R., Jones, G. and Kuiper-Goodman, T.: Situation assessment, planning and management. In Chorus, I., Bartram, J. (Eds.), Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring, and Management, pp. 179-209, E & FN Spon, London (1999).
- 5. http://www.cyanobacteria-platform.com/cbase.html
- 6. Shaw, G. R., Sukenik, A., Livine, A., Chiswell, R. K., Smith, M. J., Seawright, A. A., Norris, R. L., Eaglesham, G. K., Moore, M. R. : Blooms of the cylindrospermopsin containing cyanobacterium, Aphanizomenon ovalisporum (Forti) in newly constructed lakes, Queensland, Australia. Env. Toxicol. 14, 167-177 (1999).
- Chiswell, R. K., Shaw, G. R., Eaglesham, G. K., Smith, M. J., Norris, R. L., Seawright, A .A., Moore, M. R.: Stability of cylindrospermopsin, the toxin from the cyanobacterium *Cylindrospermopsis raciborskii*. Effect of pH, temperature, and sunlight on decomposition. Env. Toxicol. 14, 155-165 (1999).
- 8. Namikoshi, M., Murakami, T., Fujiwara, T., Nagai, H., Niki, T., Haigaya, E., Watanabe, M. F., Oda, T.: Biosynthesis and transformation of homanatoxin-a in the cyanobacterium Raphidiopsis

mediterranea Skuja and structures of three new analogues. Chem. Res. Toxicol 17, 1692-1696 (2004).

- 9. National Rivers Authority: Toxic blue-green algae. Water Quality Series No. 2. National Rivers Authority, London, 125 pp. (1990).
- 10. *New South Wales Blue-Green Algal Task Force*: Final report of the New South Wales Task Force. Department of Water Resources, Parramatta, Australia, 159 pp. (1992).
- Pilotto, L. S., Douglas, R. M., Burch, M. D., Cameron, S., Beers, M., Rouch, G. R., Robinson, P., Kirk, M., Cowie, C. T., Hariman, S., Moore, C., Attewell, R. G.: Health effects of recreational exposure to cyanobacteria (blue-green algae) during recreational water-related activities. Aust. N. Z. J. Publ. Health 21, 562-566 (1997).
- Kuiper-Goodman, T., Falconer, I. Fitzgerald, J.: Human health aspects. In Chorus, I., Bartram, J. (Eds.), Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring, and Management, pp. 113-153, E & FN Spon, London (1999).
- Pilotto, L. S., Hobson, P., Burch, M. D., Ranmuthugula, G., Attewell, R. G., Davies, R. D.: Acute skin irritant effects of cyanobacteria (blue-green algae) in healthy volunteers. Aust. N. Z. J. Public Health 28, 220-224 (2004).
- 14. *Carmichael, W. W.* The cyanotoxins. In *Callow, J. A.* (Ed.), Advances in Botanical Research. Vol. 27, pp. 211-256, Academic Press, London and New York (1997).
- 15. Codd, G. A., Morrison, L. F., Metcalf, J. S.: Cyanobacterial toxins: risk management for health protection. Toxicol. Appl. Pharmacol. 203, 264-272 (2005).
- 16. Codd, G. A., Bell, S. G., Kaya, K., Ward, C. J., Beattie, K. A., Metcalf, J. S.: Cyanobacterial toxins, exposure routes and human health. Eur. J. Phycol. **34**, 405-415 (1999).
- Sipiä, V. O., Karlsson, K. M., Meriluoto, J. A. O., Kankaanpää, H. T.: Eiders (Somateria mollisima) obtain nodularin, a cyanobacterial hepatotoxin, in Baltic Sea food web. Env. Toxicol. Chem. 23, 1256-1260 (2004).
- 18. *World Health Organization*: Guidelines for drinking water quality. Third Edition. Volume 2. Recommendations. World Health Organization, Geneva, 515 pp. (2004).
- 19. *Humpage, A. R., Falconer, I. R.*: Oral toxicity of the cyanobacterial toxin cylindrospermopsin in male Swiss albino mice: determination of no observed adverse effect level for deriving a drinking water guideline value. Env. Toxicol. **18**, 94-103 (2003).

SOP: Extraction of microcystins in biomass filtered on glassfibre filters or in freeze-dried cyanobacterial biomass

Tööjuhis: Mikrotsüstiinide ekstraheerimine klaaskiudfiltril filtreeritud biomassist või külmkuivatatud sinivetikate biomassist

Dokumendi kood: SOP_SOP_TOXIC_AAU_04F_2008

Koostajad: Jussi Meriluoto ja Lisa Spoof, AAU

Kuupäev: 19. august 2008

1 Sissejuhatus

Rakusiseste (biomassiga seotud) toksiinide uurimisel võib sinivetikarakke sisaldavaid proove filtreerida klaaskiudfiltril (GF/C, läbimõõt 25-47 mm). Pärast külmutamist ja sulatamist või külmkuivatust saab filtrid 75% metanoolis ultrahelihomogeniseerida.

Käesolevat protseduuri saab rakendada ka nodulariin-R puhul.

2 Eksperimentaalosa

2.1 Materjalid

- (a) Klaaskiudfiltrid, läbimõõt 25-47 mm, Whatman (Maidstone, Suurbritannia) GF/C ekvivalent
- (b) Metanool, HPLC-puhas
- (c) Vesi, HPLC-puhas, puhastatud eritakistuseni 18,2 M Ω cm
- (d) Argoon või lämmastik, >99.99%
- (e) Boorsilikaatkatseklaasid, 12 mm x 75 mm
- (f) Parafilm
- (g) Polüetüleenist või polüpropüleenist mikrotsentrifuugiküvetid, , eelistatavalt kitsad mudelid
- (h) Boorsilikaatklaasist kromatograafiaviaalid, näiteks 1.5 ml värvitust klaasist ja kirjutuspinnaga. Väikeste proovimahtude puhul võib kasutada 0.3 ml polüpropüleenviaale (ainult 75% metanoolis olevate proovide puhul) või boorsilikaatklaasist siseanumaid.

(i) HPLC-puhtad filtrid, mis ei absorbeeri mikrotsüstiine 75% metanoolist, GHP Acrodisc 13 mm läbimõõduga ja 0.2 µm poorisuurusega filtri (tootekood 4554, Pall Life Sciences, Ann Arbor, MI, USA) ekvivalent, ja 2-ml üleni plastikust (ilma kummikolvita) ühekordselt kasutatavad süstlad (teine võimalik proovi selitamise protseduur tsentrifuugimise kõrval)

2.2 Eriseadmed

- (a) Ultrahelivann, Branson (Danbury, CT, USA) 2510E-MT või Bandelin (Berliin, Saksamaa) Sonorex RK 156 analoog
- (b) Ultrahelihomogenisaator, Sonifier II W-250 from Branson/Emerson Technologies (Dietzenbach, Germany) või Bandelin (Berlin, Germany) Sonopuls HD 2070 analoog
- (c) Külmkuivatusseade (valikuline)
- (d) Mikrotsentrifuug
- (e) Kuumutusplokk aurustamismooduliga

2.3 Lahused

(a) 75% metanooli saamiseks segage 75 ruumalaühikut metanooli 25 ruumalaühiku veega.

2.4 Ekstraheerimisprotseduur

- (a) Asetage õhu käes kuivatatud ja külmutatud filtriproovid (GF/C, läbimõõt 25 mm) 12 mm x 75 mm boorsilikaatkatseklaasidesse või 1,5 ml boorsilikaatklaasviaalidesse, külmutage ja sulatage neid kaks korda, või külmkuivatage filtrid maksimaalse taastumise saavutamiseks
- Lisage 1,2 ml 75% ekstraheerige (b) metanooli, segage ja 15 Filtreid 47 mm ultrahelivannis min. läbimõõduga ekstraheeritakse 2 ml 75% metanooliga katseklaasides, mis tuleks inkubeerimise ajal katta parafilmiga. Kui kasutatakse viaale, tuleks neile ultrahelivannis oleku ajaks kork peale keerata.
- (c) Edasi ekstraheerige proovid mikrosondiga varustatud ultrahelihomogenisaatori abil ükshaaval 1 minuti jooksul. Enne järgmist proovi peske sondi 75% metanooliga. Branson Sonifier II W-250 puhul töötab seade pulseerivas režiimis 30% töötsükliga ja võimsuslüliti on asendis 2. MS 73 mikrosondiga varustatud Bandelin HD 2070 töötab 30% pulsitsükliga ja 30% amplituudiga. Vältige liigsete kiudude kadu filtrist. Suurem võimsus toob kaasa vajaduse jahutada proovi jäävannis.

- (d) Tsentrifuugige ekstraktialikvoodid 10 000 g juures 10 min. jooksul.
- (e) Viige 500 μl supernatanti 1,5 ml boorsilikaatviaalidesse või puhastesse 12 mm x 75 mm boorsilikaatkatseklaasidesse ja aurutage kuumutusplokis argooni all temperatuuril 40°C kuivaks. Kui vaja, võib võtta rohkem alikvoote.
- (f) Lisage kuivatatud ekstraktidele 100 μl 75% metanooli, segage hästi, kandke üle 0,3 ml polüpropüleenviaalidesse, tsentrifuugige 10 000 g juures 10 minuti jooksul, või filtreerige HPLC-puhtal filtril, kui proov vajab selgitamist. Analüüsige proov vedelikkromatograafiliselt vastavalt tööjuhendile SOP_TOXIC_AAU_06F_2008.

NB! Ultrahelihomogeniseerimise tõhusus varieerub erinevate homogenisaatorite puhul tunduvalt. Seetõttu tuleb ülaltoodud seadeid ja aegu kohendada vastavalt kasutatavatele seadmetele.

3 Kirjandusviited

- Lawton, L.A., Edwards, C., Codd, G.A.: Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst (London) **119**, 1525-1530 (1994).
- *Fastner, J., Flieger, I., Neumann, U.:* Optimized extraction of microcystins from field samples a comparison of different solvents and procedures. Water Res. **32**, 3177-3181 (1998).
- Spoof, L., Vesterkvist, P., Lindholm, T., Meriluoto, J. Screening for cyanobacterial hepatotoxins, microcystins and nodularin, in environmental water samples by reversed-phase liquid chromatography-electrospray ionisation mass spectrometry. J. Chromatogr. A **1020**, 105-119 (2003).

NB! Lugejal soovitatakse hoida end kursis ISO mikrotsüstiinianalüüsi standardi väljatöötamisega.

ISO 20179:2005. Water quality -- Determination of microcystins -- Method using solid phase extraction (SPE) and high performance liquid chromatography (HPLC) with ultraviolet (UV) detection.

(Dokument ISO 20179:2005 kirjeldab mikrotsüstiinide määramise standardmeetodit, mis erineb käesolevast protseduurist.)

SOP: Extraction of microcystins in biomass filtered on glassfibre filters or in freeze-dried cyanobacterial biomass

Document identifier: SOP_TOXIC_AAU_04F_2008

(modified from an earlier version printed in TOXIC : Cyanobacterial Monitoring and Cyanotoxin Analysis, ISBN 951-765-259-3, (c) Åbo Akademi University Press, 2005)

Prepared by: Jussi Meriluoto and Lisa Spoof, AAU

Date: 19 August 2008

2 Introduction

Water samples containing cyanobacterial cells can be filtered on glass-fibre filters (GF/C, diameter 25-47 mm) for monitoring of intracellular (biomassbound) toxins. After freeze-thawing or freeze-drying the filters can be extracted by ultrasonication in 75% methanol. This SOP can also be applied to nodularin-R.

2 Experimental

2.1 Materials

- (a) Glass-fibre filters, equivalent to Whatman (Maidstone, UK) GF/C, diameter 25-47 mm
- (b) Methanol HPLC grade
- (c) HPLC grade water purified to $18.2 \text{ M}\Omega \text{ cm}$
- (d) Argon or nitrogen, >99.99%
- (e) Borosilicate glass tubes, 12 mm x 75 mm
- (f) Parafilm
- (g) Microcentrifuge tubes, polyethylene or polypropylene, narrow models preferred
- (h) Borosilicate glass chromatographic vials: e.g. 1.5 ml clear glass with writing surface. For small sample volumes 0.3 ml polypropylene vials (only for samples in 75% methanol) or borosilicate glass inserts can be used.
- HPLC grade filters showing no adsorption of microcystins from 75% methanol, equivalent to GHP Acrodisc filters, 13 mm in diameter and 0.2 µm pore size, product number 4554, Pall Life

Sciences (Ann Arbor, MI, USA), and 2-ml all-plastic (no rubber piston) single use syringes (alternative sample clarification procedure to centrifugation)

2.2 Special equipment

- (a) Bath ultrasonicator, comparable to Branson (Danbury, CT, USA) 2510E-MT or Bandelin (Berlin, Germany) Sonorex RK 156
- (b) Probe ultrasonicator, comparable to Sonifier II W-250 from Branson/Emerson Technologies (Dietzenbach, Germany) or Bandelin (Berlin, Germany) Sonopuls HD 2070
- (c) Freeze-drying equipment (optional)
- (d) Microcentrifuge
- (e) Heater block with evaporation unit

3.3 Solutions

(a) Mix 75 volumes of methanol and 25 volumes of water to make 75% methanol.

2.4 Extraction procedure

- (a) Place the air-dried, frozen filter samples (GF/C, diameter 25 mm) in 12 mm x 75 mm borosilicate glass tubes or in 1.5 ml borosilicate glass vials, and freeze-thaw them twice, or, to obtain maximum recovery, freeze-dry the filters. The extraction procedure described below is also suitable for the extraction of 5-8 mg samples of freeze-dried cyanobacteria.
- (b) Add 1.2 ml of 75% methanol, mix and extract in the bath ultrasonicator for 15 min. Filters with a diameter of 47 mm are extracted with 2 ml of 75% methanol in the glass tubes. The tubes should be covered with parafilm during the incubation. If vials are used, they should be fitted with caps during the bath ultrasonication.
- (c) Ultrasonicate the samples further, one at a time, with the ultrasonic disruptor equipped with a microtip probe, for 1 min. Wash the probe with 75% methanol in between samples. In the case of the Branson Sonifier II W-250, the unit is operated in a pulsed mode with a 30 % duty cycle and with an output control of 2. The Bandelin HD 2070 equipped with the MS 73 microtip is operated with a 30 % pulsed cycle and with an amplitude setting of 30 %. Avoid extensive fibre loss from the filter. Higher output effects necessitate the use of cooling around the sample with an ice bath.

- (d) Centrifuge aliquots of the extracts at $10,000 \times g$ for 10 min.
- (e) Transfer 500 μl of the supernatants to 1.5 ml borosilicate glass vials or clean 12 mm x 75 mm borosilicate glass tubes and evaporate to dryness in a heating block at 40 °C under argon. If desired, take further aliquots.
- (f) Reconstitute the dried extracts in 100 µl of 75% methanol, mix well, transfer to 0.3 ml polypropylene vials, centrifuge at $10,000 \times g$ for 10 min or filter through the HPLC grade filter to clarify the sample if analyse with high-performance necessarv. and liauid chromatography (HPLC) according the to procedure SOP_TOXIC_AAU_06F_2008.

N.B. The efficiency of ultrasonication varies considerably between different ultrasonicator models. Therefore, the above settings and times must be adjusted according to the apparatus in use.

4 References

- Lawton, L.A., Edwards, C., Codd, G.A.: Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst (London) **119**, 1525-1530 (1994).
- *Fastner, J., Flieger, I., Neumann, U.:* Optimized extraction of microcystins from field samples a comparison of different solvents and procedures. Water Res. **32**, 3177-3181 (1998).
- Spoof, L., Vesterkvist, P., Lindholm, T., Meriluoto, J. Screening for cyanobacterial hepatotoxins, microcystins and nodularin, in environmental water samples by reversed-phase liquid chromatography-electrospray ionisation mass spectrometry. J. Chromatogr. A **1020**, 105-119 (2003).

N. B. The reader is also advised to follow up the development of the ISO standard for microcystin analysis.

ISO 20179:2005. Water quality -- Determination of microcystins -- Method using solid phase extraction (SPE) and high performance liquid chromatography (HPLC) with ultraviolet (UV) detection.

> (THE ISO 20179:2005 DOCUMENT DESCRIBES A STANDARDISED METHOD FOR THE DETERMINATION OF MICROCYSTINS WHICH IS DIFFERENT FROM THE PROTOCOL DESCRIBED IN THE CURRENT SOP.)

SOP: Solid phase extraction of microcystins in water samples

Tööjuhis: Mikrotsüstiinide tahkefaasiekstraktsioon veeproovidest

Dokumendi kood: SOP_TOXIC_AAU_05F_2008

Koostajad:Jussi Meriluoto and Lisa Spoof, AAU

Kuupäev:19. august 2008

1 Sissejuhatus

Mikrotsüstiinide tahkefaasiekstraktsiooni looduslikust või töödeldud veest on tavapäraselt tehtud C18 silikageelkolonniga. Abi võib olla ka uutest polümeermaterjalidest, eriti OASIS HLB suurepoorilisest kopolümeerist polü(vinüülbenseen-ko-N-vinüülpürrolidoonist). Klooritud vett töödeldakse enne kontsentreerimist naatriumtiosulfaadiga, et peatada mikrotsüstiinide edasist lagunemist. Kui vähegi võimalik, tuleks kogu protseduuri vältel kasutada boorsilikaatklaasist nõusid, kuna vesilahuses olevad mikrotsüstiinid adsorbeeruvad kergesti tavaliselt kasutatavate plastiknõude pinnale. On leitud, et üle 25% kontsentratsiooniga metanoolis olev mikrotsüstiin-LR ei adsorbeeru plastikule kuigi suurel määral. [Hyenstrand et al., 2001]. Käesolevat tööjuhist saab kasutada ka nodulariin-R jaoks.

2 Eksperimentaalosa

2.1 Materjalid

Kui pole öeldud teisiti, kasutage analüütiliselt puhtaid reaktiive.

- (a) Metanool, HPLC-puhas
- (b) HPLC-puhas vesi, puhastatud eritakistuseni 18,2 M Ω cm
- (c) Klaaskiudfiltrid, läbimõõt 25-47 mm, Whatman (Maidstone, Suurbritannia) GF/C ekvivalent
- (d) Naatriumtiosulfaat
- (e) NH₄OH
- (f) Trifluoroäädikhape (TFA), HPLC- puhas või valgujärjestusanalüüsipuhas. TFA-d tuleks hoida eksikaatoris argooni all.
- (g) Mikrotsüstiinidega töötamiseks sobilikud pöördfaasilised tahkefaasiekstraktsioonikolonnid, OASIS HLB 200 mg sorbendiga tahkefaasiekstraktsioonikolonnide ekvivalent (tootekood WAT106202, Waters, Milford, MA, USA).

- (h) Argoon või lämmastik, >99.99%
- (i) Boorsilikaatkatseklaasid või –viaalid, mahuga üle 4 ml.
- (j) HPLC-puhtad filtrid, mis ei absorbeeri mikrotsüstiine 75% metanoolist, GHP Acrodisc 13 mm läbimõõduga ja 0.2 µm poorisuurusega filtri (tootekood 4554, Pall Life Sciences, Ann Arbor, MI, USA) ekvivalent, ja 2-ml üleni plastikust (ilma kummikolvita) ühekordselt kasutatavad süstlad (teine võimalik proovi selitamise protseduur tsentrifuugimise kõrval)
- (k) Polüetüleenist või polüpropüleenist mikrotsentrifuugiküvetid, , eelistatavalt kitsad mudelid
- (I) Boorsilikaatklaasist kromatograafiaviaalid, näiteks 1.5 ml värvitust klaasist ja kirjutuspinnaga. Väikeste proovimahtude puhul võib kasutada 0.3 ml polüpropüleenviaale (ainult 75% metanoolis olevate proovide puhul) või boorsilikaatklaasist siseanumaid.

2.2 Eriotstarbelised seadmed

- (a) Vaakumkollektor, eelistatavalt läbipaistev, varustatud korkkraanidega (korkkraanid on OASIS HLB kolonnide puhul valikulised), vaakumiallikas ja vaakumikontrolliseade.
- (b) Suuremahuline ekstraktsiooniseade (LVE) suurte proovimahtude automaatseks etteandmiseks, varustatud teflontorustikuga ja – adapteritega tahkefaasiekstraktsioonikolonnide ühendamiseks.
- (c) pH meeter
- (d) 500 ml mahuga filtreerimisseade
- (e) Kuumutusplokk koos aurustamismooduliga, töötemperatuur 40°C
- (f) Mikrotsentrifuug (filtreerimise alternatiivina)

2.3 Lahused

- (a) Naatriumtiosulfaat, 1 g 100 ml-s HPLC-puhtas vees
- (b) TFA, 1% lahus HPLC-puhtas vees
- (c) NH₄OH, 2 g 100 ml-s HPLC-puhtas vees
- (d) 20% metanool (20 ruumalaühikut metanooli and 80 ruumalaühikut vett)

- (e) 100% metanool
- (f) 75% metanool (75 ruumalaühikut metanooli and 25 ruumalaühikut vett)

2.4 Töö käik

- (a) Kui veeproov sisaldab tahkeid osiseid või sinivetikarakke, filtreerige see klaaskiudfiltril.
- (b) Viige 500 ml veeproovi boorsilikaatklaasist kolbi või keeduklaasi.
- (c) Mõõtke veeproovi pH, kui vajalik, viige pH lahjendatud NH₄OH või TFA abil vahemikku 5..8.
- (d) Klooritud vee puhul lisage 500 ml proovile 500 μl naatriumtiosulfaadi lahust (1 g / 100 ml). Loksutage kõvasti ja laske 5 minutit seista.
- (e) Lisage 5 ml metanooli ja segage põhjalikult.
- (f) Konditsioneerige tahkefaasiekstraktsioonikolonn (OASIS HLB, 200 mg) 5 ml etanooliga, seejärel 10 ml veega.
- (g) Viige kolonni proov kiirusega mitte üle 10 ml/min (näha on tilgad). Reguleerige voolukiirust vaakumi abil.
- (h) Peske kolonn 4 ml 20% metanooliga.
- (i) Kuivatage kolonn 2 minuti jooksul õhku läbi juhtides.
- (j) Elueerige mikrotsüstiinid 4 ml 100% metanooliga kas 12 mm x 75 mm boorsilikaatkatseklaasi või –viaali. On soovitatav viia eluent kolonni kahes osas: kandke sinna 2 ml lahustit ja laske seista 3 minutit, seejärel lisage veel 2 ml lahustit ja koguge eluaat kokku (maksimaalne voolukiirus 4 ml/min).
- (k) Aurutage eluaat argooni või lämmastiku abil 40 °C juures kokku.
- (I) Suspendeerige jääk 500 µl 75% metanoolis uuesti.
- (m) Tsentrifuugige 10 minutit 10 000g juures, või filtreerige ja kandke HPLC-viaalidesse.
- (n) Analüüsige supernatanti/filtraati vedelikkromatograafiliselt vastavalt tööjuhendile SOP_TOXIC_AAU_06F_2008.

3 Kirjandusviited

- Hyenstrand, P., Metcalf, J.S., Beattie, K.A., Codd, G.A.: Losses of the cyanobacterial toxin microcystin-LR from aqueous solution by adsorption during laboratory manipulations. Toxicon **39**, 589-594 (2001).
- Lawton, L.A., Edwards, C., Codd, G.A.: Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst (London) **119**, 1525-1530 (1994).

NB! Lugejal soovitatakse hoida end kursis ISO mikrotsüstiinianalüüsi standardi väljatöötamisega.

ISO 20179:2005. Water quality -- Determination of microcystins -- Method using solid phase extraction (SPE) and high performance liquid chromatography (HPLC) with ultraviolet (UV) detection.

(Dokument ISO 20179:2005 kirjeldab mikrotsüstiinide määramise standardmeetodit, mis erineb käesolevast protseduurist.)

SOP: Solid phase extraction of microcystins in water samples

Document identifier: SOP_TOXIC_AAU_05F_2008

(modified from an earlier version printed in TOXIC : Cyanobacterial Monitoring and Cyanotoxin Analysis, ISBN 951-765-259-3, (c) Åbo Akademi University Press, 2005)

Prepared by: Jussi Meriluoto and Lisa Spoof, AAU

Date: 19 August 2008

1 Introduction

Traditionally solid phase extraction of microcystins in natural or processed waters has been performed on C_{18} silica cartridges. New polymeric materials, in particular the OASIS HLB consisting of a macroporous copolymer [poly(vinylbenzene-co-N-vinylpyrrolidone], can also be useful for the purpose. Chlorinated waters are usually treated with sodium thiosulphate before concentration in order to stop the further degradation of microcystins. Use borosilicate glassware throughout the procedure whenever possible because microcystins in water solutions are easily adsorbed onto plastics commonly used in laboratories. Microcystin-LR in a solution of above 25% methanol was found not to interact with plastics to any great extent [Hyenstrand et al., 2001]. This SOP can also be applied to nodularin-R.

2 Experimental

2.1 Materials

Use analytical reagent grade reagents if not indicated otherwise.

- (a) Methanol HPLC grade
- (b) HPLC grade water purified to $18.2 \text{ M}\Omega \text{ cm}$
- (c) Glass-fibre filters, equivalent to Whatman (Maidstone, UK) GF/C, diameter 25-47 mm
- (d) Sodium thiosulphate
- (e) NH₄OH
- (f) Trifluoroacetic acid (TFA), HPLC or protein sequence analysis grade. TFA should be stored under argon in a desiccator.
- (g) Reversed-phase solid phase extraction columns suitable for microcystin work, equivalent to OASIS HLB solid phase extraction columns, size 200 mg sorbent, part number WAT106202, from

Waters (Milford, MA, USA). Waters sample volumes <<500 ml can be concentrated on smaller columns.

- (h) Argon or nitrogen, >99.99%
- (i) Borosilicate test tubes or vials, >4 ml capacity
- (j) HPLC grade filters showing no adsorption of microcystins from 75% methanol, equivalent to GHP Acrodisc filters, 13 mm in diameter and 0.2 µm pore size, product number 4554, Pall Life Sciences (Ann Arbor, MI, USA), and 2 ml all-plastic (no rubber piston) single use syringes (alternative sample clarification procedure to centrifugation)
- (k) Microcentrifuge tubes, polyethylene or polypropylene, narrow models preferred
- (I) Borosilicate glass chromatographic vials: e.g. 1.5 ml clear glass with writing surface. For small sample volumes 0.3 ml polypropylene vials (only for samples in 75% methanol) or borosilicate glass inserts can be used.

2.2 Special equipment

- (a) Vacuum manifold, preferably transparent, equipped with stopcocks (stopcocks are optional with the OASIS HLB columns), vacuum source and vacuum control
- (b) Large volume extraction (LVE) kit for unattended loading of large sample volumes, made of PTFE tubing and adaptors for SPE column connection
- (c) pH meter
- (d) Filtration unit for 500 ml volume
- (e) Heating block, operated at 40 °C, with evaporation unit
- (f) Microcentrifuge (alternative to filtration)

2.3 Solutions

- (a) Sodium thiosulphate, 1 g in 100 ml HPLC grade water
- (b) TFA, 1% solution in HPLC grade water
- (c) NH₄OH, 2 g in 100 ml HPLC grade water
- (d) 20% methanol (20 volumes of methanol and 80 volumes of water)
- (e) 100% methanol
- (f) 75% methanol (75 volumes of methanol and 25 volumes of water)

2.4 Procedure

- (a) Filter the water sample through the glass-fibre filter if it contains particulates or cyanobacterial cells.
- (b) Transfer 500 ml of water sample into a borosilicate glass flask or beaker.
- (c) Measure the pH of the water sample, and, if necessary, adjust to pH 5-8 with dilute NH_4OH or TFA.
- (d) In case of chlorinated water: add 500 μl of sodium thiosulphate solution (1 g / 100 ml) to 500 ml water. Shake vigorously and allow to stand for 5 minutes.
- (e) Add 5 ml of methanol and mix thoroughly.
- (f) Condition the solid phase extraction cartridge, OASIS HLB, 200 mg, with 5 ml of methanol followed by 10 ml of water.
- (g) Apply the sample at a flow rate not exceeding 10 ml min⁻¹ (visible drops). Regulate the flow with vacuum pressure.
- (h) Wash the cartridge with 4 ml of 20% methanol.
- (i) Dry the cartridge by drawing air through it for 2 min.
- (j) Elute microcystins with 4 ml of 100% methanol e.g. in 12 mm x 75 mm borosilicate test tube or in borosilicate glass vials. It is advisable that the elution solvent is loaded in two fractions: draw 2 ml solvent into the SPE column, soak the sorbent for 3 min, then load a further 2 ml solvent into the column and collect all the solvent (max. flow rate 4 ml min⁻¹).
- (k) Evaporate the methanol eluate at 40 °C using argon or nitrogen.
- (I) Resuspend the residue in 500 μ l of 75% methanol.
- (m) Centrifuge 10 min 10,000 \times *g*, or, alternatively, filter, and transfer to HPLC vials.
- (n) Analyse supernatant/filtrate on HPLC according to SOP_TOXIC_AAU_06F_2008.

3 References

- Hyenstrand, P., Metcalf, J.S., Beattie, K.A., Codd, G.A.: Losses of the cyanobacterial toxin microcystin-LR from aqueous solution by adsorption during laboratory manipulations. Toxicon **39**, 589-594 (2001).
- Lawton, L.A., Edwards, C., Codd, G.A.: Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst (London) **119**, 1525-1530 (1994).

N. B. The reader is also advised to follow up the development of the ISO standard for microcystin analysis.

ISO 20179:2005. Water quality -- Determination of microcystins -- Method using solid phase extraction (SPE) and high performance liquid chromatography (HPLC) with ultraviolet (UV) detection.

(THE ISO 20179:2005 DOCUMENT DESCRIBES A STANDARDISED METHOD FOR THE DETERMINATION OF MICROCYSTINS WHICH IS DIFFERENT FROM THE PROTOCOL DESCRIBED IN THE CURRENT SOP.)

SOP: Analysis of microcystins by high-performance liquid chromatography with photodiode-array detection

Tööjuhend: Mikrotsüstiinide vedelikkromatograafiline analüüs dioodrividetektoriga

Dokumendi kood: SOP_TOXIC_AAU_06F_2008

Koostajad:Jussi Meriluoto ja Lisa Spoof, AAU

Kuupäev: 19. august 2008

1 Sissejuhatus

Pöördfaasivedelikkromatograafia C₁₈ faasi kasutamisega on tavaline meetod väiksemate peptiidide lahutamiseks, ning selle jaoks kasutatavad liikuvfaas koosneb sageli atsetonitriiligradiendist koos perfluoreeritud alküülkarboksüülhapetega, milleks on tavaliselt trifluoroäädikhape (TFA). Mikrotsüstiinid pole erandiks ning kromatografeeruvad neis tingimustes ilusti. Toksiinide preparatiivseks lahutamiseks kasutatakse üldjuhul ammooniumatsetaadil ja atsetonitriilil põhinevaid neutraalseid eluente.

Teadaolevate mikrotsüstiinide arv kasvab kiiresti, hõlmates hetkel üle 80 ühendi, seetõttu on ühe analüüsitsükliga võimatu eraldada ja kvantifitseerida kõiki mikrotsüstiine. Siiski on vedelikkromatograafia ja dioodrividetektori abil üsna kerge eristada peamisi mikrotsüstiine (mikrotsüstiin-LR, -RR, YR) ja nende erinevas astmes demetüülimissaadusi retentsiooniaegade ja spektrite Mikrotsüstiinide põhilisteks kromofoorideks võrdlemise põhjal. konjugeeritud dieen Adda-jäägis ja α,β-küllastumata karbonüülrühm Nmetüülhüdroalaniinis, mis neelavad tugevasti 238 nm juures. Mikrotsüstiinide UV-spektreid saab jagada kolme põhiliiki: normaalsete mikrotsüstiinide spektrid lokaalse neelamismaksimumiga 238..240 nm juures; türosiin(Y) sisaldusega mikrotsüstiinide spektritel on lamedam neelamismaksimum 230..240 nm piirkonnas, ning trüptofaan(W) sisaldavatel mikrotsüstiinidel on neeldumismaksimum 222..223 nm juures ning nukk 238..240 nm juures (näited on toodud Joon. 6 ja 7 olevates spektrites).

Sinivetikaõitsengutes võib tekkida mikrotsüstiinide väga keerulise koostisega kogum. Toksiinide koostise selgitamiseks ja proovi kogutoksilisuse kaudseks hindamiseks peavad kasutatavad keemilised meetodid suutma lahutada ja kvantifitseerida üksikuid erineva mürgisusega mikrotsüstiine. Selleks on vaja suure lahutusvõimega ja hea selektiivsusega eraldusmeetodeid, näiteks kasutades pikki kolonne ja pikki analüüsiaegu, või siis spetsiifilisemaid detekteerimismeetodeid nagu mass-spektromeetria. Teisest küljest on paljud proovid, mis on võetud näiteks veekäitlusahelast, kromatograafiliselt üsna lihtsad. Nende jaoks võib küllaldane olla väiksem lahutusvõime, kui tahetakse lahutada ainult mõnesid analüüte.

Käesolevat protseduuri saab rakendada ka nodulariin-R puhul.

2 Eksperimentaalosa

2.1 Materjalid

- (a) Acetonitrile gradient HPLC-puhas
- (b) HPLC-puhas vesi, puhastatud eritakistuseni 18,2 MΩ cm
- (c) Trifluoroäädikhape (TFA), HPLC- puhas või valgujärjestusanalüüsipuhas. TFA-d tuleks hoida eksikaatoris argooni all.
- (d) (Endcapped) C₁₈ HPLC kolonn. Käesolevas töös võib kasutada näiteks Purospher STAR RP-18 endcapped, 3 μm particles, LiChroCART 55 x 4 mm I.D. ning Purospher STAR RP-18 endcapped, 5 μm particles, LiChroCART 250 x 4 mm I.D. (Tootja: Merck, Darmstadt, Saksamaa). Võrdluseks on lisatud kromatogrammid kolonniga Ascentis C18, 3μm particles, 50 x 3 mm I.D (Tootja: Supelco, Bellefonte, PA, USA). Vaja on lisada ka sobiv eelkolonn.
- (e) Boorsilikaatklaasist kromatograafiaviaalid, näiteks 1.5 ml värvitust klaasist ja kirjutuspinnaga. Väikeste proovimahtude puhul võib kasutada 0.3 ml polüpropüleenviaale (ainult 75% metanoolis olevate proovide puhul) või boorsilikaatklaasist siseanumaid.
- (f) Mikrotsüstiinistandardid

2.2 Eriotstarbelised seadmed

- (a) Kõrgrõhuvedelikkromatograaf koos kõrgrõhu- või madalrõhugradientpumbaga, proovi automaatsisestajaga
- (b) Kromatograafitarkvara
- (c) Klaaskapillaaris oleva teflonkolviga kolbpipett, mis suudab täpselt doseerida 200 µl TFA-d, mis on tugev hape.

2.3 HPLC liikuvfaas

- (a) HPLC liikuvfaasi komponent A: HPLC-puhas vesi + 0.05% TFA.
 - i. Lisage 800 µl TFA-d in 1.6 l vette.
 - ii. Vahetage lahust iganädalaselt.
- (b) HPLC liikuvfaasi komponent B: atsetonitriil + 0.05% TFA
 - i. Võtke umbes 450 µl TFA-d boorsilikaatviaali. Võtke sealt 400 µl TFA-d ja lahustage 800 milliliitris atsetonitriilis. Ülejäänud TFA visake ära.
 - ii. Vahetage lahust iganädalaselt.

Pidage silmas järgmist:

- Töid TFA ja atsetonitriiliga tehakse tõmbekapis.
- Doseerige TFA atsetonitriili pinna alla
- Ärge saastage TFA põhipudelit atsetonitriiliga.
- Lahjendamata TFA-d hoidke argooni all.
- Atsetonitriili ja TFA jääkide kõrvaldamisel järgige eeskirju.

2.4 Kromatograafia

2.4.1 Üldine tööjuhend

- (a) Vedelikkromatograaf tuleb seadistada vastavalt tootja juhistele, seda ka gaasiärastuse, pumba täitmise ja kolonnide vahetamise osas.
- (b) Kasutage alati eelkolonni. Vahetage eelkolonn välja, kui vasturõhk tõuseb või piikide kuju moondub.
- (c) Reguleerige kolonnitermostaat 40 °C juurde.
- (d) Viige vedelikkromatograaf järk-järgult lähteolekusse ja laske töörežiimil stabiliseeruda.
- (e) Kromatografeerige proovid ja standardid soovitatud HPLC gradientrežiimis (vt. allpool), kasutage 10 µl sisestusruumala.
- (f) Analüüsige kromatogramm. Võrrelge retentsiooniaegu ja spektreid standarditega.
- (g) Leidke mikrotsüstiini kontsentratsioon kalibreerimiskõveralt, nagu on kirjeldatud tööjuhendis TOXIC_SOP_AAU_03F.

Töö käik juhul, kui HPLC-UV abil kvantifitseeritakse ka teised mikrotsüstiinid peale mikrotsüstiin-LR: kõik mikrotsüstiinide spektripiigid kvantifitseeritakse mikrotsüstiin-LR ekvivalendina, s.t. piigi pindala teisendamisel "nanogrammideks sisestatud proovis" kasutatakse sama tegurit. Kui on teada teise mikrotsüstiini molekulmass, siis saab kriitilistel juhtudel kasutada vastavat parandustegurit.

2.4.2 Keskmise keerukusega proovide puhul kasutatav mikrotsüstiinide vedelikkromatograafiline analüüs lühikese kolonniga (Merck Purospher STAR RP-18 endcapped, 3 µm particles, LiChroCART 55 x 4 mm I.D.)

Ärge kasutage lihtsate proovide jaoks tarbetult pikki kolonne. Lühikeste kolonnide kasutamine hoiab kokku aega ja lahusteid.

Tabel 1: Soovitatav gradientprogramm (kolonn Merck Purospher STAR RP-18 endcapped, 3 μ m particles, LiChroCART 55 x 4 mm I.D.); lineaargradient voolukiirusel 1 ml/min. Sisestustsükli kestus umbes 11 minutit.

Aeg (min)	% A	% B
0.00	75	25
5.00	30	70
6.00	30	70
6.10	75	25
9.00	STOP	

Joonis 1: *Anabaena* ekstrakti kromatogramm. Kolonn Merck Purospher STAR RP-18 endcapped, 3 µm particles, LiChroCART 55 x 4 mm I.D., detekteerimine 238 nm. Teised parameetrid nagu Tabelis 1. Retentsiooniajad: microtsüstin-RR 2,91 min, microtsüstiin-LR 3,56 min.

Joonis 2: *Microcystis'e* ekstrakti kromatogramm. Kolonn Merck Purospher STAR RP-18 endcapped, 3 µm particles, LiChroCART 55 x 4 mm I.D., detekteerimine 238 nm. Teised parameetrid nagu Tabelis 1. Retentsiooniajad: mikrotsüstiin-LR 3,56 min, mikrotsüstiin -LY 4,58 min, mikrotsüstiin -LW 5,14 min, mikrotsüstiin -LF 5,29 min.

Joonis 3: Microtsüstiin-RR, -YR and -LR standardite ühitatud kromatogrammid. Kolonn: Merck Purospher STAR RP-18 endcapped, 3 µm particles, LiChroCART 55 x 4 mm I.D., detekteerimine 238 nm. Teised parameetrid nagu Tabelis 1. Retentsiooniajad: mikrotsüstiin-RR 2,81 min, mikrotsüstiin-YR 3,33 min, mikrotsüstiin-LR 3,48 min. See kromatogramm on saadud vanema kolonniga ja retentsiooniajad on vähenenud (vrdl. Joon. 1 ja 2). Kolonn tuleks välja vahetada, kui

retentsiooniajad on vähenenud rohkem kui 3% võrra. Muutused selektiivsuses on võivad tekkida isegi enne seda piiri.

2.4.3 Keerukate proovide puhul kasutatav mikrotsüstiinide vedelikkromatograafiline analüüs pika kolonniga (Merck Purospher STAR RP-18 endcapped, 5 µm particles, LiChroCART 250 x 4 mm I.D.)

Keerukate väliproovide või erinevate tüvedega proovide puhul võib vaja minna pikka kolonni.

Tabel 2: Üks võimalikest gradientprogrammidest kolonnile Merck Purospher STAR RP-18 endcapped, 5 µm particles, LiChroCART 250 x 4 mm I.D., lineaargradient voolukiirusel 0.75 ml/min. Sisestustsükli kestus umbes 62 minutit.

Time (min)	% A	% B
0.00	70	30
10.00	65	35
40.00	30	70
42.00	0	100
44.00	0	100
46.00	70	30
60.00	STOP	

Joonis 4: Anabaena ekstrakti kromatogramm. Kolonn: Column Merck Purospher STAR RP-18 endcapped, 5 µm particles, LiChroCART 250 x 4 mm I.D., detekteerimine 238 nm. Teised parameetrid nagu Tabelis 2. Retentsiooniajad: mikrotsüstiin-RR 13,07 min, mikrotsüstiin -LR 19,66 min.

Joonis 5: *Microcystis'e* ekstrakti kromatogramm. Kolonn: Merck Purospher STAR RP-18 endcapped, 5 µm particles, LiChroCART 250 x 4 mm I.D., detekteerimine 238 nm. Teised parameetrid nagu Tabelis 2. Retentsiooniajad: mikrotsüstiin-LR 19,64 min, mikrotsüstiin-LY 28,15 min, mikrotsüstiin -LW 32,47 min, mikrotsüstiin-LF 33,57 min.

2.4 Spektrid

44

spektrid, kromatografeerimistingimused nagu p. 2.4.2.

3 Kirjandusviited

- Lawton, L.A., Edwards, C., Codd, G.A.: Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst (London) **119**, 1525-1530 (1994).
- Meriluoto, J.: Chromatography of microcystins. Anal. Chim. Acta **352**, 277-298 (1997).
- Meriluoto, J., Lawton, L., Harada, K.-i.: Isolation and detection of microcystins and nodularins, cyanobacterial peptide hepatotoxins. In: Holst, O. (Ed.), Bacterial Toxins: Methods and Protocols, pp. 65-87, Humana Press, Totowa, NJ (2000).
- Meriluoto, J.: Toxins of freshwater cyanobacteria (blue-green algae). In: Bogusz, M.J. (Ed.), Forensic Science, Handbook of Analytical Separations, Vol. 2, pp. 359-390, Elsevier, Amsterdam (2000).
- Spoof, L., Karlsson, K., Meriluoto, J.: High-performance liquid chromatographic separation of microcystins and nodularin, cyanobacterial peptide toxins, on C₁₈ and amide C₁₆ sorbents. J. Chromatogr. A **909**, 225-236 (2001).
- *Spoof, L., Meriluoto, J.:* Rapid separation of microcystins and nodularin using a monolithic silica C₁₈ column. J. Chromatogr. A **947**, 237-245 (2002).
- Spoof, L., Vesterkvist, P., Lindholm, T., Meriluoto, J.: Screening for cyanobacterial hepatotoxins, microcystins and nodularin, in environmental water samples by reversed-phase liquid chromatography-electrospray ionisation mass spectrometry. J. Chromatogr. A **1020**, 105-119 (2003).

NB! Lugejal soovitatakse hoida end kursis ISO mikrotsüstiinianalüüsi standardi väljatöötamisega.

ISO 20179:2005. Water quality -- Determination of microcystins -- Method using solid phase extraction (SPE) and high performance liquid chromatography (HPLC) with ultraviolet (UV) detection.

(Dokument ISO 20179:2005 kirjeldab mikrotsüstiinide määramise standardmeetodit, mis erineb käesolevast protseduurist.)

2008. aastal lisatud materjalid

Tabel 3: Soovitatav gradientprogramm (kolonn Supelco Ascentis C18, 3 μ m particles, 50 x 3 mm I.D.), lineaargradient voolukiirusel 1 ml/min. Sisestustsükli kestus umbes 17 minutit.

Time (min)	% A	% B
0.00	75	25
7.00	30	70
10.00	30	70
10.10	75	25
15.00	STOP	

Joonis 8: *Microcystis* NIES-107 ekstrakti kromatogramm. Kolonn Supelco Ascentis C18, 3 µm particles, 50 x 3 mm I.D., detekteerimine 238 nm. Teised parameetrid nagu Tabelis 3. Retentsiooniajad: mikrotsüstiin-RR 2,53 min, kooselueeruvad mikrotsüstiin-YR ja demetüülitud mikrotsüstiin-YR 3,20 min, kooselueeruvad mikrotsüstiin-LR ja demetüülitud mikrotsüstiin-LR 3,43 min.

Joonis 9: *Microcystis* PCC7820 ekstrakti kromatogramm. Kolonn Supelco Ascentis C18, 3 µm particles, 50 x 3 mm I.D., detekteerimine 238 nm. Teised parameetrid nagu Tabelis 3. Retentsiooniajad: mikrotsüstiin-LR 3,44 min, mikrotsüstiin-LY 4,72 min, mikrotsüstiin-LW 5,47 min, mikrotsüstiin-LF 5,66 min.

SOP: Analysis of microcystins by high-performance liquid chromatography with photodiode-array detection

Document identifier: SOP_TOXIC_AAU_06F_2008

(modified from an earlier version printed in TOXIC : Cyanobacterial Monitoring and Cyanotoxin Analysis, ISBN 951-765-259-3, (c) Åbo Akademi University Press, 2005)

Prepared by: Jussi Meriluoto and Lisa Spoof, AAU

Date: 19 August 2008

1 Introduction

Reversed-phase HPLC on C_{18} phases is a common choice for separating smaller peptides, and the mobile phases for peptides often consist of acetonitrile gradients in the presence of perfluorinated alkyl carboxylic acids, usually trifluoroacetic acid (TFA). Microcystins make no exception, they chromatograph perfectly under these conditions. Neutral ammonium acetate - acetonitrile based eluents are commonly used in preparative toxin separations.

The rapidly growing number of known microcystins, now exceeding 80, has made it impossible to separate and quantitate all microcystins on a single chromatographic run. However, using retention time and spectrum match, the major microcystins, such as microcystin-LR, -RR, -YR with different degrees of demethylation, are fairly easy to identify by HPLC combined with photodiode- array detection. The main chromophores of microcystins, the conjugated diene in the Adda residue and the α , β -unsaturated carbonyl group in *N*-methyldehydroalanine, absorb strongly at 238 nm. UV spectra of microcystins can be divided into three main categories: normal microcystin spectra with a local absorbance maximum at 238-240 nm, the spectra of tryptophan(W)-containing microcystins which have an absorption maximum at 222-223 nm and a shoulder at 238-240 nm (examples of spectra in Figs. 6 and 7).

Cyanobacterial blooms can produce very complex microcystin profiles. In order to elucidate the toxin profile and thus indirectly estimate the total toxicity of a complex sample, the chemical methods used for toxin analyses should be able to separate and quantify individual microcystins which have different toxicities. This calls for separation methods of high resolution and good selectivity, i.e. the use of long columns and long run times, or more specific detection methods such as mass spectrometry. On the other hand, many samples in e.g. water treatment trials are rather trivial chromatographically and therefore less resolution may be enough if only a few analytes are to be separated.

This SOP can also be applied to nodularin-R.

2 Experimental

2.1 Materials

- (a) Acetonitrile gradient HPLC grade
- (b) HPLC grade water purified to $18.2 \text{ M}\Omega \text{ cm}$
- (c) Trifluoroacetic acid (TFA), HPLC or protein sequence analysis grade. TFA should be stored under argon in a desiccator.
- (d) C₁₈ endcapped HPLC column (Purospher STAR RP-18 endcapped, 3 μm particles, LiChroCART 55 x 4 mm I.D., and Purospher STAR RP-18 endcapped, 5 μm particles, LiChroCART 250 x 4 mm I.D., from Merck, Darmstadt, Germany, are mentioned in this SOP as possible alternatives. Examples of chromatograms obtained with an Ascentis C18, 3μm particles, 50 x 3 mm I.D from Supelco, Bellefonte, PA, USA have been added for comparison.) A compatible guard column is also required.
- (e) Borosilicate glass chromatographic vials: e.g. 1.5 ml clear glass with writing surface. For small sample volumes 0.3 ml polypropylene vials (only for samples in 75% methanol) or borosilicate glass inserts can be used.
- (f) Microcystin standards

2.2 Special equipment

- (a) High-performance liquid chromatograph equipped with highpressure or low-pressure gradient pump, autosampler, column oven and photodiode-array (PDA) detector
- (b) Chromatography analysis software
- (c) A positive displacement pipette with a teflon-coated piston working in a glass capillary, capable of accurately dispensing 200 μI of the strong acid TFA

2.5 HPLC mobile phase

- (a) HPLC mobile phase component A: HPLC water + 0.05% TFA.
 - i. Add 800 μI of TFA in 1.6 I of water.
 - ii. Replace every week.
- (b) HPLC mobile phase component B: acetonitrile + 0.05% TFA
 - i. Take ca 450 μI of TFA in a borosilicate glass vial. Add 400 μI of TFA in 800 mI of ACN. Discard the rest of the TFA.

ii. Replace every week.

Please observe the following: Work in fume hood with TFA or acetonitrile. Dispense the TFA under the surface of acetonitrile. Do not contaminate the original TFA bottle with acetonitrile. Store undiluted TFA under argon. Disposal of acetonitrile and TFA should conform to local regulations.

2.4 Chromatography

2.4.1 General procedure

- (a) The HPLC system should be set up as described in the manufacturers instructions including degassing, priming and changing columns.
- (b) Always use a guard column. Change the guard column if the backpressure rises or peak forms deteriorate.
- (c) Set column oven at 40 °C.
- (d) Change the HPLC gradually up to starting conditions and allow to condition.
- (e) Chromatograph the samples and standards as per the recommended HPLC gradients (see below), use 10 µl injections.
- (f) Analyse the chromatogram. Compare retention times and spectra to standards.
- (g) Calculate the microcystin concentration according to the standard curve procedure described in TOXIC_SOP_AAU_03F.

Procedure for quantitation of microcystins other than microcystin-LR in HPLC-UV work: all peaks with microcystin spectra are quantified as microcystin-LR equivalents, i.e. with the same "area to ng/injection" coefficient as for microcystin-LR. If the molecular weight of the other microcystin is known, a correction for molecular weight difference can be applied in critical cases.

2.4.2 HPLC of microcystins on a short column, suitable for samples of medium complexity; column Merck Purospher STAR RP-18 endcapped, 3 μ m particles, LiChroCART 55 x 4 mm I.D.

Do not use unnecessarily long HPLC columns with easy samples. The use of a short column saves time and solvents.

Table 1: Suggested gradient programme for Merck Purospher STAR RP-18 endcapped, 3 μ m particles, LiChroCART 55 x 4 mm I.D., linear gradient at a flow rate of 1 ml min⁻¹. Injection cycle about 11 minutes.

Time (min)	% A	% B
0.00	75	25
5.00	30	70
6.00	30	70
6.10	75	25
9.00	STOP	

Figure 1: Trace of *Anabaena* extract. Column Merck Purospher STAR RP-18 endcapped, 3 μ m particles, LiChroCART 55 x 4 mm I.D., detection at 238 nm. Other parameters as in Table 1. Retention times: microcystin-RR 2.91 min, microcystin-LR 3.56 min.

Figure 2: Trace of *Microcystis* extract. Column Merck Purospher STAR RP-18 endcapped, 3 µm particles, LiChroCART 55 x 4 mm I.D., detection at 238 nm. Other parameters as in Table 1. Retention times: microcystin-LR 3.56 min, microcystin-LY 4.58 min, microcystin-LW 5.14 min, microcystin-LF 5.29 min.

Figure 3: Overlaid traces of commercial microcystin-RR, -YR and -LR samples. Column Merck Purospher STAR RP-18 endcapped, 3 μ m particles, LiChroCART 55 x 4 mm I.D., detection at 238 nm. Other parameters as in Table 1. Retention times: microcystin-RR 2.81 min, microcystin-YR 3.33 min, microcystin-LR 3.48 min. This chromatogram

was run with an older column and the retention times have been shortened, cf. Figs. 1 and 2. The column should be replaced when the retention times have been shortened by more than 3%. Selectivity changes are possible even before this limit.

2.4.3 HPLC of microcystins on a long column, suitable for complex samples; column Merck Purospher STAR RP-18 endcapped, 5 μ m particles, LiChroCART 250 x 4 mm I.D.

Complex field or strain samples may necessitate the use of a long column.

Table 2: One possible gradient programme for Merck Purospher STAR RP-18 endcapped, 5 μ m particles, LiChroCART 250 x 4 mm I.D., linear gradient at a flow rate of 0.75 ml min⁻¹. Injection cycle about 62 minutes.

Time (min)	% A	% B
0.00	70	30
10.00	65	35
40.00	30	70
42.00	0	100
44.00	0	100
46.00	70	30
60.00	STOP	

Figure 4: Trace of *Anabaena* extract. Column Merck Purospher STAR RP-18 endcapped, 5 μ m particles, LiChroCART 250 x 4 mm I.D., detection at 238 nm. Other parameters as in Table 2. Retention times: microcystin-RR 13.07 min, microcystin-LR 19.66 min.

Figure 5: Trace of *Microcystis* extract. Column Merck Purospher STAR RP-18 endcapped, 5 µm particles, LiChroCART 250 x 4 mm I.D., detection at 238 nm. Other parameters as in Table 2. Retention times: microcystin-LR 19.64 min, microcystin-LY 28.15 min, microcystin-LW 32.47 min, microcystin-LF 33.57 min.

Figure 6: UV spectra of microcystin-LR (upper) and microcystin-YR (lower), chromatographic parameters according to section 2.4.2.

Figure 7: UV spectrum of microcystin-LW, chromatographic parameter according to section 2.4.2.

3 References

- Lawton, L.A., Edwards, C., Codd, G.A.: Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst (London) **119**, 1525-1530 (1994).
- Meriluoto, J.: Chromatography of microcystins. Anal. Chim. Acta **352**, 277-298 (1997).
- Meriluoto, J., Lawton, L., Harada, K.-i.: Isolation and detection of microcystins and nodularins, cyanobacterial peptide hepatotoxins. In: Holst, O. (Ed.), Bacterial Toxins: Methods and Protocols, pp. 65-87, Humana Press, Totowa, NJ (2000).
- Meriluoto, J.: Toxins of freshwater cyanobacteria (blue-green algae). In: Bogusz, M.J. (Ed.), Forensic Science, Handbook of Analytical Separations, Vol. 2, pp. 359-390, Elsevier, Amsterdam (2000).
- Spoof, L., Karlsson, K., Meriluoto, J.: High-performance liquid chromatographic separation of microcystins and nodularin, cyanobacterial peptide toxins, on C₁₈ and amide C₁₆ sorbents. J. Chromatogr. A **909**, 225-236 (2001).
- *Spoof, L., Meriluoto, J.:* Rapid separation of microcystins and nodularin using a monolithic silica C₁₈ column. J. Chromatogr. A **947**, 237-245 (2002).
- Spoof, L., Vesterkvist, P., Lindholm, T., Meriluoto, J.: Screening for cyanobacterial hepatotoxins, microcystins and nodularin, in environmental water samples by reversed-phase liquid chromatography-electrospray ionisation mass spectrometry. J. Chromatogr. A **1020**, 105-119 (2003).

N. B. The reader is also advised to follow up the development of the ISO standard for microcystin analysis.

ISO 20179:2005. Water quality -- Determination of microcystins -- Method using solid phase extraction (SPE) and high performance liquid chromatography (HPLC) with ultraviolet (UV) detection.

(THE ISO 20179:2005 DOCUMENT DESCRIBES A STANDARDISED METHOD FOR THE DETERMINATION OF MICROCYSTINS WHICH IS DIFFERENT FROM THE PROTOCOL DESCRIBED IN THE CURRENT SOP.)

Material added in 2008

Table 3: Suggested gradient programme for Supelco Ascentis C18, 3 μ m particles, 50 x 3 mm I.D., linear gradient at a flow rate of 1 ml min⁻¹. Injection cycle about 17 minutes.

Time (min)	% A	% B
0.00	75	25
7.00	30	70
10.00	30	70
10.10	75	25
15.00	STOP	

Figure 8: Trace of *Microcystis* NIES-107 extract. Column Supelco Ascentis C18, 3 µm particles, 50 x 3 mm I.D., detection at 238 nm. Other parameters as in Table 3. Retention times: microcystin-RR 2.53 min, microcystin-YR co-eluting with demethylated microcystin-YR 3.20 min, microcystin-LR co-eluting with demethylated microcystin-LR 3.43 min.

Figure 9: Trace of *Microcystis* PCC7820 extract. Column Supelco Ascentis C18, 3 μ m particles, 50 x 3 mm I.D., detection at 238 nm. Other parameters as in Table 3. Retention times: microcystin-LR 3.44 min, microcystin-LY 4.72 min, microcystin-LW 5.47 min, microcystin-LF 5.66 min.

SOP: Extraction of anatoxin-a or cylindrospermopsin from cyanobacterial biomass filtered on glass-fibre filters

Tööjuhend: Anatoksiin-a või tsülindrospermopsiini ekstraheerimine klaaskiudfiltril olevast sinivetikamassist

Dokumendi kood: SOP_TOXIC_UDU_06F

Koostajad: James S. Metcalf ja Geoffrey A. Codd, UDU

Kuupäev: 7 juuli 2005

1 Sissejuhatus

Sinivetikate biomassiga seotud anatoksiin-a ja tsülindrospermopsiini analüüsiks taastatakse enne tsüanotoksiinide ekstraheerimist klaaskiudfiltril olevad rakud.

2 Eksperimentaalosa

2.1 Materjalid

Kasutage analüütiliselt puhtaid reaktiive.

- (a) Klaaskiudfiltrid, näiteks Whatman GF/C, läbimõõt 25-70 mm
- (b) Argoon või lämmastik, >99.99%
- (c) Boorsilikaatkatseklaasid või –viaalid mahtuvusega üle 3 ml
- (d) Vesi, puhastatud eritakistuseni 18,2 M Ω cm (näiteks Millipore MilliQ vesi)
- (e) Metanool, HPLC-puhas (Näiteks: tootja Rathburn, Walkerburn, Scotland, UK)
- (f) Mikrotsentrifuugiküvetid
- (g) Parafilm

2.2 Eriotstarbelised seadmed

- (a) Sügavkülmik (-20 °C)
- (b) Ultrahelivann
- (c) Ultrahelihomogenisaator

- (d) Külmkuivatusseade
- (e) Rotaatorauruti või kuumutusplokk gaasivoolutusega
- (f) Mikrotsentrifuug

2.3 Töö käik

- Võtke Petri tassidel olevad külmutatud filtrikettad sügavkülmikust välja ja hoidke neid külmkuivatis kuni nad on kuivanud (ajakulu 24..48 tundi).
- (b) Asetage külmkuivatatud kettad sobivasse boorsilikaatnõusse ja lisage 1,2 ml 100% metanooli, segage ja ekstraheerige ultrahelivannil 15 minuti jooksul. Kui filtri läbimõõt on suurem kui 47 mm, toimub ekstraheerimine 2 ml metanooliga. Inkubeerimise ajal tuleks nõud katta parafilmiga.
- (c) Homogeniseerige iga proovi ultrahelisondiga 1 minuti jooksul. Enne järgmist proovi peske sondi 100% metanooliga. Ultrahelisondi kasutamisel hoidke proove jää sees, et vältida proovi liigset kuumenemist.
- (d) Tsentrifuugige ekstraktialikvoodid vähemalt 10 000 g juures 10 minuti jooksul.
- (e) Viige 500 µl supernatanti 1,5 ml boorsilikaatviaalidesse või katseklaasidesse ja aurutage kuivaks, kasutades gaasivoolutusega kuumutusplokki.
- (f) Lisage igale proovile 250 µl Milli-Q vett ja viige proov mikrotsentrifuugiküvetti.
- (g) Tsentrifuugige vähemalt 10 000 g juures 10 minuti jooksul.
- (h) Määrake supernatandis vedelikkromatograafiliselt anatoksiin-a (SOP_TOXIC_UDU_08F) või tsülindrospermopsiini (SOP_TOXIC_UDU_09F) sisaldus.

3 Kirjandusviited

- Edwards, C, Beattie, K. A., Scrimgeour, C. M. Codd, G. A.: Identification of anatoxin-a in benthic cyanobacteria (blue-green algae) and in associated dog poisonings at Loch Insh, Scotland. Toxicon **30**,1165-1175 (1992).
- Metcalf, J. S., Beattie, K. A., Saker, M. L., Codd, G. A.: Effects of organic solvents on the high performance liquid chromatographic analysis of the cyanobacterial toxin cylindrospermopsin and its recovery

from environmental eutrophic waters by solid phase extraction. FEMS Microbiol. Lett. **216**,159-164 (2002).

SOP: Analysis of environmental cyanobacterial samples by ELISA for microcystins

Tööjuhend: Mikrotsüstiinide analüüs keskkonnast võetud sinivetikaproovides ELISA abil

Dokumendi kood: SOP_TOXIC_UDU_10F

Koostajad: James S. Metcalf ja Geoffrey A. Codd, UDU

Kuupäev: 7 juuli 2005

1 Sissejuhatus

Immunoloogilist analüüsi, kaasa arvatud ELISA meetodit, on järjest enam hakatud kasutama mikrotsüstiinide avastamiseks ja kvantifitseerimiseks keskkonnaproovides ja kliinilises materjalis. Nende tundlike ja spetsiifiliste katsete puhul on mõtestatud kvantitatiivsete tulemuste saamiseks oluline proovi ettevalmistus.

2 Eksperimentaalosa

2.1 Materjalid

Kasutage analüütiliselt puhtaid reaktiive.

- (a) Vesi, puhastatud eritakistuseni 18,2 MΩ cm (näiteks Millipore Milli-Q vesi)
- (b) Microtsentrifuugiküvetid
- (c) Steriilsed mikrotsentrifuugiküvetid
- (d) Steriilsed pipetiotsikud (1000 µl)
- (e) Keeduklaasid (200-500 ml)
- (f) Jää

2.2 Eriotstarbelised seadmed

- (a) Sügavkülmik (-20 °C)
- (b) Mikrotsentrifuug
- (c) Bunseni põleti

- (d) Statiiv ja võrk
- (e) Autoklaav
- (f) Plaadilugeja
- (g) Steriilsed ühekordsed plastiksüstlad (1-5 ml)
- (h) Mikrotsüstiini ELISA komplekt

2.3 Töö käik

2.3.1 Proovide ettevalmistamine

- (a) Võtke mikrotsüstiinide ELISA proovid (SOP_TOXIC_UDU_02F) ja lõhkuge sinivetikate gaasivakuoolid täidetud proovinõud vastu lauda lüües. Selle asemel võib proovi tõmmata ka steriilsesse plastiksüstlasse, pärast seda süstlaots suletakse ning paar-kolm korda tõmmatakse süstlakolbi tagasi ja lastakse lahti.
- (b) Tsentrifuugige 10,000 g juures 5..10 minutit.
- (c) Steriilseid pipetiotsikuid kasutades eemaldage supernatant ja viige mikrotsentrifuugiküvetti.
- (d) Graanuleid ja supernatanti võib enne analüüsi säilitada -20°C juures.

2.3.2 Mikrotsüstiinide ekstraheerimine granuleeritud sinivetikatest

- (a) Kui proov on külmutatud, siis laske sellel soojeneda toatemperatuurini.
- (b) Kuumutage bunseni põletit, statiivi ja võrku kasutades 100..300 ml Milli-Q vett keemiseni.
- (c) Suspendeerige graanul uuesti 200 µl vees.
- (d) Sulgege mikrotsentrifuugiküveti kaas ning paigutage küvett 60 sekundiks keevas vesivannis olevasse statiivi.
- (e) Jahutage küvett jääga ja tsentrifuugige 10 000 g juures 5..10 minutit.

2.3.3 Microtsüstiini ELISA analüüs

(a) Analüüsige punktide 2.3.1(c) ja 2.3.2(e) kohaselt saadud supernatanti tootja juhendite järgi.

3 Kirjandusviited

- *Metcalf, J. S., Codd, G. A.* Microwave oven and boiling waterbath extraction of hepatotoxins from cyanobacterial cells. FEMS Microbiol. Lett. **184**, 241-246 (2000).
- *Metcalf, J. S.,Codd, G. A.*: Analysis of cyanobacterial toxins by immunological methods. Chem. Res. Toxicol. **16**, 103-112 (2003).

Annex:

Ülevaade tavaliste mage- ja riimveesinivetikate toksiinidest

Jussi Meriluoto, Åbo Akademi Ülikool, Turu, Soome

Toksiin	Kõige tavalisemad produtseerijad (nimekiri pole lõplik, liigid/tüved on suure muutlikkusega)	Struktuur	Toksiline toime ja sihtorganid	Mürgisus	Tervisekaitse aspektid	Piirnormid	Bio- akumulatsioon	Tüüpilised skriining- ja analüüsi- meetodid
Mikrotsüstiinid (MC)	Microcystis, Planktothrix, Anabaena, Nostoc	Tsükliline heptapeptiid ebatavaliste aminohapetega- (Adda), üle 80 variandi	Maksatoksiinid, inhibeerivad proteiinfosfataas 1 and 2A, kasvajapromootorid, vähemalt MC-LR on potentsiaalne inimkantserogeen	Enamike MC LD ₅₀ on 50-300 µg/kg (hiired, intraperitoneaalselt), suukaudne toksilisus on väiksem.	Pikaajaline kokkupuude joogivee kaudu (JV), kokkupuude suplemisel, tavaline eutroofses magevees, Tavapärasest joogivee käitlemisest ei piisa, keemiliselt püsiv.	WHO ajutine sihtväärtus 1 µg/l MC-LR jaoks joogivees (tihti tõlgendatakse kõigi MC sihtväärtusena), terrorismivastased õigusaktid	Bioakumulatsioon näit. limustes ja kalamaksas, võib esineda saastunud veega kastetud taimedes.	ELISA, HPLC- DAD, LC-MS(- MS), proteiinfosfataasi inhibeerimistest HPLC-põhine standardmeetod: ISO 20179:2005
Nodulariinid (Nod)	Nodularia	Tsükliline pentapeptiid ebatavaliste aminohapetega (Adda), umbes 10 varianti	Maksatoksiinid, inhibeerivad proteiinfosfataas 1 and 2A, kasvajapromootorid, vähemalt Nod-R on kantserogeenne.	Enamike Nod LD ₅₀ on 50-300 µg/kg (hiired, intraperitoneaalselt), suukaudne toksilisus on väiksem.	Läänemeres tavaline, kokkupuude suplusvee kaudu, keemiliselt püsiv.	Ehkki ametlikku normi pole, võib vajalikuks osutuda saastunud mereandide tarbimise piiramine.	Bioakumulatsioon näit. limustes, kalamaksas ja hahkade maksas	ELISA, HPLC- DAD, LC-MS(- MS proteiinfosfataasi inhibeerimistest
Tsülindro- spermopsiinid (Cyn)	Cylindro- spermopsis, Aphanizomenon, Anabaena	Tsükliline liitunud uratsiilitsükliga guanidiinalkaloid	Rakumürgid, kahjustavad paljusid siseorganeid (maksa, neerusid, harkelundit, südant) pärsivad valgusünteesi, DNA	Tsülindrospermopsiini LD ₅₀ on 2,1 mg/kg, (hiired, intraperitoneaalselt, 24 tunni jooksul)	Pikaajaline kokkupuude JV kaudu, kokkupuude suplusvee kaudu, esineb	Tsülindrospermopsiini sihtväärtus pakutakse 1 μg/l (Falconer et al.)	Mõningad tõendid	ELISA, HPLC- DAD, LC-MS-MS

Toksiin	Kõige tavalisemad produtseerijad (nimekiri pole lõplik, liigid/tüved on suure	Struktuur	Toksiline toime ja sihtorganid	Mürgisus	Tervisekaitse aspektid	Piirnormid	Bio- akumulatsioon	Tüüpilised skriining- ja analüüsi- meetodid
	indutiikkuseyaj		kahjustused		rakuvälisena, keemiliselt püsiv			
Anatoksiin-a, homoana-toksiin- a	Anabaena, Aphanizomenon, Planktothrix, Oscillatoria	Sekundaarne amiin, madala molekulmassiga alkaloid	Närvimürk, jäljendab närvisünapsides atsetüülkoliini toimet, kuid ei hüdrolüüsu	LD ₅₀ 200-250 µg/kg (hiired, intraperitoneaalselt)	Kokkupuude suplusvee kaudu (looduslikus vees laguneb kiiresti mittetoksilisteks ühenditeks)	Terrorismivastased õigusaktid (JV sihtväärtuseks on pakutud 3 µg/l)		HPLC-DAD, LC- MS-MS, gaaskromato- graafilised meetodid
Anatoksiin-a(S)	Anabaena	Fosfororgaaniline ühend	Närvimürk, blokeerib atsetüülkoliinesteraasi	LD ₅₀ 20 µg/kg (hiired, intraperitoneaalselt)	Kokkupuude suplusvee kaudu			LC-MS-MS
Saksitoksiinid (tuntud merenduslikus kontektis kui paralüütilised karploomamürgid (PSP)	Anabaena, Aphanizomenon, Cylindro- spermopsis Merelised vaguviburilised	Karbamaat- alkaloidid erineva sulfaatimisastmel, mõned dekarbamoüül- variandid Üle 20 variandi, kuid kõik ei esine sinivetikates	Närvimürk, blokeerib närvikiudude naatriumikanalid	Saksitoksiinide LD ₅₀ 10 µg/kg (hiired, intraperitoneaalselt.)	Kokkupuude suplusvee kaudu, akumuleerumine merekarploomades võib põhjustada surmavat mürgistust	Brasiilias JV piirnorm: 3 µg/l Normeeritud mõnedes mereandides (EL: 80 µg / 100 g karbilihas) Terrorismivastased õigusaktid Keemiarelvade konventsioon	Hästi on teada akumuleerumine merekarploomades	Keerukas HPLC derivatiseerimise ja fluorestsents- detekteerimisega, LC-MS-MS
Beeta-N-metüül- amino-L-alaniin (BMAA)	Kõik sinivetikad???	Aminohape	Närvimürk, seostatakse krooniliste degeneratiivsete närvihaigustega (ALS, Alzheimer)	Krooniline mürgisus (vaidlusalune)	Pikaajaline kokkupuude JV kaudu		Teada on akumuleerumine troopilises toiduahelas (<i>Nostoc'i</i> sümbiont, palmiseemned, nahkhiired,)	HPLC h fluorestsents- detektoriga pärast derivatiseerimist, LC-MS-MS
Lipopolü- sahharidid (LPS, endotoksiinid)	Kõik sinivetikad	Lipiidsed- sahhariidi- struktuurid Gram- negatiivsete bakterite	Arritajad, palavik, seedekulgla vaevused, allergiline reaktsioon.	Käsitletakse mittesurmavana	Kokkupuude LPS- iga võib võimendada teiste mürkide mõju			Limulus amoebocyte lysate test (LAL)

Toksiin	Kõige tavalisemad produtseerijad (nimekiri pole lõplik, liigid/tüved on suure muutlikkusega)	Struktuur	Toksiline toime ja sihtorganid	Mürgisus	Tervisekaitse aspektid	Piirnormid	Bio- akumulatsioon	Tüüpilised skriining- ja analüüsi- meetodid
		rakuseintes						

Hepatotoxic microcystins and nodularins

Over 80 known microcystins, ca 10 known nodularins. Hepatotoxins, protein phosphatase 1 and 2A inhibitors, tumour promoters

Carcinogens? International Agency for Research on Cancer 2006: Microcystin-LR is possibly carcinogenic to humans (Group 2B).

Acute neurotoxins: anatoxin-a, anatoxin-a(S), saxitoxin family; chronic neurotoxin: BMAA Cytotoxins: cylindrospermopsin family

Overview of common freshwater and brackish-water cyanobacterial toxins

Toxin Most common Structure Toxic action Toxicity **Public health** Bioaccumulation Guidelines producer genera and target concerns (not exclusive, organs

Jussi Meriluoto, Åbo Akademi University, Turku, Finland

	great variation in species/strains)							methods
Microcystins (MC)	Microcystis, Planktothrix, Anabaena, Nostoc	Cyclic heptapeptide with unusual amino acids (Adda), >80 variants	Liver toxins, inhibit protein phosphatases 1 and 2A, tumour promoters, at least MC-LR possible human carcinogen	LD ₅₀ for most MCs ca 50-300 µg kg ⁻¹ (mouse, i.p.), oral toxicity weaker	Longterm exposure via drinking water (DW), recreation exposure, common in eutrophic freshwaters, traditional drinking water treatment is inadequate, chemically stable	WHO provisional guideline 1 µg per litre for microcystin-LR in drinking water (the guideline is often interpreted as total microcystin), anti-terrorism legislation	Bioaccumulate in e.g. shellfish and fish liver, and may be present in plants irrigated by contaminated water	ELISA, HPLC- DAD, LC-MS(- MS), protein phosphatase inhibition assay Standard HPLC- based method: ISO 20179:2005
Nodularins (Nod)	Nodularia	Cyclic pentapeptide with unusual amino acids (Adda), ca 10 variants	Liver toxins, inhibit protein phosphatases 1 and 2A, tumour promoters, at least Nod-R is carcinogenic	LD_{50} for most Nods 50-300 µg kg ⁻¹ (mouse, i.p.), oral toxicity weaker	Common in the Baltic Sea, recreational exposure, chemically stable	Although not officially regulated, it may be necessary to limit the intake of contaminated seafood	Bioaccumulate in e.g. shellfish, fish liver and eider (bird) liver	ELISA, HPLC- DAD, LC-MS(- MS), protein phosphatase inhibition assay
Cylindro- spermopsins (Cyn)	Cylindro- spermopsis, Aphanizomenon, Anabaena	Cyclic guanidine alkaloid with an attached uracil ring	Cytotoxins, damage many internal organs (liver, kidney, thymus, heart) inhibit protein synthesis, DNA damage	LD ₅₀ for cylindro- spermopsin 2.1 mg kg ⁻¹ (mouse, i.p., 24 h)	Longterm exposure via DW, recreational exposure, present in extracellular form, chemically stable	Guideline 1 µg per litre for cylindro- spermopsin in drinking water advocated by Falconer et al.	Some evidence	ELISA, HPLC- DAD, LC-MS-MS

Typical

analytical

screening and
Toxin	Most common producer genera (not exclusive, great variation)	Structure	Toxic action and target organs	Toxicity	Public health concerns	Guidelines	Bioaccumulation	Typical analytical methods
Anatoxin-a, homoana- toxin-a	Anabaena, Aphanizomenon, Planktothrix, Oscillatoria	Secondary amine, low molecular weight alkaloid	Neurotoxic, mimic the effect of acetylcholine in nerve synapses but is not hydrolysed	LD ₅₀ 200- 250 µg kg ⁻¹ (mouse, i.p.)	Recreational exposure (but degrades rapidly to non- toxic in natural waters)	Anti-terrorism legislation (DW 3 µg I ⁻¹ has been suggested)		HPLC-DAD, LC- MS-MS, GC methods
Anatoxin- a(S)	Anabaena	Organo- phosphate	Neurotoxic, anticholin- esterase	LD ₅₀ 20 µg kg ⁻¹ (mouse, i.p.)	Recreational exposure			LC-MS-MS
Saxitoxins (known as paralytic shellfish poisons, PSPs, in the marine context)	Anabaena, Aphanizomenon, Cylindro- spermopsis Marine dinoflagellates	Carbamate alkaloids with different sulphation degrees. Some decarbamoyl variants. >20 variants, but not all are present in cyano- bacteria	Neurotoxic, block sodium channels in nerve axons	LD ₅₀ 10 µg kg ⁻¹ (mouse, i.p.) for saxitoxin	Recreational exposure, accumulation in marine shellfish can cause lethal poisonings	Brazil/DW: 3 µg I ⁻¹ Regulated in some seafood (EU: 80 µg / 100 g mussel meat) Anti-terrorism legislation Chemical Weapons Convention	Well-known to accumulate in marine shellfish	Complicated HPLC with derivatisation and fluorescense detection, LC-MS- MS
Beta-N- methyl- amino-L- alanine (BMAA)	All cyanobacteria???	Amino acid	Neurotoxic, associated with chronic degenerative nerve diseases (ALS, Alzheimer)	Chronic toxicity (debated)	Long-term exposure via DW		Known to bioaccumulate in a tropical food web (<i>Nostoc</i> symbiont, cycad seeds, bats,)	HPLC with fluorescence detector after derivatisation, LC- MS-MS
Lipopoly- saccharides (LPS, endotoxins)	All cyanobacteria	Lipid-sugar structures in cell walls of Gram neg. bacteria	Irritants, fever, gastrointestinal problems, allergenic responses	Regarded as non-lethal	Exposure to LPS may potentiate the efffects of other toxins			<i>Limulus</i> amoebocyte lysate assay (LAL)

Sinivetikatoksiinide analüüsi meetodid

Lisa Spoof, Åbo Akademi Ülikool, Turu, Soome

Meetod	Uuritavad toksiinid	Spetsii- filisus	Tüüpiline tundlikkus	Hind	Koolitus- vajadus	Kasutusotstarve	Mõõdetav parameeter	Põhilised puudused	Kommentaarid
Eluskatsed hiirtega	"Kõik" ägeda- toimelised mürgid	Väike	$\begin{array}{c} \text{LD}_{50} \text{ MC}, \text{ Nod} \\ \text{25-300 } \mu \text{g kg}^{-1} \\ \text{LD}_{50} \text{ Cyn } 2.1 \\ \text{mg kg}^{-1} \\ \text{LD}_{50} \text{ Anatoksiin-} \\ \text{a } 200 \text{ ug kg}^{-1} \\ \text{LD}_{50} \text{ Stx } 10 \ \mu \text{g} \\ \text{kg}^{-1} \text{ (i.p.)} \end{array}$	Keskmine	Keskmine	Skriining	Toksiline intraperitoneaalne (i.p.) toime imetajatesse	Kiiretoimelised närvimürgid võivad varjata hepatotoksiinide esinemist. Ebaeetiline, vajalik luba	1980-ndatel kasutati sageli. Tänapäeval kasutatakse tsüanotoksiinide puhul harvem, kuna on olemas paremad meetodid.
Eluskatsed selgrootutega	"Kõik" ägeda- toimelised mürgid	Väike	µg/ml kontsentratsioon (<i>Artemia</i>)	Madal	Väike	Skriining	Toksiline toime selgrootutesse	Ebakindlus tokslilisuse põhjustaja ja toimemehhanismi suhtes	Näit. Artemia eluskatse, Thamnotox komplekt
Proteiinfosfataasi inhibeerimistest (PPIA)	MC, Nod	Suur	0.2-1 µg/l kolorimeetrilise meetodiga, võimalik loodusliku vee vahetu analüüs	Madal	Keskmine	Skriining	Mürgisus spetsiifilise proteiinfosfataasi (1 või 2A) suhtes	Võib esineda teisi proteiinfosfataasi aktiivsust pärssivaid ühendeid; reaktiivide säilitusaeg piiratud	Kolorimeetrilised, fluoromeetrilised ja radiomeetriclised meetodid
Ensüümne immunosorbenttest (ELISA)	MC, Nod, Stx and Cyn	Suur	0.1 μg/l, võimalik loodusliku vee vahetu analüüs	Keskmine	Väike	Skriining/ Analüüs	Teatud klassi kuuluvate toksiinide üldkoguse määramine.	Mitmesugused mikrotsüstiinide ristuvad reaktsioonid mõjutavad kvantifitseerimist	Kõige populaarsem skriiningmeetod. Kaubanduslikud komplektid kahel kujul: katsutid ja 96-auguliste plaatidena
Kõrgrõhuvedelik- kromatograafia (HPLC) ultraviolett- või fluorestsentsdetektoriga-	"Kõik"	Suur	ng suurusjärk sisestatud proovis	Keskmine	Keskmine	Analüüs	Individuaalsete toksiinide kvantitatiivne määramine, teatud juhtudel võimalik tundmatute mikrotsüstiinide määramine UV- spektri järgi	Vaja on autentseid standardeid. Väikesed toksiini- piigid võivad kooselueeruvate lisandite tõttu märkamata jääda.	MC määramiseks on ISO standard 20179:2005. Tüüpiliselt derivatiseeritakse anatoksiin-a ja eriti Stx fluorestsents- detekteerimise võimaldamiseks.

Meetod	Uuritavad toksiinid	Spetsii- filisus	Tüüpiline tundlikkus	Hind	Koolitus- vajadus	Kasutusotstarve	Mõõdetav parameeter	Põhilised puudused	Kommentaarid
Massispektro-meetriline vedelikkromato-graafia, LC-MS või LC-MS-MS	"Kõik"	Suurim	Sõltub kasutatavast seadmest. Võib olla võimalik loodusliku vee vahetu analüüs	Kõrge	Suur	Analysis	Individuaalsete toksiinide kvantitatiivne määramine.	Vaja on autentseid standardeid. Ionisatsiooni pärssimine või võimendamine kooselueeruvate maatriksi komponentidega mõjutab kvantifitseerimist.	Tüüpiline on elektropihustus- ionisatsioon (ESI). MS- MS ioonfragmendid võivad võimalikuks teha tundmatute toksiinide identifitseerimise.
Abimaatriksiga laserdesorptsioon- ionisatsioon/ time-of- flight MS (MALDI-TOF MS)	"Kõik"	Suur	Sõltub suuresti kasutatavast seadmest	Kõrge	Keskmine	Analüüs	Kvalitatiivne või poolkvantitatiivne, individuaalsete toksiinide esinemine	Off-line meetod, piiratud kvantifitseerimisvõime	Allikajärgne lagundamine tundmatute metaboliitide identifitseerimiseks, põhineb ioonide fragmentatsioonimustritel.
Õhukese kihi kromatografia (TLC)	"Kõik"	Keskmine	Optimaalsetes tingimustes MC 10 ng laigu kohta	Madal	Väike	Analüüs	Peamiselt kvalitatiivne	Vajab autentseid standardeid, keeruliste provide analüüsimine raskendatud	
Kapillarelektroforees (CE)	"Kõik"	Suur	Võrreldav HPLC-ga	Kõrge	Suur	Analüüs	Individuaalsete toksiinide esinemine kvantifitseerimisega	Tehnilised raskused seoses meetodi tundlikkuse ja nõudlikkusega.	Võimalik optiline ja massispektromeetriline detekteerimine
3-metoksü-2-metüül-4- fenüülbutaanhape, (kvantifitseerimine MMPB-ga)	MC, Nod	Suur	Keskmine	Keskmine	Suur	Skriining/Analüüs	MC ja Nod üldkoguse määramine. Toksiinistandardeid pole vaja (ainult MMPB standard)	Aeganõudev. Adda mittetoksilised variandid või vaba Adda põhjustab ülehindamist.	Adda oksüdatiivne lõhustamine järgneva kromatograafilise detekteerimisega.

Antx-a = anatoksiin-a, Cyn = tsülindrospermopsiin, MC = mikrotsüstiin, Nod = nodulariin, Stx = saksitoksiin

Methods for cyanobacterial toxin analysis

Lisa Spoof, Åbo Akademi University, Turku, Finland

Method	Target toxins	Specificity	Typical sensitivity	Cost	Need of training	Suitabie for	Measures	Main downsides	Other comments
Mouse bioassay	"All" acutely acting toxins	Low	$\begin{array}{c} \text{LD}_{50} \mbox{ MC}, \mbox{ Nod} \\ 25\text{-}300 \mb$	Medium	Medium	Screening	Mammalian toxicity through intraperitoneal route (i.p.)	Quick-acting neurotoxins may mask the presence of hepatotoxins, unethical, needs license	Was used frequently in the 1980s but now less frequently for cyanotoxins as better methods have become available
Invertebrate assays	"All" acutely acting toxins	Low	µg ml ⁻¹ levels (<i>Artemia</i>)	Low	Low	Screening	Invertebrate toxicity	Uncertainty about the cause of toxic agent and mechanism	E. g. <i>Artemia</i> bioassay, Thamnotox kit
Protein phosphatase inhibition assay, PPIA	MCs, Nods	High	0.2-1 µg l ⁻¹ for the colorimetric assay, direct analysis of natural waters possible	Low	Medium	Screening	Toxicity directed against a specific protein phosphatase (1 or 2A)	Other compounds inhibiting PP activity may be present in the samples, limited lifetime of reagents	Colorimetric, fluorometric and radiometric assays
Enzyme-linked immunosorbent assay, ELISA	MCs, Nods, Stxs and Cyn	High	0.1 µg l ⁻¹ , direct analysis of natural waters possible	Medium	Low	Screening/ Analysis	Presence of total toxin from a specific class with quantitation	Different cross- reactivities of MCs affect the quantitation	Most popular screening method. Commercial kits in two formats: tubes and 96-well plates
High- performance liquid chromatography with UV (or FL) detection	"All"	High	ng levels per injection	Medium	Medium	Analysis	Presence of individual toxins with quantitation, UV spectral based detection of unknown MCs may be possible	Needs authentic standards. Small toxin peaks can be overlooked due to coeluting impurities	MCs have an ISO standard, number 20179:2005. Antx-a and especially Stxs are typically derivatised to enable fluorescence detection.

Method	Target toxins	Specificity	Typical sensitivity	Cost	Need of training	Suitabie for	Measures	Main downsides	Other comments
Liquid chromatography - mass spectrometry, LC-MS or LC- MS-MS	"All"	Highest	Strongly dependent on the instrument used. Direct analysis of natural waters may be possible	Expensive	High	Analysis	Presence of individual toxins with quantitation	Needs authentic standards. Ion suppression or enhancement by co-eluting matrix substances affect quantitation	Electrospray ionisation, ESI, typical. MS-MS fragmentation patterns can make the detection of unknown toxins possible
Matrix-assisted laser desorption/ ionisation time- of-flight MS, MALDI-TOF MS	"All"	High	Strongly dependent on the instrument used	Expensive	Medium	Analysis	Qualitative or semi- quantitative, presence of individual toxins	Off-line technique, limited quantitation possibilities	Post-source decay for identification of unknown metabolites based on fragmentation patterns
Thin-layer chromatography TLC	"All"	Medium	In optimal conditions 10 ng /spot MCs	Low	Low	Analysis	Mainly qualitative	Needs authentic standards, complex samples difficult to analyse	
Capillary electrophoresis, CE	"All"	High	Comparable to HPLC	Expensive	High	Analysis	Presence of individual toxins with quantitation	Technical obstacles related to sensitivity and robustness	Optical and MS detection possible
3-methoxy-2- methyl-4- phenylbutyric acid, MMPB, quantitation	MCs, Nods	High	Medium	Medium	High	Screening/ Analysis	Detects total MCs and Nods. No toxin standards needed (only MMPB standard)	Time-consuming. Non-toxic variants of Adda or free Adda lead to overestimation	Oxidative cleavage of Adda followed by chromatographic detection

Antx-a = anatoxin-a, Cyn = cylindrospermopsin, MC = microcystin, Nod = nodularin, Stx = saxitoxin

Valik ülevaateartikleid ja meetodeid võrdlevaid kirjandusviiteid / Selected review articles and references containing comparisons of methods

- Chorus, I., Bartram, J. (Eds.): Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring, and Management. E & FN Spon, London (1999).
- *Fastner, J., Codd, G. A., Metcalf, J. S., Woitke, P., Wiedner, C., Utkilen, H.*: An international intercomparison exercise for the determination of purified microcystin-LR and microcystins in cyanobacterial field material. Anal. Bioanal. Chem. **374**, 437-444 (2002).
- Hawkins, P. R., Novic, S., Cox, P., Neilan, B. A., Burns, B. P., Shaw, G., Wickramasinghe, W., Peerapornpisal, Y., Ruangyuttikarn, W., Itayama, T., Saitou, T., Mizuochi, M., Inamori, Y.: A review of analytical methods for assessing the public health risk from microcystin in the aquatic environment. J. Water SRT Aqua 54, 509-518 (2005).
- Marsálek, B., Bláha, L.: Comparison of 17 biotests for detection of cyanobacterial toxicity. Environ. Toxicol. 19, 310-317 (2004).
- *Meriluoto. J.*: Toxins of freshwater cyanobacteria (blue-green algae). In *Bogusz, M. J.* (Ed.), Handbook of Analytical Separations, vol. 2: Forensic Science, pp. 359-390. Elsevier, Amsterdam (2000).
- Meriluoto, J., Codd, G. A. (Eds.): TOXIC: Cyanobacterial Monitoring and Cyanotoxin Analysis. Åbo Akademi University Press, Turku (2005).
- Metcalf, J. S., Codd, G. A.: Analysis of cyanobacterial toxins by immunological methods. Chem. Res. Toxicol. 16, 103-112 (2003).
- Osswald, J., Rellán, S., Gago, A., Vasconcelos, V.: Toxicology and detection methods of the alkaloid neurotoxin produced by cyanobacteria, anatoxin-a. Environ. Int. 33, 1070-1089 (2007).
- Rapala, J., Erkomaa, K., Kukkonen, J., Sivonen, K., Lahti, K.: Detection of microcystins with protein phosphatase inhibition assay, high-performance liquid chromatography-UV detection and enzyme-linked immunosorbent assay. Comparison of methods. Anal. Chim. Acta 466, 213-231 (2002).
- van Apeldoorn, M. E., van Egmond, H. P., Speijers, G. J., Bakker, G. J.: Toxins of cyanobacteria. Mol. Nutr. Food Res. 51, 7-60 (2007).
- Spoof, L., Vesterkvist, P., Lindholm, T., Meriluoto, J.: Skriining for cyanobacterial hepatotoxins, microcystins and nodularin in environmental water samples by reversed-phase liquid chromatography-electrospray ionisation mass spectrometry. J. Chromatogr. A **1020**, 105-119 (2003).
- Törökné, A., Asztalos, M., Bánkiné, M., Bickel, H., Borbély, G., Carmeli, S., Codd, G.A., Fastner, J., Huang, Q., Humpage, A., Metcalf, J., Rábai, E., Sukenik, A., Surányi, G., Vasas, G., Weiszfeiler, V.: Interlaboratory comparison trial on cylindrospermopsin measurement. Anal. Biochem. **332**, 280-284 (2004).

Viide ISO (International Organization for Standardization, http://www.iso.org) mikrotsüstiinide määramismeetodile Reference to the ISO (International Organization for Standardization, http://www.iso.org) method for determination of microcystins

• *ISO 20179:2005.* Water quality -- Determination of microcystins -- Method using solid phase extraction (SPE) and high performance liquid chromatography (HPLC) with ultraviolet (UV) detection.