

Quick start guide

Configuring a SafetyBridge technology (V3) system on a Schneider
controller using Unity

This user manual is valid for:

Designation Revision Order No.

IB IL 24 LPSDO 8 V3-PAC 00/101/100 2701625

IB IL 24 PSDI 8-PAC 00/202 2985688

IB IL 24 PSDO 8-PAC 01/201/100 2985631

IB IL 24 PSDOR 4-PAC 00/201/100 2985864

IB IL 24 PSDO 4/4-PAC

01/201/100 2916793

IB IL 24 PSDI 16 2700994

Introduction

1.1 Purpose of this manual

This quick start guide describes how to integrate SafetyBridge Technology V3 modules in a Modbus TCP system into an

Schneider M340 controller.

The document does not describe the complete configuration of a system or how to create a project under Unity. It only

describes what has to be observed with regard to SafetyBridge Technology V3.

For easier integration, you can refer to the chapter ‘Easy integration if SBT V3’ at the end of this quick start.

For additional information, please refer to the documents listed in Additional documentation.

This Quickstart refers to several Unity application examples. Here is how to choose the best one, according to your

knowledge of the SafetyBridge technology and the type of installation you need to control :

Name of the Unity

application

Unity version Purpose

SBT_V3_Quickstart Pro S Not simplified and detailed application, using

IOScanning

SBT_V3_Easy Pro S Simplified version, multiple islands, multiple PLCs,

using Read_Var and Write_Var instead of

IOScanning

SBT_v3_Easy_10_bks Pro XL Simplified version, single island, multiple BKs, using

IOScanning for Diagnostic, and Read_Var and

Write_Var for process data refresh

SBT_v3_Easy_10_bks_Fast Pro XL Simplified version, single island, using IOScanning for

Diagnostic, and simultaneous Read_Var and Write_Var

for faster process data refresh

SBT_v3_Easy_Premium Pro XL Simplified version, single island, using IOScanning for

Diagnostic, and Read_Var and Write_Var for a

Premium PLC

1.2 Requirements

Knowledge

Knowledge of the following is required:

– The target system (Modbus TCP)

– The configuration of Inline in Modbus TCP network

(see www.phoenixcontact.com)

– The components used in your application

– The Unity software used

– The Microsoft Windows operating system

Hardware

To start up the example system, the following hardware is required:

– M340 (or Premium), with Modbus TCP interface (see example)

– IL ETH BK DI8 DO4

– Programming device/PC

– I/O devices (Safety devices) used in the example project

(see Section "Example bus configuration" on page 3-1)

Software

To start up the example system, the following software is required:

– Unity S (or higher) or unity XL for some examples

– SafetyBridge Technology V3 example as add-on instructions

– Microsoft Windows

– SAFECONF V2.8 or later from -Phoenix Contact (software for configuring the safety logic and parameterizing the

channels)

This is available on the Internet at www.phoenixcontact.net/catalog.

– Internet Browser such as Internet Explorer or Firefox to access to the IL ETH BK DI8 DO4 web pages

http://www.phoenixcontact.net/catalog

1.3 Additional documentation

Comprehensive information on Modbus TCP is available on the Internet at www.modbus.org.

Please refer to:

– The documentation for the Unity software

– The documentation for the components used in your application

– The documentation for the function blocks used

The documentation for the SafetyBridge Technology V3 modules used must be strictly observed.

Description Type Order No.

User manual:
Inline module with integrated safety logic and safe digital outputs

UM EN IB IL 24 LPSDO 8 V3-PAC 2992051

User manual:
Inline module with safe digital inputs

UM EN IB IL 24 PSDI 8-PAC 2910457

User manual:
Inline module with safe digital outputs

UM EN IB IL 24 PSDO 8-PAC 2910538

User manual:
Inline module with safe digital inputs

UM EN IB IL 24 PSDI 16-PAC 2992158

User manual:
Inline module with safe digital outputs

UM EN IB IL 24 PSDO 4/4-PAC 2910554

User manual:
Inline module with safe digital relay outputs

UM EN IB IL 24 PSDOR 4-PAC 2910729

The documentation for Phoenix Contact devices is available on the Internet at www.phoenixcontact.net/catalog.

1.4 Safety hotline

Should you have any technical questions, please contact our 24-hour hotline.

Phone: +49 5281 9462777

E-mail: safety-service@phoenixcontact.com

Pre-requisites

To use this quick start, a good knowledge of the software Unity and the network Modbus TCP is necessary.

http://www.modbus.org/
http://www.phoenixcontact.net/catalog

2 Integration of a SafetyBridge Technology V3 system in
three steps

2.1 Safety with the SafetyBridge Technology V3 system

Within a SafetyBridge Technology V3 system, safety can only be ensured by using the modules of this system

(IB IL 24 LPSDO 8 V3-PAC and 1 to 16 satellites). None of the other components in the overall system are safety-related

components. Errors at non-safety-related components or errors during integration of the SafetyBridge Technology V3

system are reliably detected by the SafetyBridge Technology V3 system components. These errors only reduce the

system availability but not the system safety.

No safety controllers are required for the implementation of safety functions.

2.2 Integration of a SafetyBridge Technology V3 system

A SafetyBridge Technology V3 system can be integrated into an existing system in three steps.

Integration of a SafetyBridge Technology V describes the steps for integrating a SafetyBridge Technology V3 island.

Table 2‑ 1 Integration of a SafetyBridge Technology V3 island

Step Process Safety-

related

See ...

1 Configure the safety logic (-SAFECONF >= 2.8)

 – Configure the safety island

(island number, satellites)
Yes Page 3-6

 – Parameterize the I/O channels of a safety island Page 3-8

 – Configure the safety functions Page 3-11

 – Export the configuration and parameter data record Page 3-14

2 Integrate the SafetyBridge Technology V3 modules into the controller (M340)

 No Documentation for the

controllers and Unity

– Create a project Page 3-3

– Import SBT add-on instructions Page 3-18

– Add SafetyBridge Technology V3 operation to the

standard application program
 Page 3-19

– Import the configuration and parameter data record

into the M340 project in Unity (*.XDB) output format
 Page 3-22

3 Install the SafetyBridge Technology V3 modules

 Install the SafetyBridge Technology V3 modules

(hardware) (including island and satellite number settings)

No Page 3-25 and user

manuals for the modules

used

 Overall safety validation Yes

Components and steps for integrating the SafetyBridge Technology V shows the hardware and software components

used and the steps for integrating a SafetyBridge Technology V2 system.

Figure 2‑ 1 Components and steps for integrating the SafetyBridge Technology V3 system

Key:

1 Step 1: configure the safety logic

2 Step 2: integrate the SafetyBridge modules into the controller

3 Step 3: install the SafetyBridge modules

PC PC with -SAFECONF and Unity

SAFECONF Software for configuring the safety logic (configuration of the safety

function and parameterization of the channels)

Unity Engineering software

.XDB -SAFECONF add-on module (DFB)

Configuration and parameter data record created with -SAFECONF;

this must be imported into the Unity project as a DFB module;

structured text according to IEC 61131

SBT Library SafetyBridge add-on instruction (DFB)

Add-on instruction for handling SafetyBridge Technology V3

modules from -Phoenix Contact

– Download of the configuration and parameter data record from

the standard control system to the IB IL 24 LPSDO 8 V3-PAC

– Cyclical routing of the SafetyBridge Technology V3 data flow

– Safety I/Os monitoring

Bus system Modbus TCP

SBT Modules of the SafetyBridge Technology V3 system

3 Example

This section describes the use of SafetyBridge Technology V3 modules in Modbus TCP. Only the safety modules are

described in detail. You can use standard modules in the -Inline station, but these are not described in detail here.

3.1 Example bus configuration

Figure 3‑ 1 Example bus configuration

Key:

S1 Safety switch; emergency stop (EStop/button S1)

K1

(R)

Forcibly guided N/C contact for monitoring the state of the relay

(readback contact). The example does not describe this readback.

Devices used in the example bus configuration

Bus coupler

IL ETH BK DI8 DO4 2TX-

PAC

Bus coupler

Safety modules

IB IL 24 LPSDO 8 V3-PAC -Inline module with integrated safety logic and safe digital outputs

IB IL 24 PSDI 8-PAC -Inline module with safe digital inputs

Additional I/O modules:

I/O modules

IB IL 24 PSDO 8-PAC Inline module with safe digital outputs

IB IL 24 PSDOR 4‑ PAC Inline module with safe digital relay outputs

IB IL 24 PSDO 4/4‑ PAC Inline module with safe digital outputs

3.2 Step 1: configuring the safety logic (-SAFECONF)

This section only describes the steps that are essential for the SafetyBridge

Technology V3 system. Therefore, you will not find all of the screen views shown here.

If you have any questions about -SAFECONF, please refer to the online help or

software documentation.

The first operation in Safeconf is to include the XML file dedicated to Unity, for Safeconf is able to

create the DFB wich will be imported in Unity.

This file is called UNITY.XML. It is provided in the quickstart package. In the case it does not

appear in the Safeconf parameters, it will be necessary to include it in the dedicated directory (see

the examples below and adapt the path):

Windows7:
C:\ProgramData\Phoenix Contact\SAFECONF\2_x\OutputFormats
Windows XP:
C:\Dokumente und Einstellungen\All Users\Anwendungsdaten\Phoenix Con-
tact\SAFECONF\2_x\OutputFormats
XP on VM :
C:\Documents and Settings\All Users\Application Data\Phoenix Con-
tact\SAFECONF\2_x\OutputFormats

3.2.1 Creating a project

Use -SAFECONF to configure and parameterize the SafetyBridge Technology V3 system. A configuration and parameter

data record is subsequently created and saved as a dfb file for work involving an M340 controller.

Table 3‑ 1 Output format for the configuration and parameter data record for work involving Unity

Output format Handling the file

UNITY (*.XDB)
Import the Unity file (*.XDB) with structured text according to IEC 61131 into the Unity project as a

DFB.

The Unity project is the overall project. It contains both the standard user program and the imported

safety logic.

If a change is made to the -SAFECONF project, a new file is created in Unity output format. Once

this has been done, reimport this file into Unity and generate an overall project. This means that

whenever a change is made to your safety logic in SAFECONF, you must also adjust the Unity

project.

• Open the -SAFECONF software (Version 2.8 or later).

• Create a new project with the Project Wizard. To do this, select "File... New Project".

• Specify the name and storage location for the project.

Figure 3‑ 2 Creating the project name and path

• Select the IB IL 24 LPSDO 8 V3-PAC master device for working in the SafetyBridge Technology V3 system.

Figure 3‑ 3 Selecting IB IL 24 LPSDO 8 V3-PAC

• Select the file format in which the configuration and parameter data record is to be output (see Output format for the

configuration and parameter data record for work in).

If you are working with Unity, you need the Unity output format.

Figure 3‑ 4 Selecting the output format

• Enter a complete description of the project.

Table 3‑ 2 Describing the project

Field Contents

Custom description Maximum of 4 characters

Custom version Maximum of 4 characters

Figure 3‑ 5 Describing the project

• Complete the project creation process.

Figure 3‑ 6 Completing the project creation process

3.2.2 Configuring the safety island

In -SAFECONF, devices are shown in the form of a safety island view rather than as a

network view. Configuration of a safety island is independent of whether it is

associated with one -Inline station or distributed across several -Inline stations.

When the project is completed, a window opens prompting you to enter the island number.

• Enter an island number (1 in the example).

Figure 3‑ 7 Entering an island number

• Specify a password of at least six characters for the project (123456 in the example).

Figure 3‑ 8 Specifying a password

• Configure the hardware structure of the SafetyBridge Technology V3 island. To do this, use drag & drop to move the

relevant modules from the "Hardware" toolbox to the hardware editor.

•

Figure 3‑ 9 Drag and drop devices from the hardware catalog to the hardware configuration.

Figure 3‑ 10 Configuring the SafetyBridge island

3.2.3 Parameterizing the I/O channels of a safety island

NOTE:

For two-channel assignment, use the same parameterization for both channels.

Parameterize the input and output channels of the SafetyBridge Technology V3 modules. Two options are available:

1 In the hardware editor, double-click on the module. This opens the window for parameterizing the entire module.

2 In the hardware editor, double-click on a terminal point. This opens the window for parameterizing the selected

terminal point.

Parameterize the modules as described in the user manual. This is available on the Internet at

www.phoenixcontact.net/catalog or as online help via the module context menu (right-click on the module in the

hardware editor).

• Parameterize the output channels of the IB IL 24 LPSDO 8 V3‑ PAC.

Figure 3‑ 11 Parameterization of IB IL 24 LPSDO 8 V3‑ PAC: output 00 channel 1

(Here: parameterization by double-clicking on the module)

The values F_Source_Add and F_Dest_Add are automatically entered. F_Source_Add

is derived from the island number, F_Dest_Add is derived from the island and satellite

number.

http://www.phoenixcontact.net/catalog

• Parameterize the input channels of the IB IL 24 PSDI 8‑ PAC.

Figure 3‑ 12 Parameterization of IB IL 24 PSDI 8‑ PAC: input 00 channel 1

(Here: parameterization by double-clicking on the module)

Inputs or outputs parameterized for 2-channel operation are indicated by a lock.

Figure 3‑ 12

You can specify the F_WD_Time (in ms) according to your application. The default

value is 150 ms. When using Modbus TCP, make a test with 500 ms, and then adjust

the value to the measured transmission times of each device.

You can only set the clock configuration for the channels by clicking on the module.

Figure 3‑ 13 Automatically entered data and clock configuration

3.2.4 Configuring the safety function

• Configure the safety function.

Configure the safety function by using drag & drop to move the elements from the individual areas of the toolbox to the

workspace.

Various sources are available for safe and standard signals. In the example, this means the following sources:

Figure 3‑ 14 Sources of the safe signals

1 "Safe Functions" toolbox

2 IB IL 24 PSDI 8‑ PAC hardware editor

3 "External signals" toolbox; standard signals from the standard control system

4 IB IL 24 LPSDO 8 V3‑ PAC hardware editor

5 "External signals" toolbox; standard signals to the standard control system

Figure 3‑ 15 Inserting a function block from the "Safe function blocks“ toolbox

Figure 3‑ 16 Inserting a safe output from the hardware editor using drag & drop

When you use drag & drop to place the safety module terminal point directly onto a

function block input or output (as illustrated for an output in Inserting a safe output

from the hardware editor using drag & drop), the connecting line is created

automatically.

Figure 3‑ 17 Inserting an external signal from the "External signals" toolbox

Move your mouse over an external signal to display the corresponding tooltip.

Figure 3‑ 18 Tooltip

Figure 3‑ 19 Inserting a safe function (TRUE) from the "Safe Functions" toolbox

• You can add comments to both the function block and the signals.

To do this, select the "Insert Comment" command in the context menu (right mouse button) for the function block or

a signal.

Then move the comment to the desired position.

You can see the entire commented safety function for this example in Configured safety function with comments

Figure 3‑ 20 Configured safety function with comments

3.2.5 Exporting the configuration and parameter data record

• Check the project. To do this, select the "Project... Check Project" command.

A message window opens displaying the progress of the check.

Once the check is complete, the amount of program memory used by the program is displayed.

Figure 3‑ 21 Program memory used

If the check is completed without errors, the configuration and parameter data record is created as an *.XDB file. This is

saved in the path that you have entered for the project (see Creating the project name and path) in the "FileOutput"

folder.

Figure 3‑ 22 XDB file

The XDB file is later loaded in the standard control system as a DFB.

This completes step 1 "configuring the safety logic".

3.3 Step 2: integrating the SafetyBridge Technology V3 modules into the

controller (M340)

This section only explains fundamental steps that are relevant to the SafetyBridge Technology V3 system.

A good knowledge of the Unity software is needed to use this quickstart.

To be able to use the Unity example, Unity must be configured as described here :

Project options :

3.3.1 Creating/opening a project

• In Unity, create a new project or open an existing project. For the example shown, create the project with a PLC

type M340 with Modbus TCP controller. The best solution is to start from the example and to modify and adapti it for

your own application.

3.3.2 Configuring the IL ETH BK DI8 DO4 with -SafetyBridge V3 modules

For further use in the Unity project, you will require the addresses and offsets created during configuration for the

individual SBT modules within a Modbus TCP station, as specified in Table 3-4.

To configure the IL Modbus TCP head station, proceed as specified in the application note.

Generic Ethernet module configuration with -SafetyBridge example:

Table 3‑ 3 Generic Ethernet module configuration with –SafetyBridge

Number of I/O words IN data size IN base address OUT data size OUT base address

IL ETH BK DI8 DO4 1 0 (8000) 1 384 (8029)

LPSDO 8 V3 24 1 (8001) 24 385 (8030)

PSDI 4 25 (8025) 4 409 (8054)

Diag/Command registers 4 7996 1 2006

3.3.3 Integrating a Modbus TCP BK into the Unity project

Here is an example of IOScanning contracts.

The Modbus TCP BK is not imported into the Unity software. It has just to be mapped in the IOScanning window

The 3 first contracts can be merged together. They are separated here to give more details

Contract 4 is for the Diagnostic registers (7996 to 7999)

Contract 5 is for the Command register (quit netFail, mode PP)

See the User Manual of the IL ETH BK DI8 DO4 for more details.

Figure 3‑ 23 Mapping the new module

The web server of the IL ETH BK DI8 DO4 also shows the mapping. But it only shows the dynamic addresses, and not

the static addresses :

3.3.4 Importing SBT DFBs

You will need the following DFBs in your program: (if you start with the example, these FBs are already integrated in the

application)

The main DFB dedicated to the SBT are called SBT_V3_.....

The DFB with a name SBT_V3_X_.... are auxiliary DFB.

The DFB Diag_ILETH_BK_DI8_DO4 permits to restart automatically the IL ETH BK and gets some diagnostic

information about the local bus of the IL ETH BK…

The other DFB are used by the application example, and should also be used in your project

These DFB are included in the Unity project delivered as an example, They can also be imported directly into Unity.

You will also need the specific variable types listed here :

These types are directly created when a DFB is imported. They are also included in the Unity example.

The types with a name as SBT_V3_X_.... are auxiliary types.

The types with a name as SBT_V3_... are main types used by the DFB.

The Unity example includes a section, wich shows all the necessary blocks to be used, and how to link them together :

The example is made with 1 island. The application is separated into several sub-sections :

In our example, MTCPtoSafetyBuffers_I1, SafetyBlocks_I1, SafetyInfos_I1, SafetyBuffersToMTCP_I1, and DiagILETH.

SBT_V3 makes the adaption between Modbus TCP process datas and the SBT Function blocs, and integrates the

Function blocks Operate, (Max)TransTime, ProjectHeader, wich are necessary to handle the communication protocol of

the safety devices.

DiagILETH is optional and permits to make some diagnostic and restart on the IL ETH BK.

 SwapBytes = True permits to swap High and Low bytes

 Main part of the system : Operate

Diagcode : extracts diag code of each device

ProjHeader : gives details about the LPSDO and Safeconf Projects (CRC, timestamps)

 DFB created by Safeconf : safety application

The sub section SafetyInfos gives details about the Communication times for each device.

You should adapt the PSDx timeout of each device accortding to these measured values in Safeconf.

The timestamps are decoded by the DFB TimestampToDate, and all informations are available in the structure

udtTimeStamp.

The sub-section SafetyBuffersToMTCP copies the datas created by the Operate DFB to the devices LPSDO.

3.3.5 Adding SafetyBridge operation to the standard application program

Add SafetyBridge Technology V3 operation to your standard application program using the Unity example.

The most simple is to start from the Unity example. Nevertheless, if you prefer integrate the SBT into your existing

application, you can import the task file (*.XPG).

Right click on Task, Import, select the Mast.XPG file delivered in the example, and then “import”.

3.3.5.1 "SBT_Operate" DFB and others

The DFB performs the following functions:

– Download of the configuration and parameter data record from the standard control system to the

IB IL 24 LPSDO 8 V3‑ PAC

– Cyclical routing of the SafetyBridge Technology V3 data flow

Where there are several SafetyBridge Technology V3 islands, an "SBT_Operate" DFB is required for each island.

• Insert the "SBT_Operate" DFB.

• The udtSBT structure variable is used for data exchange between the DFBs of the program.

• Connect the inputs and outputs of the "SBT_Operate" DFB as shown below.

The Operate DFB is used in conjunction with SwapInBuff and SwapOutBuf. The “Swap” DFBs permit to invert low and

high bytes of the Modbus TCP Process datas, for they are compatible with the Operate Function block. This swap is

made if xSwapBytes is True.

The DFB ProjHeader permits to read the useful information about the Safety application.

Variables with …SBT… display the content of the LPSDO.

Variables with …Proj… display the content of the Safeconf Project (the application made by Safeconf and exported into

Unity XDB format)

The DFB MaxTransTime displays the maximum transmission time measured with each device. The DFB Transtime

displays the dynamic cycle time.

These values must be taken in account to adjust the Watchdog of each safety device.

Importing the safety bridge application (coming from Safeconf)

This step enables you to save and manage the safety logic created in -SAFECONF as a DFB to be imported.

In step 1, the *.XDB (e.g., xxx.XDB) was created and saved under FileOutput in the project path (see XDB file).

• Open your project in Unity.

• Make sure that you are offline.

• Select "Types FB dérivés", right clic, import

Figure 3‑ 33 "type FB, Import"

• Select the XDB file and confirm your selection with "Import".

Figure 3‑ 34 Selecting the XDB file

It is now necessary to include the imported DFB into the application.

So, you have to go after the DFB ProjHeader and TransTime and add this new DFB in the program :

The name of the DFB is the one wich was imported, but the name of the instance has to be defined by yourself.

The link with the other DFBs of the SBT is made via the variable udtSBT, wich is used by every DFB dedicated to the

SBT.

Safeconf application (inside the imported DFB) :

3.3.7 Example program

Once all the necessary DFBs and Sections have been imported and used, the example program is able to communicate

with the LPSDO V3 and its devices.

The bit xActivate is set if the IOScanning polling contract(s) dedicated to the SBT devices are active. Adapt the

conditions according to your network settings. The DFB “Operate” contains many IN and OUT parameters.

In our example, as contracts 2 and 3 (bits 1 and 2) are dedicated to the LPSDO and the PDSI, the xActivate should be

the sum of the IOScanning contracts bits :

The list of parameters of the SBT_V3_... function blocs can be found in detail in the document attached to the PcWOrx

library for SBT V3. (SBT_V3_V1_00_001.pdf) This file is also part of the SBT V3/Unity/M340 package. For more details,

please refer to this document.

Optional DFB : TimeStamp decoding :

The timestamp of the safeconf applications are given in a Dint format, wich is not easily understandable. This DFB

permits to convert a dint timestamp into a comprehensive date and time

This decoding is made for both timestamps given by the ProjHeader DFB.

TimeStampToDate_Project is for the Safeconf application

TimeStampToDate_SBT is for the application already in the LPSDO.

The result is available in a data structure using either a complete Date and Time string, or separated elements (hour,

minut, second, day, month, year) :

Safeconf application (inside the imported DFB)

Optional but usefull Section diagILETH:

This section permits to handle the diagnostic and the control of the IL ETH BK itself.

It gives information about the status, and permits to (re)set the PP (Plug and Play) mode, and make an

acknowledgement of the netFail. If several IL ETH BKs are used in the project, this FB will have to be duplicated as

many times as the number of BKs. Of course, the IOScanning list will also have to be adapted.

Input parameters :

arrDiagRegisters (array of 4 words), located on registers 7996 to 7999

xPP : Plug and play mode

xAck : Acknowledgment of a netFail or PF

xAutoQuit : Continuous acknowledgment of a netFail or PF

Output parameters are explained in the datasheet of the IL ETH BK DI8 DO4. They give the status of the BK.

Help screen for debug :

An exploitation screen is given as an example wich summups useful information for the SBT:

This screen is not mandatory in your application, but it shows many interesting information :

An other more complete page is available in the “Easy” quickstart. You can find it in the SBT_V3_Easy application,

instead of the SBT_V3_quickstart.

Information about the LPSDO :

Réseau E/S OK : Value of xActivate (according to the I/O network status (contracts, for example, with IOScanning)

Position switches : Position of the DIP switches on the LPSDO

Device Type : Type of the device (h90 = LPSDO V3)

dwAppAck : Datas corresponding to the same information in Safeconf (bit 0 on the right)

dwAppDiag : Datas corresponding to the same information in Safeconf (bit 0 on the right)

Status outputs : Status of each output of the LPSDO (bit 0 on the right)

Enable outputs : data wich permit to ENABLE the dedicated output (bit 0 on the right)

Error on OPERATE DFB : See the DiagCode and AddDiagCode and refer to the document SBT_V3_V1_00_001.pdf.

Information about the Devices

Position switches : Position of the DIP switches on the device

Diag code : Diag code given by the device. Refer to the document SBT_V3_V1_00_001.pdf.

Device type : Type of the device (h10 = PSDI 8)

Status input : status of each input. (bit 0 on the right) *

Status output : status of each output. (bit 0 on the right) **

Enable output : Enable of each output. (bit 0 on the right) **

Notice : * : only significant if the device is an Input device

 **: only significant if the device is an Output device

Information about the projects.

Difference beetween Project and LPSDO : status of the xDiffLogicDetected.

Column Project : Detail of the project contained in the imported DFB

Column LPSDO : Detail of the application in the LPSDO

Project -> LPSDO : Enable transfer of the safety application from the PLC (the DFB) to the LPSDO

Download status : Bargraph moving according to the download step.

Information about the safety application

Operate OK : Function block is successfully initialized and operating without errors

Island Communication OK : communication status of the island is OK

Safeconf Logic running : Safety logic (SAFECONF logic) is running on the LPSDO

Safety condition missing : Reset-Request signal of one or more safety function blocks is true

Error on OPERATE DFB : Function block error

Request for power OFF/ON : Non-acknowledgeable failure state and power-up is requested

Request operator acknowledge : Operator acknowledge requested

Reser request of safety bloc : Reset-Request signal of one or more safety function blocks is true

Device error : Indicates error in one or more SBT-devices

Devices communication status : Communication status of each module. Each bit represents the status of a module. For

example: Bit 0 corresponds to module 1.

3.4 Step 3: installing the SafetyBridge Technology V3 modules

Install the SafetyBridge Technology V3 modules. To do this, proceed as described in the user manuals for the modules

used and the -Inline installation manual (see "Additional documentation" on page 1-2).

Please note the following in particular:

Set the DIP switches before assembling the module in the Inline station. The switches

cannot be accessed when the safety terminal is installed in the Inline station.

The switch numbers correspond to the labeling on the housing and not the numbering

on the switch itself.

The DIP switches are located on the left-hand side of the safety module.

Figure 3‑ 37 DIP switches on the IB IL 24 LPSDO 8 V3‑ PAC

A Switch for setting the transmission speed and the operating mode

B Switch for setting the address

For more detailed information on the DIP switches, please refer to the documentation

for the IB IL 24 LPSDO 8 V3‑ PAC and the IB IL 24 PSDI 8‑ PAC.

Switch positions of the modules for the example

Table 3‑ 6 Switch positions in the example

Figure 3‑ 38 Switch position of the IB IL 24 LPSDO 8 V3‑ PAC

Only use devices with a uniform transmission speed within an -Inline station (a local

bus). It is not possible to operate a mixture of devices with different transmission

speeds.

Since the SafetyBridge Technology V3 modules of an island can be located in different

-Inline stations, it may be the case that different transmission speeds (500 kbaud/2

Mbaud) are set for the modules.

This completes step 3 "installing the SafetyBridge modules". You have now integrated a SafetyBridge Technology V3

system into an existing system in three steps.

3.5 Overall safety validation

Perform an overall safety validation before you start up your system.

Cross Communication beetwen 2 or more islands

In the new SBT version V3, the islands can communicate with each other. The cross communica-
tion is a master-slave model. One or more islands react as a slave for another master island.
Each island has the data-structure udtSBT. The function block SBT_V3_CrossComm works with an
array of this data-structure as an in-/output variable (arr_udtSBT), where each udtSBT of an island
is a part of this array; and that is how the cross communication happens.

In case the island is in another PLC, another function block is needed
(SBT_V3_DataExch_V1_00). The function block is responsible for data exchange between the
master and the slave island

For more details about the cross communication, please refer to the LPSDO 8 V3 User manual,
chapter A 2.4.

The CrossComm DFB is as follow :

Arr_udt_SBT is an array of udt_SBT (the structure used to link every DFB of the same island).

In the above example, only 2 islands are communicating together (Island 1 and Island 2).

So, the length of the arr_udt_sbt must be adjusted to at least ‘2’ :

This DFB must be inserted only once in the PLC controlling the LPSDO V3.

If the cross communication must be handled between 2 islands wich are not on the same PLC, the DFB

SBT_V3_DataExchange must be used and configured on each PLC.

If Island1on PLC1 is the master of Island 2 on PLC2, the application in PLC1 is as follow :

iSlaveNr : 2 : Number of the slave island (destination)

And the application in PLC2 is as follow :

iSlaveNr : 0 : The exchanged buffers are handled by the master (on the other PLC)

3 Using the “Easy” quickstart

An “easy to handle” example has also been inserted in the Quickstart package. This easy example includes complex

structure and sections. The goal is to simplify the understanding and the typing of an LPSDO V3 application in an M340

application. Nevertheless, it uses more memory space than the simple SBT_V3_quickstart.

This example is easier to use because nearly no typing is necessary. Only adapt and delete some elements, regarding

your own configuration.

This example uses 2 main structures. These structures will be indexed by an island N°.

These structures are :

SBT_V3_X_UDT_Easy and SBT_V3_UDT_SBT.

These structures will not be used directly, but they will be included in an array of elements :

SBT_V3_ARR_UDT_Easy : ARRAY[1..x] OF SBT_V3_X_UDT_Easy

SBT_V3_ARR_UDT_SBT : ARRAY[1..x] OF SBT_V3_UDT_SBT

‘x’ will have to be modified to create the adapted number of elements necessary to the application :

1 : 1 island, 2 : 2 islands, 16 : 16 islands

The name of the variables are :

Arr_udt_easy and arr_udt_sbt.

Each of these variables will be used in the application with an index :

Arr_udt_easy[1] and arr_udt_sbt[1] for island 1

Arr_udt_easy[2] and arr_udt_sbt[2] for island 2, etc……………

The most important structure, wich will be used in the whole application, will be “arr_udt_easy” :

Name Type Usage

xActivate BOOL
IOs are correctly refreshed by the (MTCP, for
example) Master

xAckOp BOOL Operator Acknowledgement

xAckLPSDO BOOL Error acknowledgment in case of LPSDO error

arrAckDev ARRAY[1..16] OF BOOL Error acknowledgment in case of Device error

dwAppAck DWORD
xAppAck,X0 à xAppAck.X31 in safeconf : Un-
Safe data PLC -> SBT

arrWoutput SBT_V3_ARR_W_0_16 Enable output Enable for each xLPSDO

xReady BOOL Operate FB : Ready

xSBTlogicRunning BOOL Operate FB : Logic running in the SBT

iDownloaded INT
Operate FB : percent of the Safeconf applica-
tion downloaded in the LPSDO

xError BOOL Operate FB : Error

wDiagCode WORD Operate FB : Diag code

wAddDiagCode WORD Operate FB : Additive diag code

xPUR BOOL
Operate FB : Power Up request : the LPSDO
must be powered OFF/ON

xCommOK BOOL
Operate FB : Communication with the LPSDO is
correct

wCommStatus WORD

Operate FB : each bit of this word shows if the
communication with the corresponding device
works fine (bit 1 = Device 1)

xDevError BOOL
Operate FB : at least one device is in error. See
Diag code for each device

xOpAckReq BOOL
Operate FB : Operator acknowledgment is
requested

xResetRequest BOOL Operate FB : reset of the PLC is requested

xSafetyDemand BOOL Operate FB : Safety FB are used in the LPSDO

dwAppDiag DWORD
Operate FB : xAppDiag.X0 à xAppdiag.X31 in
safeconf : UnSafe data SBT-> PLC

arr_wFeedBackData SBT_V3_ARR_W_0_16
Operate FB : Status of each output of the
xPSDOx devices

arr_wInData SBT_V3_ARR_W_0_16
Operate FB : Status of each input of the PSDI
devices

arrSBTOnlCntrlBuf SBT_V3_ARR_DW_0_175

Variable for ONLINE mode with SAFECONF.
The Variable must be named exactly as it is
(i.e. arrSBTOnlCntrlBuf). The variable must be
VAR_GLOBAL with PDD option checked (see
help-document)

arrSBTOnlValBuf SBT_V3_ARR_W_0_175

Variable for ONLINE mode with SAFECONF.
The Variable must be named exactly as it is
(i.e. arrSBTOnlValBuf). The variable must be
VAR_GLOBAL with PDD option checked (see
help document)

wDiagCodeLPSDO WORD DiagCode FB : DiagCode of the LPSDO

arr_wDiagCodeDev ARRAY[1..16] OF WORD DiagCode FB : diag code for each device

udtProjHead SBT_V3_UDT_ProjectHeader
Project Header of the Safeconf project (coming
from SafeConf Export)

udtSBTHead SBT_V3_UDT_ProjectHeader Project Header in the LPSDO

arr_uiTransTimeDev ARRAY[1..16] OF UINT Time transmission for each device

arr_uiMaxTransTimeDev ARRAY[1..16] OF UINT Max Transmission time for each device

udt_Buff SBT_V3_UDT_Buff
Buffers of the LPSDO and devices (process
datas)

iIslandNo INT Island N° of the LPSDO

xAcceptDiffLogic BOOL

Acceptance of the different logic detected
beetween Project and LPSDO : enable down-
load to the LPSDO

xDiffLogicDetected BOOL
difefrence beetween the aplication in the
LPSDO and the one exported by Safeconf

strProjFileName STRING Name of the BIN file created by Safeconf

udtProjTimeStamp SBT_V3_X_udtTimeStamp
Time and Date of the application in the project
(FB created by Safeconf)

udtSBTTimeStamp SBT_V3_X_udtTimeStamp Time and Date of the application in the LPSDO

udtAppAck SBT_V3_X_udtAppBits
dwAppAck separated in 2 words for bits dis-
play

udtAppDiag SBT_V3_X_udtAppBits
dwAppDiag separated in 2 words for bits dis-
play

udtSwitchPos SBT_V3_X_udtSwitchPos Position of the Dip Switches

xAckGeneral BOOL General acknowledge (for test purpose only)

wTypDev SBT_V3_ARR_W_0_17 Type of each device

This structure will be used for each Island, associated to the udt_SBT_V3 structure.

The udt_SBT_V3 is the link between all the DFBs controlling the LPSDO.

The udt_Easy structure is the data wich is used to display all necessary information on the Screen dedicated to the

LPSDO.

In this page, the variables are accessed via their name.

When a screen is exported, an ascii file named “screenname.XCR” is created. If you open this ascii file with a simple text

editor, you can see, for example :

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<SCRExchangeFile>

 <fileHeader company="Schneider Automation" product="Unity Pro XL V7.0 - 120823C" dateTime="date_and_time#2013-12-6-9:40:49" content="Fichier source écrans d'exploitation"
DTDVersion="41"></fileHeader>

 <contentHeader name="Projet" version="0.0.115" dateTime="date_and_time#2013-12-6-8:58:59"></contentHeader>

 <IOScreen version="V1.0">

 <screen name="Visu Ilot 1 PLC1" screenX="1280" screenY="1024" BKColor="12632256" valScreen="0" location="" creationDate="28/11/2011 - 09:37:12" modificationDate="03/12/2013
- 12:02:53" customInfos="" isPattern="0" valPattern="0">

 <object objectID="2" description="(703,17,1006,377),3"></object>

 <object objectID="11" description="(703,17,1006,377),(0,1,8421504),(10,0,8421504)"></object>

 <object objectID="10" description="(704,376,1006,376),(0,1,16777215),4"></object>

 <object objectID="10" description="(1005,18,1005,376),(0,1,16777215),3"></object>

 <object objectID="2" description="(102,8,341,502),3"></object>

 <object objectID="11" description="(102,8,341,502),(0,1,8421504),(10,0,8421504)"></object>

 <object objectID="10" description="(103,501,341,501),(0,1,16777215),4"></object>

 <object objectID="10" description="(340,10,340,501),(0,1,16777215),3"></object>

 <object objectID="18" description="(223,479,239,494),(-1,0,0,0),||">

 <varPilot name="arr_Udt_Easy[1].udtappack.wword0.0" typeName="BOOL" description="Pilot:|0|1|"></varPilot>

 </object>

 <object objectID="18" description="(223,464,239,479),(-1,0,0,0),||">

 <varPilot name="arr_Udt_Easy[1].udtappack.wword0.1" typeName="BOOL" description="Pilot:|0|1|"></varPilot>

 </object>

 <object objectID="18" description="(223,449,239,464),(-1,0,0,0),||">

 <varPilot name="arr_Udt_Easy[1].udtappack.wword0.2" typeName="BOOL" description="Pilot:|0|1|"></varPilot>

 </object>

In this file, we can see the only variable wich is used in this screen is arr_udt_Easy[x].

Is several island must be controlled by the same PLC, and if several screens must be also created, it will just be

necessary to replace the index number [x] and the correct information about the defined island will be displayed.

Of course, after the index has been modified by the text editor, it will be necessary to import the screen back to the Unity

application.

For the correct use of this structure, some parameters have to be adapted according to the application.

The quickstart example includes a section, wich is called SBT_Easy.

This section is divided in several parts :

Part 1 :

arr_Udt_Easy[1].xAckOp := arr_Udt_Easy[1].xAckGeneral;

arr_Udt_Easy[1].xAckLPSDO := arr_Udt_Easy[1].xAckGeneral;

arr_Udt_Easy[1].arrAckDev[1]:= arr_Udt_Easy[1].xAckGeneral;

arr_Udt_Easy[2].xAckOp := arr_Udt_Easy[2].xAckGeneral;

arr_Udt_Easy[2].xAckLPSDO := arr_Udt_Easy[2].xAckGeneral;

This part must be adapted to define the information of Acknowledgment for each reason and device of each island.

Part 2 :

(* Island 1 handling *)

arr_Udt_Easy_PLC1[1].xActivate := Diag_BK1.xBkOK and Diag_BK1.xRUN;(* Communication with BK1 OK, and local bus OK *)

arr_Udt_Easy[1].udt_Buff.xSwapBytes := True; (* Swap High and Low bytes in the process datas *)

arr_Udt_Easy[1].iIslandNo := 1; (* Island N° *)

(* IN buffers *)

arr_Udt_Easy[1].udt_Buff.arr_I_In_LPSDO := %mw1001:24;

arr_Udt_Easy[1].udt_Buff.arr_I_In_Dev[1] := %mw1025:4;

(* Main part *)

SBT_V3_Easy_I1 (udt_SBT_Easy := arr_Udt_Easy[1],

 udt_SBT_V3 := arr_udt_sbt[1]);

(* OUT buffers *)

%mw2001:24 := arr_Udt_Easy[1].udt_Buff.arr_I_Out_LPSDO;

%mw2025:4 := arr_Udt_Easy[1].udt_Buff.arr_I_Out_Dev[1] ;

(* Call of the safeconf application *)

SBT_V3_I1 (udtSBT := arr_udt_sbt[1],

 xActivate := True);

This part includes :

- xActivate : conditions wich indicates that all process datas of the island (LPSDO + Devices) are correctly
refreshed. When using IOScanning only, it is just necessary to control that each Modbus TCP contract is active.
The words %IW0.2.0.1 to %IW0.2.0.4 indicate in each of their bits that the dedicated contact (for example 1 to
4) is active and runs fine (%IW0.2.0.1.1 : true : Means that the first line (contract) of the IOScanning is OK).

- xSwapByte : for Modbus TCP/M340, bytes must be swapped

- iIslandNo : the island N° must be the same as the one defined on the dip switches

- InBuffers : Add here all the Process datas areas of every device (as Input)

- Main part : Call of the SBT_V3 standard DFBs. (no adaption is necessary)

- OUT buffers : Add here all the process datas areas of every device (as output)

- Call of the safeconf application : Here the file created by safeconf must be inserted

Part 3 :

(* Creation of the CrossComm beetween islands controlled by the same PLC. Only one is necessary in the PLC*)

SBT_V3_CrossComm_PLC1 (iNoOfIslands := 2,

 arr_udtSBT := arr_udt_sbt);

(* Data exchange with an LPSDO wich is not controlled by the same PLC. One DataExch DFB will be necessary in each PLC for each island communicating with an other one *)

(* In this example, Island 3 is the slave of Island 2 *)

SBT_V3_DataExch_PLC1_I23 (iSlaveIsland := 3 (* 3 means the island N° of the (remote) slave Island *),

 arr_wInBuff := arr_DataExch_I3toI2 (* Buffer created by the remote PLC by the DataExch DFB as the arr_wOutBuff*),

 udtSBT := arr_udt_sbt[2], (* DataStructure of the Master Island *)

 arr_wOutBuff => arr_DataExch_I2toI3 (* Buffer wich will be used by the remote PLC, as the arr_wInBuff *));

This part is not necessary if no communication between several island is involved. You just have to delete it.

If cross communication between islands is necessary, adapt the island N° and the variables used here, and refer to the

SBT_V3_V1_00_001.pdf file for more details about the function blocs SBT_V3_CrossCom and SBT_V3_DataExch.

If several islands are controlled by the same PLC, with or without cross communication, part 2 must be repeated for each
island.

Of course, many information can be sent or retrieved with the LPSDO.

These information will be accessed via the structure dedicated to the island.

For example, as mentioned in the example Part 1, the acknowledgments bits can be accessed with the syntax :

arr_Udt_Easy[1].xAckOp, etc….

The enable Outputs : arr_Udt_Easy[1].arrWoutput[0] (for the LPSDO)

The outputs status : arr_Udt_Easy[0].arr_wFeedBackData[0] (for the LPSDO)

The inputs status : arr_Udt_Easy[1].arr_wInData (for the device 1)

The diagnostic information : arr_Udt_Easy[1].arr_wDiagCodeDev[1] (of the device 1)

Etc…..

The goal of the ‘Easy’ concept is to make the use of the SBT devices easy, and the information useful for the PLC
application is found easyly. For example, 3 variables will have an interaction between the non safety application
(controlled by the PLC), and the safety application (controlled by the LPSDO). These variables are dwAppdiag,
dwAppAck, arr_wFeedBackData, arr_wInData and arrWoutput.

These variables are part of the ‘easy’ structure and they will be available in the PLC application with the syntax :

(example) : arr_udt_easy[1].dwAppDiag, arr_udt_easy[1].dwAppAck, arr_udt_easy[1]. arr_wFeedBackData [x],
arr_udt_easy[1]. arr_wInData[x], arr_udt_easy[1].arrWoutput[x].

(Where [x] is the safety device number).

In the same way, many other variables are available, such as :

- the Device Acknowledgement : arr_udt_easy[1].arrAckDev[x])

- the Device diag code : arr_udt_easy[1]. arr_wDiagCodeDev[x])

- the maximum cycle time of the SBT island : arr_udt_easy[1]. arr_uiMaxTransTimeDev[x]

- the actual cycle time of the SBT island : arr_udt_easy[1] .arr_uiTransTimeDev[x]

Details for the Cross Comm between 2 Islands in 2 separated PLC.

Island 3 is the slave of Island 2.

Island 3 is on a different PLC.

Island 2 is controlled by PLC1

Island 3 is controlled by PLC2.

Code in PLC1 :

(* Creation of the CrossComm beetween islands controlled by the same PLC. Only one is necessary in the PLC*)

SBT_V3_CrossComm_PLC1 (iNoOfIslands := 2,

 arr_udtSBT := arr_udt_sbt);

(* Data exchange with an LPSDO wich is not controlled by the same PLC. One DataExch DFB will be necessary in each PLC for each island communicating with an other one *)

(* In this example, Island 3 is the slave of Island 2 *)

SBT_V3_DataExch_PLC1_I23 (iSlaveIsland := 3 (* 3 means the island N° of the (remote) slave Island *),

 arr_wInBuff := arr_DataExch_I3toI2 (* Buffer created by the remote PLC by the DataExch DFB as the arr_wOutBuff*),

 udtSBT := arr_udt_sbt[2], (* DataStructure of the Master Island *)

 arr_wOutBuff => arr_DataExch_I2toI3 (* Buffer wich will be used by the remote PLC, as the arr_wInBuff *));

Code in PLC2 :

(* Creation of the CrossComm beetween islands controlled by the same PLC. Only one is necessary in the PLC*)

SBT_V3_CrossComm_PLC2 (iNoOfIslands := 3,

 arr_udtSBT := arr_udt_sbt_PLC2);

(* Data exchange with an LPSDO wich is not controlled by the same PLC. One DataExch DFB will be necessary in each PLC for each island communicating with an other one *)

(* In this example, Island 3 is the slave of Island 2 *)

SBT_V3_DataExch_PLC2_I32 (iSlaveIsland := 0 (* 0 means that this DFB supports the slave device *),

 arr_wInBuff := arr_DataExch_I2toI3 (* Buffer created by the remote (Master) PLC by the DataExch DFB as the arr_wOutBuff *),

 udtSBT := arr_udt_sbt_PLC2[2], (* DataStructure dedicated to the Master Island *)

 arr_wOutBuff => arr_DataExch_I3toI2 (* Buffer wich will be used by the remote (Master) PLC, as the arr_wInBuff *));

In the quickstart example, the section SBT_Easy is the main section. The section SBT_Easy_PLC2 is an additive
section, wich simulates a second PLC controlling another LPSDO V3. Is a safety island is not controlled by another PLC,
this section must be deleted . It is present only as an example to illustrate the cross communication between PLCs.

Hardware example used with this quickstart

The IL ETH BK is configured as follow:

The first LPSDO and the first PSDI8 are for Island 1

The second LPSDO is for the Island 2

The third LPSDO and the second PSDI are for the isalnd 3.

This is just a constellation to illustrate the quickstart exemple.

The process datas of the IL ETH BK are mapped as follow :

I1 I2 I3

I1
I2

I3

OnLine monitoring with Safeconf >= 2.9

From the version 2.9 of safeconf, it is possible to make OnLine monitoring. That means it is possible to view status of
each variable in Safeconf, while the SBT application is running. For this, the whole PLC network used by the SBT must
be running properly.

Some settings must be adapted in Safeconf and the PLC application :

- Settings in Unity.

The Unity example includes a section called SafeconfOnLine.

See the settings in

SafeConf

For this DFB, the settings are quiet simple :

Adjust the value of iControlCodeStart and iValueStart to the same settings made in Safeconf (1400 and 1800)

Use 2 variables (arrCntrlBuffer and arrValBuffer), on the SBt_V3_Modbus_Com DFB and in the
SBT_V3_Operate DFB :

- Settings in Safeconf.

Right clic on the LPSDO V3 in the hardware list of the safeconf application, and select “On Line configuration”

Select Generic Modbus/TCP Device.

Clic on “Next”

Type in the PLC adress (192.168.0.30), and clic “Show expert settings”.

Now, it is necessary to adjust and/or memorize the control Register offset, and the Value Register.

In this example, they are respectively set to 1400 and 1800.

Values must be identical to the SBT_V3_Modbus_COM settings

The port N° has to be defined with 502, because the Schneider PLC (M340) Modbus TCP server is using this
one, wich is not modifiable

Clic “Terminate”.

The OnLine Configuration is finished in SafeConf.

If the communication beetween Safeconf and the SBT is correct, you will see an information lighted at the right
bottom of the screen :

Then, you can launch the OnLine visualisation, by the icon or the menu :

After some few seconds, the values will be displayed :

It is also possible to get some information about the SBT project:

With the menu “Command – status”, you will get this window :

Problems with IOScanning.

In some cases (according to the CPU type of the PLC, or the type of PLC, it is impossible to synchronize the
IOScanning and the application program. In such cases, the data constitency of the xPSDx devices can be
perturbated, and so, the safety communication fails.

To be able to use the SBT technology if such problem occurs, it is necessary to use an other method to access
to the devices process datas.

- For M340 and Premium, we need to use the Read_Var and Write_Var FBs. These FB permit to control each
Modbus request. By this way, it is now easy to refresh all outputs, all inputs and then to run the safety
application FB (operate, etc…)

- For the Quantum, Read_Var and Write_Var are not useable. Some other FBs are available for this PLC.

Example for M340 and Premium :

In this example, some special FBs have been designed to read and write process datas.

SBT_X_WriteVar is a FB wich permits to write the process datas of the BKs. This FB allows the writing of the
SBT process datas, and also the standard process datas.

- strAdress : In this example, ‘M’ is the name of the network, and ‘172.16.79.20’ is the IP adress of one of the
BKs. This syntax is only useable with M340 (for Premium, an other syntax is necessary).

- xWrite, xRead and xDone must be used to cascade the FBs, the one after the other. The FBs can either be
launched the one after the other, or several at the same time. This depends of the CPU capacities. (for
example, you can launch 5 FBs at the same time on a quantum, maybe more, depending on the CPU load)

- diStartAdress indicates the first adress of the registers of the BK we want to read or write

- iLength indicates the number of registers to read or write on the BK

- arrDataToWrite is the array of registers used in the PLC (Out)

- arrReadData is the array of registers used in the PLC (In)

- xRead or xWrite lanuches thes FB

- xDone indicates that the Read or Write was successful.

Architecture of the application :

In the Sections, we can find 3 parts :

- Write_Vars uses all the FBs to write process datas to the BKs

- Read_Vars uses all the FBs to read process datas from the BKs

- SBT_Easy controls the safety island communications

- DiagILETH includes the FB to read Diagnostic of each BK, and restart it in case of NetFail

To synchronise R/W and the Operate FB, a bit must be generated by the Read and Write FBs. This bit indicates that all
the Read and Write frames have been exchanged beetween the PLC and the BKs, so that the process datas can be
used by the operate FB.

This bit is generated by the last ‘Write’ FB, or the sum of all the Read and Write FBs (if several FBs are launched
together) :

There are 2 ways to sned the requests :

If FBs are cascaded : (low load charge of the network, but slow refresh of the I/Os)

If some FBs are launched together : (higher load of the network, but faster refresh of the I/Os) The number of
simultaneous possible requests depends of the Ethernet coppler in the Schneider PLC. Plese refer to the dedicated
documentation for more details)

The generated bit xWriteDone will be used in the ‘SBT_Easy’ part of the application.

If xWriteDone then

(* For each island. Must be adapted according to the application needs *)

(* Here for the demo, all acknowledmenents are common *)

arr_Udt_Easy_PLC1[1].xAckOp := arr_Udt_Easy_PLC1[1].xAckGeneral;

arr_Udt_Easy_PLC1[1].xAckLPSDO := arr_Udt_Easy_PLC1[1].xAckGeneral;

arr_Udt_Easy_PLC1[1].arrAckDev[1]:= arr_Udt_Easy_PLC1[1].xAckGeneral;

arr_Udt_Easy_PLC1[1].arrAckDev[2]:= arr_Udt_Easy_PLC1[1].xAckGeneral;

arr_Udt_Easy_PLC1[1].arrAckDev[3]:= arr_Udt_Easy_PLC1[1].xAckGeneral;

arr_Udt_Easy_PLC1[1].arrAckDev[4]:= arr_Udt_Easy_PLC1[1].xAckGeneral;

arr_Udt_Easy_PLC1[1].arrAckDev[5]:= arr_Udt_Easy_PLC1[1].xAckGeneral;

arr_Udt_Easy_PLC1[1].arrAckDev[6]:= arr_Udt_Easy_PLC1[1].xAckGeneral;

arr_Udt_Easy_PLC1[1].arrAckDev[7]:= arr_Udt_Easy_PLC1[1].xAckGeneral;

arr_Udt_Easy_PLC1[1].arrAckDev[8]:= arr_Udt_Easy_PLC1[1].xAckGeneral;

arr_Udt_Easy_PLC1[1].arrAckDev[9]:= arr_Udt_Easy_PLC1[1].xAckGeneral;

arr_Udt_Easy_PLC1[1].arrAckDev[10]:= arr_Udt_Easy_PLC1[1].xAckGeneral;

arr_Udt_Easy_PLC1[1].arrAckDev[11]:= arr_Udt_Easy_PLC1[1].xAckGeneral;

arr_Udt_Easy_PLC1[1].arrAckDev[12]:= arr_Udt_Easy_PLC1[1].xAckGeneral;

arr_Udt_Easy_PLC1[1].arrAckDev[13]:= arr_Udt_Easy_PLC1[1].xAckGeneral;

arr_Udt_Easy_PLC1[1].arrAckDev[14]:= arr_Udt_Easy_PLC1[1].xAckGeneral;

arr_Udt_Easy_PLC1[1].arrAckDev[15]:= arr_Udt_Easy_PLC1[1].xAckGeneral;

(* Island 1 handling *)

arr_Udt_Easy_PLC1[1].xActivate := (%IW0.1.0.1.0 and %IW0.1.0.1.1 and (%mw1501 = 16#00e0) and (* %iw0.1.0.x.y : 0 = Rack, 1 = Module, 0 = channel : if IOScanning is used*)

 %IW0.1.0.1.2 and %IW0.1.0.1.3 and (%mw1505 = 16#00e0) and (* in this example, the card NOE 0110.2 *)

 %IW0.1.0.1.4 and %IW0.1.0.1.5 and (%mw1509 = 16#00e0) and

 %IW0.1.0.1.6 and %IW0.1.0.1.7 and (%mw1513 = 16#00e0) and

 %IW0.1.0.1.8 and %IW0.1.0.1.9 and (%mw1517 = 16#00e0) and

 %IW0.1.0.1.10 and %IW0.1.0.1.11 and (%mw1521 = 16#00e0) and

 %IW0.1.0.1.12 and %IW0.1.0.1.13 and (%mw1525 = 16#00e0) and

 %IW0.1.0.1.14 and %IW0.1.0.1.15 and (%mw1529 = 16#00e0) and

 %IW0.1.0.2.0 and %IW0.1.0.2.1 and (%mw1533 = 16#00e0) and

 %IW0.1.0.2.2 and %IW0.1.0.2.3 and (%mw1537 = 16#00e0));

arr_Udt_Easy_PLC1[1].udt_Buff.xSwapBytes := True; (* Swap High and Low bytes in the process datas *)

arr_Udt_Easy_PLC1[1].iIslandNo := 1; (* Island N° *)

(* IN buffers *)

arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_In_LPSDO := %mw1001:24;

arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_In_Dev[1] := %mw1025:4;

arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_In_Dev[2] := %mw1029:4;

arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_In_Dev[3] := %mw1033:4;

arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_In_Dev[4] := %mw1037:4;

arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_In_Dev[5] := %mw1041:4;

arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_In_Dev[6] := %mw1045:4;

arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_In_Dev[7] := %mw1049:4;

arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_In_Dev[8] := %mw1053:4;

arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_In_Dev[9] := %mw1057:4;

arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_In_Dev[10] := %mw1061:4;

arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_In_Dev[11] := %mw1065:4;

arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_In_Dev[12] := %mw1069:4;

arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_In_Dev[13] := %mw1073:4;

arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_In_Dev[14] := %mw1077:4;

arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_In_Dev[15] := %mw1081:4;

(* Main part *)

SBT_V3_Easy_I1 (udt_SBT_Easy := arr_Udt_Easy_PLC1[1],

 udt_SBT_V3 := arr_udt_sbt_PLC1[1],

 arrSBTOnlCntrlBuf := arrSBTOnlCntrlBuf ,

 arrSBTOnlValBuf := arrSBTOnlValBuf);

(* OUT buffers *)

%mw2001:24 :=
arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_Out_LPSDO;

%mw2025:4 := arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_Out_Dev[1] ;

%mw2029:4 := arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_Out_Dev[2] ;

%mw2033:4 := arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_Out_Dev[3] ;

%mw2037:4 := arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_Out_Dev[4] ;

%mw2041:4 := arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_Out_Dev[5] ;

%mw2045:4 := arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_Out_Dev[6] ;

%mw2049:4 := arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_Out_Dev[7] ;

%mw2053:4 := arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_Out_Dev[8] ;

%mw2057:4 := arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_Out_Dev[9] ;

%mw2061:4 := arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_Out_Dev[10] ;

%mw2065:4 := arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_Out_Dev[11] ;

%mw2069:4 := arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_Out_Dev[12] ;

%mw2073:4 := arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_Out_Dev[13] ;

%mw2077:4 := arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_Out_Dev[14] ;

%mw2081:4 := arr_Udt_Easy_PLC1[1].udt_Buff.arr_I_Out_Dev[15] ;

(* Call of the safeconf application *)

SBTV3_Modbus (udtSBT := arr_udt_sbt_PLC1[1],

 xActivate := True);

end_if;

The (* IN buffers *) part makes the link beetween the process datas read by the SBT_X_ReadVar and the variables used
by the Operate FB.

The (* OUT buffers *) part makes the link beetwen the variables used by the Operate FB and the process datas written
by the SBT_X_WriteVar.

The (*Island 1 handling *) part controls the activation of the mainFB ‘Operate’. This FB will have to be run only is the
whole constellation of Modbus TCP BKs is active and runs OK. This is the reason why each status bit of the IOScanning
contracts is controlled (to be sure that each BK is available and active), and if the local bus of the BKs is running
correctly (Value E0 means RDY + ACT + RUN).

In the Quickstart package, you will find 2 applications using this constellation :

In this constellation, we can see 10 BKs, using 15 SBT devices. The LPSDO V3 is located just behind the BK
172.16.79.20.

- Sbt v3 easy 10 bks M340 (Unity XL) : each BK is read and writen the one after the other. This makes the cpu
load very low, but the SBT cycle time is about 800 ms.

- Sbt v3 easy 10 bks Fast M340 (Unity XL) : a set of 5 BKs is read and writen at the same time. This makes the
cpu load a little bit higher, but the SBT cycle time is about 280 ms.

For the control and the diagnostic of each BK, the FB called Diag_ILETH_BK_DI8_DO4 must still be used.

This FB needs to access to the registers 7996:4 and 2006. These registers can be accessed via the IOScanning with no
problem (with 2 separated contracts), or with Read_Var and Write_Var.

It is also necessary to run the ‘Operate’ FB only if the whole constellation of devices is correctly accessed via Modbus
TCP. To insure a such behaviour, the ‘Operate’ FB will have to be run only if the IOScanning (if used) contracts are OK
(%IW0.2.0.1.x) and if the BKs are running correctly.

The code to get diagnostic and control each BK in case of Netfail, for example, is given as an example in ST language :

Diag_IL_ETH_BK_DI8_DO4_BK1 (xAutoQuit := True,

 tScantime := t#5s,

 xPP := False,

 arrDiagRegisters := %mw1500:4,

 iCdeRegister => %mw2500);

Diag_IL_ETH_BK_DI8_DO4_BK2(xAutoQuit := True,

 tScantime := t#5s,

 xPP := False,

 arrDiagRegisters := %mw1504:4,

 iCdeRegister => %mw2501);

Diag_IL_ETH_BK_DI8_DO4_BK3(xAutoQuit := True,

 tScantime := t#5s,

 xPP := False,

 arrDiagRegisters := %mw1508:4,

 iCdeRegister => %mw2502);

Diag_IL_ETH_BK_DI8_DO4_BK4(xAutoQuit := True,

 tScantime := t#5s,

 xPP := False,

 arrDiagRegisters := %mw1512:4,

 iCdeRegister => %mw2503);

Diag_IL_ETH_BK_DI8_DO4_BK5(xAutoQuit := True,

 tScantime := t#5s,

 xPP := False,

 arrDiagRegisters := %mw1516:4,

 iCdeRegister => %mw2504);

 Diag_IL_ETH_BK_DI8_DO4_BK6(xAutoQuit := True,

 tScantime := t#5s,

 xPP := False,

 arrDiagRegisters := %mw1520:4,

 iCdeRegister => %mw2505);

Diag_IL_ETH_BK_DI8_DO4_BK7(xAutoQuit := True,

 tScantime := t#5s,

 xPP := False,

 arrDiagRegisters := %mw1524:4,

 iCdeRegister => %mw2506);

Diag_IL_ETH_BK_DI8_DO4_BK8(xAutoQuit := True,

 tScantime := t#5s,

 xPP := False,

 arrDiagRegisters := %mw1528:4,

 iCdeRegister => %mw2507);

Diag_IL_ETH_BK_DI8_DO4_BK9(xAutoQuit := True,

 tScantime := t#5s,

 xPP := False,

 arrDiagRegisters := %mw1532:4,

 iCdeRegister => %mw2508);

Diag_IL_ETH_BK_DI8_DO4_BK10(xAutoQuit := True,

 tScantime := t#5s,

 xPP := False,

 arrDiagRegisters := %mw1536:4,

 iCdeRegister => %mw2509);

Difference between M340 and Premium.

The FB SBT_X_ReadVar and SBT_X_Write_Var use a ‘standard’ FB available in Unity, wich is called ‘ADDM’. This FB
creates the address to use by READ_Var and Write_Var. For the M340, the input parameter of this FB is quiet easy to
create and understand.

‘M{172.16.79.20}’ means : use the communication card called M and the Modbus TCP server is @ 172.16.79.20

For a Premium, the ADDM FB is not available. The Premium needs the FB called ADDR. The syntax of the adress used
by ADDR is a little bit different from the one used by ADDM. If you want to use the SBT V3 technology with a Premium
using Modbus TCP (with IL ETH BK…), you will need the example dedicated to the Premium. In this example, 2 FBs are
modified and specially designed for the premium (SBT_X_ReadVarPremium and SBT_X_WriteVarPremium).

- You will need to configure the “messagerie” parameters to access to the IL ETH BK with an xWay adress.

In the example below, you can see that 2 stations are configured, with IP adresses 192.168.0.5 and
192.168.0.6. The XWay adresses 1.102 and 1.103 will be used in the application to access to the process datas
of the SBT devices.

In this example, you can see that the XWay adresses configured in the network parameters, are used also as
the strAdress parameter in the SBt_X_WriteVarPremium and SBT_X_ReadVarPremium.

The application example for Premium uses a simpler constellation (BK1 with LPSDO + PSDOR, and BK2 with
PSDI8). The name of this application is SBT_V3_Premium.

The example SBT_V3_Easy_Premium is dedicated to the Premium. You can also use it to understand the way the Modbus TCP BKs are refreshed with Read_Var and Write_Var.

