
Distributed
 Computing

Android Benchmark

Master Thesis

Gino Brunner

brunnegi@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Pascal Bissig, Philipp Brandes

Prof. Dr. Roger Wattenhofer

April 7, 2016

Abstract

Every time a new phone hits the market, and often even before that, it is run
through countless numbers of synthetic benchmarks that showcase its computing
prowess. People rarely talk about real-world performance, and if they do, it is
either anecdotal (“The phone feels very snappy”, “Only occasional hick-ups”,
“Apps launch immediately”), or in the form of manual side-by-side app-launching
comparisons on YouTube. At the time of writing, there are, to the best of our
knowledge, no real-world performance benchmark applications on Google Play.

We present the first such application, called DiscoMark, which is now freely
available on Google Play and does not require root access. DiscoMark uses
the standard AccessibiltyService Android-API to measure the launch-times of
applications; an actual real-world performance metric. Users can select which
applications they want to include in the benchmark and how often the test should
be run for averaging. DiscoMark then presents the average result for each app,
and allows exporting more detailed results in CSV-format for further analysis.
Furthermore, it allows users to compare their own results to those of our other
users and gives tips on how to improve performance. DiscoMark can also be used
to gain a better understanding of real-world performance and to figure out what
factors influence it the most. For example, one can easily determine the effect
that clearing all recent apps, or rebooting the phone has on performance.

We show results of several such experiments that were performed using Dis-
coMark. We found, for example, that the battery saver mode on the Samsung
Galaxy S6 does not save any battery during active use, but reduces performance
by about 50%. We also analysed the influence that the installing of new apps
has on phone-performance, and compared the performance of different versions
of Android on a Nexus 5. After a successful release and promotion, many people
downloaded DiscoMark and we managed to gather data from over 5000 users
and more than 1000 different phones. We gained many insights into real-world
performance from analysing the collected user-data. Among other things, we dis-
covered that uninstalling the Facebook-App brings an average speed-up of 19%
and that the OnePlus One bests all other phones in real-world performance, es-
pecially when apps are already in memory (hot-starts). Overall, we found that
synthetic benchmarks are a useful indicator of real-world performance, i.e., on
average, newer and faster phones tend to perform better in the real world. How-
ever, these benchmarks only reveal a small part of the entire picture, and the
benefits of real-world benchmarking are manifold.

i

Contents

Abstract i

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

2 Related Work 3

2.1 Record and Replay of User Interactions 3

2.2 Android Benchmarking . 4

3 Benchmarking Methodology 6

3.1 Conventional Benchmarking . 6

3.2 Real-World Benchmarking . 7

3.3 Record and Replay . 7

3.3.1 RERAN . 8

3.3.2 Mosaic . 9

3.3.3 VALERA . 11

3.3.4 Android AccessibilityService 13

3.3.5 Feasibility . 18

3.4 Application Picker and AccessibilityService 19

3.4.1 Real-World Performance Metric 19

3.4.2 Application Picker . 21

4 DiscoMark: Real World Benchmarking Application 22

4.1 DiscoMark Application . 22

4.1.1 UI and Functionality . 22

4.1.2 AccessibilityService Replayer 27

4.2 Server Side . 28

ii

Contents iii

5 Lab Experiments 30

5.1 Setup . 30

5.2 Methodology . 30

5.3 Individual App Performances . 31

5.3.1 Top 30 Applications Experiment 31

5.4 Per-Phone Performance Evolution 37

5.4.1 Samsung Galaxy Note II 37

5.4.2 LG G2 . 38

5.4.3 LG Nexus 5 (5.1.1) . 39

5.4.4 LG Nexus 5 (6.0) . 40

5.5 Phone Performance Evolution - Comparison 41

5.6 Conventional Benchmarks vs. DiscoMark 42

5.7 OS Version vs. Performance . 45

5.8 Galaxy S6 Battery Saver Test . 46

5.9 Discussion of Results . 48

6 User-Data Analysis 51

6.1 DiscoMark Promotion and Statistics 51

6.2 Rebooting Improves Performance 52

6.3 Uninstalling Facebook and Messenger 56

6.4 Cold and Hot Starts . 59

6.5 # Installed Apps vs. Performance 68

6.6 DiscoMark vs. Geekbench . 71

7 Conclusion and Outlook 76

7.1 Conclusion . 76

7.2 OS Performance Tests . 76

7.3 DiscoMark and User-Data . 77

7.4 DiscoMark as a Service . 78

Bibliography 79

Chapter 1

Introduction

1.1 Motivation

Conventional benchmarking applications to measure the performance of a given
system have been around for many years. For Windows, Futuremark’s bench-
mark suites, including 3DMark, PCMark, etc., are among the most popular
and sophisticated ones. 3DMark, as the name suggests, measures the system’s
graphics performance. It includes several testing scenarios that focus on graphics
performance, CPU physics performance and GPU/CPU stress tests. PCMark
focuses on performance benchmarks related to business and home applications,
such as Microsoft Office and Adobe products, as well as on storage performance
and battery life. Many other benchmark applications exist that are similar to
3DMark and PCMark.

Since the rise of the smartphone somewhere around 2007, the need for mo-
bile benchmarking applications has become apparent, and many applications
now serve this need. Among the most popular currently available on Google
Play are AnTuTu, 3DMark, Geekbench, Quadrant, Vellamo, GFXBench and
PCMark. These apps are similar to each other, as they measure a phone’s
performance based on certain closed testing scenarios, including different kinds
of computations in order to test different parts of the hardware. For exam-
ple, AnTuTu measures performance in the categories 3D, UX, CPU and RAM.
Quadrant is similar to AnTuTu, however, instead of testing UX performance it
includes an I/O benchmark. 3DMark, like its PC counterpart, and GFXBench
focus on graphics performance. Geekbench measures CPU performance, while
Vellamo also tests browser performance. PCMark simulates real-world applica-
tions, such as Pinterest, photo-editing software and video playback, in order to
provide a performance measure that is closer to actual real-world performance
as felt by the user, as opposed to the artificial performance measures that most
other benchmark software provides. However, even PCMark does not actually
perform real-world tests, as it still only simulates real-world apps. Generally, sev-
eral benchmarking apps claim to test real-world performance, while in reality,
they measure simulated real-world performance.

1

1. Introduction 2

Measuring actual real-world performance is difficult, and even more so due to
the highly fragmented nature of the Android ecosystem: Many different versions
and flavours of Android are running on thousands of phones from hundreds of
manufacturers. Furthermore, every person uses his phone differently and installs
different apps, and therefore will have a different user-experience. Conventional
benchmarks do not factor in these individual factors, nor do they measure any
real-world metrics. Thus, we cannot be sure that a high benchmark score cor-
responds to high performance in all situations. For example, a certain phone
might have high-end hardware, but due to bad implementation of the operating
system, still perform worse than similar phones. Another phone might perform
as expected until a certain number of apps are installed, or a large number of
background processes is running, and then suddenly experience a sharp drop in
performance. A third phone might have a custom caching implementation and
keep only a small number of apps in memory. These and other phenomenon
cannot be detected by synthetic benchmarking applications, and we as users
therefore remain ignorant, and either have to trust the manufacturer or subjec-
tive reviews when making our buying decisions. Our goal is therefore to build a
novel benchmarking application that allows for actual real-world benchmarking.
Using the app we can then gain new insights into real-world performance of An-
droid phones. Since, in the end, all we care about when it comes to a phone’s
performance is real-world performance, such a benchmarking-application is much
better suited to guide us in our buying decision. After all, we don’t care if our
brand-new phone scores highest in AnTuTu, if our old phone is still running
more smoothly.

1.2 Contributions

In summary, our main contributions are:

1. Analysed feasibility of different approaches to perform real-world bench-
marking on Android devices

2. Developed DiscoMark, a real-world benchmarking application for Android.
DiscoMark does not require root-access and can therefore be downloaded
and used by everyone

3. Analysed a large amount of data from the users of DiscoMark and gained
many insights into real-world performance of Android phones

4. Performed a series of controlled experiments using DiscoMark that allowed
us to gain further insights that could not be easily obtained from user-data

Chapter 2

Related Work

2.1 Record and Replay of User Interactions

Record and Replay of user interactions has been a subject of research for many
years, and has been studied on various platforms, including desktop computers
and Android.

Most of the existing Application/GUI-level approaches serve the purpose of
application testing. Google provides several tools, among which are AndroidJU-
nitRunner [1], UI Automator [2], Espresso [3], UI/Application Exerciser Mon-
key [4] and monkeyrunner [5]. AndroidJUnitRunner is a JUnit 4-compatible
test runner for Android, able to work with UI Automator and Espresso test
classes. UI Automator is a testing framework that provides a set of APIs to
build blackbox UI tests that perform interaction on user and system apps; it
is available since Android 4.3. In contrast to UI Automator, Espresso enables
the writing of white box-style automated tests, i.e., it requires the code of the
app being tested. UI/Application Exerciser Monkey runs on an emulator/device
and generates pseudo-random streams of events (clicks, touches, gestures, etc.),
and is mainly used for stress-testing applications. Monkeyrunner provides an
API for controlling a device from an ADB shell. Its main purpose is to per-
form application tests at the functional/framework level and to run unit test
suites. The approaches mentioned above, while not specifically designed to per-
form record-and-replay, could be used to perform record-and-replay on Android
devices. Limitations of those approaches include limited cross-device capability,
lack of timing accuracy, limited capability to replay complicated touch gestures,
requirement of knowledge of underlying app-code or need for external control
over ADB.

Over the past few years, dedicated record-and-replay frameworks have been
developed. Gomez et al. [6] introduced RERAN, a record-and-replay framework
for Android that at the time of publication, was able to record and replay 86
out of the top-100 free Android apps. RERAN captures the driver-level event
stream of the phone, which includes GUI and sensor events. The captured events

3

2. Related Work 4

can later be injected by a phone-based agent and are replayed with microsecond
accuracy. Limitations include the lack of cross-device capability due to driver-
differences between different phones. Furthermore, RERAN does not support
sensor-events, since these events are not accessible due to security issues.

Zhu et al. [7] introduce Mosaic, which extends RERAN with cross-device
capability. They do so by introducing a virtual screen abstraction technique.
Touchscreen specific input events are virtualized, and can later, through reversing
the process, be replayed on another phone. Mosaic requires calibration in order to
be able to translate between different devices. Furthermore, it requires changes
to the Android Framework and like RERAN, is not able to record and replay
sensor input. At the time of publication, Mosaic was able to record and replay
45 out of 50 tested applications.

The authors of [6] introduced their follow-up work, VALERA, which improves
upon many of the shortcomings of both RERAN and Mosaic, albeit at the cost
of higher complexity. VALERA is able to record and replay sensor and network
input, event schedules and inter-app communication via intents. Like Mosaic,
it requires an instrumented Android Framework. However, also the apps them-
selves must be instrumented through byte-code rewriting, in order to perform
API interception.

As will be discussed in Chapter 3, we evaluate many of the mentioned record-
and-replay approaches for their feasibility to be used as part of a real-world
benchmarking application, but eventually end up taking a different approach.
Our solution does not strive to be a full-fledged record-and-replay framework,
but instead focuses only on necessary features, and we can therefore use high-
level Android APIs, which in turn enable us to achieve our goal without requiring
phones to be rooted and without the problems of inter-device capability.

2.2 Android Benchmarking

There are many benchmarking applications available on Google Play. The most
popular applications include AnTuTu [8], GFXBench [9], 3DMark [10], Base-
mark OS II [11] and Vellamo [12]. AnTuTu and Basemark OS II are general-
purpose benchmarks and test devices according to a variety of performance met-
rics. GFXBench and 3DMark focus on graphics performance, while Vellamo
mainly tests CPU speed. These benchmarks are artificial; they use internal com-
putations and measurements to determine the performance of a device, instead
of measuring performance during real-world usage. PCMark Mobile attempts
to be more representative of “real-world” usage, by using mock-up versions of
Pinterest, photo-editing software and by performing video playback.

Pandiyan et al. [13] performed a performance and energy consumption anal-
ysis for a collection of smartphone applications, which they call MobileBench.

2. Related Work 5

MobileBench includes benchmarks for real-world usage, including web browsing,
photo rendering and video playback. Unlike above mentioned benchmark ap-
plications, MobileBench is a framework that requires an external experimental
setup in order to assess performance.

Kim and Kim [11] developed AndroBench, a tool to measure the storage-
performance of Android phones. AndroBench measures sequential and random
IO performance and the throughput of SQLite queries. Users can tune param-
eters of the benchmark, which arguably allows for real-world testing of storage
performances.

The mentioned benchmarking tools and methods are limited by their repre-
sentation of real-world conditions, or by the need for external measurements. As
will be discussed in Chapter 3, we opt for a benchmarking approach that truly
measures a real-world performance metric. Furthermore, we require our frame-
work to be self-contained, i.e., a simple app that can be used without external
measurements and instrumentation.

Chapter 3

Benchmarking Methodology

In this chapter we discuss the feasibility of different approaches to benchmarking
by performing record-and-replay. Section 3.1 gives an overview of conventional
benchmarking techniques for mobile phones, and explains why we need to go
into a different direction for this thesis. In Section 3.3 we discuss the possibility
of benchmarking through full-fledged record-and-replay, in the style of [7, 6, 14],
where we would record the usage pattern of a user, and later replay it on another
device and measure the performance difference. We will also present our own
approach for record-and-replay using the Android AccessibilityService. Section
3.4 introduces our final solution to real-world benchmarking.

3.1 Conventional Benchmarking

Conventional benchmarking applications (AnTuTu, Geekbench, Vellamo, etc.)
are designed for controlled repeatable tests, since the test cases are closed sce-
narios within the benchmarking application. Therefore, they are good for testing
the theoretical performance of the hardware, and based on that, doing compar-
isons between different phones. However, real-world performance is not neces-
sarily reflected in those measurements, as the factors that influence it are too
diverse and complex. For example, having dozens of apps running in the back-
ground can noticeably slow down a phone’s overall responsiveness. However,
conventional benchmarks will not tell that the current real-world performance of
a phone is slow. As they perform closed tests, which are hardly influenced by the
real state of the phone, they yield almost the same results no matter when they
are performed. As an example, imagine performing a conventional benchmark
on a new phone. Then, some time later, when the UI of the phone is getting
sluggish because too many background processes are running, you are to perform
the same test again. The conventional benchmark applications will show very
similar results for both situations. We tested this and the results are discussed
in Section 5.6.

An important factor in phone-performance, apart from the underlying hard-

6

3. Benchmarking Methodology 7

ware, is the software that runs on top of it. Android is not only highly fragmented
when it comes to hardware; there are also many different versions and flavours of
the Android OS, where different manufacturers apply their own changes to the
Android-core. Every change to vanilla Android can potentially result in changes
in performance. Furthermore, real-world performance heavily depends on the
current state of the phone: (1) number of installed apps, (2) number of apps
running in the background, (3) nature of the background-apps, (4) version of
the OS, (5) memory-management of the OS, (6) usage patterns, (7) frequency
of reboots, etc. All these factors influence real-world performance, and mostly,
we can only make guesses about the influence of these factors, while making
quantitative assessments is difficult and conventional benchmarking applications
cannot help us here.

In the next section we define what we mean by real-world benchmarking.

3.2 Real-World Benchmarking

As explained in the previous section, conventional benchmarking applications
are not adequate to represent the current real-world performance of a phone.
Rather, they are a measure of theoretical performance, not taking into account
many of the performance-affecting factors that were discussed.

Our definition of real-world benchmarking is that the performance of a phone
needs to be measured based on actual instead of synthetic computations, or even
simulated real-world usage. In order to achieve results that genuinely represent
real-world performance, one has to work with actual applications from Google
Play, and then simulate or replay a user’s interactions with those apps. During
that simulation, one measures certain performance metrics. These metrics are by
definition real-world metrics, and therefore, by measuring them, we can perform
real-world benchmarks. There are two main-challenges that need to be solved:

1. Simulate real-world user-interaction on a phone, for example through record-
and-replay

2. Measure real-world performance metrics during the simulation

In the next sections, we discuss different approaches for how to overcome
those challenges and to develop a framework for real-world benchmarking.

3.3 Record and Replay

Arguably the most sophisticated solution for a personalized, real-world bench-
mark would be full-fledged record-and-replay. A user’s usage pattern is recorded,

3. Benchmarking Methodology 8

and then later replayed on the same, or on another, phone. During the replay
process, one measures certain performance metrics, which then result in a per-
sonalized, real-world performance measure. For example, by recording one’s
usage pattern, replaying it on the latest phones that hit the market, and then
comparing those results, one could make better informed buying decisions based
on the benchmark results.

There are different levels of record-and-replay. The more accurate the re-
play, the higher the complexity of the framework. One could imagine only re-
playing the opening and closing of applications, simple button presses, more
complicated gestures such as swipes and pinch-to-zoom or even sensor data and
non-deterministic events. In the following, we will discuss three of the record-
and-replay frameworks mentioned in Chapter 2, namely RERAN [6], Mosaic [7]
and VALERA [14] in order of their publication. Additionally, we introduce a new
record-and-replay approach using the Android AccessibilityService interface. Fi-
nally, we talk about the feasibility of these approaches for the purposes of this
thesis.

3.3.1 RERAN

RERAN [6] (REcord and Replay for ANdroid) directly captures the low-level
event stream of the phone, including GUI and certain sensor events. Thus, it
operates at the driver-level. Since Android is based on a Linux kernel, one can
simply read the /dev/input/event* files to capture event data. Touchscreen
gestures are encoded as a series of events, without direct evidence as to the type
of gesture. Figure 3.1 shows such a series of events corresponding to a swipe
gesture. Since the events are captured at driver-level, they are dependent on the
actual driver-implementation, which varies strongly across devices (see Figure
3.2).

RERAN uses the getevent tool of the Android SDK to read events from
/dev/input/event*, thus generating a live log trace of the input events on the
phone. After the logging-phase, RERAN translates the event-trace into Android
input events, as seen in Figure 3.1.

Initially, the authors used Android SDK’s sendevent tool to send single in-
put events to the phone. In order to, for example, replay a swipe gesture, one
would send all the constituting events sequentially, as seen in Figure 3.1. How-
ever, sendevent turns out to have a small lag, which can cause gestures to be
broken up, e.g., a swipe turns into a series of presses. Therefore, RERAN in-
coroporates its own replay-agent that lives directly on the phone. To the phone,
it appears as an external agent, generating events through the phone’s input
devices. RERAN also supports selective replay, i.e., one can supress specific
classes of events, such as compass or gyroscope events. For the replay to work,
the phone must be rooted. One big caveat of RERAN is the lack of inter-device

3. Benchmarking Methodology 9

Figure 3.1: The events generated by a single swipe gesture [6]

capability. Since it captures low-level driver events, and as mentioned before,
the driver-implementations vary between devices, one cannot record on device X
and replay on device Y.

The authors experimentally determined the performance of their record-and-
replay capabilities. They managed to replay 86 out of the top 100 apps on Google
Play. Time overhead is roughly 1%, which they claim to be negligible. Trace
files are also kept small and therefore have no negative impact on the phones
performance during the recording.

3.3.2 Mosaic

Mosaic [7] is based on RERAN [6] and tackles the inter-device capability issue
using a virtual screen abstraction approach.

The authors list several aspect that make inter-device capability difficult:

Screen Size and Orientation Record-and-replay of actions/events often re-
lies on Cartesian coordinates. Also, the origin of the coordinate system

3. Benchmarking Methodology 10

Figure 3.2: Illustration of touchscreen driver fragmentation, measured across 26
devices for finger press [7]

is in the top-left corner. However, after rotating a phone in clockwise
direction, the origin is now in the top-right corner

Screen Resolution UI elements are ultimately arranged according to physical
pixels, and elements can occupy different numbers of pixels on different
devices

Touchscreen Quantization Digitalizing the user input into discrete values
that can be used by the system. Touchscreen quantization values can vary
between devices, and do not always correspond to their physical resolutions

Touchscreen Driver The touchscreen driver communicates the touchscreen’s
state to the operating system. Different touchscreen models communicate
state in different ways. Actions like swipes are also represented differently.

3. Benchmarking Methodology 11

Application Framework Version Different versions of Android can expect
different events from the touchscreen driver. Also, vendors themselves can
change the Android source code.

Virtual Soft Keys Virtual soft keys occupy screen space, i.e., they affect the
touchscreen quantization

In order to overcome these difficulties, Mosaic translates real touchscreen
interactions into interactions on a virtualized touchscreen. To translate from
real to virtualized touchscreen interactions and vice versa, Mosaic requires a
training phase, which consists of a single swipe. In addition, they use dumpsys to
retrieve more information, such as default orientation, resolution, etc. Recording
is the same as for RERAN, see Section 3.3.1, as it just uses Android’s getevent
tool to read the event-stream. After recording, the events are virtualized form
the source-phone, and then translated to fit the target-phone. Replaying is also
basically the same as with RERAN, with some small additions to improve timing.

Their experimental analysis showed that they could record and replay 45 of 50
tested applications. Lag is imperceptible during recording, time overhead is less
than 0.2% and memory overhead is negligible. As with RERAN, Mosaic requires
the phone to be rooted, and it requires changes to the Android Framework.

3.3.3 VALERA

VALERA [14] (Versatile yet Lightweight Record-and-Replay for Android) is the
follow-up work to RERAN, and like Mosaic, solves the inter-device compati-
bility problem, and also supports record-and-replay of non-deterministic events
and inter-app communication. However, unlike Mosaic, VALERA ensures inter-
device compatibility by performing API interception to record communication
between apps and the system; this also takes care of nondeterministic events
such as network events, sensor inputs and inter-app communication via intents.
Furthermore, VALERA can record and replay event schedules.

VALERA consists of two parts; (1) a runtime component and (2) an API
interception component. Instrumented apps run on top of an instrumented An-
droid Framework (AF), which runs on top of an unmodified VM and kernel. App
instrumentation is achieved through byte-code rewriting, and is crucial in order
to intercept API calls and intents. App instrumentation is done automatically
by using an off-the-shelf tool called Redexer. First, a Scanner takes the original
APK file and an Interceptor specification, and then finds all the call-sites in the
bytecode that match the specification and should therefore be intercepted. The
Interceptor generator produces a dynamic intercepting module and a stub that
is then passed to the Redexer, who finally performs the bytecode-rewriting and
repackaging. AF instrumentation is done manually and used to log and replay
the event schedule.

3. Benchmarking Methodology 12

Interception of events and elimination of nondeterminism is achieved as fol-
lows:

Motion and Key Events: Main sources that drive app execution. RERAN
supports complex interactions since it records event streams at the OS
driver level, however, it has no knowledge of the app’s event order. VALERA
records motion and key events on the app’s side by intercepting dispatch-
InputEvents.

Sensor Events: (1) low-level sensors (accelerometer, gravity, gyroscope, etc.)
are invoked via the SensorManager API, and (2) high-level sensors (GPS,
Camera, audio, etc.) use upcalls and downcalls.

Network non-determinism: Network-traffic is intercepted and written to a
log. During replay, the network-traffic is fed to the app from the log instead
of from the network interface.

Random number nondeterminism: The random number API can also cause
non-determinism. Depending on the API, VALERA intercepts just the
seed, or every generated random number.

Intercepting Intents: VALERA intercepts onActivityResult() methods to ob-
tain, e.g., an image captured by the camera

Event Schedule: The deterministic record-and-replay of the event schedule
(simplified: which binder/looper/background thread does what and when)
is slightly more involved, and we therefore refer the reader to the relevant
parts of the original paper [6].

Finally, record-and-replay is achieved through auto-generated stubs:

Stubs API call interception is realized by redirecting the original API call to
a stub. This ensures that during replay, the app uses the recorded data
instead of fresh sensor data

Timing VALERA also records the timestamp of each intercepted method. Feed-
ing from the log is much faster than real-world execution, therefore, VALERA
has to sleep specified times in order to ensure the same speed of execution
as during the original recording

Exceptions VALERA also records and replays any runtime exceptions.

Their experimental analysis shows negligible overhead, and performance ex-
ceeds previous approaches. Although not specifically mentioned, we assume that
RERAN also requires the phones to be rooted.

3. Benchmarking Methodology 13

Table 3.3 summarizes the important differences between the approaches pre-
sented above. We can conclude that RERAN is not feasible for our purposes,
since it cannot record on one device and then replay on another. Mosaic and
RERAN could in theory both be used to measure a phone’s performance during
replay, since they are, to the best of our knowledge, the most full-featured record-
and-replay frameworks for Android. Thus, they can basically record and replay
everything (with small differences), and therefore, one could measure many dif-
ferent metrics to determine a phones performance. There would definitely be
issues to be resolved, especially when it comes to finding suitable performance
metrics, and the timing of events. For example, recording on a brand-new, high-
end phone and then replaying on a 2-year old, very slow device, could lead to
problems.

Unfortunately, RERAN is also the only framework where the source code
is available. Furthermore, as they are more capable than RERAN, Mosaic
and VALERA have more complex implementations. So, while very powerful
and in theory capable of performing personalized, real-world benchmarks, re-
implementing either Mosaic or VALERA ourselves does not lie within the scope
of this thesis. Furthermore, the strict root-requirement poses restrictions on the
possible user-base, and would make crowd-sourced data collection even more dif-
ficult. Also, in Section 3.3.4 we will show that we do not need such a powerful
record-and-replay framework, but can instead rely on a standard Android API,
which in itself has many advantages.

RERAN Mosaic VALERA

requires root y y y

inter-device capable n y y

requires app instrumentation n n y

requires changes to AF y y y

replay non-deterministic events n n y

source code available y n n

overall ranking 3rd 2nd 1st

overall implementation complexity low middle high

Figure 3.3: Comparison of relevant aspects of the presented record-and-replay
frameworks

3.3.4 Android AccessibilityService

Android provides an Interface called AccessibilityService that helps developers
improve usability for users with impaired vision, hearing, etc. An accessibil-
ity service runs in the background like a normal service, and receives callbacks
from the system when AccessibilityEvents are fired. An AccessibilityEvent de-
notes some kind of state transition in the user interface, e.g., focusChanged,

3. Benchmarking Methodology 14

buttonClicked, etc. On receiving such an event, the accessibility service can
query the content of the current window, e.g., traverse the view-tree, in order to
extract useful context-information. Once the accessibility service has extracted
all necessary information, it can then perform an action, such as clicking a but-
ton, sending an intent, scrolling, swiping, etc.

The obvious advantage of using a standard Android API library, as opposed
to the driver-level solutions discussed earlier, is the inherent inter-device capabil-
ity and future-proofness of the resulting implementation. However, we will later
see that there are still differences between devices of different manufacturers,
even when using such a high-level library. The goal is still to capture a user’s
interactions with the phone, and then to replay them on any other phone. The
types of user-interactions we want to record-and-replay are given here:

1. Open Application

2. Close Application (Press Home Button)

3. Open and close “Recent Applications”

4. Press Back Button

As mentioned before, an AccessibilityService can perform certain actions that
allow it to interact with a phone. The goal is to use these Accessibility Actions
to mimic the user-interactions, so that they can be replayed on another phone.
The most relevant Accessibility Actions are the following:

Global Actions

Home : Corresponds to pressing phone’s home button

Back : Corresponds to pressing phone’s back button

Recents : Open up the “Recent Apps” drawer

Notifications : Pull down notifications window

For a complete list and more information, see [15].

Local Actions

Click : Click a view element, e.g., button

For a complete list and more information, see [16].

Before we can use Accessibility Actions to replay user-interactions, we first
need to record those user-interactions, based on the incoming Accessibility Events.
The following is a list of the relevant Accessibility Events:

3. Benchmarking Methodology 15

• TYPE_WINDOW_CONTENT_CHANGED: Usually fired when one or more view-
elements of the current windows change

• TYPE_WINDOW_STATE_CHANGED: Fired when an application is closed or opened,
“Recent Apps” is opened, the screen is unlocked or a dialog (e.g. app
chooser) pops up or is dismissed.

• TYPE_VIEW_CLICKED: Fired when a button, or any other view element, is
clicked

• TYPE_VIEW_SELECTED: Fired when an App is started from the “Recent
Apps” spinner

• TYPE_VIEW_FOCUSED: When a view-element, like a text field, gains focus

There are more types of events, but these five were determined to be the
most relevant ones based on experiments where we analyzed the types of events
that are fired during different usage scenarios. An excerpt of those experiments
can be seen in the Tables 3.4, 3.5. For certain Actions, e.g., opening an appli-
cation, we recorded the Accessibility Events that were fired. We also extracted
attributes from the events themselves, namely PackageName, ClassName, Text,
ContentDescription. PackageName and ClassName correspond to the activity
that caused the event, e.g., the App being started, or the Android launcher. Text
and ContentDescription are attributes that give additional information, such as
the name of the view-element that was clicked. Under misc. we listed other
interesting attributes when applicable, such as the position of the view-element
that was selected.

3
.

B
e
n
c
h
m
a
r
k
in
g

M
e
t
h
o
d
o
l
o
g
y

16

Open Application “My Files”

Nr. EventType PackageName ClassName Text ContentDescription misc.

1 VIEW
CLICKED

com. sec. app.
launcher

android. widget.
TextView

[My Files] My Files

2 WINDOW
STATE
CHANGED

com. sec. an-
droid. app. my-
files

com. sec. an-
droid. app. my-
files. MainActiv-
ity

My Files null

3
(some-
times)

WINDOW
CONTENT
CHANGED

com. sec. an-
droid. app. my-
files

android. widget.
ListView

null ItemCount:
12509

Figure 3.4: AccessibilityEvents that are fired when opening the application “My Files”

Pull Down Notifications

Nr. EventType PackageName ClassName Text ContentDescription misc.

1 WINDOW
STATE
CHANGED

com. android.
systemui

android. widget.
FrameLayout

[Notification
shade.]

null

2 WINDOW
CONTENT
CHANGED

com. android.
systemui

android. widget.
FrameLayout

null

Figure 3.5: AccessibilityEvents that are fired when pulling down the notifications window (swipe gesture)

3. Benchmarking Methodology 17

One important thing to realize from these user-interactions and their corre-
sponding Accessibility Events is that interactions like swipes and pinch-to-zoom
do not fire any events, and can therefore not be recorded (see the lack of a “swipe
event” in Table 3.5). This fact alone means that full-fledged record-and-replay is
not achievable with the AccessibilityService API, and we therefore need to focus
on more basic interactions, such as the opening and closing of applications.

However, even for relatively simple user-interactions, the translation from
Accessibility Events (generated by user-interactions) to Accessibility Actions is
not trivial. It is made difficulty by the large number of different kinds of in-
teractions (open/close apps, swipe, scroll, etc.) and by differences between the
AccessibilityService-events across different phones. Furthermore, many different
user-interactions can produce the same event-sequences, which are then hard to
distinguish reliably.

We implemented a proof-of-concept in order to better assess the feasibility
of this new approach. In the following, we will briefly describe the three main
building blocks of the PoC Android app: The recorder service and the replayer
service.

Recorder Service

The recorder starts listening to Accessibility Events. As long as the recorder
is running, incoming Accessibility Events are written to a buffer that is then used
to match the Accessibility Events to Accessibility Actions. The matched actions
are then encoded for the replayer. The replayer needs to distinguish between
global and local actions. A global actions is always a one-step process, i.e., “go
to home screen”. A local action on the other hand can consist of several micro
actions. Micro actions are the steps that need to be done before, e.g., actually
clicking on a button. For example, before we can click a button, we first need to
obtain a reference to it by traversing the view tree. Therefore, the micro actions
need to encode the necessary steps for the replayer to successfully perform these
steps. Micro actions are not a part of the API, but a construct that we built to
help us replay more complex user-interactions.

Replayer Service

The replayer, like the recorder, is also an Accessibility Service. It receives
a list of global and local actions from the recorder that it has to replay. One
important aspect of record-and-replay is the timing with which actions are ex-
ecuted. Being a high-level library, the AccessibilityService does not allow for
accurate timing. However, there are some timing-constraints that have to be
taken into consideration. For example, one cannot just iterate through the list
of actions and issue them as fast as possible, since the phone will not be able
to keep up. Therefore, we have to ensure that an issued Accessibility Action
terminates, i.e., has fired certain Accessibility Events, before we issue the next
action in the list. Since we know the actions we are performing, and we also

3. Benchmarking Methodology 18

know the kinds of events that will be triggered due to those actions, we know
when a certain action has terminated. For example, if the next action in the list
is “Close Application” (i.e. press home button), we know from our experiments
that we expect a WINDOW_STATE_CHANGED event. Therefore, after issuing the
global “Close Application” action, we wait for the next WINDOW_STATE_CHANGED
event to arrive. Once it arrives, we issue the next action, and so on.

3.3.5 Feasibility

Using the PoC Android application, we were able to record a series (of arbitrary
length) of user-interactions on one phone, and then replay it on the same, or
certain other phones.

However, we quickly realized that our record-and-replay solution did not
work well across all devices we tested it own, mainly due to differences in how
the AccessibilityService worked. In the following, we list the biggest problems
with the AccessibilityService-driven record-and-replay approach:

1. There are differences between devices when it comes to the kinds of Ac-
cessibilityEvents that are fired. For example, an LG G4 does not fire a
CLICK event when the user opens an application that was placed inside a
folder on the home screen, therefore, there is no way of determining that
an application was opened by a click. Meanwhile, a Samsung Galaxy Pro
tablet fires CLICK events as expected.

2. There are differences between devices when it comes to how they access
the view elements of the current window. For example, an LG G4 accesses
all launcher screens as one view tree, i.e., whenever a view element (e.g.,
an icon) is on any of the home-screens, it can be retrieved. The Samsung
Galaxy Pro Tablet on the other hand only retrieves the window content of
the currently visible home-screen. If the app-icon we are looking for is on
another screen, it cannot be found without swiping left/right and searching
again. However, swipes on the home screen cannot be recorded/replayed,
and furthermore, a left/right swipe cannot be performed using the Acces-
sibilityService.

3. Certain functions (e.g. getRootInActiveWindow()) return different values
on different phones. On the LG G4 for example it always returned a widget
that was placed on the home screen, instead of the home screen itself, and
therefore made view tree traversal impossible.

In order to accurately replay the opening/closing of applications, the first
item is a deal-breaker. However, there is a workaround for this; we can always
start an Activity using an intent, even though the user actually clicked on it

3. Benchmarking Methodology 19

(given we can figure out the class and package of the activity that was started,
which we usually can by inspecting the WINDOW_STATE_CHANGED events). The
problem with this approach is that it is not consistent across devices, and we
are not accurately replaying what the user did. In other words, on some devices
we can replay all the clicks the user made, i.e., we can start all applications by
performing CLICK actions. On other devices, all or most applications have to be
started using intents. This makes it difficult to compare results across devices.

These are the main reasons why we decided to abandon the record-and-replay
approach in favour of something more reliable, as described in the next section.
An important goal of ours is to make the benchmarking-application platform-
agnostic, that is, it has to work regardless of phone model and manufacturer.
Unfortunately, as we have seen after testing our PoC on only a handful of phones,
there are too many uncertainties that we cannot control. However, we keep many
of the parts that were described in this section, and basically only replace the
recording-part.

3.4 Application Picker and AccessibilityService

This section introduces our final approach to real-world benchmarking. Many of
the basics have already been covered in Section 3.3.4, and we will therefore focus
on the new parts. The actual implementation of the Android application will be
covered in Chapter 4. Section 3.4.1 introduces our real-world performance metric
and shows how we measure it. Section 3.4.2 explains how we use an Application
Picker in order to get rid of the problematic recorder-part, while still keeping
the personalization-aspect of our benchmark.

3.4.1 Real-World Performance Metric

Our benchmark is based on following real-world metric:

Application Launch Time : During the simulation of user-interactions we
measure how long it takes for applications to open

The reasons for choosing this metric are mainly the relative ease of imple-
mentation, reliability and representativeness of real-world use. Starting an ap-
plication is something we do very often on our phones, and any slow-down is
immediately noticeable. Also, it is very well defined since there are only very
few ways to start an application. Furthermore, we can focus on the simulation
of a small, well-defined set of user-interactions and ignore intra-app interactions
(pressing buttons, typing text, etc.), which helps us circumvent many of the
difficulties presented in Section 3.3.5.

3. Benchmarking Methodology 20

In order to measure the launch time of an application, the replayer logs infor-
mation about the started application together with a timestamp. Furthermore,
it also records the relevant AccessibilityEvents that can tell us when an applica-
tion has started. The basic functionality of the replayer is still like described in
Section 3.3.4: It issues actions from an action-list, waits for the expected Acces-
sibilityEvent, and issues the next action. All while logging relevant information,
that will later be used by the benchmarker to compute the launch-times.

There are two kinds of events that we can use to determine when an appli-
cation is fully launched:

1. STATE_CHANGED

2. CONTENT_CHANGED

Before moving on, we need to decide how exactly to measure the launch-times
of applications. To that end, we recorded a video of a phone opening and closing
a series of apps using an early version of our benchmarking app that already
included an application picker. We then computed the pixel-difference between
frames using the Manhattan Norm:

||x||1 :=
n∑

i=1

|xi| (3.1)

Plotting the difference between frames allowed us to accurately determine
when an app visibly starts and finishes loading. We can then compare these
times to the timestamps of the AccessibilityEvents that were generated.

Figure 3.6 shows the changes between frames in form of the Manhattan norm
of the pixel-differences between frames. Every spike belongs to an app being
launched, and clearly depicts start and end of the app-launch.

Figure 3.6: Manhattan Norm of the difference between frames plotted against
the frame number.

For all the app-starts, there was a CONTENT_CHANGED event that was close
to the end of each respective peak, and always closer than the STATE_CHANGED

3. Benchmarking Methodology 21

event, which comes a little bit earlier. However, it was not always the last
CONTENT_CHANGED event, and there was no easily discernible pattern, or a way of
figuring out which of the CONTENT_CHANGED events to choose for measuring the
launch-times. Furthermore, the CONTENT_CHANGED events are less reliable, be-
cause the performance of loading view-elements heavily depends on the content
(number of pictures in the Gallery app), or the speed of the Internet connection
(e.g. Facebook, Twitter, and many more). Since almost all apps exhibit either
one or both of the just discussed dependencies, measuring launch-times by using
CONTENT_CHANGED events incorporates many uncertain influences that we cannot
account for. Another significant problem with CONTENT_CHANGED events is that
they are not always fired, or multiple of them are fired, and they can be fired
by almost anything: Alerts, incoming messages, toasts, advertisment banners,
etc. Some of those cases can be dealt with by inspecting the class and pack-
age names of the activity that caused the events; if it does not correspond to
the application that is currently open, they can be dismissed. However, some
applications feature dynamic advertisment banners that generate events that
cannot be distinguished from events fired due to the app still being launched.
Other applications like Amazon Kindle and Amazon Audible generate pop-up
dialogs for synchronizing the current position across devices. Those alerts fire
CONTENT_CHANGED events and usually pop up 1-2 seconds after the applications
have started, which of course causes the launch-time measurement to be wrong.
Facebook for example will show that new elements arrived in your feed, which
will also fire CONTENT_CHANGED events. These situations are hard to deal with,
and are different for every app.

Due to these issues, we decided to go for the more robust solution of using
STATE_CHANGED events as basis for our measurements. Nevertheless, we still
record all the events that are triggered during the benchmark, and they are
stored in the database for possible future analysis.

3.4.2 Application Picker

In Section 3.3.4 we have established that record-and-replay using the Accessibil-
ityService interface is not practical. Therefore, we substitute the recorder for an
application picker. Instead of recording usage patterns, users choose which apps
they want to include in the benchmark. This also gives users more direct control
and arguably offers improved functionality and user-friendliness over record-and-
replay. Furthermore, as will be discussed in Chapter 5, it allows us to perform
experiments in a more controlled way.

Chapter 4

DiscoMark: Real World
Benchmarking Application

In this Chapter we will briefly cover the implementation of our Android bench-
marking application DiscoMark, which is based on the groundwork that was laid
in Chapter 3.

4.1 DiscoMark Application

DiscoMark implements the AccessibilityService-based benchmarking technique
introduced in Sections 3.3.4 and 3.3.5. It provides users with the means to
perform a personalized benchmark that tests the real-world performance of their
phones, based on the launching of applications. In the following sections, we
will cover the most important parts of the application, while omitting most
implementation details.

4.1.1 UI and Functionality

In this section, we will explain the functions of the app while going through the
different screens. The actual replay-process and benchmarking will be discussed
in Section 4.1.2.

Figure 4.1 shows the home screen of the application, where a user can ei-
ther choose to perform a new benchmark, look at past benchmark results or let
DiscoMark analyse the last benchmark run he performed.

22

4. DiscoMark: Real World Benchmarking Application 23

Figure 4.1: Home screen of DiscoMark.

The Application Picker is shown in Figure 4.2. A user can choose between all
installed launchable apps. The idea is that he picks his most-used applications,
representing his real-world usage pattern and thus personalizing the benchmark.
Once all applications are picked, he can start the benchmark. The benchmark
will be performed for a specified number of runs, over which the benchmark
results are averaged. Therefore, choosing a higher number will result in more
meaningful results, however, depending on the number of apps that were picked,
the process can take a long time. During one run, DiscoMark cycles through the
list picked applications and launches each in turn. Once it reaches the end of the
list, it starts over again until the specified number of runs is reached. Therefore,
every application will be launched run times.

4. DiscoMark: Real World Benchmarking Application 24

Figure 4.2: Application picker. User can pick the application he wants to include
in the benchmark.

When DiscoMark finishes the last run, the benchmarker computes the re-
sults, which are then displayed to the user as can be seen in Figure 4.3. For each
application that was included in the test, the average launch-time is displayed.
On the bottom of the screen, the number of runs that were performed, as well
as the average time per run is shown. Users have the possibility to replay this
exact benchmark at any point in time, such that they do not have to re-pick
the applications. This is especially useful when doing controlled tests, for ex-
ample, compare the performance before and after a reboot. Users also have the
possibility to export detailed results as CSV-files for further analysis. For every
tested app and for every run, the app exports the launch-time. Therefore, if
there were any errors that caused outliers, one can easily remove them. Further-
more, apps start slowest when they are not already in memory (cold-start) and
the launch-times then gradually get shorter over the next few runs (hot-starts),
which can skew the results if one just looks at averages. Exporting the results in
CSV format makes it possible to separate hot- and cold starts and analyse them
separately.

4. DiscoMark: Real World Benchmarking Application 25

Figure 4.3: Result activity. For each tested application, DiscoMark displays the
average launch-time. It also displays the number of runs, and the average time
per run.

When a user clicks on one of the application result-rows as seen in Figure
4.3, DiscoMark shows a new screen, where the performance for a particular app
is compared across all users in our database. This is shown in Figure 4.4.

Figure 4.4: For each tested application, DiscoMark retrieves numbers from other
users from the server and compares them to your own result.

4. DiscoMark: Real World Benchmarking Application 26

DiscoMark can analyse, and compare to other users, the results of the last
performed benchmark. We only use the last performed benchmark because it
best represents the current state of a phone. A possible result of the analysis can
be seen in Figure 4.5. First, we indicate whether the phone performs normally
when compared to the same phone from other users. Then we compare its
performance to that of other phones. Finally, if available, we provide some tips
on how to improve the performance.

Figure 4.5: Based on the last benchmark performed, DiscoMark performs an
analysis of the phone’s performance by comparing the result to that of other
users.

Finally, Figure 4.6 shows the settings-screen of the application, which lets
users change the number of runs the benchmark will perform.

4. DiscoMark: Real World Benchmarking Application 27

Figure 4.6: Settings screen. Users can choose for how many runs they would like
to perform the benchmark.

4.1.2 AccessibilityService Replayer

Most of the functionality of the replayer was already discussed in Section 3.3.4.

The application picker packs the picked applications into a special format,
and encodes the necessary actions. The replayer then cycles through those Ac-
cessibility Actions for the specified number of runs. In other words, it starts
one application after the next until the specified number of runs is reached.
While doing so, it writes important information, such as Accessibility Events,
package/class names, timestamps, etc. to a log file. The log file is used by the
benchmarker to compute the results, display them to the user and upload them
to the server. As explained in Section 3.3.4, the replayer itself is an Accessibili-
tyService, and can therefore react to AccessibilityEvents. So, when the replayer
starts a new application, it knows that there will soon be a STATE_CHANGED event
fired by the application that was just started. As soon as it sees that event, it
can start the next application in the list. However, we are not only interested
in the timestamps of the STATE_CHANGED events, as explained earlier, but also
in the view-elements that are loaded after. The loading of view-elements then
often fires CONTENT_CHANGED events, which we also want to write to the log file.
Therefore, we need to make sure that we give the applications enough time to
finish starting before we go on. Through inspecting our experimental results, we
determined that waiting for approximately five seconds after the STATE_CHANGED
event arrives works well.

After the replayer finishes, the benchmarker analyses the log files gener-

4. DiscoMark: Real World Benchmarking Application 28

ated by the replayer and computes the benchmark results. The benchmarker
then generates a couple of result-files that are subsequently used to display the
benchmark-results to the user, and to upload all the data to our server. For the
upload to the server, the data is converted into JSON and then asynchronously
uploaded. In order to distinguish data from different users, a hash is generated
for every phone and sent to the server, together with the benchmark-results and
more information about the user’s phone.

4.2 Server Side

The backend of our application is implemented with Django,1 and we use MySQL
as our database engine. The server reacts to POST requests from the Android
application, and takes/returns data formatted as JSON. The backend consists
of the following models and views:

Models

BenchmarkResult : Contains data concerning each benchmark-run: Unique
user ID (hash), uptime, number of runs, os version, app version, phone
model, phone manufacturer, processor model, RAM, resolution, memory
threshold, number of installed apps, number of tested apps

SingleAppResult : For each app in a benchmark-run we create an instance of
SingleAppResult that contains the application name, package/class names
and launch-time information for each run. It is linked to BenchmarkResult
through a foreign-key relationship.

LogFile : We upload the raw log-files. Therefore, if we detect an error/bug
along the way, we can go back and re-compute the results to perform our
analysis. The log files are linked to BenchmarkResult through a foreign-key
relationship.

InstalledApps: A list of all installed apps. This information might be useful
later when we analyse the performance across our user-database. This will
allow us to slice the dataset based on one or more apps that a user has
(or has not) installed. This model is linked to BenchmarkResult through
a foreign-key relationship.

BackgroundApps: A list of applications that were running in the background
before and after the benchmark. This model is linked to BenchmarkResult
through a foreign-key relationship.

1https://www.djangoproject.com/

https://www.djangoproject.com/

4. DiscoMark: Real World Benchmarking Application 29

In the next chapter we present the results of our lab experiments using the
actual application that was introduced in this chapter, and present the insights
gained from them.

Chapter 5

Lab Experiments

In order to get a better understanding of how phones perform and what the
factors are that influence performance the most, we used DiscoMark (as outlined
in Chapter 4) and performed a series of experiments. With the insights gained
from those experiments, we were able to make well-informed decisions as to how
we shall proceed, and as to what improvements we will make to the Android
application.

5.1 Setup

Figure 5.1 depicts our experimental setup. We included three different phones,
the Samsung Galaxy Note II, the LG G2 and the LG Nexus 5. In the case of
the Nexus 5, we performed the experiments twice, once with Android 5.1.1, and
once after upgrading to Android 6. The LG G2 and Nexus 5 have very similar
specifications, while the Note II is roughly one year older. In fact, according to
AnTuTu and PCMark, the Note II is expected to perform roughly 30-50% slower
than its rivals.

5.2 Methodology

For most of the experiments, we performed our benchmark with 29 popular apps
and chose the number of benchmark-runs to be 15. We then gradually installed
more and more apps from Google Play’s top-apps list. Each time we installed
new apps, we ran the same benchmark again. We started with only those 29 (we
will call it “Top 30” from now on) apps installed (in addition to pre-installed
apps), and then in each iteration we installed 20 new apps, until we reached
approximately 160 additional apps.

Before each run of the experiment, we initialized every newly-installed app
by running the benchmark with all applications picked, i.e., we launched every
application on the phone once. This was to make sure that the newly-installed

30

5. Lab Experiments 31

Figure 5.1: Setup of our experiment. Three different phones and four versions
of Android were used.

applications had the chance to initialize, and potentially start their background-
processes. Furthermore, we tried to keep the parameters of the experiment the
same for all phones to ensure “fairness” between the phones. For example, we
did not deliberately restart any phones during the experiment runs. However,
as will be discussed shortly, some of the phones basically stopped working and
had to be rebooted, which led to interesting observations. Prior to the first
experiments, we reset all phones to their factory settings. We placed all phones
very close, and at the same distance, to a WiFi access point, in an attempt to
eliminate performance-differences due to unfair network factors.

5.3 Individual App Performances

5.3.1 Top 30 Applications Experiment

In the first iteration of our experiment, we performed the benchmark for the
top 30 apps. Figures 5.2, 5.3 and 5.4 show the results for this experiment,
broken down to a per-app level. So, for each app that was included in the

5. Lab Experiments 32

benchmark, we can see how long it took to launch over the course of 15 runs of
the experiment. We then proceeded to install more and more apps, for a total of
10 different experiments. We will not show all subsequent plots, but rather show
the aggregated results in Sections 5.4 and 5.5. In order to give the reader an
understanding of the kinds of plots we created for each experiment (Top30+0,
Top30+20, etc.), we show the plots for the first experiment Top30+0.

On the x-axis we have the apps that were included in the benchmark, and for
each app, we see the launch-times over 15 runs in form of boxes that show the
standard deviation and variance. We see that many apps show similar relative
launch-times on all three phones, and most have small variance. A few apps,
such as Dropbox, Facebook, Messenger, Snapchat and Amazon Kindle exhibited
stronger fluctuations in our tests.

5. Lab Experiments 33

Figure 5.2: Results of top 30 experiment for Galaxy Note II

5. Lab Experiments 34

Figure 5.3: Results of top 30 experiment for LG Nexus 5

5. Lab Experiments 35

Figure 5.4: Results of top 30 experiment for LG G2

In order to make it easier to compare the three phones on a per-app basis,
we created bar diagrams for each experiment. Figure 5.5 shows a comparison
between the average launch time of each individual app for the tested phones.
The x-axis is sorted in ascending order by the red bar (Galaxy Note II). We can
see that there is an upward trend to the right, i.e., all three phones’ launch-times
increase in similar fashion. However, there are a few outliers. Furthermore, while
the Note II has faster times for Netflix, Shazam and Spotify, it lags behind for
Google Play Books, Maps and Amazon Kindle. This shows that it is not enough

5. Lab Experiments 36

to just measure the launch-time of a single app in order to determine a phone’s
overall performance. Also, keep in mind that these plots are only from the first
experiment; the remaining nine show different characteristics for some apps.

Figure 5.5: Comparison between average launch times for each app on all three
tested phones (Top30+0 experiment)

5. Lab Experiments 37

5.4 Per-Phone Performance Evolution

As mentioned earlier, instead of showing plots of all 10 experiment-iterations,
we created graphs that summarize the results for each phone.

Figures 5.6, 5.7, 5.8, 5.9 show the results aggregated over all tested apps. On
the x-axis we have the experiment-iterations, where the ticks signify how many
additional apps have been installed at that point. The y-axis shows the sum of
the launch-times of all 29 apps. Each box consists of 15 values corresponding to
the 15 runs that were performed.

Overall, there is a clear trend: More installed apps means longer app launch-
times, i.e., slower performance. However, there are several oddities in the plots
that warrant closer inspection.

5.4.1 Samsung Galaxy Note II

In Figure 5.6 we see a strictly monotonic decrease in performance until the
“+140” mark, where performance suddenly increases, and variance decreases.
This was because the Galaxy Note II restarted itself after the “+120” experiment.
We then later restarted the Note II again, this time on purpose, and again saw
an increase in performance (“+160 rest.”).

5. Lab Experiments 38

Figure 5.6: Evolution of total launch-time per run for the Samsung Galaxy Note
II.

5.4.2 LG G2

Figure 5.7 shows the performance-evolution of the LG G2. While the G2 never
force-restarted itself, there was an anomaly at the “+100” tick. This was very
likely due to updates running in the background. Usually, after installing 20 ad-
ditional apps, we would first let the phones update the new apps, and only then
start the next experiment-round. However, it is likely that in that case the up-
dates were not done before the experiment, but rather were started automatically
by the phone during the tests. In other instances, huge performance-decreases
were observed when updates where running in the background.

Apart from that, the LG G2’s performance decreased with more installed
apps, and as we can see from the last x-tick, rebooting only brought the variance

5. Lab Experiments 39

down, but did not increase average performance.

Figure 5.7: Evolution of total launch-time per run for the LG G2.

5.4.3 LG Nexus 5 (5.1.1)

Figure 5.8 shows the performance-evolution of the Nexus 5 with Android-version
5.1.1. This graph looks very different from what we had expected. We see several
jumps that look like exponential increases, followed by sudden drops. Before each
of those drops, the Nexus 5 stopped working and had to be restarted in order
to continue the experiments. This graph provides more evidence that restarting
your phone can greatly improve performance, especially after installing many
new apps. Furthermore, it proves that there are huge differences between phones,
and that these differences cannot be discovered with conventional benchmarking
apps. Now we know that users with a Nexus 5 running Android 5.1.1 should be

5. Lab Experiments 40

especially mindful of frequently rebooting their phone to increase performance.

Figure 5.8: Evolution of total launch-time per run for the LG Nexus 5 with
Android 5.1.1

5.4.4 LG Nexus 5 (6.0)

After updating the Nexus 5 from Android 5.1.1 to 6.0, we performed the experi-
ments again to see if the problems from before had been fixed. Figure 5.9 shows
that the stability-issues are largely gone. Only once, before the “+100” test, did
the Nexus 5 reboot itself, which again led to an increase in performance. Over-
all, the graph shows a steady decrease in performance with increasing number
of installed apps.

5. Lab Experiments 41

Figure 5.9: Evolution of total launch-time per run for the LG Nexus 5 with
Android 6.0

5.5 Phone Performance Evolution - Comparison

Finally, we aggregate the plots from Section 5.4 into a single graph, shown in
Figure 5.10. Overall, we see that in this experiment, the Nexus 5 (5.1.1) per-
formed best, given frequent reboots. The Note II fared very well, considering it
is the oldest phone, and it certainly performed better than the results from An-
TuTu and PCMark had suggested. All phones showed a decrease in performance
with an increasing number of installed apps. The black circles in the plot denote
reboots, and give us an idea of how much this affects a certain phone’s perfor-
mance. We can certainly say that rebooting generally increases performance, and
we will investigate this further based on real-world user-data. Finally, it seems
that upgrading the Nexus 5 from Android 5.1.1 to 6.0 decreased optimal per-

5. Lab Experiments 42

formance (performance measured after both phones were freshly rebooted). We
will investigate the performance-differences between Android-versions further in
an improved and better-controlled experiment.

Figure 5.10: Performance evolution of all phones compared. Black circles mark
when a phones was rebooted.

5.6 Conventional Benchmarks vs. DiscoMark

In this section, we compare the conventional benchmarking apps AnTuTu and
PCMark to DiscoMark. Specifically, we want to determine how the three apps
reflect the real-world performance of phones. Thus, we performed tests with all
three apps in two different states for each phone: Once directly after a factory
reset, and once in the “30+160”-state, i.e., the state of the last of our ten exper-
iments where each phone had roughly 200 apps installed. We know from before
that the DiscoMark-scores show a slow-down for all phones when installing more
and more apps. We would expect that AnTuTu and PCMark show much less of
a difference. In fact, by design, the conventional benchmarking apps should not
show any difference at all, since they are made to measure the theoretical per-
formance of a phone in an encapsulated manner, i.e., through simulation within

5. Lab Experiments 43

a closed app that should eliminate the effects of outer influences.

Figures 5.11, 5.12 and 5.13 show the differences between the three bench-
marking apps. The x-axis shows the two states the phones were in, as just
described. The y-axis depicts a normalized score, where the slower performance
was normed to be 1. Therefore, Figure 5.11 shows that, in our experiments,
DiscoMark showed roughly a 65% slowdown from the Factory reset state to
the “30+160” state for the Galaxy Note II. AnTuTu and PCMark also showed
slightly decreased performances, although nowhere near the value of DiscoMark.
The same holds true for the LG G2 (Figure 5.12) and the Nexus 5 (5.13).

These results tell us two things:

1. The conventional benchmarking apps are not completely agnostic to the
phone state, i.e., they are also influenced by how many apps are installed
(more running background processes).

2. The performance-difference that AnTuTu and PCMark report is much
smaller than the one reported by DiscoMark. This shows us that we cannot
use existing benchmarking apps to measure real-world performance, since
they do not reflect the slow-down of application-launches

Figure 5.11: Comparison between scores of DiscoMark, PCMark and AnTuTu
for the Galaxy Note II.

5. Lab Experiments 44

Figure 5.12: Comparison between scores of DiscoMark, PCMark and AnTuTu
for the LG G2.

5. Lab Experiments 45

Figure 5.13: Comparison between scores of DiscoMark, PCMark and AnTuTu
for the Nexus 5.

5.7 OS Version vs. Performance

Among Android users, Android 5.0.1 has a notoriously bad reputation due to
performance problems. Many people also think that CyanogenMod will always
be faster than stock Android. Furthermore, it is a common notion that phones
get slower with age, i.e., with newer versions of Android. In order to verify these
claims we performed an extensive series of tests on a Nexus 5 and seven different
versions of Android. The results can be seen in Figure 5.14. The experiments
were repeated many times to make sure the results were consistent. The y-axis
shows the average application launch-time.

As expected, the performance of Android 5.0.1 is exceptionally slow compared
to all other Vanilla versions. We can also see that Google did a good job of fixing
the problems of 5.0.1, as the performance of 5.1.1 is very good. The same trend,
at least qualitatively, can be seen between 4.4 and 4.4.4, which also was a small
update functionality-wise, but focused on stability and performance instead.

Surprisingly, we see that CyanogenMod 12 (Android 5.1.1) performed very
badly, especially compared to its Vanilla counterpart. This might have been a
one-time thing though, since we see that CyanogenMod 11 (Android 4.4.4) almost
performs on the same level as its Vanilla counterpart. However, the notion that

5. Lab Experiments 46

CyanogenMod makes your phone faster does not seem to hold, at least for the
Nexus 5 with Vanilla Android. It might very well be that CyanogenMod actually
performs better than flavoured versions of Android, e.g., Samsung TouchWiz.
This is only speculation however, and subject of future work.

Finally, we see that performance has gradually improved (with exception of
5.0.1), and the Nexus 5 performs substantially better under Android 6.0.1 than
with 4.4. Therefore, unless Google makes another 5.0.1, there is no reason not to
upgrade your Nexus phone to the newest Android versions. If, after an upgrade,
DiscoMark reveals that performance has decreased, one can easily downgrade
again (at the cost of data loss).

Figure 5.14: Performance of the Nexus 5 with different versions of Android. The
19 most popular apps among DiscoMark users were started for 10 runs, and this
was repeated several times for each bar in the graph. Outliers were removed

5.8 Galaxy S6 Battery Saver Test

In this last experiment, we investigated the influence of screen brightness and the
battery saver mode on the performance and battery life of the Samsung Galaxy

5. Lab Experiments 47

S6. The green bars denote that the battery saver was active, and the percentage
on top of the bars shows how much battery was used up during the test. The
height of the bars themselves shows the average launch-time for an app, i.e., the
overall performance (higher means slower). The experiments were carried out
for three different screen brightness settings: 0, 50 and 100%.

Figure 5.15 shows that the battery saver mode did in fact not save any bat-
tery, but decreased performance by roughly 50%. As expected, screen brightness
makes a big difference. A brightness setting of 100% used about 50% more
battery than when the brightness was set to 0%. The test was performed by
selecting 20 apps and performing the benchmark for 30 runs. The duration of
the entire benchmarking process was around 75 minutes.

From these results we can conclude that turning on battery saver is practically
useless when the (Samsung) phone is being used actively, and strongly decreases
performance. Battery saver modes likely prolong battery life when the phone is in
standby, by limiting background processes, synchronization and network activity.
So, until Samsung comes up with a smarter battery-saver, that does not reduce
performance during active use, users would need to manually enable/disable the
battery saver. We have not tested the behaviour of other manufacturer’s battery
saver modes, and therefore leave this for future work.

5. Lab Experiments 48

Figure 5.15: Influence of different screen-brightnesses and the battery-saver mode
on the battery life and performance of the Samsung Galaxy S6. The percentages
above the graphs denote how much battery-life was used up after the test. For
the test, the 19 most popular apps among DiscoMark users were started for 30
runs, and this was then repeated several times for each bar in the graph. Outliers
were removed.

5.9 Discussion of Results

Our experiments showed the performances of three phones under different cir-
cumstances. While this is interesting, the goal of these experiments was not just
to compare these phones, but also to gain a better understanding of how well
DiscoMark works, and what factors influence real-world performance, and how
it relates to performance-measurements by conventional benchmarking applica-
tions. The insights gained from the experiment will be crucial in determining
which steps to take next, and in improving DiscoMark itself and prepare it for
release.

Below, we list the most important findings from our experiments:

5. Lab Experiments 49

• Real world performance depends on many variables:

– Phone hardware

– OS version

– Number of installed Apps

– Running background processes

– Running updates in the background

– Network connection speed/quality

– Time since last restart

– Having recently installed new apps without restarting

• Measuring only one app is not enough to predict a phones performance for
all other apps

• Restarting helps to increase performance. In certain cases, the improve-
ments are dramatic

• The performance of all phones decreased when installing more and more
apps. The performance decreases ranged between 30%-70%

• Conventional benchmarks (by design) fail to represent real-world perfor-
mance, and this also showed in our experiments. DiscoMark on the other
hand allowed us to get quantitative insights that would not be possible
otherwise. We therefore conclude that we are on the right track, and that
DiscoMark is indeed able to solve a new problem.

• The Galaxy Note II’s performance is closer to the other phones than bench-
marks like AnTuTu would suggest, further proving that synthetic bench-
marks are not an ideal indicator of real-world performance

• There are large performance differences between versions of Android on a
Nexus 5. Overall, the performance has been increasing with newer versions
of Android, with the exception of 5.0.1. Furthermore, the tested versions
of CyanogenMod were inferior to their Vanilla counterparts

• The Battery Saver mode on the Galaxy S6 should not be enabled during
active usage, since it reduces performance by roughly 50% and does not
save any battery

We gained many new insights through these experiments. However, con-
trolled lab-tests can only bring us so far. The Android ecosystem is very com-
plex and fragmented and it is not enough to just test three phones and then
draw conclusions about all other phones. Furthermore, it is not feasible to test
a large number of phones in many different configurations and scenarios in con-
trolled tests. Therefore, the next crucial step will be to use crowd-sourcing in

5. Lab Experiments 50

order to get real-world data from real users. To that end, we released DiscoMark
on Google Play and successfully promoted it to gain users. The results of the
user-data analysis are presented in Chapter 6

Chapter 6

User-Data Analysis

After successfully promoting DiscoMark, we experienced a surge in user numbers
and a steady stream of benchmarking results. In this chapter, we analyse the
collected user-data to answer interesting questions and get new insights.

6.1 DiscoMark Promotion and Statistics

In this section we list statistics that describe the user-base and data that we
have collected as of April 7th 2016.

App downloads: 9322

App rating: 4.51/5.0 from 107 ratings

Distinct users in dataset: 4876

Distinct phone models: 1202

Distinct phone manufacturers: 160

Most popular phones :

1. Samsung Galaxy S6 (various models): 187

2. LG Nexus 5: 177

3. OnePlus One: 141

4. Huawei Nexus 6P: 130

5. Motorola Nexus 6: 89

Most tested applications :

1. Chrome: 5157

2. Google Play Store: 3648

51

6. User-Data Analysis 52

3. YouTube: 3359

4. WhatsApp: 3346

5. Gmail: 3313

6. Facebook: 2633

Total number of benchmark runs: 12’213

Total number of app-results: 126’728

Average number of runs per app-result: 3.3

Total number of app launches: 3.3 · 112′464 = 418′202

Distinct tested applications: 8935

6.2 Rebooting Improves Performance

When we discussed the experiments in Chapter 5, we saw that rebooting a phone
can dramatically improve its performance, especially after one has just installed
a number of new apps. In this section we present the results from the user-data
analysis regarding the influence of rebooting (i.e. uptime) on performance.

Qualitatively, it is obvious that indeed, rebooting generally increases perfor-
mance significantly. Figure 6.1 shows the launch-times of Chrome for the Nexus
5, while Figure 6.2 shows the results over all apps for the Nexus 5. In both
cases, we see a clear increase in performance after rebooting (i.e. uptime < 1h).
On average, the performance increase due to rebooting, measured over all apps,
for all our users with a Nexus 5, is roughly 30%. The Nexus 6 (Figure 6.3) and
Nexus 6P (Figure 6.4) seem to profit even more from rebooting. Not only is
the speedup roughly 50%, but also the variance is much smaller, indicating that
there are fewer abnormally long app-launch times, leading to an overall smoother
and more reliable user-experience. The results look very different for the Sam-
sung Galaxy S6, where rebooting only brings a small performance-increase, as
shown in Figure 6.5. Finally, Figure 6.6 is a plot covering all phones and all
apps, and shows that without constraining the dataset at all, we still see better
performance for freshly rebooted phones.

6. User-Data Analysis 53

Figure 6.1: Effect of rebooting on the launch-times of Chrome on the Nexus 5

Figure 6.2: Effect of rebooting on the launch-times of all apps on the Nexus 5

6. User-Data Analysis 54

Figure 6.3: Effect of rebooting on the launch-times of all apps on the Nexus 6

Figure 6.4: Effect of rebooting on the launch-times of all apps on the Nexus 6P

6. User-Data Analysis 55

Figure 6.5: Effect of rebooting on the launch-times of all apps on the Galaxy S6

Figure 6.6: Effect of rebooting on the launch-times of all apps across all phones

6. User-Data Analysis 56

6.3 Uninstalling Facebook and Messenger

In order to promote DiscoMark, we took advantage of a discussion around the
Facebook Android app, and whether it slows down your phone. At that time,
we performed a quick experiment on one phone to prove that FB indeed impairs
your phone’s performance. We posted the results to Reddit and received an
overwhelming reaction. Our post was Reddit’s #1 and received over 1200 com-
ments, and the linked plots were opened more than 200’000 times. Newspapers
like The Guardian and Süddeutsche Zeitung reported on it, as well as technol-
ogy sites and blogs. Many users have since performed the exact same experiment
themselves: They ran the test twice, once with and once without having FB in-
stalled. Therefore, we have a large dataset with little noise. Between those two
tests, most parameters remained unchanged, most importantly, the number of
installed apps and the number of tested apps. However, there is one important
aspect that might very well be different between tests, and that is uptime. For
example, a user first benchmarks his phone with FB installed, then uninstalls it,
restarts his phone, and then does the benchmark again. As we have seen during
the experiments from Chapter 5 and as was shown in Section 6.2, restarting a
phone can increase the performance dramatically. In order to correct for this
potential bias, we sliced the dataset by the uptime, where we define that a phone
has been rebooted before a benchmark if it completes it within one hour after
rebooting.

Figures 6.7, 6.8 and 6.9 show how the performance increases after uninstalling
Facebook, sliced by different values for uptime. It is obvious that Facebook slows
down the phones of our users, regardless of whether we correct for the uptime-
bias. In line with our local, one-phone experiment from Section 6.1, the speedup
is between 12 and 20%. We calculated the speedup as tF−tnoF

tF
· 100, where tF

denotes the average launch-time with Facebook installed, and tnoF stands for the
average launch-time without Facebook installed. We also analysed what happens
when one uninstalls Messenger, or both Messenger and Facebook, and found very
similar results. It is noteworthy that it does not matter whether one has only
one or both apps installed, the slow-down is the same. Therefore, in order to
increase the performance of one’s phone, both apps need to be uninstalled.

6. User-Data Analysis 57

Figure 6.7: Performance with and without Facebook for uptime > 1h. Data
from 158 distinct users.

6. User-Data Analysis 58

Figure 6.8: Performance with and without Facebook for uptime < 1h. Data
from 129 distinct users.

6. User-Data Analysis 59

Figure 6.9: Performance with and without Facebook for all uptimes. Data from
370 distinct users.

6.4 Cold and Hot Starts

In this section we investigate behaviour of app-launch times with regard to
caching. It is assumed that as long as there is space in memory, an opened
app should remain cached and therefore, open faster next time. Concretely, this
means that when using DiscoMark, the launch-times during the first run should
be the slowest (assuming the apps have not already been in memory due to prior
use), and then gradually get faster with the second and third run. However, as
we have realized from lab-experiments, the actual multitasking implementations
seem to differ strongly between different manufacturers. We will henceforth refer
to caching/multitasking performance as MTP (MultiTasking Performance).

Below figures show how the launch-times behave for the first three runs for
the Nexus 5. In Figure 6.10 we see what we would normally expect to happen
when only a few apps are involved: Slow first run and then strong performance-
increase for the subsequent runs. MTP gradually decreases until 20-25 apps are
reached (i.e. users picked 20-25 apps to be included in the benchmark), where
there is no performance increase anymore. Above that, we even see a decrease
in MTP, as seen in Figure 6.14. This is likely due to background-activities being

6. User-Data Analysis 60

started by the opened applications that then start requesting the CPU.

Figure 6.10: Evolution of launch-times and variance with the number of runs for
the Nexus 5 with fewer than 10 tested apps.

Figure 6.11: Evolution of launch-times and variance with the number of runs for
the Nexus 5 with 10-15 tested apps.

6. User-Data Analysis 61

Figure 6.12: Evolution of launch-times and variance with the number of runs for
the Nexus 5 with 15-20 tested apps.

Figure 6.13: Evolution of launch-times and variance with the number of runs for
the Nexus 5 with 20-25 tested apps.

6. User-Data Analysis 62

Figure 6.14: Evolution of launch-times and variance with the number of runs for
the Nexus 5 with 30-50 tested apps.

Now we move on to the newer Nexus 6, which not only has a faster CPU, but
also 3GB RAM instead of the Nexus 5’s 2GB. We expect that the Nexus 6 can
go higher than 20-25 tested apps due to that additional 1GB of memory. Figure
6.15 again shows the expected behaviour, where MTP increases rapidly after the
first run. In order to save space, and since the following plots are qualitatively
the same as for the Nexus 5, we jump directly to 20-25 tested apps as shown in
Figure 6.16. Surprisingly, the Nexus 6’s MTP “breaks down” at the same time
as it did for the Nexus 5, despite its larger memory.

6. User-Data Analysis 63

Figure 6.15: Evolution of launch-times and variance with the number of runs for
the Nexus 6 with fewer than 10 tested apps.

Figure 6.16: Evolution of launch-times and variance with the number of runs for
the Nexus 6 with 20-25 tested apps.

In the following, we will look at the MTP of the OnePlus One. The One
is a special phone, because it is shipped with Cyanogen OS.1 It is obvious that

1https://cyngn.com/get-cyanogen-os

https://cyngn.com/get-cyanogen-os

6. User-Data Analysis 64

while qualitatively similar to the plots of the Nexus 5 and 6, the One’s per-
formance increases much more after the first run, leading us to think that the
multitasking/caching implementation of Cyanogen OS is very good, and exceeds
that of stock Android. This extreme performance will also be visible later on
when we compare the real-world performance of different phones (Section 6.6).
However, as before with the Nexus 5 and 6, once we reach 20-25 tested apps, the
caching-benefit vanishes.

Figure 6.17: Evolution of launch-times and variance with the number of runs for
the OnePlus One with fewer than 10 tested apps.

6. User-Data Analysis 65

Figure 6.18: Evolution of launch-times and variance with the number of runs for
the OnePlus One with 10-15 tested apps.

Figure 6.19: Evolution of launch-times and variance with the number of runs for
the OnePlus One with 15-20 tested apps.

6. User-Data Analysis 66

Figure 6.20: Evolution of launch-times and variance with the number of runs for
the OnePlus One with 20-25 tested apps.

Another odd case is the Samsung Galaxy S6. While equipped with a very
capable CPU, which allows it to outperform many rivals, we think that it could
actually be much faster if it had better MTP. As can be seen in Figure 6.21,
for fewer than ten tested apps, MTP is decent and there is nice increase in
performance after the first run. However, the performance-increase is less than
for the Nexus 5 and 6, and nowhere near that of the OnePlus One. When we look
at the results for 10-15 tested apps in Figure 6.22, the caching benefit is already
completely gone. The good thing is that no matter how many apps are tested
(as long as it is more than 10), the performance stays the same, as is shown in
Figure 6.23. These results were confirmed in controlled lab experiments as well,
where the Galaxy S6 was tested against the Nexus 5X and Nexus 6.

6. User-Data Analysis 67

Figure 6.21: Evolution of launch-times and variance with the number of runs for
the Galaxy S6 with fewer than 10 tested apps.

Figure 6.22: Evolution of launch-times and variance with the number of runs for
the Galaxy S6 with 10-15 tested apps.

6. User-Data Analysis 68

Figure 6.23: Evolution of launch-times and variance with the number of runs for
the Galaxy S6 with 20-50 tested apps.

To summarize this section, we can draw following conclusions:

1. There is no difference between 2GB and 3GB of RAM when it comes to
MTP

2. There are significant differences between manufacturers when it comes to
MTP

3. For many phones there seems to be a maximum of 20-25 open apps that
one should not exceed in order to still benefit from caching. However,
fewer seems to be better, and therefore, frequently clearing unused apps,
or rebooting the phone, is recommended.

4. For the Samsung Galaxy S6 (and likely other Samsung phones), the limit
is as low as ten apps. Luckily, the S6’s fast hardware allows it to perform
well, despite its bad MTP.

6.5 # Installed Apps vs. Performance

In Chapter 5 we presented results from controlled lab tests, where we investigated
the influence of the number of installed apps on a phone’s real-world performance.
In this section, we evaluate the data of our users to get a better idea of what is
happening “in the wild”. We only look at two phones; the Nexus 5 and Nexus
6. The results of all other popular phones fall in line with the ones presented
below.

6. User-Data Analysis 69

Figure 6.24 shows the launch-times of Chrome plotted against the number of
installed apps. The decrease in performance is obvious, and confirms the lab tests
we performed in 5. Once we extend the dataset to include not just Chrome, but
all apps, we get a very similar result. The Nexus 6, as seen in Figure 6.26, exhibits
the same qualitative characteristics. For this kind of analysis, our dataset is not
large enough to draw quantitative conclusions. However, the qualitative trend is
clear, and it is therefore recommended to keep one’s phone as clean as possible,
and uninstall unused apps.

Figure 6.24: Performance (launch-time of Chrome) decreases strongly with in-
creasing number of installed apps for the Nexus 5.

6. User-Data Analysis 70

Figure 6.25: Performance decreases strongly with increasing number of installed
apps for the Nexus 5.

6. User-Data Analysis 71

Figure 6.26: Performance decreases strongly with increasing number of installed
apps for the Nexus 6.

6.6 DiscoMark vs. Geekbench

One of the main goals of this thesis was to investigate how well synthetic bench-
marks represent real-world performance. To that end, we plotted the most pop-
ular phones’ DiscoMark performance vs. their Geekbench Multicore CPU per-
formance. For a phone to be included in the graph, it must represented by at
least 30 distinct users in our dataset. We sliced the dataset by the run-number,
i.e., we created a separate plot for cold-starts (1st run) and hot-starts (subse-
quent runs). We expect that the cold-start performance will mostly depend on
the CPU-power of the phones, where the hot-start performance will be strongly
influenced by multitasking/caching-performance, as we have discussed in Section
6.4. Both axes were normalized, where 100 was assigned to the best-performing
phone. A phone with score 80 performs twice as fast as one with score 40.

Figure 6.27 shows the resulting scatter plot when we only consider the first
run of each benchmark, i.e., cold starts, without the benefit of caching. We can
see that overall the increase in real-world performance is linear with increasing
CPU-performance. There are a few outliers that are performing better than their
CPU-score suggests, e.g., the Moto G3 (≥1GB). Most notably however are the
Galaxy Note 5 and the OnePlus One, which are both performing significantly

6. User-Data Analysis 72

better than the rest. While this could have been expected for the Note 5, being
the newest phone in the plot, it is certainly a surprise for the OnePlus One.
Compared to its peers with similar (Z3 Compact, LG G2, etc.) or better CPUs,
it performs up to twice as fast.

Figure 6.27: Real-world performance as measured by DiscoMark plotted against
the multi-core CPU scores of Geekbench. Only the first run of each test is
considered (cold start)

Keeping in mind the results we showed in Section 6.4, where we saw that the
OnePlus One had incredible MTP, we expect it to perform even better when we
consider hot-starts only. Furthermore, we saw that the Samsung Galaxy S6 had
poor MTP, and we speculated that this should be the case for other Samsung
phones as well, which is why we expect them to lose ground against other phones,
such as the Nexus-family. Indeed, Figure 6.28 confirms our hypothesis. The
OnePlus One is even more dominant, now that it can profit from its strong

6. User-Data Analysis 73

MTP. Additionally, most Samsung phones fell behind their direct competitors.
For example, the Galaxy S6 and Note 5 were overtaken by the Nexus 6P, and
the Galaxy Note 4 fell behind the Nexus 6. An interesting observation is that
the Nexus 5X seems to perform poorly compared to its Nexus-siblings. In fact,
Google recently released a software update for the Nexus 5X that should solve
performance problems that have been bothering it. Therefore, in future, the
Nexus 5X will likely perform better. Another phone that has much better real-
world performance than its CPU-score would suggest is the Asus Zenfone 2, one
of only a few phones using an Intel CPU. It outperforms most other phones that
have better theoretical performance.

Figure 6.28: Real-world performance as measured by DiscoMark plotted against
the multi-core CPU scores of Geekbench. The first run is ignored (hot start)

Finally, we remove the OnePlus One from Figure 6.28 to get Figure 6.29,
so that the differences between the other phones can be seen more clearly. We

6. User-Data Analysis 74

can now see the distinction between phones with less than 1GB of RAM and
the rest. This is most clearly shown by the Moto G3, which has versions with
different amounts of memory, but otherwise identical hardware. This finalizes
our conclusion that a new phone should have 2GB of RAM. Having more than
2GB does not provide any benefits as of now, and having less than 1GB clearly
impairs performance.

Furthermore, looking at all three plots together, it is clear that synthetic
benchmarks merely provide a rough idea of how a phone might perform during
real world usage. Stronger hardware certainly makes it more likely that a phone
will perform better than one with older internals, but it is far from being a
guarantee. By looking at the scatter plots one can find many such examples.
One example is the vertical 60-70 band in Figure 6.29, where we have four phones
with very similar hardware, but wildly varying DiscoMark scores.

6. User-Data Analysis 75

Figure 6.29: Real-world performance as measured by DiscoMark plotted against
the multi-core CPU scores of Geekbench. The first run is ignored (hot start)

Chapter 7

Conclusion and Outlook

7.1 Conclusion

In this thesis, we laid much of the ground work necessary to investigate aspects
of Android’s performance from a real-world performance perspective. Among
other things, we gained many insights into what influences performance, how to
most accurately measure it, and what can be done to improve it. Furthermore,
we showed that synthetic benchmarks, while useful to show qualitative trends,
are not the end of the story, and do not accurately reflect real-world perfor-
mance. Also, we saw that different manufacturers seem to have strongly different
multitasking/caching implementations. Nonetheless, there are still unanswered
questions, and many new ones came up during the course of this thesis. The
Android platform is vast, complex and highly fragmented, and there are many
interesting questions. In the following, we address the ones we find most worth
investigating.

7.2 OS Performance Tests

In Section 5.7, we showed the performance of different versions of Android (stock
and CyanogenMod) on a Nexus 5. While this was very insightful, it is far from
the entire story. As mentioned above, the Android platform is highly fragmented
and there are significant differences between phones, especially from different
manufacturers. So, while CyanogenMod performs worse than Vanilla Android
on a Nexus 5, it might very well be the other way around on a phone that
is running a flavoured version of Android, such as Samsung TouchWiz or HTC
Sense. Since these kinds of tests highly benefit from noise-free and accurate data,
we believe that performing lab-experiments is the better way to go, as opposed
to waiting for enough user-data to arrive. However, it needs to be investigated
which phones are most suitable for this task, since not all are equally easy to be
flashed with different versions of a stock ROM or custom ROMs, or might even
lack support completely from, e.g., CyanogenMod. This leads us to another

76

7. Conclusion and Outlook 77

interesting point; CyanogenMod itself has different flavours, and it would be
interesting to compare them to each other.

7.3 DiscoMark and User-Data

The amount of data we gathered from our users is certainly respectable, and
allowed us to draw many interesting conclusions and put them into quantita-
tive terms, where before one could only guess. However, there are still many
unanswered questions, and answering them would unfortunately require a vastly
larger dataset. To that end, DiscoMark needs to be refined to attract many more
users. As of now, DiscoMark is capable, but not easy to use and understand.
The users have to be willing to put some work in to get valuable information
for themselves. For example, DiscoMark could be extended into a real-world
performance benchmark framework, where the user does not need to do any-
thing except press a button, and the app then performs a series of different
tests, with different apps selected, different number of runs, different number of
apps running in the background, and different settings, etc. Through that, one
could analyse a phone’s performance in a more detailed and structured way, e.g.,
caching performance, performance when a few/many apps are used, how much
rebooting affects performance, etc. Furthermore, it should be made easier for
users to get the desired information in an understandable fashion. As of now,
they can export the results in a CSV file and do their own analysis, however,
this could be automated and statistics and graphs could be displayed inside the
app. Much of the analysis that was performed to create the graphs in this report
could be integrated into DiscoMarks backend.

The improvement of DiscoMark’s user-friendliness would of course serve the
purpose of attracting many, many more users. We are certain that incremental
increases in user-number and dataset-size are not useful anymore, but an ex-
ponential increase is what would be needed. As of now, DiscoMark has nearly
10’000 downloads, but we expect to need at least 100’000, or better more than
a million, downloads, in order to increase our dataset to a point where we are
not limited by sample-sizes anymore. During the analysis of the user-data, we
could often not restrict the SQL queries as much as we wished, and that was for
our most popular phones. For example, we might only want to look at a certain
phone with uptime less than an hour, between 100 and 120 installed apps, for
benchmarks with between 5 and 10 runs and 15 to 20 tested apps, and so on.
This is just an illustration that shows how fast a seemingly large dataset can
become inadequate when one starts asking detailed questions. Another advan-
tage of having a much larger dataset, and thus being able to restrict it more
strongly, is the ability to make much more accurate, quantitative observations.
As of now, we are rarely confident to make more than qualitative statements,
and had to revert to lab-experiments for that (exception is the uninstalling Face-

7. Conclusion and Outlook 78

book experiment from Section 6.3, where we had a highly cohesive and focused
dataset).

7.4 DiscoMark as a Service

The fact that DiscoMark is implementing Android’s AccessibilityService interface
is both blessing and curse. Once a user sees that DiscoMark is always active as
a service in the background, he or she might decide to uninstall the app for
fearing it might be another resource-hog. However, we could also take advantage
having an ever-running service at our disposal, by collecting information in the
background, even when the benchmark is not running. For example, we could
monitor power consumption and voltages of the CPU, battery usage and keep
track of which apps are running in the background. From this information, we
could figure out if the user has resource/battery-hogs installed, and could prompt
him/her to uninstall certain apps, and then perform another benchmark in order
to detect if the change brought a performance-improvement. Furthermore, we
could keep track of all apps the user opens by inspecting accessibility events,
and thus extract his/her user-pattern. Knowledge of the user-pattern could be
used to perform the benchmark in a more automated manner, and be useful to
develop DiscoMark into a fully-integrated real-world benchmark framework, as
discussed in Section 7.3.

Bibliography

[1] Google: Google developer, androidjunitrunner. http://

developer.android.com/reference/android/support/test/runner/

AndroidJUnitRunner.html Accessed: 2016-03-23.

[2] Google: Google developer, uiautomator. http://developer.android.

com/training/testing/ui-testing/uiautomator-testing.html Ac-
cessed: 2016-03-23.

[3] Google: Google developer, espresso. http://developer.android.

com/training/testing/ui-testing/espresso-testing.html Accessed:
2016-03-23.

[4] Google: Google developer, ui/application exerciser monkey. http:

//developer.android.com/tools/help/monkey.html Accessed: 2016-03-
23.

[5] Google: Google developer, monkeyrunner. http://developer.android.

com/tools/help/monkeyrunner_concepts.html Accessed: 2016-03-23.

[6] Gomez, L., Neamtiu, I., Azim, T., Millstein, T.: Reran: Timing- and touch-
sensitive record and replay for android. In: Software Engineering (ICSE),
2013 35th International Conference on. (May 2013) 72–81

[7] Zhu, M.H.Y., Peri, R., Reddi, V.J.: Mosaic: Cross-platform user-interaction
record and replay for the fragmented android ecosystem

[8] AnTuTu: Google play entry for antutu. https://play.google.com/

store/apps/details?id=com.antutu.ABenchMark Accessed: 2015-12-30.

[9] Ltd., K.: Google play entry for gfxbench. https://play.google.com/

store/apps/details?id=com.glbenchmark.glbenchmark27 Accessed:
2015-12-30.

[10] Oy, F.: Google play entry for 3dmark. https://play.google.com/

store/apps/details?id=com.futuremark.dmandroid.application Ac-
cessed: 2015-12-30.

[11] Kim, J.M., Kim, J.S.: Androbench: Benchmarking the storage performance
of android-based mobile devices. In Sambath, S., Zhu, E., eds.: Frontiers
in Computer Education. Volume 133 of Advances in Intelligent and Soft
Computing. Springer Berlin Heidelberg (2012) 667–674

79

http://developer.android.com/reference/android/support/test/runner/AndroidJUnitRunner.html
http://developer.android.com/reference/android/support/test/runner/AndroidJUnitRunner.html
http://developer.android.com/reference/android/support/test/runner/AndroidJUnitRunner.html
http://developer.android.com/training/testing/ui-testing/uiautomator-testing.html
http://developer.android.com/training/testing/ui-testing/uiautomator-testing.html
http://developer.android.com/training/testing/ui-testing/espresso-testing.html
http://developer.android.com/training/testing/ui-testing/espresso-testing.html
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
https://play.google.com/store/apps/details?id=com.antutu.ABenchMark
https://play.google.com/store/apps/details?id=com.antutu.ABenchMark
https://play.google.com/store/apps/details?id=com.glbenchmark.glbenchmark27
https://play.google.com/store/apps/details?id=com.glbenchmark.glbenchmark27
https://play.google.com/store/apps/details?id=com.futuremark.dmandroid.application
https://play.google.com/store/apps/details?id=com.futuremark.dmandroid.application

Bibliography 80

[12] Qualcomm Innovation Center, I.: Google play entry for vellamo. https:

//play.google.com/store/apps/details?id=com.quicinc.vellamo Ac-
cessed: 2015-12-30.

[13] Pandiyan, D., Lee, S.Y., Wu, C.J.: Performance, energy characterizations
and architectural implications of an emerging mobile platform benchmark
suite - mobilebench. In: Workload Characterization (IISWC), 2013 IEEE
International Symposium on. (Sept 2013) 133–142

[14] Hu, Y., Azim, T., Neamtiu, I.: Versatile yet lightweight record-and-replay
for android. In: Proceedings of the 2015 ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and Appli-
cations. OOPSLA 2015, New York, NY, USA, ACM (2015) 349–366

[15] Google: Google developer, accessibilityservice. http://

developer.android.com/reference/android/accessibilityservice/

AccessibilityService.html

[16] Google: Google developer, accessibilitynodeinfo. http://

developer.android.com/reference/android/view/accessibility/

AccessibilityNodeInfo.html Accessed: 2015-12-30.

https://play.google.com/store/apps/details?id=com.quicinc.vellamo
https://play.google.com/store/apps/details?id=com.quicinc.vellamo
http://developer.android.com/reference/android/accessibilityservice/AccessibilityService.html
http://developer.android.com/reference/android/accessibilityservice/AccessibilityService.html
http://developer.android.com/reference/android/accessibilityservice/AccessibilityService.html
http://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo.html
http://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo.html
http://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo.html

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Related Work
	2.1 Record and Replay of User Interactions
	2.2 Android Benchmarking

	3 Benchmarking Methodology
	3.1 Conventional Benchmarking
	3.2 Real-World Benchmarking
	3.3 Record and Replay
	3.3.1 RERAN
	3.3.2 Mosaic
	3.3.3 VALERA
	3.3.4 Android AccessibilityService
	3.3.5 Feasibility

	3.4 Application Picker and AccessibilityService
	3.4.1 Real-World Performance Metric
	3.4.2 Application Picker

	4 DiscoMark: Real World Benchmarking Application
	4.1 DiscoMark Application
	4.1.1 UI and Functionality
	4.1.2 AccessibilityService Replayer

	4.2 Server Side

	5 Lab Experiments
	5.1 Setup
	5.2 Methodology
	5.3 Individual App Performances
	5.3.1 Top 30 Applications Experiment

	5.4 Per-Phone Performance Evolution
	5.4.1 Samsung Galaxy Note II
	5.4.2 LG G2
	5.4.3 LG Nexus 5 (5.1.1)
	5.4.4 LG Nexus 5 (6.0)

	5.5 Phone Performance Evolution - Comparison
	5.6 Conventional Benchmarks vs. DiscoMark
	5.7 OS Version vs. Performance
	5.8 Galaxy S6 Battery Saver Test
	5.9 Discussion of Results

	6 User-Data Analysis
	6.1 DiscoMark Promotion and Statistics
	6.2 Rebooting Improves Performance
	6.3 Uninstalling Facebook and Messenger
	6.4 Cold and Hot Starts
	6.5 # Installed Apps vs. Performance
	6.6 DiscoMark vs. Geekbench

	7 Conclusion and Outlook
	7.1 Conclusion
	7.2 OS Performance Tests
	7.3 DiscoMark and User-Data
	7.4 DiscoMark as a Service

	Bibliography

