lIoT Device Access

Developer Guide

Issue 01
Date 2020-12-01

HUAWEI

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2020. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

QD

nuawer and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice

The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. i

loT Device Access

Developer Guide Contents

Contents
T BefOre YOU STArt....... e iiieecieccecetcecncctesaeeseesnesseesassssssssssssssssssessssssssssssassssessssssssasssaasans 1
2 ODbEAINING RESOUICES.......c.ueceeeeeeeeeeceeneeeeesseeeessesseesssessessessssssessssssessssssessssssessssssessssssassassses 4
3 Product DeVElOPMENT..... .. ivieiiieieeieeinneeeeneeeseesneeseesnnessssssessssssssssssssssssssessssssssassssssassnes 11
3.7 Product DEVELOPMENT GUIE.......covieeiieeeeeieieisisis st sss st st ssssss s bbb bt st ssssssassas bt sn st sssensessnssnsas 11
3.2 CrEALING @ PrOTUCT ...ttt bbb a s e e bbbt b e s s s s bbbt s nsessesasbansas 13
3.3 Developing @ PrOAUCE IMOAEL.........oveeeeeieecieeceeete ettt bbbt bbb nsesanen 15
B30T DBIINITION ettt ettt bbb et 15
3.3.2 Developing @ Product MOl ONLINE...........iieieeieirieisisiesiesisseesssss st sssnsenes 17
3.3.3 Developing @ Product MOdel OffliNe........ ettt sae st bbb sensas 21
3.3.4 Exporting and ImMporting ProdUCt MOAELS..........c.ueeireeieeeeee ettt ettt sttt snes 35
3.4 DEVELOPING @ COURC.....c ittt ess sttt ssassass s st ssssssessssssss s s ssssessessssssssssssssssensssssssssssssssnsns 36
BT DBIINTTION ettt ettt sttt bbb bbb b bbbt 37
3.4.2 GraphiCal DEVELOPMENT.......cieiriiieite ettt et sas bbb bbb ss s s b s s bbb st ssessssassanssnsansnns 38
3.4.3 Developing @ Codec USING JAVASCHIPT ...ttt sttt ss s sesseas s ss s st ssssssesssanen 88
3.4.4 Offline COAEC DEVELOPIMENT. ...ttt sttt s s sa s s s st ssssessssessnsanen 105
3.4.5 Downloading and Uploading @ COUEC.......ummiririreirineissisiensiessnns 131
3.5 ONlINE DEDUGGING...ouiiiiiiiteieieiee ettt sttt st s s bbb bbb s bbb bbb s sanssnsanes 133
4 Development on the DevVice Side........riiieninninninninnenisensnnessssnsesssssnssssssssssssasossssases 137
4.1 DEVICE ACCESS GUIE......cueeiereeceeeeinetiretreie ittt tt st bt ts sttt st bbbttt sies 137
4.2 USING |OT DEVICE SDKS fOI ACCESS.....ceeveeieereeiririrsisiseissisissssssssssssssssssssssssssssssssssssssesssssssssssssssssssssssessssssssessssassssenes 139
4.2.7 INtroduction tO 10T DEVICE SDKS.......ociuriririeirieeieeieisieisesstesstsssiessssssssssssesssssssssessssssssssssssesssssssssessssessssessssssssssnsns 139
4.2.2 10T DEVICE SDK (JAVA) ceuiuieieeeeeieeeiececeeeeeeecteeeesesesesessassssessse s s essassssesesssssssssesesssssssssssessssassens 141
4.2.3 10T DEVICE SDK () eeueuueurreeeeereeuseesseesseasseessesssesssesssseessesssesssesssesssesssesssesssesssesssessssssesssesssesssesssesssesssesssssaesssesssesssssnnses 157
4.2.4 10T DEVICE SDK (CH) ceuruuierieeeeeiereesseeeseessesssesssesssssasesssessss st e s sssessssss s s ssssesssesssesasesssesasesasssasesssssassssesssessessnssnsens 158
4.2.5 10T DEVICE SDK (ANAIOIA) ...ttt sttt s s s st s s s s s sassassesasassansaen 158
4.2.6 10T DEVICE SDK TINY (C) cururrereerierierieieereiseseesessesstssasesstssssesssssessessasssssessssssessssssssssssssssssssssssssssessssssssssssssssssssssssassans 158
4.3 USING MQTT DEIMOS fOI ACCESS.....evurierirrirririrsirrenienissessns 158
Z.3.T IMIQT Tt ieeiieeesee s eeese e s et s s ss s e e84 8 4822842842285 R e £ e et ss e 158
4.3.2 IMQT T X ettt itsesssess s sssessss s st s st s s s s s s a8t e85t s s 164
4.3.3 JAVA DBIMO...oiiiiiriciricirtcis ettt st bbbt et et ettt 174
4.3.4 PYENON DEIMO...ceuiiiieieeiirie sttt st sss s st s s s s st sssas s s s st sssasessssss s sess st essessesssssssssssnsssssssssnssnsans 179
4.3.5 ANAIOIA DEIMO.....oueeiieieieiieie ettt es st s e bbb sttt 187

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. i

loT Device Access

Developer Guide Contents
4.3.6 € DEMO..cuitiieeieeieeeee ittt tis ettt et e e s b bbbt 199
A.3.7 CHE DBIMO ..ttt sttt sttt sttt s et e s st st sess s s et s e s e s e s et st asse s et asesss e b aasses et eansssessasansssasananans 205
4.3.8 NOAE.JS DEIMIO......oeieiiririeieeiereetiessisis sttt sss bbb e sss s s ss bt bt s s b s s s s b st s s s st s s sasssss s bsnsnsensnssnsans 214
4.4 Using Huawei-Certified MOAULES fOr ACCESS.......ovvririririeisirsiseisseseesessasssans 221
5 Development on the Application Side.........eeerineereeceeeeceeeeceeeeceeseeceesaeseeanes 232
BT APttt bbbttt 232
5.2 SUDSCIIPLION @NA PUSHL...coeiiiee ettt sttt 235
5.2.T OVEIVIEW.....eeeeeete ettt sttt sttt st s st st s e s st s s st st e e st ee st easssessss s s sessesassessssesassesansanans 235
5.2.2 HTTP/HTTPS SUDSCIPLION/PUSH......oerieiirieerr sttt sss st st sssssssssssss s sensnsnes 236
5.2.3 AMQP SUDSCIHIPLION/PUSK......oeeieeeete sttt bbb et s s snas 242
5.2.3.T OVEIVIBW ...ttt sttt st sttt s st s et s b s s b et e et e e st ea st ee st s ssssnsssassesansesassssassesans 242
5.2.3.2 Configuring AMQP Server SUDSCIIPLION.......ccovirirer ettt sssssss s s s sssssnsssssssssssssssans 244
5.2.3.3 AMQP CLIENT ACCESS......vveeeeeeeveeeeteteeeeeetete s et se s st ss st s st esess st esesas st et s sassstesesasassessasassesesssassesesesasassessanas 246
5.2.3.4 Java SDK ACCESS EXQAMIPLE......eceieierieieeirieetesteeetei sttt sttt s ssss st s s ss s s sss bbb st s s ssesassansanssnsnsnns 249
5.2.3.5 NOE.jS SDK ACCESS EXAMPLE.....eieierierieririsireiest ettt ssss s s sss st ssssssssssssssssssssssssnsssssssssssssssssssssnsens 252
5.3 JAVA DEIMO..ciieeee ettt sttt sttt ettt et a ettt s A A et a A b et a At ettt et et e et et enens 253
5.4 Debugging USING POSTMAN.......coiiiiiieeeieeieieisisisisiesessas st ssss st ssssssssssssssssss st ss s sssssessssassssssssassessesssssessssasssnsns 268

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. iii

loT Device Access
Developer Guide

1 Before You Start

Before You Start

Overview

To create an loT solution based on the HUAWEI CLOUD loT platform, you must
perform the operations described in the table below.

Operation Description

Product Manage products, develop product models and codecs, and
development | perform online debugging on the IoT Device Access (IoTDA)

console.

Development | Carry out development for interconnection between

on the applications and the platform, including calling APIs, obtaining
application service data, and managing HTTPS certificates.
side

Development | Carry out development for interconnection between devices
on the device | and the platform, including connecting devices to the
side platform, reporting service data to the platform, and

processing commands delivered by the platform.

Service Process

The figure below shows the process of using 10TDA, including product, application,
device, and routine management.

Product development: You can perform development operations on the |oTDA
console. For example, you can create a product or device, develop a product
model or codec online, perform online debugging, carrying out self-service
testing, and release a product. The self-service testing and product release
functions are not rolled out yet.

Application development: The platform provides robust device management
capabilities through APIs. You can develop applications based on the APIs to
meet requirements in different industries such as smart city, smart campus,
smart industry, and loV.

Device development: You can connect devices to the platform by integrating
SDKs or modules, or using native protocols.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 1

IoT Device Access
Developer Guide 1 Before You Start

e Routine management: After a physical device is connected to the platform,
you can perform routine device management on the I0TDA console or by
calling APIs.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 2

IoT Device Access
Developer Guide 1 Before You Start

Developers

Development on
the application

side inti jal b —m e ——
4’| APl integration I——D{ S%iizrlgpgt:ﬁg& Comurgeermal o

Froduct creation

Development

[——— — A
o0 i Eemel | Product release— — — — —
v ey
Function |
definition |
B | Selfsenice |)
e | . Product import
" testin |
i Codet i L— _Fg_ =

development | |

- |

debugging

Commercial
use

Device
registration

selection the device side

Madule

;'[|aT Device SDK (C)

f{ IoT Device SDK (Java)
o EVICe awva
1

I
I
I
I
I
I
I
I
I
I
I
]
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
) |
EhRiiDEIE :

[] ,"[mndiile j |
- Module / |
. m selection “ |
» o loT Device SDK (C#) | g P :
I

) .
I

I

J |
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

S0k
selection

(B
| ™ IoT Device SDK Tiny
\

\{ loT Device SDK (Android)

Routine management
inthe cloud

SubscriptionfPush 2
Ay

h
Froperty reporting \\

Details Message reporting !

-

Reports E Cormrmand delivery \

i oftwarelFirmware
upgrades

Operation recards I0TDA

\ Storage !
Message trace \ managernent ;

-~ Device monitaring I
Alarms e

~

Groups and tags

A

Auditlogs

-

File uploads
HUAWEI J

Issue 01 (2020-12-01) .77 Copyright @ o ’

O g g

A
A
™
=

Eié
gl
=}
g
Q
w

Device shadows

Y
=

Device linkage -7

b

IoT Device Access
Developer Guide 2 Obtaining Resources

Obtaining Resources

Platform Connection Information

Before connecting applications and devices to the loT platform, you must obtain
platform access addresses.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 4

loT Device Access
Developer Guide

2 Obtaining Resources

Platform
Environment

How to Obtain

loT Device
Access

Log in to the I0TDA console, access the Overview page, and
view the device and application access addresses.

Figure 2-1 Shared domain name

Platform Access Basic Edition

Access Type Access Protocol (Port) Domain Name

443 iotda.cn-north-4.myhuaweicloud.com
Application ac...
5671 e el & g ps. cri-north -4 myhuaweicl
5683 5684 iot-coaps.cn-north-4.myhuaweicloud.com
Device access 8043 iot-https.cn-north-4. myhuaweicloud.com

iot-mgtts.cn-north-4.myhuaweicloud.com

For users who have subscribed to 10TDA since 00:00 on July
14, 2020 (Beijing time), the platform allocates a unique
region-level ID to each user based on the shared domain
name. Users can connect to the platform using their
independent domain names. If you want to change a device
from Basic Edition to Enterprise Edition and use a domain
name for device access, you do not need to modify devices.
Contact Huawei engineers to migrate data.

Figure 2-2 Independent domain names

Platform Access

Access Type

Basic Edition

Access Protocol (Port)

Domain Name

443 (o e e e e e e e e - ot - S huaweio ...
Application
5671 e w1 - o thi-A iy huaweiclou
5684 5683 e R R e R e e e cn -niofr th - 5. huaweio
Device acc... 2943 e e e e e e e C - ot - S huaweiot.o..
88523 883 e e e e C N - ot -5 hu aweiot o

Note: You can still use the shared domain name to access

the platform.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

IoT Device Access
Developer Guide 2 Obtaining Resources

Platform How to Obtain
Environment

Log in to the I0TDA console, choose I0TDA Instances >
Basic Edition, click Details to open the instance details
page, and click Preset Access Credential to preset the
accessCode and accessKey.

Access Details

Access Type Access Protocol (Port)

HTTPS (443

0

Application acce
AMQPS (567

0

CoAP (5683) CoAPS (3684

0

Device access HTTPS (8543)

]

MQIT (1883) | MQTS (8883 fot-mqts.cn-north-4 myhuaweicloud.com

0

Device Development Resources

The platform allows device access using MQTT or LwM2M over CoAP. Devices can
connect to the platform by calling APIs or integrating with SDKs.

Resource Package Description Download Link

loT Device SDK (Java) Devices can connect to loT Device SDK (Java)
the platform by
integrating the loT
Device SDK (Java). The
demo provides sample
code for calling SDK
APIs. For details, see loT
Device SDK (Java).

loT Device SDK (C) Devices can connect to loT Device SDK (C)
the platform by
integrating the loT
Device SDK (C). The
demo provides sample
code for calling SDK
APIs. For details, see loT
Device SDK (C).

loT Device SDK (C#) Devices can connect to loT Device SDK (C#)
the platform by
integrating the loT
Device SDK (C#). The
demo provides sample
code for calling SDK
APIs. For details, see loT
Device SDK (C#).

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 6

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-cSharp
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-cSharp
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-cSharp

loT Device Access
Developer Guide

2 Obtaining Resources

Resource Package

Description

Download Link

loT Device SDK
(Android)

Devices can connect to
the platform by
integrating the loT
Device SDK (Android).
The demo provides
sample code for calling
SDK APIs. For details, see
loT Device SDK
(Android).

loT Device SDK
(Android)

loT Device SDK Tiny (C)

Devices can connect to
the platform by
integrating the loT
Device SDK Tiny (C). The
demo provides sample
code for calling SDK
APIs. For details, see loT
Device Tiny SDK (C).

loT Device SDK Tiny (C)

Native MQTT or MQTTS
access example

Devices can be
connected to the
platform using the native
MQTT or MQTTS
protocol. The demo
provides sample code for
SSL-encrypted link setup,
TCP link setup, data
reporting, and topic
subscription.

Examples: Java, Python,
Android, C, C#, and
Node.js

quickStart(Java)
quickStart(Android)
quickStart(Python)
quickStart(C)
quickStart(C#)
quickStart(Node.js)

Product model template

Product model templates
of typical scenarios are
provided. You can
customize product
models based on the
templates.

For details, see
Developing a Product
Model Offline.

Product Model Example

Codec example

Demo codec projects are
provided for you to
perform secondary
development.

For details, see Offline
Codec Development.

Codec Example

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/LiteOS/LiteOS_Lab
https://github.com/LiteOS/LiteOS_Lab
https://github.com/LiteOS/LiteOS_Lab
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(java).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/mqttdemo(android).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(python).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(c).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(cSharp).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(nodejs).zip
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/ProfileDemo/ProfileSample.zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/tool/CodecDemo/CodecDemoV2.zip

loT Device Access
Developer Guide

2 Obtaining Resources

Resource Package

Description

Download Link

Codec test tool

The tool is used to check
whether the codec
developed offline is
normal.

Codec Test Tool

NB-loT device simulator

The tool is used to
simulate the access of
NB-loT devices to the
platform using LwM2M
over CoAP for data
reporting and command
delivery.

For details, see
Developing Products on
the Console.

NB-loT Device
Simulator

loT Link Studio
(originally named loT
Studio)

loT Link Studio is an
integrated development
environment (IDE)
developed for the loT
Device SDK Tiny. It
provides one-stop
development capabilities,
such as compilation,
programming, and
debugging, and supports
multiple development
languages like C, C++,
and assembly language.

For details, see
Developing a Smart
Street Lamp Using NB-
loT BearPi.

loT Link Studio

Application Development Resources

The platform provides a wealth of application-side APIs to ease application
development. Application development is the process in which an application calls
platform APIs to implement service scenarios such as secure access, device
management, data collection, and command delivery.

Issue 01 (2020-12-

01)

Copyright © Huawei Technologies Co., Ltd.

https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/pluginDetector/IoT_Codec_Test_Tool.zip
https://support.huaweicloud.com/en-us/bestpractice-iothub/iot_bp_0014.html
https://support.huaweicloud.com/en-us/bestpractice-iothub/iot_bp_0014.html
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/NBSimulate/NB-IoTDeviceSimulatorEn.zip
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/NBSimulate/NB-IoTDeviceSimulatorEn.zip
https://support.huaweicloud.com/en-us/bestpractice-iothub/iot_bp_0007.html
https://support.huaweicloud.com/en-us/bestpractice-iothub/iot_bp_0007.html
https://support.huaweicloud.com/en-us/bestpractice-iothub/iot_bp_0007.html
https://marketplace.visualstudio.com/items?itemName=iotlink.iot-studio&ssr=false#overview

loT Device Access
Developer Guide

2 Obtaining Resources

Resource Package

Description

Download Link

Application API Java
Demo

You can call application-
side APIs to experience
service functions and
service processes.

For details, see Java
Demo.

API Java Demo

Application Java SDK

You can use Java
methods to call
application-side APIs to
communicate with the
platform. For details, see
Java SDK.

Java SDK

Application C# SDK

You can use C# methods
to call application-side
APIs to communicate
with the platform. For
details, see C# SDK.

C# SDK

Application Python SDK

You can use Python
methods to call
application-side APIs to
communicate with the
platform. For details, see
Python SDK.

Python SDK

Certificates

To connect a device to the platform in some scenarios, you must load a certificate

to the device.

(11 NOTE

This certificate applies only to the platform and must be used together with the device

access domain name.

The table below describes the certificate type, format, and usage.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0001.html
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/north/Java/ApiDemo/javaApiDemo2.zip
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/releases
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/releases
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-python-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-python-v3/releases

loT Device Access
Developer Guide

2 Obtaining Resources

Certificate Certific | Certifica | Description Download
Package ate te Link
Name Type Format
certificate Device pem, jks, | Used by a device to verify | Certificate
(Basic edition | certifica | and bks | the platform identity. The | file
in CN North- | te certificate must be used
Beijing4) together with the device
access domain name.
Note: The old domain
name (iot-acc.cn-
north-4.myhuaweicloud.c
om) must be used
together with the old
certificate.
certificate Device pem, jks, | Used by a device to verify | Certificate
(Standard certifica | and bks | the platform identity. The | file
edition in CN | te certificate must be used
North- together with the device
Beijing4) access domain name.
certificate Device pem, jks, | Used by a device to verify | Certificate
(Standard certifica | and bks | the platform identity. The | file
edition in CN | te certificate must be used
East- together with the device
Shanghai1) access domain name.
certificate Applicat | pem Used by the application Certificate
(CN North- ion to verify the platform file
Beijing4) certifica identity in the
te subscription/push
scenario.
Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 10

https://developer.obs.cn-north-4.myhuaweicloud.com:443/cert/certificate.zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/cert/certificate.zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/cert/v2/certificate.zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/cert/v2/certificate.zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/cert/v2/cn-beijing4-deviceCert-biaozhunban.zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/cert/v2/cn-beijing4-deviceCert-biaozhunban.zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/cert/v2/cn-shanghai1-deviceCert-biaozhunban.zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/cert/v2/cn-shanghai1-deviceCert-biaozhunban.zip
https://iotda-document.obs.cn-north-4.myhuaweicloud.com/CnNorth4IotPushCert.zip
https://iotda-document.obs.cn-north-4.myhuaweicloud.com/CnNorth4IotPushCert.zip

IoT Device Access
Developer Guide 3 Product Development

Product Development

3.1 Product Development Guide
3.2 Creating a Product

3.3 Developing a Product Model
3.4 Developing a Codec

3.5 Online Debugging

3.1 Product Development Guide

In the loT platform integration solution, the 10T platform provides open APIs for
applications to connect devices using various protocols. To provide richer device
management capabilities, the loT platform needs to understand the device
capabilities and the formats of data reported by devices. Therefore, you need to
develop product models and codecs to the loT platform.

e A product model is a JSON file that describes device capabilities. It defines
basic device properties and message formats for data reporting and command
delivery. Defining a product model is to construct an abstract model of a
device in the platform to enable the platform to understand the device
properties.

e A codec is developed based on the format of reported data. If Data Type of
data reported is Binary, a codec must be developed for the product. If Data
Type is JSON, codec development is not required. The loT platform uses
codecs to convert data between the binary and JSON formats. The binary
data reported by a device is decoded into the JSON format for the NA to read,
and the commands delivered by the NA are encoded into the binary format
for the device to understand and execute.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 11

loT Device Access
Developer Guide

3 Product Development

Codec

loTDA

Product model

Commands

Messages

Communication
abstract

3
o
o
(1]
=
n
[}
L
>
1]
[a]

(based on properties)

API| Gateway

Product Development Process

The loTDA console provides a one-stop development tool to help developers
quickly develop products (product models and codecs) and perform self-service

tests.

|oTDA consele }

Define a
product model

Dewelop a
codec

MQTT-based custom
topic scenario

Customize a
topic

Integrate with
devices

I I
Perform enline Conduct a self-
L

debugging | senice test

————— |
Release the I |
| product ’_|

Region &
IoTDA

Import the
product

Region B
IoTDA

Impert the
product

e Product creation: A product is a collection of devices with the same
capabilities or features. In addition to physical devices, a product includes
product information, product models (profiles), and codecs generated during

loT capability building.

e Model definition: Product model development is the most important part of

product development. A product model is used to describe the capabilities

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

12

IoT Device Access
Developer Guide 3 Product Development

and features of a device. You can construct an abstract model for a device
type by defining a product model on the platform, allowing the platform to
understand the services, properties, and commands supported by the device.

e Codec development: If a device reports data in binary code stream format,
you must develop a codec so that the platform can convert the binary format
to the JSON format. If the device reports data in JSON format, you do not
need to develop a codec.

e Online commissioning: The IoTDA console provides application and device
simulators for you to commission data reporting and command delivery
before developing real applications and physical devices. You can also use the
application simulator to verify the service flow after the physical device is
developed.

3.2 Creating a Product

On the loT platform, a product is a collection of devices with the same capabilities
or features.
Procedure

Step 1 Log in to the I0TDA console.

Step 2 Click Create Product in the upper right corner, enter information as prompted,
and click Create to create a product.

Set Basic Info

Resource The platform automatically allocates the created product to the
Space default resource space. If you want to allocate the product to
another resource space, select the resource space from the drop-
down list box. If the corresponding resource space does not exist,
create a resource space first.

Product Define a product name. The product name must be unique in an
Name account. The product name can contain letters, digits,
underscores (_), and hyphens (-).

Protocol e MQTT: MQTT is used by devices to access the platform. The
data format can be binary or JSON. If the binary format is
used, the codec must be deployed.

e LwM2M/CoAP: LwWM2M/CoAP is used only by NB-loT devices
with limited resources (including storage and power
consumption). The data format is binary. The codec must be
deployed to interact with the platform.

e HTTP/HTTP2: HTTP/HTTP2 is used by devices to access the
platform. Currently, only command and property is supported.

e Modbus: Modbus is used by devices to access the platform.
Devices that use the Modbus protocol to connect to loT edge
nodes are called indirectly connected devices.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 13

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0006.html

loT Device Access
Developer Guide

3 Product Development

Data Type

e JSON: JSON is used for the communication protocol between
the platform and devices.

e Binary: You need to develop a codec on the I0TDA console to
convert binary code data reported by devices into JSON data.
The devices can communicate with the platform only after the
JSON data delivered by the platform is parsed into binary
code.

Manufacture
r

Enter the manufacturer name of the device. The value can
contain letters, digits, underscores (_), and hyphens (-).

Define Produ

ct Model

Product
Model

The platform provides multiple methods for defining a product
model, such as customizing models (developing product models
online), uploading models (importing product models offline),
importing models from an Excel file, and importing preset
models. You can select a method based on your service
requirements. For details, see the following:

e Developing a Product Model Online
e Developing a Product Model Offline
e Exporting and Importing Product Models

Industry

Set this parameter based on the live network environment. If the
product model preset on the platform is used, set this parameter
based on the industry to which the product model belongs.

Device Type

Set this parameter based on the live network environment. If the
product model preset on the platform is used, the device type is
automatically matched and does not need to be manually
entered.

You can click Delete to delete a product that is no longer used. After the product
is deleted, its resources such as the product models and codecs will be cleared.
Exercise caution when deleting a product.

--—-End

Follow-Up Procedure

1. In the product list, click the name of a product to access its details. On the
product details page displayed, you can view basic product information, such
as the product ID, product name, device type, data format, manufacturer
name, resource space, and protocol type. The product ID is automatically

generated

by the platform. Other information is defined by users during

product creation.

Issue 01 (2020-12-01) Co

pyright © Huawei Technologies Co., Ltd. 14

https://support.huaweicloud.com/en-us/devg-iothub/iot_02_0156.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_0005.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_4012.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_9995.html#section1
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0054.html

loT Device Access
Developer Guide

3 Product Development

ctstest |D: Seaa2de6f0c0390931dcc8ea | Registered devices: 2
ctstest Resource Space resourcetest
Type ctstest MQTT
Data Type json Created 2020/04/20 09:46:14 GMT+08:00

Manufacturer huawei

On the product details page, develop a product model, develop a codec,
perform online debugging, and customize topics.

3.3 Developing a Product Model

3.3.1 Definition

A product model describes the capabilities and features of a device. You can build
an abstract model of a device by defining a product model on the loT platform so
that the platform can know what services, properties, and commands are
supported by the device, such as its color and on or off switches it might have.
After defining a product model, you can use it during device registration.

w

|
Product details Senvice capabilities

Manufacturer q

Command Response
field field

A product model consists of product details and service capabilities.

Product details

Product details describe basic information about a device, including the
manufacturer ID, manufacturer name, device type, and protocol.

For example, for a water meter, the manufacturer name could be HZYB,
manufacturer ID TestUtf8Manuld, device type WaterMeter, and protocol
CoAP.

Service capabilities

The service capabilities of a device are divided into several services. Properties,
commands, and command parameters are defined for each service.

For example, a water meter has multiple capabilities. It reports the water
flow, alarms, battery life, and connection data, and it receives commands too.
When describing the capabilities of a water meter, the profile includes five
services, and each service has its own properties or commands.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 15

https://support.huaweicloud.com/en-us/devg-iothub/iot_01_0063.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_0156.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_9988.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_02_9992.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html

loT Device Access
Developer Guide

3 Product Development

Service Type Description

WaterMeterBasic | Defines parameters reported by the water meter, such
as the water flow, temperature, and pressure. If these
parameters need to be controlled or modified using
commands, parameters in the commands need to be
defined.

WaterMeterAlarm | Defines various scenarios where the water meter will
report an alarm. Commands need to be defined if
necessary.

Battery Defines the voltage and current intensity of a water
meter.

DeliverySchedule | Defines transmission rules for water meters.
Commands need to be defined if necessary.

Connectivity Defines connectivity parameters of the water meter.

Note: You can define the number of services as required. For example, the
WaterMeterAlarm service can be further divided into WaterPressureAlarm
and WaterFlowAlarm services or be integrated into the WaterMeterBasic
service.

The platform provides multiple methods for developing product models. You can
select a method as required.

Custom Model (online development): Build a product model from scratch.
For details, see Developing a Product Model Online.

Import Local Profile (offline development): Upload a local product model
to the platform. For details, see Developing a Product Model Offline.

Import from Excel: Define product functions by importing an Excel file. This
method can lower the product model development threshold for developers
because they only need to fill in parameters based on the Excel file. It also
helps high-level developers and integrators improve the development
efficiency of complex models in the industry. For example, the auto-control air
conditioner model contains more than 100 service items. Developing the
product model by editing the excel file greatly improves the efficiency. You
can edit and adjust parameters at any time. For details, see Import from
Excel.

Import Library Model: You can use a preset product model to quickly develop
a product. The platform provides standard and manufacturer-specific product
models. Standard product models comply with industry standards and are
suitable for devices of most manufacturers in the industry. Manufacturer-
specific product models are suitable for devices provided by a small number
of manufacturers. You can select a product model as required.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 16

https://support.huaweicloud.com/en-us/devg-iothub/iot_02_0005.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_4012.html

IoT Device Access
Developer Guide 3 Product Development

3.3.2 Developing a Product Model Online

Overview

Before developing a product model online, you need to create a product. When
creating a product, you need to enter information such as the product name,
manufacturer name, industry, and device type. The product model uses the
information as the values of device capability fields. The loT platform provides
standard models and vendor models. These models involve multiple domains and
provide edited profile files. You can modify, add, or delete fields in the product
model as required. If you want to custom a product model, you need to define a
complete profile.

This section uses a product model that contains a service as an example. The
product model contains services and fields in scenarios such as data reporting,
command delivery, and command response delivery.

Procedure
Step 1 Log in to the loTDA console.

Step 2 In the navigation pane, choose Products. In the product list, click the name of a
product to access its details.

Step 3 On the Model Definition tab page, click Custom Model to add a service for the
product.
Step 4 Specify Service ID, Service Type, and Description, and click OK.

e Service ID: The first letter of the value must be capitalized, for example,
WaterMeter and StreetLight.

e Service Type: You are advised to set this parameter to the service ID.
e Description: Define the properties of light intensity (Light_Intensity) and
status (Light_Status).

After the service is added, define the properties and commands in the Properties/
Commands area. A service can contain properties and/or commands. Configure
the properties and commands based on your requirements.

Step 5 In the property/command list, click Add Property. In the dialog box displayed, set
property parameters and click OK.

Parameter Description
Property The value of Property Name must start with a letter.
Name camelCase is recommended, for example, batteryLevel and

internalTemperature.

Mandatory You are advised to select this option.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 17

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

loT Device Access
Developer Guide

3 Product Development

Parameter

Description

Data Type

e int; Select this value if the reported data is an integer or
Boolean value.

e decimal: Select this value if the reported data is a decimal.
You are advised to set this parameter to decimal when
configuring the longitude and latitude properties.

e string: Select this value if the reported data is a string, an
enumerated value, or a Boolean value. If enumerated or

Boolean values are reported, use commas (,) to separate the

values.
e dateTime: Select this value if the reported data is a date.

e jsonObiject: Select this value if the reported data is in JSON
structure.

Access
Permissions

e Read: You can query the property through APIs.
e Write: You can modify the property value through APIs.

e Execute: After the application subscribes to the data change

notification, the device reports the property value, and the
application receives the push notification.

Value Range

Step

Unit

Set these parameters according to the actual situation of the
device.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd.

18

IoT Device Access
Developer Guide 3 Product Development

Add Property

Property Mame batterylevel
Mandatory

Data Type integer v

Access Permissions | Read "1 | Write "1 | Execute 1

Value Range 0 —| 100

Cancel

Step 6 Click Add Command. In the dialog box displayed, set command parameters.

e Command Name: The command name must start with a letter. It is
recommended that you use uppercase letters and underscores (_) to separate
words, for example, DISCOVERY and CHANGE_STATUS.

e Downlink Parameter: Click Add Input Parameter. In the dialog box
displayed, set the parameters of the command to be delivered and click OK.

Parameter | Description

Parameter The parameter name must start with a letter. It is
Name recommended that you capitalize the first letter of each
word in a compound word except the first word, for
example, valueChange.

Mandatory | You are advised to select this option.

Data Type Set these parameters according to the actual situation of the
device.

Value Range

Step

Unit

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 19

loT Device Access
Developer Guide

3 Product Development

Add Parameter

[=1]
45}
-1
B
T
=

[
1}
]
=
%]

Mandatory

Click Add Output Parameter to add parameters of a command response
when necessary. In the dialog box displayed, set the parameters and click OK.

Parameter | Description

Parameter The parameter name must start with a letter. It is

Name recommended that you capitalize the first letter of each
word in a compound word except the first word, for
example, valueResult.

Mandatory | You are advised to select this option.

Data Type Set these parameters according to the actual situation of the
device.

Value Range

Step

Unit

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

20

loT Device Access
Developer Guide

3 Product Development

Add Parameter

Parameter Name valueResult
Data Type integer
alue Range 0

Step

Unit

--—-End

3.3.3 Developing a Product Model Offline

Overview

Mandatory

A product model is essentially a ZIP package that combines one devicetype-
capability.json file and several serviceType-capability.json files in the following
hierarchy, in which WaterMeter indicates the device type, TestUtf8Manuld
identifies the manufacturer, and WaterMeterBasic/WaterMeterAlarm/Battery

indicates the service type.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

21

IoT Device Access
Developer Guide 3 Product Development

WaterMeter_TestUtfaManuld zip

prafile

devicetype-capability. json

service

WaterMeterBasic

profile
servicetype-capability.json
WaterMeterAlarm
profile
servicetype-capability.json
Battery
profile

servicetype-capability json

In this regard, offline product model definition is defining device capabilities in the
devicetype-capability.json file and service capabilities in the servicetype-
capability.json files in JSON format based on the profile definition rules, which is
time-consuming and requires familiarity with the JSON format.

Therefore, 3.3.2 Developing a Product Model Online is recommended.

Naming Rules
The profile must comply with the following naming rules:

e Capitalize device types, service types, and service IDs. Example: WaterMeter
and Battery.

e Capitalize the first letter of each word in a property name except the first
word, for example, batteryLevel and internalTemperature.

e For commands, capitalize all characters, with words separated by underscores.
For example: DISCOVERY and CHANGE_COLOR.

e A device capability profile (.json file) must be named devicetype-
capability.json.

e A service capability profile (.json file) must be named servicetype-
capability.json.

e The manufacturer ID must be unique in different product models and can
only be in English.

e You must ensure that names are universal and concise and service capability
descriptions clearly indicate corresponding functions. For example, you can
name a multi-sensor device MultiSensor and name a service that displays the
battery level Battery.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 22

loT Device Access

Developer Guide 3 Product Development

Profile Templates

To connect a new device to the IoT platform, you need to define a profile for the
device. The loT platform provides some profile templates. If the types and
functions of devices newly connected to the loT platform are included in these
templates, directly use the templates. If the types and functions are not included
in the device profile templates, define your profile.

For example, if a water meter is connected to the loT platform, you can directly
select the corresponding product model on the loT platform and modify the device
service list.

LIJ NOTE
The profile template provided by the IoT platform is updated continuously. The following
table provides some examples of device types and service types, which are for reference

only.

Device identification properties

Property Key in the Profile Value

Device Type deviceType WaterMeter

Manufacturer ID manufacturerld TestUtf8Manuld

Manufacturer Name manufacturerName HZYB
Protocol Type protocolType CoAP
Service list
Service Service ID Service Type Value
Basic water meter | WaterMeterBasic | Water Mandatory
function
Alarm service WaterMeterAlarm | Battery Mandatory
Battery service Battery Battery Optional
Data reporting DeliverySchedule | DeliverySchedule | Mandatory
rule
Connectivity Connectivity Connectivity Mandatory

The devicetype-capability.json file records basic information about a device.

{
"devices": [

{

Device Capability Definition Example

"manufacturerld": "TestUtf8Manuld",
"manufacturerName": "HZYB",

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

loT Device Access
Developer Guide

3 Product Development

"protocolType": "CoAP",
"deviceType": "WaterMeter",
"omCapability":{
"upgradeCapability" : {
"supportUpgrade":true,
"upgradeProtocolType":"PCP"

"fwUpgradeCapability" : {
"supportUpgrade":true,
"upgradeProtocolType":"LWM2M"

Ui

"configCapability" : {
"supportConfig":true,
"configMethod":"file",
"defaultConfigFile": {

"waterMeterinfo" : {
"waterMeterPirTime" : "300"
}

}
}
b

"serviceTypeCapabilities": [

"serviceld": "WaterMeterBasic",
"serviceType": "WaterMeterBasic",
"option": "Mandatory"

%
{
"serviceld": "WaterMeterAlarm",
"serviceType": "WaterMeterAlarm",
"option": "Mandatory"
%
{
"serviceld": "Battery",
"serviceType": "Battery",
"option": "Optional"
%
{
"serviceld": "DeliverySchedule",
"serviceType": "DeliverySchedule",
"option": "Mandatory"
%
{
"serviceld": "Connectivity",
"serviceType": "Connectivity",
"option": "Mandatory"
}
]
}
]
}
The fields are described as follows:
Fiel | Sub-field Mandatory | Description
d or
Optional
devi Mandatory | Complete capability information
ces about a device (the root node cannot
be modified).
manufactur Optional Manufacturer ID of the device.
erld

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 24

loT Device Access
Developer Guide

3 Product Development

Fiel

Sub-field

Mandatory
or
Optional

Description

manufactur
erName

Mandatory

Manufacturer name of the device (he
value must be in English).

protocolTyp
e

Mandatory

Protocol used by the device to
connect to the loT platform. For
example, the value is CoAP for NB-
loT devices.

deviceType

Mandatory

Type of the device.

omCapabili
ty

Optional

Software upgrade, firmware upgrade,
and configuration update capabilities
of the device. For details, see the
description of the omCapability
structure below.

If software or firmware upgrade is
not involved, this field can be
deleted.

serviceType
Capabilities

Mandatory

Service capabilities of the device.

servic
eld

Mandatory

Service ID. If a service type includes
only one service, the value of
serviceld is the same as that of
serviceType. If the service type
includes multiple services, the
services are numbered
correspondingly, such as Switch01,
Switch02, and Switch03.

servic
eType

Mandatory

Type of the service. The value of this
field must be the same as that of
serviceType in the servicetype-
capability.json file.

optio

Mandatory

Type of the service field. The value
can be Master, Mandatory, or
Optional.

This field is not a functional field but
a descriptive one.

Description of the omCapability structure

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 25

loT Device Access
Developer Guide

3 Product Development

Parameter | Sub-field Man | Description
dator
y or
Optio
nal
upgradeCa Optio | Software upgrade capabilities of the device.
pability nal
supportUpg | Optio | true: The device supports software upgrades.
rade nal false: The device does not support software
upgrades.
upgradePro | Optio | Protocol type used by the device for
tocolType nal software upgrades. It is different from
protocolType of the device. For example,
the software upgrade protocol of CoAP
devices is PCP.
fwUpgrad Optio | Firmware upgrade capabilities of the device.
eCapabilit nal
y
supportUpg | Optio | true: The device supports firmware
rade nal upgrades.
false: The device does not support firmware
upgrades.
upgradePro | Optio | Protocol type used by the device for
tocolType nal firmware upgrades. It is different from
protocolType of the device. Currently, the
loT platform supports only firmware
upgrades of LWM2M devices.
configCap Optio | Configuration update capabilities of the
ability nal device.
supportConf| Optio | true: The device supports configuration
ig nal updates.
false: The device does not support
configuration updates.
configMeth | Optio | file: Configuration updates are delivered in
od nal the form of files.
defaultConf | Optio | Default device configuration information (in
igFile nal JSON format). The specific configuration

information is defined by the manufacturer.
The loT platform stores the information for
delivery but does not parse the
configuration fields.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

26

IoT Device Access
Developer Guide 3 Product Development

Service Capability Definition Example

The servicetype-capability.json file records service information about a device.

{

"services": [

"serviceType": "WaterMeterBasic",
"description": "WaterMeterBasic",
"commands": [

{
"commandName": "SET_PRESSURE_READ_PERIOD",
"paras": [
{
"paraName": "value",
"dataType": "int",
"required": true,
"min"; 1,
"max": 24,
"step": 1,
"maxLength": 10,
"unit": "hour",
"enumList": null
}
]I
"responses": [
"responseName": "SET_PRESSURE_READ_PERIOD_RSP",
"paras": [
"paraName": "result",
"dataType": "int",
"required": true,
"min": -1000000,
"max": 1000000,
"step": 1,
"maxLength": 10,
"unit": null,
"enumList": null
}
1
}
1
}

]I

"properties": [

"propertyName": "registerFlow",
"dataType": "int",

"required": true,

"min": 0,

"max": 0,

"step": 1,

"maxLength": 0,

"method": "R",

"unit": null,

"enumList": null

"propertyName": "currentReading",
"dataType": "string",

"required": false,

"min": 0,

"max": 0,

"step": 1,

"maxLength": 0,

"method": "W",

"unit": "L",

"enumList": null

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 27

IoT Device Access
Developer Guide 3 Product Development

"propertyName": "timeOfReading",
"dataType": "string",

"required": false,

"min": 0,

"max": 0,

"step": 1,

"maxLength": 0,

"method": "W",

"unit": null,

"enumList": null

The fields are described as follows:

Par | Sub-field Man | Description
am dat
eter ory
or
Opti
onal
serv Man | Complete information about a service
ices dato | (the root node cannot be modified).
ry
ser Man | Type of the service. The value of this
vic dato | field must be the same as that of
eTy ry serviceType in the devicetype-
pe capability.json file.
des Man | Description of the service.
cn dato | Thjs field is not a functional field but a
pti ry descriptive one. It can be set to null.
on
co Man | Command supported by the device. If
m dato | the service has no commands, set the
ma ry value to null.
nds
com Man | Name of the command. The command
man dato | name and parameters together form a
dNa ry complete command.
me
para Man | Parameters contained in the command.
S dato
ry
para Man | Name of a parameter in the command.
Nam dato
e ry

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 28

loT Device Access
Developer Guide

3 Product Development

Par | Sub-field Man | Description
am dat
eter ory
or
Opti
onal
dataT Man | Data type of the parameter in the
ype dato | command.
ry Value: string, int, enum, boolean, ,
string list, decimal, DateTime, or
jsonObject

Complex types of reported data are as

follows:

e string list:["str1","str2","str3"]

e DateTime: The value is in the format
of yyyyMMdd'T'HHmmss'Z', for
example, 20151212T121212Z.

e jsonObject: The value is in
customized JSON format, which is
not parsed by the IoT platform and is
transparently transmitted only.

requir Man | Whether the command is mandatory.
ed dato | The value can be true or false. The
ry default value is false, indicating that
the command is optional.

This field is not a functional field but a

descriptive one.

min Man | Minimum value.
dato | Thjs field is valid only when dataType is
ry set to int or decimal.

max Man | Maximum value.
dato | This field is valid only when dataType is
ry set to int or decimal.

step Man | Step.
dato | Thjs field is not used. Set it to 0.
ry

maxL Man | Character string length.

ength dato | Thjs field is valid only when dataType is
ry set to string, string list, or DateTime.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 29

loT Device Access
Developer Guide

3 Product Development

Par | Sub-field Man | Description
am dat
eter ory
or
Opti
onal
unit Man | Unit.
dato | The value is determined by the
ry parameter, for example:
Temperature unit: C or K
Percentage unit: %
Pressure unit: Pa or kPa
enum Man | List of enumerated values.
List dato | por example, the status of a switch can
Y | be set as follows:
"enumList" : ["OPEN","CLOSE"]
This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.
resp Man | Responses to command execution.
onse dato
S ry
respo Man | You can add _RSP to the end of
nseN dato | commandName in the command
ame ry corresponding to responses.
paras Man | Parameters contained in a response.
dato
ry
pa | Man | Name of a parameter in the command.
ra | dato
Na | ry
m
e

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

30

loT Device Access
Developer Guide

3 Product Development

Par | Sub-field Man | Description
am dat
eter ory
or
Opti
onal
da | Man | Data type.
ta | dato | ya|ye: string, int, string list, decimal,
Ty |ry DateTime, or jsonObject
e
P Complex types of reported data are as
follows:

e string list:["str1","str2","str3"]

e DateTime: The value is in the format
of yyyyMMdd'T'HHmmss'Z', for
example, 20151212T121212Z.

e jsonObject: The value is in
customized JSON format, which is
not parsed by the IoT platform and is
transparently transmitted only.

re | Man | Whether the command response is

qu | dato | mandatory. The value can be true or

ire |ry false. The default value is false,

d indicating that the command response
is optional.

This field is not a functional field but a

descriptive one.

mi | Man | Minimum value.
n | dato | This field is valid only when dataType is
ry set to int or decimal. The value must
be greater than or equal to the value of
min.
m | Man | Maximum value.
ax | dato | This field is valid only when dataType is
ry set to int or decimal. The value must
be less than or equal to the value of
max.
ste | Man | Step.
P | dato | This field is not used. Set it to O.
ry
m | Man | Character string length.
ax | dato | Thjs field is valid only when dataType is
Le | ry set to string, string list, or DateTime.
ng
th

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 31

loT Device Access
Developer Guide

3 Product Development

Par
am
eter

Sub-field Man | Description

dat
ory
or
Opti
onal

un | Man | Unit.
it dato

The value is determined by the
ry parameter, for example:

Temperature unit: C or K
Percentage unit: %
Pressure unit: Pa or kPa

en | Man | List of enumerated values.
For example, the status of a switch can

u dato
mo|ry be set as follows:
Lis

t "enumList" : ["OPEN","CLOSE"]

This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.

pro Man | Reported data. Each sub-node indicates
per dato | a property.
ties ry

prop Man | Name of the property.

erty dato

Nam ry

e

data Man | Data type.

Type dato | value: string, int, string list, decimal,

ry DateTime, or jsonObject

follows:

Complex types of reported data are as

e string list:["str1","str2","str3"]

e DateTime: The value is in the format
of yyyyMMdd'T'HHmmss'Z', for
example, 20151212T121212Z.

e jsonObject: The value is in
customized JSON format, which is
not parsed by the IoT platform and is
transparently transmitted only.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

32

loT Device Access
Developer Guide

3 Product Development

Par | Sub-field Man | Description
am dat
eter ory
or
Opti
onal
requi Man | Whether the property is mandatory. The
red dato | value can be true or false. The default
ry value is false, indicating that the
property is optional.
This field is not a functional field but a
descriptive one.
min Man | Minimum value.
dato | This field is valid only when dataType is
ry set to int or decimal. The value must
be greater than or equal to the value of
min.
max Man | Maximum value.
dato | Thjs field is valid only when dataType is
ry set to int or decimal. The value must
be less than or equal to the value of
max.
step Man | Step.
dato | This field is not used. Set it to O.
ry
met Man | Access mode.
hod dato | R indicates reading, W indicates writing,
ry and E indicates subscription.
Value: R, RW, RE, RWE, or null
unit Man | Unit.
dato | The value is determined by the
ry parameter, for example:
Temperature unit: C or K
Percentage unit: %
Pressure unit: Pa or kPa
max Man | Character string length.
Leng dato | This field is valid only when dataType is
th ry set to string, string list, or DateTime.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 33

loT Device Access

Developer Guide 3 Product Development
Par | Sub-field Man | Description
am dat
eter ory
or
Opti
onal
enu Man | List of enumerated values.
mLis dato | For example, batteryStatus can be set
t ry as follows:
"enumList" : [0, 1, 2, 3, 4, 5, 6]
This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.

Product Model Packaging

After the product model is completed, package it in the format shown below.

WaterMeter_TestUtfaManuld zip

prafile
devicetype-capability. json

service

WaterMeterBasic

profile
servicetype-capability.json
WaterMeterAlarm
profile
servicetype-capability.json
Battery
profile

servicetype-capability json

The following requirements must be met for product model packaging:

e The profile hierarchy must be the same as that shown above and cannot be
added or deleted. For example, the second level can contain only the profile
and service folders, and each service must contain the profile folder.

e The names in orange cannot be changed.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 34

loT Device Access
Developer Guide 3 Product Development

e The product model is compressed in .zip format.

e The product model must be named in the format of
deviceType_manufacturerld. The values of deviceType, manufacturerld must
be the same as those in the devicetype-capability.json file. For example, the

following provides the main fields of the devicetype-capability.json file.
{
"devices": [
{
"manufacturerld": "TestUtf8Manuld",
"manufacturerName": "HZYB",

"deviceType": "WaterMeter",
"serviceTypeCapabilities": ****
}
1
}

e WaterMeterBasic, WaterMeterAlarm, and Battery in the figure are services
defined in the devicetype-capability.json file.

The product model is in JSON format. After the product model is edited, you can
use format verification websites on the Internet to check the validity of the JSON
file.

3.3.4 Exporting and Importing Product Models
Product models can be exported from or imported to the loT platform.

e After a product is developed, tested, and verified, you can export the online
defined product model to the local host.

e If you have a complete product model (developed offline or exported from
other projects or platforms) or use an Excel file to edit a product model, you
can directly import the product model to the platform.

Exporting a Product Model

After a product is developed, tested, and verified, you can export the online
defined product model to the local host.

Step 1 Log in to the lI0TDA console.
Step 2 In the navigation pane, choose Products. In the product list, select a product and

click View.

Step 3 On the product details page, click | to download the product model to the
local host.

Model Definition Codec Deployment Online Debugging
Import Local Profile Import from Excel @ About Product Models

Properties/Commands

--—-End

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 35

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

IoT Device Access
Developer Guide 3 Product Development

Importing a Product Model

If you have a complete product model (developed offline or exported from other
projects or platforms) or use an Excel file to edit a product model, you can directly
import the product model to the platform.

(11 NOTE

The product model imported from the local host does not contain a codec. If the device
reports binary code, go to the IoTDA console to develop or import a codec.

e Import Local Profile

Log in to the IoTDA console.
b. In the navigation pane, choose Products. In the product list, select a
product and click View.

c. On the Model Definition tab page, click Import Local Profile. In the
dialog box displayed, load the local profile and click OK.

Model Definition Codec Deployment Online Debugging
x

Import Local Profile
After learning t standards, you can develop, pack, and upload your
product model fory

SET_PRE Cancel Level

Period Vaiue Hesult

A product model describes the capabilities and features of a device. The platform provides multiple methods = product models. If no product model Is defined for a device, the platform does n d, it just fo
e || e || s |

e Import from Excel

a. Login to the l10TDA console.

b. In the navigation pane, choose Products. In the product list, select a
product and click View.

¢. On the Model Definition tab page, click Import from Excel. In the
product template downloaded, enter the service ID on the Device sheet
and set parameters such as properties, commands, and events on the
Parameter sheet. Import the Excel file and click OK.
(]

Model Definition Codec Deployment Online Debugging
- X
Import from Excel

SET_PRE
Period V;
Can
A product model describes the capabillties and features of a device. THe PIBHOM .- vy coremorme e s e e e _ata reported by the device. Instead, it just forwards the data
[V RBN | import LocalProfile | | import from Excel | | Import Library Model | Leam more

3.4 Developing a Codec

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 36

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

loT Device Access
Developer Guide

3 Product Development

3.4.1 Definition

If a device reports binary data, a codec must be developed for data format
conversion. If a device reports JSON data, codec development is not required.

For example, in the NB-IoT scenario where devices communicate with the loT
platform using CoAP, the payload of the CoOAP message is data at the application
layer and the data type is defined by the device. As NB-loT devices require low
power consumption, data at the application layer is in binary format instead of
JSON. However, the platform sends data in JSON format to applications.
Therefore, codec development is required for the platform to convert data

between binary and JSON formats.

Protocol structure

Application

Messages in JSON format CoAP

described in the product model

Codec management

Message processing

Codec of Codec of
manufacturer A | manufacturer B

COoAP protocol stack String Decode (bytel)):

o~

Byte[] Encode (String);

Proprietary protocol Proprietary protocol

f facturer A f facti B strea Parses the CoAP message
e mandsgyuEt o magEeturer UPSIeam 4o htain the application layer M)
message: e
P .
Device of Device of Downstream
manufacturer A manufacturer B message: 2l AT 2 —

Data Reporting

Sends a message.
msgType:deviceReq |
|

Application layer

| Parses the message and
| obtains the payload.
[P——

|

[

| Queries the

| corresponding codec.

Decoding

The codec converts application layer data to JSON data
described in the product model.

© NB-loT devices communicate with the platform
using CoAP over UDP. Payload in CoAP messages
carries the application layer data.

 The format of application layer data is defined by
device manufacturer, and the manufacturer provides
codec for protocol parsing

© The codec implements the following two interfaces:

L
| Input: binary data

== Output: JSSON data~ — — — —

serviceType

waterMeter

Invokes the codc provided
by the manufacturer.

Invokes the codc provided
by the manufacturer.

Property Name Property Type
dailyActivityTime it

internalTemperature int

flow int
reverseFlow int
intervalFlow list
pressure list
temperature list
vibration list
lowFlowAlarm int
highFlowAlarm int
temperAlarm int

fr— Sends the message to
the application.
Assembles the CoAP
- message and sends it to

the device.

= =
|
|

Sends a data

Input: JSON data

Output: binary data

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
|
|
|
|
|

In the data reporting process, the codec is used in the following scenarios:

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

37

IoT Device Access
Developer Guide 3 Product Development

e Decoding binary data reported by a device into JSON data and sending the
decoded data to an application

e Encoding JSON data returned by an application into binary data and sending
the encoded data to a device

Command Delivery

“ _ = =

|
| k—Sends a message.
|
|
|
| |
|
|
|
|
|

|
| msgType:deviceReq
|
|

Queries the
corresponding codec.

Input: JSON data |
—Output: binary data—J‘

Encapsulates a

|

|

|

|

|

|

|

|

|

|

|

|

| |
| |
| |
| |
| | |
| |
: CoAP message. }
| |
|

|

|

|

|

|

|

|

|

|

|

|

|

|

J

|

| |
= Sends the message. - — — ——— — — — — — — |
| |
| |
! |
Reports the command result. —————————————

|

|

|
le______ Decoding |
Input: binary data |
|

|

|

|

|

|
|
: Output: JSON datar
|
|

Reports the result.

In the command delivery process, the codec is used in the following scenarios:
e Encoding JSON data delivered by an application into binary data and sending
the encoded data to a device

e Decoding binary data returned by a device into JSON data and reporting the
decoded data to an application

Graphical Development and Offline Development

The platform provides three methods for developing codecs. Offline codec
development is complex and time-consuming. Graphical codec development is
recommended.

e Graphical development: The codec of a product can be quickly developed in
a visualized manner on the IoTDA console.

e Offline development: A codec is developed through the secondary
development based on the Java codec demo to implement encoding,
decoding, packaging, and quality inspection.

e Script-based development: JavaScript scripts are used to implement
encoding and decoding.

3.4.2 Graphical Development

Currently, Huawei loT platform codecs are developed only for NB-loT devices.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 38

https://support.huaweicloud.com/en-us/devg-iothub/iot_02_0008.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_4020.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_0009.html

IoT Device Access
Developer Guide 3 Product Development

On the I0TDA console, you can quickly develop codecs in a visualized manner.
Some preset product models contain developed codecs. If you use such a product
model to create a product, you can directly use or modify the codec. If you choose
to customize a product, you need to develop a codec.

This section uses an NB-loT smoke detector as an example to describe how to
develop an codec that supports data reporting and command delivery as well as
command execution result reporting. The other two scenarios are used as
examples to describe how to develop and commission complex codecs.

Codec for Data Reporting and Command Delivery
Codec for Strings and Variable-Length Strings
Codec for Arrays and Variable-Length Arrays

Codec for Data Reporting and Command Delivery
Scenario
A smoke detector provides the following functions:

e Reporting smoke alarms (fire severity) and temperature

e Remote control commands, which can enable the alarm function remotely.
For example, the smoke detector can report the temperature on the fire scene
and remotely trigger a smoke alarm for evacuation.

e Reporting command execution results
Defining a Product Model

Define the product model on the product details page of the smoke detector.
e level: indicates the fire severity.
e temperature: indicates the temperature at the fire scene.

e SET_ALARM: indicates whether to enable or disable the alarm function. The
value 0 indicates that the alarm is disabled, and the value 1 indicates that the
alarm is enabled.

del Codec Deployment Online Debugging

Import Local Profile Import from Excel | | V| @ About Product Models

Developing a Codec

Step 1 On the product details page of the smoke detector, select Codec Development
and click Online Develop.

Step 2 Click Add Message to add a smokerinfo message. This step is performed to
decode the binary code stream message uploaded by the device to the JSON
format so that the platform can understand the message. The following is a
configuration example:

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 39

loT Device Access
Developer Guide

3 Product Development

Message Name: smokerinfo
Message Type: Data reporting

Add Response Field: selected. After response fields are added, the platform
delivers the response data set by the application to the device after receiving
the data reported by the device.

Response: AAAA00OO (default)

Add Message

Basic Information

smokerinfo

(®) Data reporting Command delivery

4 Add Response Field

Field Add Field

Offset Field Name Description Data Type Length Tagged a... Operation

No data available

Response:

Click Add Field, select Tagged as address field, and add the messagelD field,
which indicates the message type. In this scenario, the message type for
reporting the fire severity and temperature is 0x0. When a device reports a
message, the first field of each message is messagelD. For example, if the
message reported by a device is 0001013A, the first field 00 indicates that the
message is used to report the fire severity and temperature. The subsequent
fields 01 and 013A indicate the fire severity and temperature, respectively. If
there is only one data reporting message and one command delivery
message, the messagelD field does not need to be added.

- Data Type is configured based on the number of data reporting message
types. The default data type of the messagelD field is int8u.

- The value of Offset is automatically filled based on the field location and
the number of bytes of the field. messagelD is the first field of the
message. The start position is 0, the byte length is 1, and the end position
is 1. Therefore, the value of Offset is 0-1.

- The value of Length is automatically filled based on the value of Data
Type.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 40

loT Device Access
Developer Guide

3 Product Development

- Default Value can be changed but must be in hexadecimal format. In
addition, the corresponding field in data reporting messages must be the

same as the default value.

Add Message

Basic Information

smokerinfo

() Data reporting Command delivery

Add Response Field

Field

Offset Field Name Description

Mo data av

Response:

Add a level field to indicate the fire severity.

- Field Name can contain only letters, digits, underscores (_), and dollar

signs ($) and cannot start with a digit.

- Data Type is configured based on the data reported by the device and
must match the type defined in the product model. The level property

Data Type

railable

Length

Tagged a..

Operation

defined in the product model is int, and the maximum value is 9.

Therefore, set Data Type to int8u.

Add Field

- The value of Offset is automatically filled based on the field location and

the number of bytes of the field. The start position of the level field is
the end position of the previous field. The end position of the previous
field messagelD is 1. Therefore, the start position of the level field is 1.
The length of the level field is 1 byte, and the end position is 2.

Therefore, set Offset to 1-2.

- The value of Length is automatically filled based on Data Type.

- If you do not set Default Value, the value of temperature is not fixed

and has no default value.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

41

loT Device Access
Developer Guide

3 Product Development

Add Field

Tagged as address field@

level

Data Type (Big Endian int8u v

Offse 0

Leng o

Defau = o
Cance

3. Add the temperature field to indicate the temperature at the fire scene.

Data Type: In the product model, the data type of the temperature
property is int and the maximum value is 1000. Therefore, set Data Type
to int16u in the codec to meet the value range of the temperature
property.

Offset is automatically configured based on the number of characters
between the first field and the end field. The start position of the
temperature field is the end position of the previous field. The end
position of the previous field level is 2. Therefore, the start position of
the temperature field is 2. The length of the temperature field is 2
bytes, and the end position is 4. Therefore, set Offset to 2-4.

The value of Length is automatically filled based on Data Type.

If you do not set Default Value, the value of temperature is not fixed
and has no default value.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 42

IoT Device Access
Developer Guide 3 Product Development

Add Field

Tagged as address field@

Field Name temperature

Descrip

Data Type (Big Endian) int16u v
Offse o
ength 0
Defau e o

Cancel

Step 3 Click Add Message to add a SET_ALARM message and set the temperature
threshold for fire alarms. For example, if the temperature exceeds 60°C, the device
reports an alarm. This step is performed to encode the command message in
JSON format delivered by the IoT platform into binary data so that the smoke
detector can understand the message. The following is a configuration example:

e Message Name: SET_ALARM
e Message Type: Command delivery

e Add Response Field: selected. After a response field is added, the device
reports the command execution result after receiving the command. You can
determine whether to add response fields as required.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 43

loT Device Access
Developer Guide

3 Product Development

Add Message

Basic Information

Message Name Description

SET_ALARM

Data reporting

(s) Command delivery

[@) Add Response Field
Field
Offset Field Name Description Data Type
Mo data available
Response Field
Offset Field Name Description Data Type

Add Field I

Length Tagged a.. Operation
Add Response Field
Length Tagged a.. Operation

Click Add Field to add the messagelD field, which indicates the message
type. For example, set the message type of the fire alarm threshold to
0x3. For details about the messagelD, data type, length, default value,

and offset, see 1.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

44

loT Device Access
Developer Guide 3 Product Development

Add Field

Tagged as response 1D field@

Field Name messageld
Description
Data Type (Big Endian) int8u -
Offset 0
Length (i]

Default Value 0x3 4

b. Add the mid field. This field is generated and delivered by the platform
and is used to associate the delivered command with the command
delivery response. The data type of the mid field is int16u by default. For
details about the length, default value, and offset, see 2.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 45

IoT Device Access
Developer Guide 3 Product Development

Add Field

Tagged as response 1D field@

Field Name mid
Description
Data Type (Big Endian) int16u A
Offset Li]
* Length o
Default Value Li]

¢. Add the value field to indicate the parameter value of the delivered
command. For example, deliver the temperature threshold for a fire
alarm. For details about the data type, length, default value, and offset,
see 2.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 46

loT Device Access
Developer Guide

3 Product Development

Add Field

Tagged as response 1D field@

Field Name value

Description

Data Type (Big Endian) intSu v

Default Value

Click Add Response Field to add the messageld field, which indicates
the message type. The command delivery response is an upstream

message, which is differentiated from the data reporting message by the

messageld field. The message type for reporting the temperature

threshold of the fire alarm is 0x4. For details about the messagelD, data

type, length, default value, and offset, see 1.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

47

IoT Device Access
Developer Guide 3 Product Development

Add Field

Tagged as command execution state field@

Field Name messageld
Description
-
Data Type (Big Endian) int8u -
Offset Li]
Length i]
Default Value Oxd LiJ

e. Add the mid field. This field must be the same as that in the command
delivered by the loT platform. It is used to associate the delivered
command with the command execution result. The data type of the mid
field is int16u by default. For details about the length, default value, and
offset, see 2.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 48

loT Device Access
Developer Guide 3 Product Development

Add Field

Tagged as response 1D field@

Tagged as command execution state field@

Field Name mid
Description
Data Type (Big Endian) int16u -
Dffset

Length

f. Add the errcode field to indicate the command execution status. 00
indicates success and 01 indicates failure. If this field is not carried, the
command is executed successfully by default. The data type of the
errcode field is int8u by default. For details about the length, default
value, and offset, see 2.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 49

IoT Device Access
Developer Guide 3 Product Development

Add Field

Tagged as command execution state field@

Field Name errcode
Description
/1024
Data Type (Big Endian) intSu A
Offset Li]
Length o
Default Value Li]

g. Add the result field to indicate the command execution result. For
example, the device returns the current alarm threshold to the platform.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 50

IoT Device Access
Developer Guide 3 Product Development

Add Field

Tagged as command execution state field@

Field Name result
Description
/1024
Data Type (Big Endian) intSu hd
Offset Li]
* Length o
Default Value Li]

Step 4 Drag the property fields and command fields in Device Model on the right to set
up a mapping relationship between the fields in the data reporting message and
the corresponding ones in the command delivery message.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 51

loT Device Access
Developer Guide 3 Product Development

Step 5 Click Save and then Deploy to deploy the codec on the platform.

101 / Online Develop

----End
Testing the Codec

Step 1 On the product details page of the smoke detector, select Online Debugging and
click Add Test Device.

Step 2 You can use a real device or virtual device for debugging based on your service
scenario. For details, see Online Debugging. The following uses a simulated
device as an example to describe how to debug a codec.

In the Add Test Device dialog box, select Virtual device and click OK. The virtual
device name contains Simulator. Only one virtual device can be created for each
product.

Add Test Device

Device Type Physical device |

You are requesting to register a virtual device.

Step 3

Operat
Delete

Step 4 Use the device simulator to report data. For example, a hexadecimal code stream
(0008016B) is reported. In this code stream, 00 indicates messagelD. 08 indicates
the fire severity, and its length is one byte. 016B indicates the temperature and its
length is two bytes.

View the data reporting result ({level=8, temperature=363}) in Application
Simulator. 8 is the decimal number converted from the hexadecimal number 08
and 363 from the hexadecimal number 018B.

In the Device Simulator area, the response data AAAAOO00O delivered by the loT
platform is displayed.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 52

https://support.huaweicloud.com/en-us/devg-iothub/iot_02_9988.html

loT Device Access

Developer Guide 3 Product Development
Command
.)) Delivery —
@ Application Simulator e » @9 1oT Platform
4-=------ o
) . * 0
m Data Received ~ Commands Sent Data Reporting [
Data Reporting 1 1
1 1
Data Received: 2020/11/06 11:42:30 GMT+08:00 : : Command Delivery
- 4
{serviceld: smokerdetector, data:
{"level"8, temperature™:3631} (D Device Simulator
m Data Sent Commands Received
2020/11/06 11:42:30 GMT+08:00
00080168
Service smokerdetector - Commands Received
2020/11/06 11:42:30 GMT+08:00
Command SET_ALARM - AAAADOCD
value Hexadecimal

00080168

Set Time

Period (s): s Aut

=1
LA

Step 5 Use the application simulator to deliver a command and set value to 1. The
command {"serviceld": "Smokeinfo", "method": "SET_ALARM", "paras": "{\"value\":
1}"} is delivered.

View the command receiving result in Device Simulator, which is 03000E01. 03
indicate the messagelD field, 000E indicates the mid field, and 01 is the
hexadecimal value converted from the decimal value 1.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 53

loT Device Access
Developer Guide

3 Product Development

@ Application Simulator

m Data Received

Data Received: 2020/11/06 11:42:30 GMT+08:00

Commands Sent

{serviceld: smokerdetector, data:
{"level":8, temperature™363}}

Service smokerdetector

Command SET_ALARM v

1

----End

Summary

Command
Delivery

Data Reporting

@9 loT Platform

Data Reporting

Command Delivery

(.} Device Simulator

LA R Commands Received

[RVTTTE TVE)

2020/11/06 11:48:15 GMT+08:00

03000001

noLSiveu

ICommands Received
2020/11/06 11:48:15 GMT+08:00

[02000E01

Hexadecimal

Period (s): E Auto-Send

e If the codec needs to parse the command execution result, the mid field must
be defined in the command and the command response.

e The length of the mid field in a command is two bytes. For each device, mid
increases from 1 to 65535, and the corresponding code stream ranges from

0001 to FFFF.

e After a command is executed, the mid field in the reported command
execution result must be the same as that in the delivered command. In this
way, the IoT platform can update the command status.

Codec for Strings and Variable-Length Strings

If the smoke detector needs to report the description information in strings or
variable-length strings, perform the following steps to create messages:

Model Definition

Define the product model on the product details page of the smoke detector.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 54

loT Device Access
Developer Guide 3 Product Development

Model Definition Codec Deployment Online Debugging

Import Local Profile mport from Excel | | & | @ About Product Models

Properties/Commands

A smokerdetector [

Add Property

Property Name Data Type

[
level integer True Readable

T

T

temperature integer

otherinfo integer

Comman d Name Downlink Parameter Response Parameter Operation

SET_ALARM vale e It Edit | Delete

Developing a Codec

Step 1 On the product details page of the smoke detector, select Codec Development
and click Online Develop.

Step 2 Click Add Message to add the otherinfo message and report the description of
the character string type. This step is performed to decode the binary code stream
message of the character string uploaded by the device to the JSON format so
that the platform can understand the message. The following is a configuration
example:

e Message Name: otherinfo
e Message Type: Data reporting

e Add Response Field: selected. After response fields are added, the platform
delivers the response data set by the application to the device after receiving
the data reported by the device.

e Response: AAAADOOO (default)

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 55

loT Device Access
Developer Guide

3 Product Development

Add Message

Basic Information

other_info

Command delivery

Field

Offset

Field Name Description Data Type Length

Ne data available

Response:

Cancel

Add Field

Tagged a... Operation

Click Add Field to add the messageld field, which indicates the message
type. In this scenario, the value 0x0 is used to identify the message that
reports the fire severity and temperature, 0x1 is used to identify the message
that reports only the temperature, and 0x2 is used to identify the message
that reports the description (of the string type). For details about the
messagelD, data type, length, default value, and offset, see 1.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

56

IoT Device Access
Developer Guide 3 Product Development

Add Field

Tagged as address field@

* Field Name messageld
Description
/1024
Data Type (Big Endian) intSu hd
Offset Li]
Length o
Default Value 0x2 LiJ

2. Add the other_info field to indicate the description of the string type. In this
scenario, set Data Type to string and Length to 6. For details about the field
name, default value, and offset, see 2.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 57

loT Device Access
Developer Guide

3 Product Development

Add Field

Tagged as address field@

Field Name otherinfo

Descrip

Data Type (Big Endian) string v
Offse o
Leng] 0
Defau |2 o

Cancel

Step 3 Click Add Message, add the other_info2 message name, and configure the data
reporting message to report the description of the variable-length string type. This
step is performed to decode the binary code stream message of variable-length
strings uploaded by the device to the JSON format so that the platform can
understand the message. The following is a configuration example:

Message Name: other_info2
Message Type: Data reporting

Add Response Field: selected. After response fields are added, the platform
delivers the response data set by the application to the device after receiving
the data reported by the device.

Response: AAAAOO0O (default)

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 58

loT Device Access
Developer Guide

3 Product Development

Add Message

Basic Information

other_info2

Command delivery

Field Name Description Data Type

Mo data available

Response:

Cancel

Length

Add Field

Tagged a... Operation

Add the messageld field to indicate the message type. In this scenario, the
value 0xO0 is used to identify the message that reports the fire severity and
temperature, 0x1 is used to identify the message that reports only the
temperature, and 0x3 is used to identify the message that reports the
description (of the variable-length string type). For details about the
messagelD, data type, length, default value, and offset, see 1.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

59

loT Device Access

Developer Guide 3 Product Development

Add Field

Tagged as response 1D field@

Field Name messageld
Description
Data Type (Big Endian) int8u -
Offset 0
Length (i]

Default Value 0x3 4

2. Add the length field to indicate the length of a variable-length string. Data
Type is configured based on the length of the variable-length string. If the
string contains 255 or fewer characters in this scenario, set this parameter to
int8u. For details about the length, default value, and offset, see 2.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 60

loT Device Access
Developer Guide

3 Product Development

Add Field

Tagged as address field@

Field Name length

Descrip

Data Type (Big Endian) int8u v
Offse o
Leng o
Defau = o

Cancel

Add the other_info field and set Data Type to varstring, which indicates the
description of the variable-length string type. Set Length Correlation Field to
length. The values of Length Correlation Field Difference and Length are
automatically filled. Retain the default value Oxff for Mask. For details about
the offset value, see 2.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 61

loT Device Access

Developer Guide 3 Product Development
Add Field
ame other_info
ription
Type (Big Endian) varstring -
0
th Correlation Field length -
0

th Correlation Field Difference

Step 4 Drag the property fields in Device Model on the right to set up a mapping
relationship between the corresponding fields in the data reporting messages.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd.

62

loT Device Access
Developer Guide

3 Product Development

Data Reporting Fields
messageld
level
temperature

(EA |

temperature

Data Reporting Fields
messageld
temperature

EN |

other_info

Data Reporting Fields

messageld

other_info

Data Reporting Fields

messageld

o

O

SO

lzemr::eralure

other_info

other info

Step 5 Click Save and then Deploy to deploy the codec on the platform.

Step 1

Step 2

roducts / watertest0! / Online Develop

--—-End

Testing the Codec

On the product details page of the smoke detector, select Online Debugging and
click Add Test Device.

You can use a real device or virtual device for debugging based on your service
scenario. For details, see Online Debugging. The following uses a simulated
device as an example to describe how to debug a codec.

In the Add Test Device dialog box, select Virtual device and click OK. The virtual
device name contains Simulator. Only one virtual device can be created for each

product.

Add Test Device

Device Type

Physical device | Virtual device

You are requesting to register a virtual device.

Cancel

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 63

https://support.huaweicloud.com/en-us/devg-iothub/iot_02_9988.html

loT Device Access
Developer Guide

3 Product Development

Step 3 Click Debug to access the debugging page.

Step 4

Use the device simulator to report the description of the string type.

For example, a hexadecimal code stream (0231) is reported. 02 indicates the
messageld field and specifies that this message reports the description of the
string type. 31 indicates the description and its length is one byte.

View the data reporting result ({other_info=null}) in Application Simulator. The
length of the description is less than six bytes. Therefore, the codec cannot parse
the description.

Command
Delivery

dApplication Simulator 29loT Platform

m Data Received Command Sent EAREEAE
Data Reporting

Data Received: 2019-06-14 09:38:17

Command Delivery

other_info™ null }

{+)Device Simulator

m Data Sent = Command Received

7]
@

5 P
Smoke M 023

Command SET_ALARM -

Enter a hexadecimal code stream

0231

Periog 5 seconds Auto Send

In the second hexadecimal code stream example (02313233343536), 02 indicates
the messageld field and specifies that this message reports the description of the
string type. 313233343536 indicates the description and its length is six bytes.

View the data reporting result ({other_info=123456}) in Application Simulator.
The length of the description is six bytes. The description is parsed successfully by
the codec.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 64

loT Device Access
Developer Guide

3 Product Development

dApplication Simulator

m Data Received | Command Sent

Data Received: 2019-06-14 09:39:17

{ "other_info". null }

Data Received: 2018-06-14 08:40:21

{ "other_info": "123456" }

Sernvice Smoke

Command SET_ALARM

@21oT Platform

Data Reporting

Command Delivery

{+ Device Simulator
B oatasent commanda Received

2018-06-14 09:39:17

0231

Data Sent
2010-06-14 09:40:21

02313233343536

Enter a hexadecimal code stream.

02313233343536

Period 5 seconds Auto Send

In the third hexadecimal code stream example (023132333435363738), 02
indicates the messageld field and specifies that this message reports the
description of the string type. 3132333435363738 indicates the description and its
length is eight bytes.

View the data reporting result ({other_info=123456}) in Application Simulator.
The length of the description exceeds six bytes. Therefore, the first six bytes are

intercepted and parsed by the codec.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 65

loT Device Access
Developer Guide

3 Product Development

dApplication Simulator
IED oata Receivea | command sent

Data Received: 2018-06-14 09:40:21

{ "other_info": 123456" }

{ "other_info": 123456" }

Data Received: 2018-06-14 09:45:37

In the fourth hexadecimal code stream example (02013132333435), 02 indicates

Service Smoke

Command SET_ALARM

@2loT Platform

Data Reporting

Command Delivery

{<)Device Simulator
IE} oatasent commana Received

2019-D6-14 09:40:21

,,,,,,,,

Data Sent
2019-06-14 09:45:3

023132333435363733

Enter a hexadecimal code stream.

023132333435363738

Period 5 seconds Auto Send m

the messageld field and specifies that this message reports the description of the

string type. 013132333435 indicates the description and its length is six bytes.

View the data reporting result ({other_info=\u000112345}) in Application
Simulator. In the ASCII code table, 01 indicates start of headline which cannot

be represented by specific characters. Therefore, 01 is parsed to \u0001.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

66

loT Device Access
Developer Guide

3 Product Development

Step 5 Use the device simulator to report the description of the variable-length string

dApplication Simulator

Bl oota receivea | commana sent

Data Received: 2019-06-14 09:45:37

{"other_info": "123456" }

Data Received: 2019-06-14 09:46:55

{ "other_info™ "w000112345" }

Senvice Smoke

Command SET_ALARM

type.

Command
Delivery

Data Reporting

E@3loT Platform

Data Reporting

Command Delivery

{s)Device Simulator

IEJ oetasent commana Received

2018-06-14 09:45.37

023132333435363738

Data Sent
2019-06-14 09:46:55

02013132333435

Enter a hexadecimal code stream

02013132333435

Period 5 seconds Auto Send

For example, a hexadecimal code stream (030141) is reported. In this code stream,

03 indicates the messageld field and specifies that this message reports the
description of the variable-length string type. 01 indicates the length of the

description (one byte) and its length is one byte. 41 indicates the description and

its length is one byte.

View the data reporting result ({other_info=A}) in Application Simulator. A

corresponds to 41 in the ASCII code table.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

67

loT Device Access

Developer Guide 3 Product Development
Command
Delivery
dApplication Simulator Frmm——es » @30T Platform
- o
m Data Received = Command Sent (DS RS LIS ik
Data Reporting | |
Data Received: 2019-06-14 10:22:43 184 -
1 1 Command Delivery
{ "other_info™ "A"} Sk
{s Device Simulator
m Data Sent Command Received
Data Sent
2019-06-14 10:22:43
Service Smaoke - 030141
Command SET_ALARM h

Enter a hexadecimal code stream.

030141

Period 5 seconds Auto Send m

In the second hexadecimal code stream example (03024142), 03 indicates the
messageld field and specifies that this message reports the description of the
variable-length string type. 02 indicates the length of the description (two bytes)
and its length is one byte. 4142 indicates the description and its length is two
bytes.

View the data reporting result ({other_info=AB}) in Application Simulator. A
corresponds to 41 and B corresponds to 42 in the ASCII code table.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 68

loT Device Access
Developer Guide

3 Product Development

@~ pplication Simulator

m Data Received = Command Sent

Data Received: 2019-D6-14 10:22:43

{ "other_info™ "A" }

Data Received: 2019-06-14 10:26:57

{ "other_info": "AB" }
Sernvice Smoke T
Command SET_ALARM -

Command
elivery

&9loT Platform
Data Reporting
Data Reporting
Command Delivery
{s+)Device Simulator

IE} oaasent | commana Received

2019-06-14 10:22:43

030141

2019-06-14 10:26:57

03024142

Enter a hexadecimal code stream

03024142

In the third hexadecimal code stream example (030341424344), 03 indicates the
messageld field and specifies that this message reports the description of the
variable-length string type. The second 03 indicates the length of the description
(three bytes) and its length is one byte. 41424344 indicates the description and its

length is four bytes.

View the data reporting result ({other_info=ABC}) in Application Simulator. The
length of the description exceeds three bytes. Therefore, the first three bytes are
intercepted and parsed. In the ASCII code table, A corresponds to 41, B to 42, and

C to 43.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 69

loT Device Access

Developer Guide 3 Product Development
Command
Delivery -
dApplication Simulator T » @JloT Platform
W EE—Eos o
m Data Received Command Sent D AIREEEE Ty
Data Reporting | |
1 1
Data Received: 2013-06-14 10:26:57 | | Command Delivery
{"other_info": "AB" } o ¥

{s)Device Simulator

Data Received: 2018-06-14 10:27:45
{"other_info™ "ABC"] m Data Sent Command Received

2019-D6-14 10:26:57

03024142
Service Smoke -
Data Sent
Command =~ SET_ALARM - 2019-06-14 10:27:46
030341424344

Enter a hexadecimal code stream.

030341424344

Period 5 seconds Auto Send m

In the fourth hexadecimal code stream example (0304414243), 03 indicates the
messageld field and specifies that this message reports the description of the
variable-length string type. 04 indicates the string length (four bytes) and its
length is one byte. 414243 indicates the description and its length is four bytes.

View the data reporting result ({other_info=null}) in Application Simulator. The
length of the description is less than four bytes. The codec fails to parse the
description.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 70

loT Device Access

Developer Guide 3 Product Development
Command
Delivery
.Application Simulator loT Platform
m Data Received Command Sent DEE FETIE
Data Reporting
Data Received: 201%-06-14 10:27:46 Command Delivery

{ "other_info™ "ABC" }

{s)Device Simulator

Data Received: 2019-06-14 10:20:08

{"other_info™ null} m Data Sent Command Received

o
@

Smoke -

Command SET_ALARM -
0304414243
- Enter a hexadecimal code stream
0304414243
: g e m
----End
Summary

e When data is a string or a variable-length string, the codec processes the data
based on the ASCII code. When data is reported, the hexadecimal code stream
is decoded to a string. For example, 21 is parsed to an exclamation mark (!),
31to 1, and 41 to A. When a command is delivered, the string is encoded into
a hexadecimal code stream. For example, an exclamation mark (!) is encoded
into 21, 1 into 31, and A into 41.

e When the data type of a field is varstring(variable-length string type), the
field must be associated with the length field. The data type of the length
field must be int.

e For variable-length strings, the codecs for command delivery and data
reporting are developed in the same way.

e Codecs developed in graphical mode encode and decode strings and variable-
length strings using the ASCIl hexadecimal standard table. During decoding
(data reporting), if the parsing results cannot be represented by specific
characters such as start of headline, start of text, and end of text, the \u+2
byte code stream values are used to indicate the results. For example, 01 is
parsed to \u0001 and 02 to \u0002. If the parsing results can be represented
by specific characters, specific characters are used.

Codec for Arrays and Variable-Length Arrays

If the smoke detector needs to report the description information in arrays or
variable-length arrays, perform the following steps to create messages:

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 71

loT Device Access
Developer Guide

3 Product Development

Step 1

Step 2

Model Definition

Define the product model on the product details page of the smoke detector.

A smokerdetector (7

Add Property

Property Name Data Type Mandatory cess Mode Operation

level Integer Edit | Delete

temperature Integer adable Edit | Delete

4 = =2

otherinfo integer eadable Edit Delate

Developing a Codec

On the product details page of the smoke detector, select Codec Development
and click Online Develop.

Click Add Message to add the otherinfo message and report the description of
the array type. This step is performed to decode the array binary code stream
message uploaded by the device to the JSON format so that the platform can
understand the message. The following is a configuration example:

e Message Name: otherinfo
e Message Type: Data reporting

e Add Response Field: selected. After response fields are added, the platform
delivers the response data set by the application to the device after receiving
the data reported by the device.

e Response: AAAAOOOO (default)

Add Message

Basic Information

other_info

Command delivery

Add Field

Field Name Description Data Type Length Tagged a... Operation

MNe data available

Response:

Cancel

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 72

loT Device Access
Developer Guide

3 Product Development

2.

Click Add Field to add the messageld field, which indicates the message
type. In this scenario, the value 0x0 is used to identify the message that
reports the fire severity and temperature, 0x1 is used to identify the message
that reports only the temperature, and 0x2 is used to identify the message
that reports the description (of the array type). For details about the
messagelD, data type, length, default value, and offset, see 1.

Add Field

Tagged as address fieldi

Field Name

escription

Default Value

messageld
g Endian) int8u v
0
i]
0x2 0

Cancel

Add the other_info field and set Data Type to array, which indicates the
description of the array type. In this scenario, set Length to 5. For details
about the field name, default value, and offset, see 2.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 73

loT Device Access
Developer Guide 3 Product Development

Add Field

Tagged as address field@

Field Mame otherinfo

Descrip

Data Type (Big Endian) array v
Offse Li]
Leng 5 0
Defau |2 o

Cancel

Step 3 Click Add Message to add the other_info2 message and report the description of
the variable-length array type. This step is performed to decode the binary code
stream message of variable-length arrays uploaded by the device to the JSON
format so that the platform can understand the message. The following is a
configuration example:

e Message Name: other_info2
e Maessage Type: Data reporting

e Add Response Field: selected. After response fields are added, the platform
delivers the response data set by the application to the device after receiving
the data reported by the device.

e Response: AAAAD00O (default)

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 74

loT Device Access
Developer Guide

3 Product Development

Add Message

Basic Information

other_info2

Command delivery

Field Name Description Data Type

Mo data available

Response:

Cancel

Length

Add Field

Tagged a... Operation

Click Add Field to add the messageld field, which indicates the message
type. In this scenario, the value 0x0 is used to identify the message that
reports the fire severity and temperature, 0x1 is used to identify the message
that reports only the temperature, and 0x3 is used to identify the message
that reports the description (of the variable-length array type). For details
about the messagelD, data type, length, default value, and offset, see 1.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

75

loT Device Access

Developer Guide 3 Product Development

Add Field

Tagged as response 1D field@

Field Name messageld
Description
Data Type (Big Endian) int8u -
Offset 0
Length (i]

Default Value 0x3 4

2. Add the length field to indicate the length of an array. Data Type is
configured based on the length of the variable-length array. If the array
contains 255 or fewer characters, set this parameter to int8u. For details
about the length, default value, and offset, see 2.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 76

loT Device Access
Developer Guide

3 Product Development

Add Field

Tagged as address field@

Field Name length

Descrip

Data Type (Big Endian) int8u v
Offse o
Leng o
Defau = o

Cancel

Add the other_info field and set Data Type to variant, which indicates the
description of the variable-length array type. Set Length Correlation Field to
length. The values of Length Correlation Field Difference and Length are
automatically filled. Retain the default value Oxff for Mask. For details about
the offset value, see 2.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 77

IoT Device Access
Developer Guide 3 Product Development

X
Add Field

iged as address field@

ame other_info
ription
/1024
Type (Big Endian) variant -
Li]
th Correlation Field length v
Li]

Step 4 Drag the property fields in Device Model on the right to set up a mapping
relationship between the corresponding fields in the data reporting messages.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd.

78

loT Device Access
Developer Guide

3 Product Development

Step 5 Click Save and then Deploy to deploy the codec on the platform.

Step 1

Step 2

A |

smokeinto

Data R

messageld
level

temperature

Data Reporting Fields

messageld

temperature

[EA |

other_into

Data R
messageld

ather_info

[EA |

otner_into_z

Data Reporting Fields

messageld
length
other_infa

al]

el

te mperature

/

»-/

=l

temperature

g[_h?r;mlo

g[p?rgmfo

roducts / watertest0! / Online Develop

----End

Testing the Codec

On the product details page of the smoke detector, select Online Debugging and
click Add Test Device.

You can use a real device or virtual device for debugging based on your service
scenario. For details, see Online Debugging. The following uses a simulated

device as an example to describe how to debug a codec.

In the Add Test Device dialog box, select Virtual device and click OK. The virtual
device name contains Simulator. Only one virtual device can be created for each

product.

Add Test Device

Device Type

Physical device | Virtual device

You are requesting to register a virtual device.

Step 3 Click Debug to access the debugging page.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

79

https://support.huaweicloud.com/en-us/devg-iothub/iot_02_9988.html

IoT Device Access
Developer Guide 3 Product Development

Step 4 Use the device simulator to report the description of the array type.

For example, a hexadecimal code stream (0211223344) is reported. In this code
stream, 02 indicates the messageld field and specifies that this message reports
the description of the array type. 11223344 indicates the description and its
length is four bytes.

View the data reporting result ({other_info=null}) in Application Simulator. The
length of the description is less than five bytes. Therefore, the codec cannot parse
the description.

Command
Delivery

dApplication Simulator @JloT Platform

m Data Received =~ Command Sent Data Reporting
Data Reporting

Data Received: 2019-08-14 10:38:23

Command Delivery
{ "other_info™ null }
{s Device Simulator
m Data Sent Command Received
Service Smoke -

Command SET_ALARM h

Enter a hexadecimal code stream

0211223344

Period 5 seconds Auto Send m

In the second hexadecimal code stream example (021122334455), 02 indicates
the messageld field and specifies that this message reports the description of the
array type. 1122334455 indicates the description and its length is five bytes.

View the data reporting result ({other_info=ESIzRF=}) in Application Simulator.
The length of the description is five bytes. The description is parsed successfully by
the codec.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 80

loT Device Access

Developer Guide 3 Product Development
Command
Delivery o
dApplication Simulator O----=--- » E21oT Platform
WEDEoo=e o
m Data Received = Command Sent DI R, T
Data Reporting | |
Data Recelved: 2019-06-14 10:38:23 50~ o
| | Command Delivery
{ "other_info™: null } R
{s+)Device Simulator
Data Received: 2019-D6-14 10:42:34
{other_info™ "ESIZRFU="} m Data Sent = Command Received

2019-06-14 10:38:23
0211223344

Sernvice Smake hd
Data Sent

Command | SET_ALARM - 2019-06-14 10:42:34

0211223234455

Enter a hexadecimal code stream

021122334455

Period 5 seconds Auto Send m

In the third hexadecimal code stream example (02112233445566), 02 indicates
the messageld field and specifies that this message reports the description of the
array type. 112233445566 indicates the description and its length is six bytes.

View the data reporting result ({other_info=ESIzRF=}) in Application Simulator.
The length of the description exceeds six bytes. Therefore, the first five bytes are
intercepted and parsed by the codec.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 81

loT Device Access

Developer Guide 3 Product Development
Command
Delivery o
‘Application Simulator @JloT Platform
m Data Received = Command Sent D EIREETIE

Data Reporting
Data Received: 2019-06-14 10:42:34 Command Delivery

{"otner_info" "ESIZRFU="}

{+)Device Simulator

Data Received: 2019-06-14 10:44:22
{"otner_info" "ESIZRFU="} m Data Sent Command Received

2019-D6-14 10:42:34
021122334455
Sernvice Smoke -
Data Sent
Command SET_ALARM - 2019-06-14 10:44:22

02112233445566

Enter a hexadecimal code stream

02112233445566

Set Time

Period 5 seconds Auto Send

w
@

Step 5 Use the device simulator to report the description of the variable-length array
type.

For example, a hexadecimal code stream (030101) is reported. In this code stream,
03 indicates the messageld field and specifies that this message reports the
description of the variable-length array type. The first 01 indicates the length of
the description (one byte) and its length is one byte. The second 01 indicates the
description and its length is one byte.

View the data reporting result ({other_info=AQ==}) in Application Simulator.
AQ==is the encoded value of 01 using the Base64 encoding mode.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 82

loT Device Access

Developer Guide 3 Product Development
Command
Delivery -
‘Application Simulator O---=-==-- » EQloT Platform
e]
m Data Recelved = Command Sent e i
Data Reporting | |
1 1
Data Received: 2019-06-14 10:44:22 1 Command Delivery
{ "other_info": "ESIzRFU="} o *

{+/Device Simulator

Data Received: 2015-06-14 104526
e e A B} oatasent | command Receives

2019-06-14 10:44.22

02112233445566

Senvice Smoke -
Data Sent
Command SET_ALARM - 20150514 10:45.20
0301

m
[
8
g
@
[
=
=4

Enter a hexadecimal code stream.

030101

Set Time

Period 5 seconds Auto Send m

In the second hexadecimal code stream example (03020102), 03 indicates the
messageld field and specifies that this message reports the description of the
variable-length array type. 02 indicates the length of the description (two bytes)
and its length is one byte. 0102 indicates the description and its length is two
bytes.

View the data reporting result ({other_info=AQI=}) in Application Simulator.
AQI= is the encoded value of 01 using the Base64 encoding mode.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 83

loT Device Access
Developer Guide

3 Product Development

dApplication Simulator

m Data Received = Command Sent

Data Received: 2019-06-14 10:45:26

{ "other_info™ "AQ=="1}

Data Received: 2018-05-14 10:46:13

{ "other_info™ "AQI="}

Service Smoke

Command SET_ALARM

Set Time

Command
Delivery

Data Reporting

Data Reporting

< TP —
DEE—

‘OloT Platform

Command Delivery

{s+JDevice Simulator

m Data Sent Command Received

2015-06-14 10:45:26
030101

Data Sent
2019-06-14 10:46:18

03020102

Enter a hexadecimal code stream

03020102

Period 5 seconds Auto Send

In the third hexadecimal code stream example (03030102), 03 indicates the
messageld field and specifies that this message reports the description of the
variable-length array type. 03 indicates the length of the description (three bytes)
and its length is one byte. 0102 indicates the description and its length is two
bytes.

View the data reporting result ({other_info=null}) in Application Simulator. The
length of the description is less than three bytes. The codec fails to parse the
description.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

84

loT Device Access
Developer Guide

3 Product Development

dApplication Simulator
m Data Received = Command Sent

Data Received: 2019-06-14 10:46:13

{ "other_info" "AQI="}

Data Received: 2019-06-14 10:42:07

{ "other_info™: null }
Senvice Smoke -
Command SET_ALARM A

m
3
=]

T
0
£
]
F
E

Set Time

Command
Delivery
EloT Platform

Data Reporting

Data Reporting
Command Delivery
{s Device Simulator
m Data Sent Command Received

2019-06-14 10:46:18

03020102

Data Sent
2019-06-14 10:48:07

03030102

Enter a hexadecimal code stream

03030102

Period 5 seconds Auto Send “

In the fourth hexadecimal code stream example (0303010203), 03 indicates the
messageld field and specifies that this message reports the description of the

variable-length array type. The second 03 indicates the length of the description
(three bytes) and its length is one byte. 010203 indicates the description and its

length is three bytes.

View the data reporting result ({other_info=AQID}) in Application Simulator.
AQID is the encoded value of 010203 using the Base64 encoding mode.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd.

85

loT Device Access

Developer Guide 3 Product Development
Command
Delivery -
dApplication Simulator ©loT Platform
m Data Received = Command Sent Data Reporting
Data Reporting
Data Received: 2012-06-14 10:43:07 Command Delivery
{ "other_info™ null }

{s Device Simulator

Data Received: 2019-06-14 10:50:33
{ "other_info™ "AQID" } m Data Sent Command Received

2019-06-14 10:48:07

Service Smaoke hd

Command SET_ALARM -

Enter a hexadecimal code stream.

0303010203

In the fifth hexadecimal code stream example (030301020304), 03 indicates the
messageld field and specifies that this message reports the description of the
variable-length array type. The second 03 indicates the length of the description
(three bytes) and its length is one byte. 01020304 indicates the description and its
length is four bytes.

View the data reporting result ({other_info=AQID}) in Application Simulator. The
length of the description exceeds three bytes. Therefore, the first three bytes are
intercepted and parsed. AQID is the encoded value of 010203 using the Base64
encoding mode.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 86

loT Device Access
Developer Guide

3 Product Development

Command

Delivery
@~ pplication Simulator loT Platform
m Data Received = Command Sent a5 Py
Data Reporting
Data Received: 2019-06-14 10:50:33 Command Delivery

{ "other_info": "AQID" }

{s/Device Simulator

Data Received: 2018-06-14 10:53:32

{ "other_info": "AQID" }

m Data Sent Command Received

[4:}
@

Command ~ SET_ALARM -

Smake -

Enter a hexadecimal code stream.

030301020304

----End

Description of Base64 Encoding Modes

In Base64 encoding mode, three 8-bit bytes (3 x 8 = 24) are converted into four 6-
bit bytes (4 x 6 = 24), and 00 are added before each 6-bit byte to form four 8-bit
bytes. If the code stream to be encoded contains less than three bytes, fill the
code stream with 0 at the end. The byte that is filled with 0 is displayed as an
equal sign (=) after it is encoded.

Developers can encode hexadecimal code streams as characters or values using

the

Base64 encoding modes. The encoding results obtained in the two modes are

different. The following uses the hexadecimal code stream 01 as an example:

Use 01 as the characters. 01 contains fewer than three characters. Therefore,
add one 0 to obtain 010. Query the ASCII code table to convert the characters
into an 8-bit binary number, that is, 0 is converted into 00110000 and 1 into
00110001. Therefore, 010 can be converted into 001100000011000100110000
(3 x 8 = 24). The binary number can be split into four 6-bit numbers: 001100,
000011, 000100, and 110000. Then, pad each 6-bit number with 00 to obtain
the following numbers: 00001100, 00000011, 00000100, and 00110000. The
decimal numbers corresponding to the four 8-bit numbers are 12, 3, 4, and
48, respectively. You can obtain M (12), D (3), and E (4) by querying the
Base64 coding table. As the last character of 010 is obtained by adding 0, the
fourth 8-bit number is represented by an equal sign (=). Finally, MDE= is
obtained by using 01 as characters.

Use 01 as a value (that is, 1). It contains fewer than three characters.
Therefore, add 00 to obtain 100. Convert 100 into an 8-bit binary number,

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 87

IoT Device Access
Developer Guide 3 Product Development

that is, 0 is converted into 00000000 and 1 is converted to 00000001.
Therefore, 100 can be converted to 000000010000000000000000 (3 x 8 = 24).
The binary number can be split into four 6-bit numbers: 000000, 010000,
000000, and 000000. Then, pad each 6-bit number with 00 to obtain
00000000, 00010000, 00000000, and 00000000. The decimal numbers
corresponding to the four 8-bit numbers are 0, 16, 0, and 0, respectively. You
can obtain A (0) and Q (16) by querying the Base64 coding table. As the last
two characters of 100 are obtained by adding O, the third and fourth 8-bit
numbers are represented by two equal signs (==). Finally, AQ==is obtained
by using 01 as a value.

Summary

e When the data is an array or a variable-length array, the codec encodes and
decodes the data using Base64. For data reporting messages, the hexadecimal
code streams are encoded using Base64. For example, 01 is encoded into
AQ==. For command delivery messages, characters are decoded using Base64.
For example, AQ==is decoded to 01.

e When the data type of a field is variant(variable-length array type), the
field must be associated with the length field. The data type of the length
field must be int.

e For variable-length arrays, the codecs for command delivery and data
reporting are developed in the same way.

e When the codecs that are developed graphically encode data using Base64,
hexadecimal code streams are encoded as values.

3.4.3 Developing a Codec Using JavaScript

The loT platform can encode and decode JavaScript scripts. Based on the script
files you submit, the loT platform can convert between binary data and JSON
data. This topic uses a smoke detector as an example to describe how to develop
a JavaScript codec that supports device property reporting and command delivery,
and describes the format conversion requirements and debugging method of the
codec.

(11 NOTE

e JavaScript syntax rules must comply with ECMAScript 5.1 specifications.
e The size of a JavaScript script cannot exceed 1 MB.

e After the JavaScript script is deployed on a product, the JavaScript script parses
upstream and downstream data of all devices under the product. When you develop a
JavaScript codec, take all upstream and downstream scenarios into consideration.

e The JSON upstream data obtained after being decoded by the JavaScript codec must
meet the format requirements of the platform. For details about the format
requirements, see Data Decoding Format Definition.

e For the JSON format definition of downstream commands, see Data Encoding Format
Definition. If the JavaScript codec is used for encoding, the JSON format of the platform
must be converted into the corresponding binary code stream.

Example of a Smoke Detector
Scenario

A smoke detector provides the following functions:

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 88

https://www.ecma-international.org/ecma-262/5.1/

loT Device Access
Developer Guide

3 Product Development

Step 1

Step 2

e Reporting smoke alarms (fire severity) and temperature

e Remote control commands, which can enable the alarm function remotely.
For example, the smoke detector can report the temperature on the fire scene
and remotely trigger a smoke alarm for evacuation.

e The smoke detector has weak capabilities and cannot report data in JSON
format defined by the device interface, but reporting simple binary data.
Profile Definition

Define the product model on the product details page of the smoke detector.
e level: indicates the fire severity.
e temperature: indicates the temperature at the fire scene.

e SET_ALARM: indicates whether to enable or disable the alarm function. The
value 0 indicates that the alarm is disabled, and the value 1 indicates that the
alarm is enabled.

Model Definition

Properties/Commands

A smokerdetector (71 Delete Sevice

‘Add property

Property Name Data Type Mandatory Access Mode

level integer True Readable

temperature Integer True Readable

Commant d Name Downlink Parameter Response Parameter Operation

SET_ALARM vale e It Edit | Delete

Developing a Codec

On the product details page of the smoke detector, select Codec Development
and click Edit Script.

Model Definition Codec Deployment Online Debugging

Codec Details

Codec Source: -- | Operated: --
Online Develop Upload Codec m
Codec Script

Compile a script to convert binary data into JSON data. The script must implement
the following methods:

e Decode: Converts the binary data reported by a device into the JSON format
defined in the product model. For details about the JSON format
requirements, see Data Decoding Format Definition.

e Encode: Converts JSON data into binary data supported by a device when the
platform sends downstream data to the device. For details about the JSON
format requirements, see Data Encoding Format Definition.

The following is an example of JavaScript implemented for the current smoke
detector:

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 89

IoT Device Access
Developer Guide 3 Product Development

// Upstream message type
var MSG_TYPE_PROPERTIES_REPORT = 'properties_report'; //Reporting device properties
var MSG_TYPE_COMMAND_RSP = 'command_response'; //Returning a command response
var MSG_TYPE_PROPERTIES_SET_RSP = 'properties_set_response'; //Returning a response for property setting
var MSG_TYPE_PROPERTIES_GET_RSP = 'properties_get_response'; //Returning a response for property query
var MSG_TYPE_MESSAGE_UP = 'message_up'; //Reporting device messages
//Downstream message type
Command Delivery from the var MSG_TYPE_COMMANDS = 'commands'; //Delivering a command
var MSG_TYPE_PROPERTIES_SET = 'properties_set'; //Delivering a property setting request
varMSG_TYPE_PROPERTIES_GET='properties_get';//Delivering a property query request
var MSG_TYPE_MESSAGE_DOWN = 'messages'; //Delivering platform messages
//Mapping between topics and message types for upstream messages sent by devices
var TOPIC_REG_EXP = {
'properties_report': new RegExp('\\$oc/devices/(\\S+)/sys/properties/report’),
'properties_set_response': new RegExp('\\$oc/devices/(\\S+)/sys/properties/set/response/request_id=(\\S
+)"),
'properties_get_response': new RegExp('\\$oc/devices/(\\S+)/sys/properties/get/response/request_id=(\\S
+)"),
‘command_response': new RegExp("\\$oc/devices/(\\S+)/sys/commands/response/request_id=(\\S+)"),
'message_up': new RegExp('\\$oc/devices/(\\S+)/sys/messages/up')
5
/*
Example: When a smoke detector reports properties and returns a command response, it uses binary code
streams. The JavaScript script will decodes the binary code streams into JSON data that complies with the
product model definition.
Input parameters:
payload:[0x00, 0x50, 0x00, 0x5a]
topic:$oc/devices/cf40f3c4-7152-41c6-a201-a2333122054a/sys/properties/report
Output parameters:
{"msg_type":"properties_report","services":[{"service_id":"smokerdector","properties":{"level":
80,"temperature":90}}]}
Input parameters:
payload: [0x02, 0x00, 0x00, 0x01]
topic: $oc/devices/cf40f3c4-7152-41c6-a201-a2333122054a/sys/commands/response/
request_id=bf40f0c4-4022-41c6-a201-c5133122054a
Output parameters:
{"msg_type":"command_response","result_code":
0,"command_name":"SET_ALARM","service_id":"smokerdector","paras":{"value":"1"}}
function decode(payload, topic) {
var jsonObj = {};
var msgType =",
//If the topic parameter exists, parse the message type based on the topic parameter.
if (null != topic) {
msgType = topicParse(topic);

//Perform the AND operation on the payload by using OxFF to obtain the corresponding complementary
code.
var uint8Array = new Uint8Array(payload.length);
for (var i = 0; i < payload.length; i++) {
uint8Array[i] = payload[i] & Oxff;

var dataView = new DataView(uint8Array.buffer, 0);
//Convert binary data to the format used for property reporting.
if (msgType == MSG_TYPE_PROPERTIES_REPORT) {
//Set the value of serviceld, which corresponds to smokerdector in the product model.
var serviceld = 'smokerdector’;
//Obtain the level value from the code stream.
var level = dataView.getInt16(0);
//Obtain the temperature value from the code stream.
var temperature = dataView.getInt16(2);
//Convert data to the JSON format used by property reporting.
jsonObj = {"msg_type":"properties_report","services":[{"service_id":serviceld,"properties":
{"level":level,"temperature":temperature}}1};
Jelse if (msgType == MSG_TYPE_COMMAND_RSP) { //Convert binary data to the format used by a
command response.
//Set the value of serviceld. The value corresponds to smokerdector in the product model.
var serviceld = 'smokerdector’;
var command = dataView.getInt8(0); //Obtain the command name ID from the binary code stream.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 90

loT Device Access
Developer Guide

3 Product Development

var command_name =";

if (2 ==command) {
command_name = 'SET_ALARM";

}

var result_code = dataView.getInt16(1); //Obtain the command execution result from the binary code
stream.
var value = dataView.getInt8(3); //Obtain the returned value of the command execution result from
the binary code stream.
//Convert data to the JSON format used by the command response.
jsonObj =
{"msg_type":"command_response","result_code":result_code,"command_name":command_name,"service_id":
serviceld,"paras":{"value":value}};
}
//Convert data to a character string in JSON format.
return JSON.stringify(jsonObj);
}
/*
Sample data: When a command is delivered, data in JSON format on the platform is encoded into a binary
code stream using the encode method of JavaScript.
Input parameters ->
{"msg_type":"commands","command_name":"SET_ALARM","service_id":"smokerdector","paras":{"value":
11}
Output parameters->
[0x01,0x00, 0x00, 0x01]
*/
function encode(json) {
//Convert data to a JSON object.
var jsonObj = JSON.parse(json);
//Obtain the message type.
var msgType = jsonObj.msg_type;
var payload = [J;
//Convert data in JSON format to binary data.
if (msgType == MSG_TYPE_COMMANDS) //Command delivery
{

payload = payload.concat(buffer_uint8(1)); //Identifies the command delivery.
if (jsonObj.command_name == 'SET_ALARM') {
payload = payload.concat(buffer_uint8(0)); //Indicates the command name.

var paras_value = jsonObj.paras.value;
payload = payload.concat(buffer_int16(paras_value)); //Set the command property value.
}
//Return the encoded binary data.
return payload;
}
//Parse the message type based on the topic name.
function topicParse(topic) {
for(var type in TOPIC_REG_EXP){
var pattern = TOPIC_REG_EXP[type];
if (pattern.test(topic)) {
return type;

}
return "';
}
//Convert an 8-bit unsigned integer into a byte array.
function buffer_uint8(value) {
var uint8Array = new Uint8Array(1);
var dataView = new DataView(uint8Array.buffer);
dataView.setUint8(0, value);
return [].slice.call(uint8Array);
}
//Convert a 16-bit unsigned integer into a byte array.
function buffer_int16(value) {
var uint8Array = new Uint8Array(2);
var dataView = new DataView(uint8Array.buffer);
dataView.setInt16(0, value);
return [].slice.call(uint8Array);
}

//Convert a 32-bit unsigned integer into a byte array.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 91

IoT Device Access
Developer Guide 3 Product Development

function buffer_int32(value) {
var uint8Array = new Uint8Array(4);
var dataView = new DataView(uint8Array.buffer);
dataView.setInt32(0, value);
return [].slice.call(uint8Array);

}

Step 3 Debug the script online. After the script is edited, select the simulation type and
enter the simulation data to debug the script online.

1. Use the simulation device to convert binary code streams into JSON data
when reporting property data.

- Select the topic reported by the device: $oc/devices/{device_id}/sys/
properties/report .

- Select Decode for Simulation Type, enter the following simulated device
data, and click Debug.
0050005a

- The script codec engine converts binary code streams into the JSON
format based on input parameters and the decode method in the
submitted JavaScript script, and displays the debugging result in the text
box.

simulation Type Decode ~ | topic | soc/devices/{device ic)/sys/propertiesreport - iy RS

00500052 {"meg_type""properties_feport”,"services™[{"service id""smoKerdector."properties”{"level"80, "temperature™ 9011}

- Check whether the debugging result meets the expectation. If the
debugging result does not meet the expectation, modify the code and
perform debugging again.

2. Convert a command delivered by an application into binary code streams that
can be identified by the device.

- Select Encode for Simulation Type, enter the command delivery format
to be simulated, and click Debug.

{
msg_type": "commands",
request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
command_name": "SET_ALARM",
"service_id": "smokerdector",
"paras": {
"value": "1"
}
}

- The script codec engine converts JSON data into the binary code streams
based on input parameters and the encode method in the submitted
JavaScript script, and displays the debugging result in the text box.

simulation Type Encode - Debugging Resuits

01000001

- Check whether the debugging result meets the expectation. If the
debugging result does not meet the expectation, modify the code and
perform debugging again.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 92

loT Device Access
Developer Guide

3 Product Development

Step 4

Step 5

Deploy the script. After confirming that the script can be correctly encoded and
decoded, click Deploy to submit the script to the loT platform so that the loT
platform can invoke the script when data is sent and received.

Use a physical device for online debugging. Before using the script, use a real
device to communicate with the loT platform to verify that the IoT platform can
invoke the script and parse upstream and downstream data.

--—-End

JavaScript Codec Template

The following is an example of the JavaScript codec template. Developers need to
implement the corresponding APl based on the template provided by the platform.

/**
* When a device reports data to the loT platform, the loT platform calls this API to decode the original data
of the device into JSON data that complies with the product model definition.
* The APl name and input parameters have been defined. You only need to implement the API.
* @param byte[] payload Original code stream reported by the device
* @param string topic ~ Topic to which an MQTT device reports data. This parameter is not carried when a
non-MQTT device reports data.
* @return string json JSON character string that complies with the product model definition
function decode(payload, topic) {
var jsonObj = {};
return JSON.stringify(jsonObj);
}

*k

* When the loT platform delivers a command, it calls this API to encode the JSON data defined in the
product model into the original code stream of the device.
* The APl name and input parameter format have been defined. You only need to implement the API.
* @param string json JSON character string that complies with the product model definition
* @return byte[] payload Original code stream after being encoded
i
function encode(json) {
var payload = [];
return payload;
}

JavaScript Codec Example for MQTT Device Access

The following is an example of JavaScript codec of MQTT devices. You can convert
the binary format to the JSON format in the corresponding scenario based on the
example.

// Upstream message type

var MSG_TYPE_PROPERTIES_REPORT = 'properties_report'; //Reporting device properties

The var MSG_TYPE_COMMAND_RSP = 'command_response'; //Returning a command response

The var MSG_TYPE_PROPERTIES_SET_RSP = 'properties_set_response'; //Returning a property setting
response

var MSG_TYPE_PROPERTIES_GET_RSP = 'properties_get_response'; //Returning a property query response
var MSG_TYPE_MESSAGE_UP = 'message_up'; //Reporting message devices

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 93

IoT Device Access
Developer Guide 3 Product Development

//Downstream message type
var MSG_TYPE_COMMANDS = 'commands'; //Delivering a command
var MSG_TYPE_PROPERTIES_SET = 'properties_set'; //Delivering a property setting request
varMSG_TYPE_PROPERTIES_GET='properties_get';//Delivering a property query request
var MSG_TYPE_MESSAGE_DOWN = 'messages'; //Delivering platform messages
//Mapping between topics and message types for upstream messages sent by devices
var TOPIC_REG_EXP = {
'properties_report': new RegExp('\\$oc/devices/(\\S+)/sys/properties/report'),
'properties_set_response': new RegExp('\\$oc/devices/(\\S+)/sys/properties/set/response/request_id=(\\S
+)",
'properties_get_response': new RegExp('\\$oc/devices/(\\S+)/sys/properties/get/response/request_id=(\\S
+)",
‘command_response': new RegExp("\\$oc/devices/(\\S+)/sys/commands/response/request_id=(\\S+)"),
'message_up": new RegExp('\\$oc/devices/(\\S+)/sys/messages/up')
I
/*
Example: When a smoke detector reports properties and returns a command response, it uses binary code
streams. The JavaScript script will decode the binary code streams into JSON data that complies with the
product model definition.
Input parameters:
payload:[0x00, 0x50, 0x00, 0x5a]
topic:$oc/devices/cf40f3c4-7152-41c6-a201-a2333122054a/sys/properties/report
Output parameters:
{"msg_type":"properties_report","services":[{"service_id":"smokerdector","properties":{"level":
80,"temperature":90}}1}
Input parameters:
payload: [0x02, 0x00, 0x00, 0x01]
topic: $oc/devices/cf40f3c4-7152-41c6-a201-a2333122054a/sys/commands/response/
request_id=bf40f0c4-4022-41c6-a201-c5133122054a
Output parameters:
{"msg_type":"command_response","result_code":
0,"command_name":"SET_ALARM","service_id":"smokerdector","paras":{"value":"1"}}
function decode(payload, topic) {
var jsonObj = {};
var msgType =",
//If the topic parameter exists, parse the message type based on the topic parameter.
if (null != topic) {
msgType = topicParse(topic);

//Perform the AND operation on the payload by using OxFF to obtain the corresponding complementary
code.
var uint8Array = new Uint8Array(payload.length);
for (var i = 0; i < payload.length; i++) {
uint8Array[i] = payload[i] & Oxff;

var dataView = new DataView(uint8Array.buffer, 0);
//Convert binary data to the format used for property reporting.
if (msgType == MSG_TYPE_PROPERTIES_REPORT) {
//Set the value of serviceld, which corresponds to smokerdector in the product model.
var serviceld = 'smokerdector’;
//Obtain the level value from the code stream.
var level = dataView.getInt16(0);
//Obtain the temperature value from the code stream.
var temperature = dataView.getInt16(2);
//Convert the code stream to the JSON format used for property reporting.
jsonObj = {
"msg_type": "properties_report",
"services": [{"service_id": serviceld, "properties": {"level": level, "temperature": temperature}}]
5
} else if (msgType == MSG_TYPE_COMMAND_RSP) { //Convert binary data to the format used by a
command response.
//Set the value of serviceld, which corresponds to smokerdector in the product model.
var serviceld = 'smokerdector’;
var command = dataView.getInt8(0); //Obtain the command name ID from the binary code stream.
var command_name ="
if (2 == command) {
command_name = 'SET_ALARM";
}

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 94

IoT Device Access
Developer Guide 3 Product Development

var result_code = dataView.getInt16(1); //Obtain the command execution result from the binary code
stream.
var value = dataView.getInt8(3); //Obtain the returned value of the command execution result from
the binary code stream.
//Convert data to the JSON format used by the command response.
jsonObj = {
"msg_type": "command_response",
"result_code": result_code,
"command_name": command_name,
"service_id": serviceld,
"paras": {"value": value}
I
} else if (msgType == MSG_TYPE_PROPERTIES_SET_RSP) {
//Convert data to the JSON format used by the property setting response.
//jsonObj = {"msg_type":"properties_set_response","result_code":0,"result_desc":"success"};
} else if (msgType == MSG_TYPE_PROPERTIES_GET_RSP) {
//Convert data to the JSON format used by the property query response.
//jsonObj = {"msg_type":"properties_get_response","services":[{"service_id":"analog","properties":
{"PhV_phsA":"1","PhV_phsB":"2"}}]};
} else if (msgType == MSG_TYPE_MESSAGE_UP) {
//Convert the code stream to the JSON format used by message reporting.
//jsonObj = {"msg_type":"message_up","content":"hello"};
}
//Convert data to a character string in JSON format.
return JSON.stringify(jsonObj);
}
/*
Sample data: When a command is delivered, JSON dataon the IoT platform is encoded into binary code
streams using the encode method of JavaScript.
Input parameters ->
{"msg_type":"commands","command_name":"SET_ALARM","service_id":"smokerdector","paras":{"value":
11}
Output parameters->
[0x01,0x00, 0x00, 0x01]
*/
function encode(json) {
//Convert data to a JSON object.
var jsonObj = JSON.parse(json);
//Obtain the message type.
var msgType = jsonObj.msg_type;
var payload = [J;
//Convert data in JSON format to binary data.
if (msgType == MSG_TYPE_COMMANDS) {//Command delivery
//Command delivery format example:
{"msg_type":"commands","command_name":"SET_ALARM","service_id":"smokerdector","paras":{"value":1}}
//Convert the format used by command delivery to a binary code stream.
payload = payload.concat(buffer_uint8(1)); //Identifies the command delivery.
if (jsonObj.command_name == 'SET_ALARM') {
payload = payload.concat(buffer_uint8(0)); //Command name.

var paras_value = jsonObj.paras.value;
payload = payload.concat(buffer_int16(paras_value)); //Set the command property value.
} else if (msgType == MSG_TYPE_PROPERTIES_SET) {
//Property setting format example: {"msg_type":"properties_set","services":
[{"service_id":"Temperature","properties":{"value":57}}]}
//Convert the JSON format to the corresponding binary code streams if the property setting scenario is
involved.
} else if (msgType == MSG_TYPE_PROPERTIES_GET) {
//Property query format example: {"msg_type":"properties_get","service_id":"Temperature"}
//Convert the JSON format to the corresponding binary code streams if the property query scenario is
involved.
} else if (msgType == MSG_TYPE_MESSAGE_DOWN) {
//Message delivery format example: {"msg_type":"messages","content":"hello"}
//Convert the JSON format to the corresponding binary code streams if the message delivery scenario
is involved.
}
//Return the encoded binary data.
return payload;

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 95

IoT Device Access
Developer Guide 3 Product Development

//Parse the message type based on the topic name.
function topicParse(topic) {
for (var type in TOPIC_REG_EXP) {
var pattern = TOPIC_REG_EXP[type];
if (pattern.test(topic)) {
return type;

}
return '';
}
//Convert an 8-bit unsigned integer into a byte array.
function buffer_uint8(value) {
var uint8Array = new Uint8Array(1);
var dataView = new DataView(uint8Array.buffer);
dataView.setUint8(0, value);
return [].slice.call(uint8Array);

}

//Convert a 16-bit unsigned integer into a byte array.
function buffer_int16(value) {
var uint8Array = new Uint8Array(2);
var dataView = new DataView(uint8Array.buffer);
dataView.setInt16(0, value);
return [].slice.call(uint8Array);
}
//Convert a 32-bit unsigned integer into a byte array.
function buffer_int32(value) {
var uint8Array = new Uint8Array(4);
var dataView = new DataView(uint8Array.buffer);
dataView.setInt32(0, value);
return [].slice.call(uint8Array);

}

JavaScript Codec Example for NB-loT Device Access

The following is an example of the JavaScript codec for NB-loT devices. Developers
can develop codecs for data reporting and command delivery of NB-loT devices
based on the example.

// Upstream message type

var MSG_TYPE_PROPERTIES_REPORT = 'properties_report'; //Reporting device properties

var MSG_TYPE_COMMAND_RSP = 'command_response'; //Returning a command response
//Downstream message type

var MSG_TYPE_COMMANDS = 'commands'; //Delivering a command

var MSG_TYPE_PROPERTIES_REPORT_REPLY = 'properties_report_reply'; //Response for property reporting
//Message type list

var MSG_TYPE_LIST = {

0: MSG_TYPE_PROPERTIES_REPORT, //In the code stream, 0 indicates that the device property is
reported.

1: MSG_TYPE_PROPERTIES_REPORT_REPLY, //In the code stream, 1 indicates the response for property
reporting.

2: MSG_TYPE_COMMANDS, //In the code stream, 2 indicates the command delivery from the
platform.

3: MSG_TYPE_COMMAND_RSP //In the code stream, 3 indicates the command response from
the device.
b5
/*

Example: When a smoke detector reports properties and returns a command response, it uses binary code
streams. The JavaScript script will decode the binary code streams into JSON data that complies with the
product model definition.
Input parameters:
payload:[0x00, 0x00, 0x50, 0x00, 0x5a]
Output parameters:
{"msg_type":"properties_report","services":[{"service_id":"smokerdector","properties":{"level":
80,"temperature":90}}1}
Input parameters:
payload: [0x03, 0x01, 0x00, 0x00, 0x01]
Output parameters:

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 96

loT Device Access
Developer Guide 3 Product Development

{"msg_type":"command_response","request_id":1,"result_code":0,"paras":{"value":"1"}}
function decode(payload, topic) {
var jsonObj = {};
//Perform the AND operation on the payload by using OxFF to obtain the corresponding complementary
code.
var uint8Array = new Uint8Array(payload.length);
for (vari = 0; i < payload.length; i++) {
uint8Array[i] = payload[i] & Oxff;

var dataView = new DataView(uint8Array.buffer, 0);
//Obtain the message type from the first byte of the message code stream.
var messageld = dataView.getInt8(0);
//Convert binary data to the format used for property reporting.
if (MSG_TYPE_LIST[messageld] == MSG_TYPE_PROPERTIES_REPORT) {
//Set the value of serviceld, which corresponds to smokerdector in the product model.
var serviceld = 'smokerdector’;
//Obtain the level value from the code stream.
var level = dataView.getInt16(1);
//Obtain the temperature value from the code stream.
var temperature = dataView.getInt16(3);
//Convert data to the JSON format used by property reporting.
jsonObj = {"msg_type":"properties_report","services":[{"service_id":serviceld,"properties":
{"level":level,"temperature":temperature}}1};
Jelse if (MSG_TYPE_LIST[messageld] == MSG_TYPE_COMMAND_RSP) { //Convert binary data to the
format used by the command response.
var requestld = dataView.getInt8(1);
var result_code = dataView.getInt16(2); //Obtain the command execution result from the binary code
stream.
var value = dataView.getInt8(4); //Obtain the returned value of the command execution result from
the binary code stream.
//Convert data to the JSON format used by the command response.
jsonObj = {"msg_type":"command_response","request_id":requestld,"result_code":result_code,"paras":
{"value":value}};
}
//Convert data to a character string in JSON format.
return JSON.stringify(jsonObj);
}
/*
Sample data: When a command is delivered, data in JSON format on the platform is encoded into a binary
code stream using the encode method of JavaScript.
Input parameters ->
{"msg_type":"commands","request_id":
1,"command_name":"SET_ALARM","service_id":"smokerdector","paras":{"value":1}}
Output parameters->
[0x02, 0x00, 0x00, 0x00, 0x01]
Sample data: When a response is returned for property reporting, data in JSON format on the platform is
encoded into a binary code stream using the encode method of JavaScript.
Input parameters ->
{"msg_type":"properties_report_reply","request":"000050005a","result_code":0}
Output parameters->
[0x01, 0x00]
*/
function encode(json) {
//Convert data to a JSON object.
var jsonObj = JSON.parse(json);
//Obtain the message type.
var msgType = jsonObj.msg_type;
var payload = [J;
//Convert data in JSON format to binary data.
if (msgType == MSG_TYPE_COMMANDS) { //Command delivery
payload = payload.concat(buffer_uint8(2)); //Identifies the command delivery.
payload = payload.concat(buffer_uint8(jsonObj.request_id)); //Command 1D
if (jsonObj.command_name == 'SET_ALARM') {
payload = payload.concat(buffer_uint8(0)); //Command name.

var paras_value = jsonObj.paras.value;
payload = payload.concat(buffer_int16(paras_value)); //Set the command property value.
} else if (msgType == MSG_TYPE_PROPERTIES_REPORT_REPLY) { //Response for device property reporting

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 97

IoT Device Access
Developer Guide 3 Product Development

payload = payload.concat(buffer_uint8(1)); //Response to property reporting
if (0 == jsonObj.result_code) {
payload = payload.concat(buffer_uint8(0)); //The property reporting message is successfully
processed.
}

}
//Return the encoded binary data.

return payload;

//Convert an 8-bit unsigned integer into a byte array.
function buffer_uint8(value) {
var uint8Array = new Uint8Array(1);
var dataView = new DataView(uint8Array.buffer);
dataView.setUint8(0, value);
return [].slice.call(uint8Array);
}
//Convert a 16-bit unsigned integer into a byte array.
function buffer_int16(value) {
var uint8Array = new Uint8Array(2);
var dataView = new DataView(uint8Array.buffer);
dataView.setInt16(0, value);
return [].slice.call(uint8Array);
}
//Convert a 32-bit unsigned integer into a byte array.
function buffer_int32(value) {
var uint8Array = new Uint8Array(4);
var dataView = new DataView(uint8Array.buffer);
dataView.setInt32(0, value);
return [].slice.call(uint8Array);

}

Requirements on the JavaScript Codec Format
Data Decoding Format Definition

In the data parsing scenario, when the platform receives data from a device, it
sends the binary code stream in the payload to the JavaScript script by using the
encode method. The decode method of the script needs to decode the data to the
JSON format defined in the product model of the platform. The platform has the
following requirements on the parsed JSON data:

e Device Reporting Properties

{
"msg_type": "properties_report",
"services": [{
"service_id": "Battery",
"properties": {
"batteryLevel": 57
%
"event_time": "20151212T1212122"
b
}
Field Manda | Type Description
tory or
Option
al
msg_typ | Manda | String Indicates the message type. The value is
e tory fixed at properties_report.
services | Manda | List<Service | Indicates a list of device services. For
tory Property> details, see ServiceProperty structure.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 98

loT Device Access
Developer Guide

3 Product Development

ServiceProperty structure

Field Mand | Type Description
atory
or
Optio
nal
service_i | Manda | String Identifies a service of the device.
d tory
properti | Manda | Object Indicates service properties, which are
es tory defined in the product model associated
with the device.
event_ti | Option | String Indicates the UTC time when the device
me al collects data. The format is
yyyyMMddTHHmMmssZ, for example,
20161219T114920Z.
If this parameter is not carried in the
reported data or is in incorrect format,
the time when the platform receives the
data is used.

e Response for device property setting

{

|||||

"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",

"result_code": 0,
result_desc": "success"
}
Field Mand | Type Description
atory
or
Optio
nal
msg_type | Mand | String Indicates the message type. The value is
atory fixed at properties_set_response.
properties_set_response
request_id | Optio | String Uniquely identifies a request. If this
nal parameter is carried in a message
received by a device, the parameter
value needs to be carried in the
response message sent to the platform.
If the decoded message does not
contain this field, the value of
request_id in the topic is used.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 99

loT Device Access
Developer Guide

3 Product Development

result_cod | Optio | Integer Indicates the command execution result.

e nal 0 indicates an execution success,
whereas other values indicate an
execution failure. If this parameter is
not carried, the execution is considered
to be successful.

result_des | Optio | String Indicates the description of the response

C nal to the request for setting properties.

e Response for device property query

{

"msg_type": "properties_get_response",
"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547¢c2",

"services": [

{

"service_id": "analog",
"properties": {

"PhV_phsA™: "1",
"PhV_phsB": "2"
%
"event_time": "20190606T121212Z"
}
]
}
Field Manda | Type Description
tory or
Option
al
msg_typ | Manda | String The value is fixed at
e tory properties_get_response.
request_i | Option | String Uniquely identifies a request. If this
d al parameter is carried in a message
received by a device, the parameter
value needs to be carried in the
response message sent to the platform.
If the decoded message does not
contain this field, the value of
request_id in the topic is used.
services | Manda | List<Service | Indicates a list of device services. For
tory Property> details, see ServiceProperty structure.

ServiceProperty structure

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 100

loT Device Access
Developer Guide

3 Product Development

Field Mand | Type Description
atory
or
Optio
nal
service_i | Manda | String Identifies a service of the device.
d tory
properti | Manda | Object Indicates service properties, which are
es tory defined in the product model associated
with the device.
event_ti | Option | String Indicates the UTC time when the device

me

al

collects data. The format is
yyyyMMddTHHmMmssZ, for example,
20161219T114920Z.

If this parameter is not carried in the
reported data or is in incorrect format,
the time when the platform receives the
data is used.

Response for the platform to deliver a command

{

"msg_type": "command_response",
"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
"result_code": 0,
"command_name": "ON_OFF",
"service_id": "WaterMeter",

"paras": {
"value": "1"
}
}

Field Mand | Type Description
atory
or
Optio
nal

msg_type | Mand | String The value is fixed at
atory command_response.

request_id | Optio | String Uniquely identifies a request. If this

nal

parameter is carried in a message
received by a device, the parameter
value needs to be carried in the
response message sent to the platform.
If the decoded message does not
contain this field, the value of
request_id in the topic is used.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

101

loT Device Access
Developer Guide

3 Product Development

Data Encoding Format Definition

result_cod | Optio | Integer Indicates the command execution result.

e nal 0 indicates an execution success,
whereas other values indicate an
execution failure. If this parameter is
not carried, the execution is considered
to be successful.

response_ | Optio | String Indicates the response name, which is

name nal defined in the product model associated
with the device.

paras Optio | Object Indicates the response parameters,

nal which are defined in the product model

associated with the device.

Device message reporting

{

"msg_type": "message_up",
"content": "hello"
}

Field Mand | Type Description
atory
or
Optio
nal

msg_type | Mand | String The value is fixed at message_up.
atory

content Optio | String Message content.
nal

In the data parsing scenario, when the loT platform delivers a command, it sends
the data in JSON format defined by the product model to the JavaScript using the
encode method. The encode method needs to encode the data in JSON format

into binary code streams that can be identified by the device. During encoding, the
JSON format transferred from the platform to the script is as follows:

Command delivery

{

"msg_type": "commands",

"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
"command_name": "ON_OFF",

"service_id": "WaterMeter",

"paras": {
"value": 1
}
}

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

102

loT Device Access
Developer Guide

3 Product Development

Field Mand | Type Description
atory
or
Optio
nal
msg_type | Manda | String The value is fixed at commands.
tory
request_id | Manda | String Uniquely identifies a request. The ID is
tory delivered to the device through a
topic.
service_id | Option | String Identifies a service of the device.
al
command | Option | String Indicates the device command name,
_hame al which is defined in the product model
associated with the device.
paras Option | Object Indicates the command execution
al parameters, which are defined in the
product model associated with the
device.

e Setting Device Properties

{

"msg_type": "properties_set",
"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547¢c2",
"services": [{
"service_id": "Temperature",
"properties": {

}

b
{

"value": 57

"service_id": "Battery",
"properties": {

"level": 80
}
}
]
}
Field Mand | Type Description
atory
or
Optio
nal
msg_type | Mand | String The value is fixed at properties_set.
atory
request_i | Mand | String Uniquely identifies a request. If this
d atory parameter is carried in a message
received by a device, the parameter
value needs to be carried in the response
message sent to the platform.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

103

IoT Device Access
Developer Guide 3 Product Development

services Mand | List<Service | Indicates a list of device service data.
atory | Property>

ServiceProperty structure

Field Mand | Type Description
atory
or
Optio
nal
service_i | Manda | String Identifies a service of the device.
d tory
properti | Manda | Object Service properties, which are defined in
es tory the product model.

e Querying device properties

"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547¢c2",
"service_id": "Temperature"

}
Field Manda | Type Description
tory or
Option
al
msg_typ | Manda | String The value is fixed at properties_get.
e tory
request_i | Manda | String Uniquely identifies a request. The ID is
d tory delivered to the device through a topic.
service_i | Option | String Identifies a service of the device.
d al

e Response for property reporting (response to property reporting during NB-
loT device access)
{

"msg_type": "properties_report_reply",

"result_code": 0

}

Field Mand | Type Description
atory
or
Optio
nal

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 104

loT Device Access
Developer Guide

3 Product Development

msg_type | Mand | String The value is fixed at
atory properties_report_reply.

request Optio | byte[] Binary code stream for property
nal reporting.

result_cod | Optio | Integer Execution result of property reporting.

e nal

has_more | Optio | Boolean Whether a cache command exists.
nal

e Message delivery
{
"msg_type": "messages"”,
"content": "hello"
}

Field Mand | Type Description
atory
or
Optio
nal

msg_type | Mand | String The value is fixed at messages.
atory

content Optio | String Content of command delivery.
nal

3.4.4 Offline Codec Development

A codec can convert binary messages into JSON messages. The JSON format is
defined in the profile. Therefore, before developing a codec, you must define the
product model of the device.

Codec demo projects are provided to improve the integration efficiency of offline
codec development. You are advised to perform secondary development based on

a demo project.

Note: Offline codec development is complex and time-consuming. Therefore,
graphical development is recommended.

Preparing the Development Environment

e Download the Eclipse installation package from the official website and
decompress it to a local directory. You can use the software without

installation.

e Download the Maven plug-in package (in .zip format) from the official
website and decompress it to a local directory.

e Install the JDK and configure the Java development environment.

Maven configuration involves setting environment variables on Windows and
setting Maven on Eclipse. For details on setting environment variables on

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 105

https://support.huaweicloud.com/en-us/devg-iothub/iot_02_1004.html#section1
http://www.eclipse.org/downloads
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi

IoT Device Access
Developer Guide 3 Product Development

Windows, see other online resources. Maven can be configured on Eclipse as
follows:

Step 1 Start Eclipse and choose Windows > Preferences. In the Preferences window,
choose Maven > Installations. On the right pane, click Add.

& Preferences ERECR
type filter text Installations - v ow
General
Ant .
Data Management Mame Deetails v Add...
» Help el 1/1.5:0.20140605- o

Install/Update NORKSPACE % MOT AVAILABLE [3.0.L"
lava -

Select the installation used to launch Maven:

Java EE -
Java Persistence
JavaScript -

4 Maven ___.-""

", Archetypes

m
(1

Discovery -
Erﬁ:rs,-"l.?.l‘amin 4 -’_‘f,.-"
Installations |~
“Tava EE Integration
Lifecycle Mapping
Templates
User Interface
User Settings
hylyn |
Plug-in Development Mote: Embedded runtime is always used for dependency
Remote Systems resclution

Run/Debug -

o m ¥

| Restore Defaults| | Apply

@ | ok || Cancel

Step 2 Select the path where the Maven plug-in package is stored and click Finish to
import the Maven plug-in.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 106

loT Device Access
Developer Guide 3 Product Development

Specify attributes for a Maven installation

Installation type: @ External = Workspace
. Installation home: D:‘l.temp\upnd're-mwen-3,5.0*bin\.apache-mm-3'- E [fm ¥ i

Installation name: apache-maven-3.5.0

Additional extension libraries:

@ | finish || cancel |

Step 3 Select the imported Maven plug-in and click OK.

type fiter tet Installations S

b - “ | Select the installation used to launch Maven:

© Data Management | Mame Dretails Add.. i
» Help ._!E EMBEDDED 3.2.4/1,5020040605-2032 |1
] '[m"j'l.!pdm 1 L_ WORKSPACE i NOT AVAILABLE [3.00 5
& lava apache-maven-3.50 Detemplapache-maven-3.5.0 Bemove
& Java EE | g
o Java Persistence
& JavaSeript - |
& Maven
Archetypes
Dizcowvery
Ervars/Warnings
Installations
Java EE Integration
Lifecycle Mlp:u'ngi
Templates m
User Interface
B Mﬂ':" o L=l L iy d k
» Phug-in Development Mote: Embedded runtime is af used for dependency
o Rermote Systems resolution

oK | \[Restore Refouts| [apply |

--—-End

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 107

loT Device Access

Developer Guide 3 Product Development

Importing the Demo Project of the Codec

Step 1 Download the demo project, obtain the codecDemo.zip file from the source_code
folder, and decompress the file to a local directory.

B codecDemo.zip 2017/11/17 %53

Step 2 Open Eclipse, right-click the blank area in Project Explorer on the left of Eclipse,
and choose Import > Import....

B lava EE - Eelipse
File Edit MNavgate Search Project Run Window Help
3= - Pl S B e Bl SR S 2

0 Progect Explorer

Mew ¥
Show In Alt#Shift+ W ¢
] i
™ Paste CerlaW
| [mpqr':] - vl App CBent JAR file
ba Ewort. L AR Fle
Refresh e f5 | EBIARRe
= B, Jova EE Utility lar
&, RAR file
L WAR Be
e
2 [impert.|

Step 3 Expand Maven, select Existing Maven Projects, and click Next.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 108

loT Device Access
Developer Guide

3 Product Development

-

@ Impaort
Select
Import Exrcting Maven Projects

Select an import source:

type filter text

= e
M

(=]

» B CWS
» = EB
v B Git
o [Install
v = Java EE
4 = Maven
L1 Check cut Maven Projects fram SCM
| &5 Existing Maven Projects |
i), Install or deploy an artifact to 8 Maven repository
L Materialize Maven Projects from SCM
b = Plug-in Development
4 % Remote Systems
LI T

|

=

Step 4 Click Browse, select the codecDemo folder obtained in step 1, select /pom.xml,
and click Finish.

& .I'Pﬂm.urn| cam.thid. partyih aberh ster-Huswel- NBEloTDevoe: LD bundls
f
|| Add project{s) to warking set
Waterhbater-Huswei-NBIoTDevce
¥ idyanced
(7 <fack | Best - Fish || Camenl

--—-End

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

109

IoT Device Access
Developer Guide 3 Product Development

Implementation Sample Interpretation

The following figure shows the structure of the imported codec demo project.

4 "= WaterMeter-Huawei-NBIoTDevice
4 (B srcfmainfjava

4 B comHuaweiNBloTDevice.WaterMeter Codec code

> 14 ByteBufUtilsjava implementation
- 1] CmdProcess.java

+ [J] ProtocolAdapterlmpljava

+ 1J] ReportProcess,java
[J] Utiltyjava

4 (B src/mainfresources

a = OSGI-INF

¥| CodecProvideHandler.xml

Service configuration

4 (B srojtest/java
4 ' comHuawei.NBloTDevice.WaterMeter

iJ] ProtocolServicelmplTestjava Unit test cases
B\ JRE System Library [JavasE- L&)

- ®, Maven Dependencies

4 (= lib

com.huawei.mZm.cig.tup-1.3.1jar Codec interface package
Src

L'

This project is a Maven project. You can modify the following content based on
this sample project to obtain the required codec.

Step 1 Modify the configuration files of the Maven project.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupld>com.thrid.party</groupld>

<l-- Change it to the name of your codec. The naming rule is as follows: device type-manufacturer ID,
for example: WaterMeter-Huawei.-->

<artifactld>WaterMeter-Huawei</artifactld>

<version>1.0.0</version>

<l-- Check that the value is bundle. The value cannot be jar. -->

<packaging>bundle</packaging>

<!-- Codec interface provided by Huawei, which must be introduced. -->
<!-- Replace systemPath with your local \codecDemo\lib\com.huawei.m2m.cig.tup-1.3.1.jar -->
<dependency>

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 110

IoT Device Access
Developer Guide 3 Product Development

<groupld>com.huawei</groupld>
<artifactld>protocal-jar</artifactld>
<version>1.3.1</version>
<scope>system</scope>
<systemPath>${basedir}/lib/com.huawei.m2m.cig.tup-1.3.1.jar</systemPath>
</dependency>
</dependencies>
<build>
<plugins>
<!-- OSGi packaging configuration -->
<plugin>
<configuration>
<instructions>
<!l-- Change it to the name of your codec. The naming rule is as follows: device type-
manufacturer ID, for example: WaterMeter-Huawei. -->
<Bundle-SymbolicName>WaterMeter-Huawei</Bundle-SymbolicName>
</instructions>
</configuration>
</plugin>
</plugins>
</build>
</project>

Step 2 In the ProtocolAdapterimpl.java file, change the values of MANU_FACTURERID.

private static final Logger logger = LoggerFactory.getLogger(ProtocolAdapterimpl.class);
//Manufacturer name
private static final String MANU_FACTURERID = "Huawei";

Step 3 Modify the code in the CmdProcess.java file so that the codec can encode
delivered commands and responses to reported data.
package com.Huawei.NBloTDevice.WaterMeter;

import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.node.ObjectNode;

public class CmdProcess {

//private String identifier = "123";

private String msgType = "deviceReq";
private String serviceld = "Brightness";
private String cmd = "SET_DEVICE_LEVEL";
private int hasMore = 0;

private int errcode = 0;

private int mid = 0;

private JsonNode paras;

public CmdProcess() {
}

public CmdProcess(ObjectNode input) {

try {
// this.identifier = input.get("identifier").asText();
this.msgType = input.get("msgType").asText();
/*
The loT platform receives messages reported by the device and encodes the ACK message.
{
"identifier":"0",
"msgType":"cloudRsp",
"request": ***,//Stream reported by the device
"errcode":0,
"hasMore":0
}
* */
if (msgType.equals("cloudRsp")) {
//Assemble the values of fields in the ACK message.
this.errcode = input.get("errcode").asInt();

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 111

loT Device Access
Developer Guide

3 Product Development

this.hasMore = input.get("hasMore").asInt();
} else {
/*
The loT platform delivers a command to the device with parameters specified as follows:
{
"identifier":0,
"msgType":"cloudReq",
"serviceld":"WaterMeter",
"cmd":"SET_DEVICE_LEVEL",
"paras":{"value":"20"},
"hasMore":0

}
* */
//Compatibility must be considered. If the MID is not transferred, it is not encoded.
if (input.get("mid") != null) {
this.mid = input.get("mid").intValue();
}

this.cmd = input.get("cmd").asText();

this.paras = input.get("paras");

this.hasMore = input.get("hasMore").asInt();
}

} catch (Exception e) {
e.printStackTrace();
}

}

public byte[] toByte() {
try {
if (this.msgType.equals("cloudReq")) {
/*
The NA delivers a control command. In this example, there is only one command:
SET_DEVICE_LEVEL.

If there are other commands, determine them.

if (this.cmd.equals("SET_DEVICE_LEVEL")) {
int brightlevel = paras.get("value").asInt();
byte[] byteRead = new byte[5];
ByteBufUtils buf = new ByteBufUtils(byteRead);
bufwriteByte((byte) 0xAA);
bufwriteByte((byte) 0x72);
bufwriteByte((byte) brightlevel);

//Compatibility must be considered. If the MID is not transferred, it is not encoded.
if (Utilty.getinstance().isValidofMid(mid)) {

byte[] byteMid = new byte[2];

byteMid = Utilty.getInstance().int2Bytes(mid, 2);

buf.writeByte(byteMid[0]);

buf.writeByte(byteMid[1]);
}

return byteRead;
}
}

/*
After receiving the data reported by the device, the loT platform encodes the ACK message as
required and responds to the device. If null is returned, the loT platform does not need to respond.

else if (this.msgType.equals("cloudRsp")) {
byte[] ack = new byte[4];
ByteBufUtils buf = new ByteBufUtils(ack);
buf.writeByte((byte) 0xAA);
buf.writeByte((byte) 0xAA);
buf.writeByte((byte) this.errcode);
buf.writeByte((byte) this.hasMore)
return ack;

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 112

IoT Device Access
Developer Guide 3 Product Development

}
return null;
} catch (Exception e) {
// TODO: handle exception
e.printStackTrace();
return null;

}

}

Step 4 Modify the code in the ReportProcess.java file so that the codec can decode data
reported by devices and command execution results.

package com.Huawei.NBloTDevice.WaterMeter;

import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.node.ArrayNode;
import com.fasterxml.jackson.databind.node.ObjectNode;

public class ReportProcess {
//private String identifier;

private String msgType = "deviceReq";
private int hasMore = 0;

private int errcode = 0

private byte bDeviceReq = 0x00;
private byte bDeviceRsp = 0x01;

//serviceld = Brightness
private int brightness = 0;

//serviceld = Electricity

private double voltage = 0.0;
private int current = 0;

private double frequency = 0.0;
private double powerfactor = 0.0;

//serviceld = Temperature
private int temperature = 0O;

private byte noMid = 0x00;

private byte hasMid = 0x01;

private boolean isContainMid = false;
private int mid = 0;

/**
* @param binaryData: Payload of the CoAP packet sent by the device to the loT platform
Input parameters in this example: AA 72 00 00 32 08 8D 03 20 62 33 99

* byte[0]--byte[1]: AA 72 command header

* byte[2]: 00 mstType: 00 represents deviceReq, which indicates that data is reported by
the device.

* byte[3]: 00 hasMore: 0 indicates that there is no subsequent data and 1 indicates that

there is subsequent data. If the hasMore field is not contained, the value 0 is used.

* byte[4]--byte[11]: indicates service data, which is parsed as required.//If the service data is
deviceRsp, byte[4] indicates whether the MID is carried and byte[5] to byte[6] indicate the short command
ID.

* @return

public ReportProcess(byte[] binaryData) {

//The identifier parameter can be obtained based on the input parameter stream. In this example, the
default value is 123.
// identifier = "123";

/*
If the data is reported by the device, the return value is in the following format:
{

"identifier":"123",

"msgType":"deviceReq",

"hasMore":0,

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 113

loT Device Access
Developer Guide

3 Product Development

"data":[{"serviceld":"Brightness",
"serviceData":{"brightness":50},

{

"serviceld":"Electricity",

"serviceData":{"voltage":218.9,"current":800,"frequency":50.1,"powerfactor":0.98},

{
"serviceld":"Temperature",
"serviceData":{"temperature":25},
]
}
*/
if (binaryData[2] == bDeviceReq) {
msgType = "deviceReq";
hasMore = binaryData[3];

//serviceld = Brightness
brightness = binaryData[4];

//serviceld = Electricity

voltage = (double) (((binaryData[5] << 8) + (binaryData[6] & OxFF)) * 0.1f);
current = (binaryData[7] << 8) + binaryData[8];

powerfactor = (double) (binaryData[9] * 0.01);

frequency = (double) binaryData[10] * 0.1f + 45;

//serviceld = Temperature

temperature = (int) binaryData[11] & OxFF - 128;
}
/*

If the data is a response sent by the device to a command of the loT platform, the return value is in

the following format:
{
"identifier":"123",
"msgType":"deviceRsp",
"errcode":0,
"body" :{****} Note that the body is a JSON structure.
}
*/
else if (binaryData[2] == bDeviceRsp) {
msgType = "deviceRsp";
errcode = binaryData[3];
//Compatibility must be considered. If the MID is not transferred, it is not encoded.
if (binaryData[4] == hasMid) {
mid = Utilty.getinstance().bytes2Int(binaryData, 5, 2);
if (Utilty.getinstance().isValidofMid(mid)) {
isContainMid = true;
}

}
}else {
return;

}

}

public ObjectNode toJsonNode() {
try {
//Assemble the body.
ObjectMapper mapper = new ObjectMapper();
ObjectNode root = mapper.createObjectNode();

// root.put("identifier", this.identifier);
root.put("msgType", this.msgType);

//Assemble the message body based on the msgType field.
if (this.msgType.equals("deviceReq")) {
root.put("hasMore", this.hasMore);
ArrayNode arrynode = mapper.createArrayNode();

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd.

114

IoT Device Access
Developer Guide 3 Product Development

//serviceld = Brightness

ObjectNode brightNode = mapper.createObjectNode();
brightNode.put("serviceld", "Brightness");

ObjectNode brightData = mapper.createObjectNode();
brightData.put("brightness", this.brightness);
brightNode.put("serviceData", brightData);
arrynode.add(brightNode);

//serviceld = Electricity

ObjectNode electricityNode = mapper.createObjectNode();
electricityNode.put("serviceld", "Electricity");

ObjectNode electricityData = mapper.createObjectNode();
electricityData.put("voltage", this.voltage);
electricityData.put("current”, this.current);
electricityData.put("frequency"”, this.frequency);
electricityData.put("powerfactor", this.powerfactor);
electricityNode.put("serviceData", electricityData);
arrynode.add (electricityNode);

//serviceld = Temperature

ObjectNode temperatureNode = mapper.createObjectNode();
temperatureNode.put("serviceld", "Temperature");
ObjectNode temperatureData = mapper.createObjectNode();
temperatureData.put("temperature", this.temperature);
temperatureNode.put("serviceData", temperatureData);
arrynode.add(temperatureNode);

//serviceld = Connectivity

ObjectNode ConnectivityNode = mapper.createObjectNode();
ConnectivityNode.put("serviceld", "Connectivity");
ObjectNode ConnectivityData = mapper.createObjectNode();
ConnectivityData.put("signalStrength", 5);
ConnectivityData.put("linkQuality", 10);
ConnectivityData.put("cellld", 9);
ConnectivityNode.put("serviceData", ConnectivityData);
arrynode.add(ConnectivityNode);

//serviceld = Battery

ObjectNode batteryNode = mapper.createObjectNode();
batteryNode.put("serviceld", "battery");

ObjectNode batteryData = mapper.createObjectNode();
batteryData.put("batteryVoltage", 25);
batteryData.put("battervLevel", 12);
batteryNode.put("serviceData", batteryData);
arrynode.add(batteryNode);

root.put("data", arrynode);

}else {
root.put("errcode", this.errcode);
//Compatibility must be considered. If the MID is not transferred, it is not decoded.
if (isContainMid) {
root.put("mid", this.mid);//mid

//Assemble the body. The body must be an ObjectNode object.
ObjectNode body = mapper.createObjectNode();
body.put("result", 0);
root.put("body", body);
}
return root;
} catch (Exception e) {
e.printStackTrace();
return null;
}
}
}

--—-End

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 115

loT Device Access
Developer Guide

3 Product Development

Description of decode API

The input parameter binaryData over the decode API is the payload in the CoAP

message sent by a device.

o plaﬂ:on‘n

Push message
(deviceDataChanged)

Data reporting (deviceReq) @ :
|
|

cloudRsp @ Process 1

Push message (command Delivered)

Push message (command Successful/

Command

Failed)

-

-

Command (cloudReq) @

Process 2

ACK @

I
|
|
|
I
|
|
I
|

deviceRsp @& :

I

I

I

I

Upstream messages reported by the device need to be processed by the codec in
the following two scenarios (message (4) is the protocol ACK message returned
by the module and does not need to be processed by the codec):

Reported device data (message (1) in the figure)

Paramet | Type Man | Description
er dato
ry or
Opti
onal
identifier | String No Identifier of the device in the application
protocol. The loT platform obtains the
parameter over the decode API, encodes
the parameter over the encode API, and
places the parameter in a stream.
msgType | String Yes This parameter has a fixed value of
deviceReq, which indicates that the
device reports data to the loT platform.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 116

loT Device Access

Developer Guide 3 Product Development
Paramet | Type Man | Description
er dato
ry or
Opti
onal
hasMore | Int No Specifies whether the loT platform has

subsequent commands to deliver. 0: The
loT platform does not have subsequent
commands to deliver. 1: The loT platform
has subsequent commands to deliver.

Subsequent data indicates that a piece of
data reported by a device may be
reported multiple times. After the data is
reported the current time, the loT
platform determines whether there are
subsequent messages using the hasMore
field. The hasMore field is valid only in
PSM mode. When the hasMore field of
reported data is set to 1, the loT
platform does not deliver cached
commands until it receives reported data
whose hasMore field is set to 0. If the
reported data does not contain the
hasMore field, the loT platform
processes the data on the basis that the
hasMore field is set to 0.

data ArrayNode Yes Content of the data reported by the
device.

Table 3-1 Definition of ArrayNode

Parameter | Type Man | Description
dato
ry or
Opti
onal
serviceld String Yes Service ID.
serviceDat | ObjectNod | Yes Data of a service. The detailed
a e parameters are defined in the profile.
eventTime | String No Specifies the time when the device
collects data. The format is
yyyyMMddTHHmMmMSssZ,

for example, 20161219T114920Z.

Example:

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 117

loT Device Access
Developer Guide

3 Product Development

{
"identifier": "123",
msgType": "deviceReq",
"hasMore": 0,
"data": [{
"serviceld": "NBWaterMeterCommon",
"serviceData": {
meterld": "xxxx",
"dailyActivityTime": 120,
"flow": "565656",
cellid": "5656",
signalStrength": "99",
batteryVoltage": "3.5
%
"eventTime": "20160503T121540Z"
%
{
"serviceld": "waterMeter",
"serviceData": {
"internalTemperature™: 256
%
"eventTime": "20160503T121540Z"
H
}
e Device response to the command delivered by the loT platform (message (5)
in the figure)
Paramete | Type Description Mandat
r ory or
Optiona
L
identifier | String Identifier of the device in the No
application protocol. The loT platform
obtains the parameter over the decode
API, encodes the parameter over the
encode API, and places the parameter
in a stream.
msgType | String This parameter has a fixed value of Yes
deviceRsp, which indicates a response
sent by a device to the loT platform.
Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 118

loT Device Access

Developer Guide 3 Product Development
Paramete | Type Description Mandat
r ory or
Optiona
L
mid Int Specifies a 2-byte unsigned command | Yes

ID. If the device must return the
command execution result (deviceRsp),
this field is used to associate the
command execution result (deviceRsp)
with the corresponding command.

When the loT platform delivers a
command over the encode API, the loT
platform places the MID allocated by
the IoT platform into a stream and
delivers the stream to the device
together with the command. When the
device reports the command execution
result (deviceRsp), the device returns
the MID to the IoT platform. In this
way, the loT platform associates the
delivered command with the command
execution result (deviceRsp) and
updates the command delivery status
accordingly.

errcode Int Request processing result code. The loT | Yes
platform determines the command
delivery status based on this field.

The value 0 indicates success, and the
value 1 indicates failure.

body ObjectNo | Command response, whose fields are No
de defined in the profile.

Note: The body is not an array.

Example:

{
"identifier": "123",

"mid": 2016,
"errcode": 0,
"body": {
"result": 0
}
}

Description of encode API

Input parameters of the encode APl are commands or responses in JSON format
delivered by the IoT platform.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 119

loT Device Access
Developer Guide

3 Product Development

o platronn “

Push message
(deviceDataChanged)

I
Data reporting (deviceReq) @ :
I
|

cloudRsp @ Process 1

Command

Push message (command Delivered)

Push message (command Successful/ -

Failed)

Command (cloudReq) @

Process 2

ACK @
-

deviceRsp (&

The downstream messages of the IoT platform can be classified into two types:

e Response from the loT platform to the data reported by the device (message

(2) in the f

igure)

Table 3-2 Definition of input parameters of the encode API over which the
loT platform responds to data reported by a device

Paramete | Type Description Mandat
r ory or
Optiona
L
identifier | String Identifier of the device in the No
application protocol. The loT platform
obtains the parameter over the decode
API, encodes the parameter over the
encode API, and places the parameter
in a stream.
msgType | String This field has a fixed value of Yes
cloudRsp, which indicates that the loT
platform sends a response to data
reported by a device.
request byte[] Indicates the data reported by the Yes
device.
Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 120

loT Device Access
Developer Guide

3 Product Development

Paramete | Type Description Mandat

r ory or
Optiona
L

errcode int Request processing result code. The loT | Yes

platform determines the command
delivery status based on this field.

The value 0 indicates success, and the
value 1 indicates failure.

hasMore int Specifies whether the loT platform has | Yes
subsequent messages to be sent. The
value 0 indicates that the loT platform
does not have subsequent messages to
be sent. The value 1 indicates that the
loT platform has subsequent messages
to be sent.

Subsequent messages indicate that the
loT platform still needs to deliver
commands, and the hasMore field is
used to tell the device not to sleep. The
hasMore field is valid only in PSM
mode with the downstream message
indication function enabled.

Note: If msgType is set to cloudRsp and null is returned by the codec
detection tool, the codec does not define the response to the reported data
and the loT platform does not need to respond.

Example:

{
"identifier": "123",

"request": [
1,
2
1
"errcode": 0,
"hasMore": 0

}
Commands delivered by the loT platform (message (3) in the figure)

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 121

IoT Device Access
Developer Guide 3 Product Development

Table 3-3 Definition of input parameters of the encode API over which the
loT platform delivers commands

Paramete | Type Description Mandat

r ory or
Optiona
L

identifier | String Identifier of the device in the No

application protocol. The IoT platform
obtains the parameter over the decode
API, encodes the parameter over the
encode API, and places the parameter
in a stream.

msgType | String This parameter has a fixed value of Yes
cloudReq, which indicates a command
delivered by the loT platform.

serviceld String Service ID. Yes
cmd String Command name. For details, see the Yes
profile.
paras ObjectNo | Command parameters, which are Yes
de defined in the profile.
hasMore | Int Specifies whether the IoT platform has | Yes

subsequent commands to deliver. 0:
The loT platform does not have
subsequent commands to deliver. 1:
The loT platform has subsequent
commands to deliver.

Subsequent commands indicate that
the IoT platform still needs to deliver
commands, and the hasMore field is
used to tell the device not to sleep. The
hasMore field is valid only in PSM
mode with the downstream message
indication function enabled.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 122

loT Device Access
Developer Guide

3 Product Development

r

Paramete | Type

Description

Mandat
ory or
Optiona
L

mid

Int

A 2-byte unsigned command ID that is
allocated by the loT platform. (The
value ranges from 1 to 65535.)

When the loT platform delivers a
command over the encode API, the loT
platform places the MID allocated by
the loT platform into a stream and
delivers the stream to the device
together with the command. When the
device reports the command execution
result (deviceRsp), the device returns
the MID to the loT platform. In this
way, the loT platform associates the
delivered command with the command
execution result (deviceRsp) and
updates the command delivery status
accordingly.

Yes

Example:

{

"identifier": "123",

"msgType": "cloudReq",

"serviceld": "NBWaterMeterCommon",
"mid": 2016,
"cmd": "SET_TEMPERATURE_READ_PERIOD",
"paras": {
"value": 4

}I

"hasMore": 0}

}

Description of getManufacturerid API

This API is used to return the manufacturer ID in the format of a character string.
The loT platform calls this API to obtain the manufacturer ID.

Example:

@Override

public String getManufacturerld() {

return "TestUtf8Manuld";

}

Precautions on Interface Implementation

Support for Thread Security Required

The decode and encode functions must ensure thread security. Therefore, member
or static variables cannot be added to cache intermediate data.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

123

IoT Device Access
Developer Guide 3 Product Development

e Incorrect example: When multiple threads are started at the same time, the
status of thread A is set to Failed while the status of thread B is set to
Success. As a result, the status is incorrect, and the program running is

abnormal.
public class ProtocolAdapter {
private String status;

@Override
public ObjectNode decode(finalbyte[] binaryData) throws Exception {
if (binaryData == null) {
status = "Failed";
return null;

}
ObjectNode node;

status = "Success";//The thread is insecure.
return node;

}

}

e Correct example: Encoding and decoding are performed based on the input
parameters, and the encoding and decoding library does not process services.

Explanation of the mid Field

The loT platform delivers orders in sequence. However, the loT platform does not
respond to the order execution results in the same sequence as the delivered
orders. The MID is used to associate the order execution result response with the
delivered order. On the loT platform, whether the MID is implemented affects the
message flow.

e When the MID is implemented:

NA ToT
ool - ot platform

"command|d” ; xx,

"deviceld" : "xx",
“commandld” : xx,
"result” - {
"resultCode” : “SENT",
"resultDetail” : }

CoAP ACK
"deviceld" : "xx",
"commandld” : xx,
"resull”: {
"resultCode” : “DELIVERED",
"resultDetail” ; }

Updates the command execution
result to the platform database.

"deviceld" : "xx",
"commandld” : xx,
"result” - {
“resultCode” : “SUCCESSFUL",
"resultDetail” : }

"devicald" : "xx",

"commandld" : xx,

"result™ {
"resultCode": " SUCCESSFUL",
"resultDetail": {}

1T

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 124

loT Device Access
Developer Guide 3 Product Development

If the MID is implemented and the order execution result is reported
successfully:

a. The status (SUCCESSFUL/FAILED) in the order execution result is
updated to the record of the order in the loT platform database.

b. The order execution result notification sent by the loT platform to the NA
server contains commandid.

c. The query result of the NA server indicates that the status of the order is
SUCCESSFUL/FAILED.

e When the MID is not implemented:

rdeviceld" : “xx"
--;‘ﬁfm |;':: XX, NA IoT
,,,,,, platform

"deviceld" : "xx",
"command|d” : xx,
"result” - {
"resultCode™ : "SENT",
"resultDetail” : }

"davicald" ; "xx",
"command|d” : xx,

"result” - {

"resultCode” | "DELIVERED", f————
"resultDetail” : }

CoAP ACK

|
|
|
] o |
1?:::::9 { o I When the MID is not carried in the command response, the
p I IoT platform cannot determine to which command the
| response belongs. Therefore, no commandld is carried in the
|
|
|

command response notification, and the command execution

\ result is not updated into the platform database.
|

"resultCode” : “SUCCESSFUL",
"resultDetail™ ; }

The command status is still DELIVERED as
the command execution result is not updated
into the database.

"daviceld" ; "xx",
"commandld"” : xx,
"result™: {

"resultCode"; " DELIVERED",

“resultDetail": {} \
|
|

If the MID is not implemented and the order execution result is reported
successfully:

a. The status (SUCCESSFUL/FAILED) in the order execution result is not
updated to the record of the order in the IoT platform database.

b. The order execution result notification sent by the loT platform to the NA
server does not contain commandld.

c. The query result of the NA server indicates that the final status of the
order is DELIVERED.

(10 NOTE

The preceding two message flows are used to explain the function of the mid field. Some
message flows are simplified in the figures.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 125

loT Device Access
Developer Guide

3 Product Development

In scenarios where whether orders are sent to the device is of concern but the
order execution is not, the device and codec do not need to implement the mid
field.

If the mid field is not implemented, the NA server cannot obtain the order
execution result from the IoT platform. Therefore, the NA server needs to
implement the solution by itself. For example, after receiving the order execution
result response (without commandld), the NA server can do as follows:

e Match the response with the order according to the sequence in which orders
are delivered. In this way, when the loT platform delivers multiple orders to
the same device at the same time, the order execution result is matched with
the delivered order incorrectly if packet loss occurs. Therefore, it is
recommended that the NA server deliver only one order to the same device
each time. After receiving the order execution result response, the NA server
delivers the next order.

e The codec can add order-related information, such as an order code, to the
resultDetail field of the order response to help identify the order. The NA
server identifies the mapping between the order execution result response
and the delivered order according to the information in the resultDetail field.

Do Not Use DirectMemory

The DirectMemory field directly calls the OS interface to apply for memory and is
not controlled by the JVM. Improper use of the DirectMemory field may cause
insufficient memory of the OS. Therefore, the DirectMemory cannot be used in
codec plug-in code.

Example of improper use: Use UNSAFE.allocateMemory to apply for direct
memory.

if ((maybeDirectBufferConstructor instanceof Constructor))

address = UNSAFE.allocateMemory(1L);
Constructor<?> directBufferConstructor;

}

else

{
}

Codec Input and Output Examples

The following table describes the definition of a service supported by a kind of
water meter.

Service Property Property Property Type (Data Type)
Type Name Description
Battery - - -

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 126

loT Device Access
Developer Guide

3 Product Development

Service Property Property Property Type (Data Type)
Type Name Description
- batteryLevel Specifies the int
battery level in
the unit of
percent. The
value ranges from
0 to 100.
Meter - - -
- signalStrength | Indicates the int
signal strength.
- currentReading | Specifies the int
current read
value.
- dailyActivityTi Specifies the daily | string

me

activated
communication
duration.

The following shows the decode interface output for data reported by a device to

the loT platform.

}

"identifier": "12345678",
"msgType": "deviceReq",
"data": [

]

{

}

"serviceld": "Meter",
"serviceData": {

}

"currentReading": "46.3",
"signalStrength": 16,
"dailyActivityTime": 5706

"serviceld": "Battery",
"serviceData": {

}

"batteryLevel": 10

"eventTime": "20160503T7121540Z"

"eventTime": "20160503T121540Z"

The following shows the encode interface input when the IoT platform receives
data reported by the device and sends a response to the device.

{

"identifier": "123",
"msgType": "cloudRsp",
"request":[

]

1,

2

)
"errcode": 0,

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

127

loT Device Access
Developer Guide

3 Product Development

}

"hasMore": 0

The following table describes the commands supported by a kind of water meter.

Basic Category Name Command | Data Type | Enumerat
Function Parameter ed Value
WaterMete | Water - - - -
r meter
- CMD SET TEMPE | - - -
RATURE_RE
AD_PERIO
D
- - - value int -
- RSP SET_TEMPE | - - -
RATURE_RE
AD_PERIO
D_RSP
- - - result int The value
0 indicates
success.
The value
1 indicates
invalid
input. The
value 2
indicates
execution
failed.

The following shows the input parameters of the encode interface when the loT
platform sends an order to the device.

{

}

"identifier": "12345678",
"msgType": "cloudReq",

"cmd": "SET_TEMPERATURE_READ_PERIOD",

"paras": {
"value": 4
}

"hasMore": 0

After the loT platform receives a response from the device, the loT platform
invokes the decode interface for decoding. The decode interface output is as
follows:

{

"identifier": "123",
"msgType": "deviceRsp",

"errcode": 0,
"body": {

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

128

IoT Device Access
Developer Guide 3 Product Development

"result": 0
}
}

Packaging the Codec

After the codec is developed, use the Maven to pack the codec into a JAR package
and create it as a codec package.

Maven Packaging

Step 1 Open the DOS window and access the directory where the pom.xml file is located.
Step 2 Run mvn package.

Step 3 After BUILD SUCCESS is displayed in the DOS window, open the target folder in
the same directory as the pom.xml file to obtain the .jar package.

The naming rule of the .jar package is as follows: device type-manufacturer ID-
device model-version.jar, for example: WaterMeter-Huawei-NBloTDevice-
version.jar.

2 L —
com File folder 11/10/2020 11:17 AM
META-INF File folder 11/10/2020 11:17 AM
OSGI-INF File folder 11/10/2020 17:18 AM

e The com directory stores class files.

e The META-INF directory stores description files of .jar packages under the
OSGi framework, which are generated based on configurations in the
pom.xml file.

e The OSGI-INF directory stores service configuration files and is used to
register the codec as a service for the platform to call (only one .xml file can
be called).

e Other .jar packages are .jar packages referenced by codecs.

----End

Preparing a Codec Package
Step 1 Create a folder named package, which contains the preload/ sub-folder.
Step 2 Place the packaged .jar package in the preload/ folder.

.
< package
H ™
=11 preload
L WaterMeter-Huawei-1.0.0jar
package-info.json

Step 3 In the package folder, create the package-info.json file. The fields and templates
in this file are described as follows:

Note: The package-info.json file is encoded using UTF-8 without BOM. Only
English characters are supported.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 129

loT Device Access
Developer Guide 3 Product Development

Table 3-4 Description of fields in the package-info.json file

Parameter Description Mandator
y or
Optional

specVersion Specifies the version of the description file. | Yes

The value is fixed at 1.0.

fileName Specifies the name of the software package. | Yes
The value is fixed at codec-demo.

version Specifies the version number of the Yes
software package. The version of the
package.zip file must be the same as the
value of bundleVersion.

deviceType Specifies the device type, which must be the | Yes
same as that defined in the profile.

manufacturerName | Specifies the manufacturer name, which Yes
must be the same as that defined in the
profile. Otherwise, the package-info.json
file cannot be uploaded to the loT platform.

platform Specifies the platform type, which is the Yes
operating system of the loT platform on
which the codec package runs. The value is
fixed at linux.

packageType Specifies the software package type. This Yes
field is used to describe the IoT platform
module where the codec is deployed. The
value is fixed at CIGPlugin.

date Specifies the time when a packet is sent. No
The format is as follows: yyyy-MM-dd HH-
mm-ss. For example, 2017-05-06 20:48:59.

description Specifies the self-defined description about | No
the software package.

ignoreList Specifies the list of bundles to be ignored. Yes
The default value is null.

bundles Specifies the description of a bundle. Yes

Note: A bundle is a .jar package in a
compressed package. Only one bundle
needs to be described.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 130

IoT Device Access
Developer Guide 3 Product Development

Table 3-5 Description of the bundles field

Parameter Description Mandator
y or
Optional

bundleName Specifies the bundle name, which is Yes

consistent with the value of Bundle-
SymbolicName in the pom.xml file.

bundleVersion Specifies the bundle version, which must be | Yes
the same as the value of version.

priority Specifies the bundle priority. This parameter | Yes
can be set to the default value 5.

fileName Specifies the codec file name. Yes

bundleDesc Describes the bundle function. Yes

versionDesc Describes the functions and features of Yes

different versions.

Template of the package-info.json file

{
"specVersion":"1.0",
"fileName":"codec-demo",
"version":"1.0.0",
"deviceType":"WaterMeter",
"manufacturerName":"Huawei",
"description":"codec",
"platform":"linux",
"packageType":"CIGPlugin",
"date":"2017-02-06 12:16:59",
"ignorelList":[],
"bundles":[
{
"bundleName": "WaterMeter-Huawei",
"bundleVersion": "1.0.0",
"priority":5,
fileName": "WaterMeter-Huawei-1.0.0.jar",
"bundleDesc":"",
"versionDesc":""
|
}

Step 4 Select all files in the package folder and compress them into a package.zip file.
Note: The package.zip file cannot contain the package directory.

--—-End

3.4.5 Downloading and Uploading a Codec

The codec developed online can be download to a local directory. The local codec
can also be uploaded to any other loT platform.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 131

IoT Device Access
Developer Guide 3 Product Development

Downloading a Codec
Step 1 Log in to the l1oTDA console.

Step 2 In the navigation pane, choose Products. In the product list, click the name of a
product to access its details.

Step 3 Choose Codec Development > Online Develop. On the page displayed, select
More in the upper right corner and choose Download to download the codec
package.

tor / Online Develop ® Wiad B save @ Deplo

+
g
=

tevet
o | .

--—-End

Uploading a Codec

If a codec (such as a codec developed offline) is available on the local host, the
codec can be uploaded to the loT platform.

Step 1 Log in to the I0TDA console.

Step 2 In the navigation pane, choose Products. In the product list, click the name of a
product to access its details.

Step 3 On the product details page, click Codec Development, select Upload Codec,
select a local codec package, and click Upload.

Model Definition Codec Deployment Online Debugging

Codec Details

Codec Source: -- | Operated: --

Online Develop Upload Codec Edit Script

Upload Codec

=== Upload and verify a codec after you develop it based on the Java code demo and pack it offline

Offline Codec Development Guide | Offline Codec Check Items

coap_CIGPlug-in.zip o ‘ Upload e

You have added a file.

@ After a codec package is uploaded, the platform automatically signs the codec, uploads the public key, and deploy the codec.

(11 NOTE

Device Type, Model, and Manufacturer ID of the codec package must be the same as
those of the product.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 132

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

IoT Device Access
Developer Guide 3 Product Development

If the message "Offline codec uploaded successfully" is displayed, the codec has
been deployed on the loT platform.

--—-End

3.5 Online Debugging

Overview

After the product model and codec are developed, the application can receive data
reported by the device and deliver commands to the device through the loT
platform.

The 10TDA provides application and device simulators for you to commission data
reporting and command delivery before developing real applications and physical
devices. You can also use the application simulator to verify the service flow after
the physical device is developed.

Commissioning a Product by Using a Virtual Device

When both device development and application development are not completed,
you can create virtual devices and use the application simulator and device
simulator to test product models and codecs. The structure of the virtual device
testing interface is as follows:

Message Tracing

Step 1 On the product details page, click the Online Debugging tab and click Add Test
Device.

Step 2 In the Add Test Device dialog box, select Virtual device for Device Type and click
OK. The virtual device name contains Simulator. Only one virtual device can be
created for each product.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 133

loT Device Access
Developer Guide 3 Product Development

Add Test Device

Device Type Physical device Virtual device

You are requesting to register a virtual device.

Step 3 In the device list, select the new virtual device and click Debug to enter the
Online Debugging page.

Node ID Device ID Device Type Operation

1604634134333 Stadb830f5374202ce2361d2_ 1604634134333 Virtual Delete

Step 4 In Device Simulator, enter a hexadecimal code stream or JSON data (for
example, enter a hexadecimal code stream) and click Send. View the data
reporting result in Application Simulator and the processing logs of the loT
platform in Message Tracing.

Command
L Delivery
@ Application Simulator e » @9 loT Platform
pEmmmsoe=]
m Data Received =~ Commands Sent Data Reporting Fi
Data Reporting : :
Data Received: 2020/11/05 15:31:05 GMT+08:00)
i || Command Delivery
{serviceld: StreetLight, data: o
{"light_intensity™:32,"light_status":0}} N) .
(.} Device Simulator
Data Received: 2020/11/05 15:31:14 GMT+08:00
m Data Sent Commands Received
{serviceld: StreetLight, data:
{"light_intensity™:32,"light_status":0}} 2020/11/06 17:32:54 GMT+08:00
002000
Service StreetLight - Commands Received
2020/11/06 17:32:54 GMT+08:00
Command SWITCH_LIGHT - AAAAD000
SWITCH_LIGHT Hexadecimal
M 002000
Set Time
Period (s): 5 Auto-Send m

Step 5 Deliver a command in Application Simulator. View the received command (for
example, a hexadecimal code stream) in Device Simulator and the processing
logs of the loT platform in Message Tracing.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 134

loT Device Access
Developer Guide

3 Product Development

@ Application Simulator

AL | Data Receled

senvice streetlight

Command SWITCH_LIGHT

--—-End

Debugging a Product by Using a Physical Device

Data Reporting

loT Platform

Data Reporting
Command Delivery

{2) Device Simulator

AL osaset

GMT+0800

Message Tracing

2020 4.GMT.
[SENDCMD_CMDH_SEND_CMD_TO_CIG_TRIGGERED]triggered by kafka topic
10CM.DEVICEV 1 registerRoute

GMT+08

[SENDCMD_CMDH_NO_CACHE_CMD_IN_QUEUE]processed in kafka handler
10CM.DEVICEV 1 registerRoute

When the device development is complete but the application development is not,
you can add physical devices and use the application simulator to test devices,
product models, and codecs. The structure of the physical device testing interface

is as follows:

@ Application Simulator

senvice

Data Reporting

89 loT Platform

Data Reporting
! | Command Delvery

@ Physical Device

Message Tracing

Step 1 On the product details page of the smoke detector, select Online Debugging and
click Add Test Device.

Step 2 In the Add Test Device dialog box, select Physical device for Device Type, set the

parameters of the device, and click OK.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

135

loT Device Access

Developer Guide 3 Product Development
. X
Add Test Device
Device Type Physical device | Wirtual device
* Device Name streetlight

* Mode ID

Registration Mode Unencrypted Encrypted

Note: If DTLS is used for device access, set Registration Mode to Encrypted and
keep the secret properly.

(11 NOTE

The newly added device is in the inactive state. In this case, online debugging cannot be
performed. For details, see Connection Authentication. After the device is connected to
the platform, perform the debugging.

Step 3 Click Debug to access the debugging page.

Model Definition Codec Deployment Online Debugging

Device Name Node ID Device ID Device Type Operation

Physical Delete

streetlight R

Step 4 Simulate a scenario where a control command is remotely delivered. In
Application Simulator, Set Service to StreetLight, Command to SWITCH_LIGHT,
and Command Value to ON, and click Send. The street lamp is turned on.

--—-End

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 136

https://support.huaweicloud.com/en-us/qs-iothub/iot_05_0005.html#section3

loT Device Access
Developer Guide

4 Development on the Device Side

Development on the Device Side

4.1 Device Access Guide

4.2 Using loT Device SDKs for Access

4.3 Using MQTT Demos for Access

4.4 Using Huawei-Certified Modules for Access

4.1 Device Access Guide

The HUAWEI CLOUD loT platform provides multiple access modes to meet the
requirements of device fleets in different access scenarios. You can select a proper

development mode based on the device type.

LoUD 1o @ @ @
CLOUD IoT L
Digital twins Global SIM Link |oT Data Access loT Analytics Device O&M
Edge . MQTT - MQTT MQTT MQTT
gateways & N§, Data s _2
@
MQTTALWM2M [MQTTLWMZM | LWM2M over © 3 mgmt RPN analysis £z [G) S imm
over CoAP lover CoAP | CoAP Y 52 V) 22A/p
re ‘__'1_ Local O |"Devics O Device
@ Protocol 5 focR
conversiol
! f !
. [[
Devices |
| | | T
| TCP/UDP) Proprietary
126/46.'56/Ethemetpr’::§;:|5 NB-loT Modbus OPCUA BLE Zighee| LoRa RS435/232 oT oD
‘ t T3 £ =1 [@] . 5 i
| % & @15 B %0 0 il b8k
i 50K Tim Bluetooth Collesdors! Temperature and e GPS, barriers,
- ¥ Routers Rabol arms, cameras, ranss speakers Hmidiy devices Crn
Direct access Edge access Gateway Multi-protocol

access

access

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

137

loT Device Access
Developer Guide

4 Development on the Device Side

Certificated
Mmcu
development
Certificated
McuU

L
Device! o=

|
|
Q= ! development
|
Communication }
module

MQTT/LWMZM

over CoAP

) (HUAWE!
CLOUD loT,

The device uses H

uawei certified MCUs to invoke

functions to connect to the platform.

Certificated
module
development
MCU/Single-chip

~.
Device L

OpenCPU
development

MQTT/LWM2M

D)
over CoAP
‘) (HUAWE!
CLOUD lo

Certificated
module

The device uses Huawei certificated module to invoke AT
commands to connect to the platform.

&

LiteOS
development

MCU/CPU

Device +

MQTT/LWM2M Gateway
0= over CoAP development
) (HuAwEl

CLOUD loT,

Communication
module

The device uses the MCU or CPU installed with Huawei LiteOS to

connect to the platform.

MQTTILWM2M
Device = L‘()- over CoAP
— UAWEI
— CLOUD IoT,
MCU/Single-chip Communication
microcomputer module

The device integrates the SDK Tiny into the MCU
or MCU to connect to the platform.

'ﬁ MQTTLWM2M
device 1 over CoAP
[oXZ]) (Huawel
CLOUD lo

The device uses the SDK-integrated OpenCPU module to
connect to the platform.

Device

OpenCPU module

evice
SDK. MQTT/LWM2M
oo over CoAP
+ Q=) HuAWEL
odul CLOUD lo
odule or
MCuicPU network port

The gateway integrates the device SDK into the MCU/CPU to
connect to the platform.

Development | Feature Scenario Difficult
Mode y Level
Certificated The IoT Device SDK Tiny Devices need to be *
MCU has been pre-integrated quickly put into
development | into the main control unit commercial use, with
(MCU) and can call low R&D costs.
methods to connect to the | Devices are connected
platform. to the platform
directly, without using
gateways.
Certificated The loT Device SDK Tiny There are few MCU +
module has been pre-integrated resources. Devices are
development | into the module and can connected to the
invoke AT commands to platform directly,
connect to the platform. without using
gateways. For details,
see 4.4 Using
Huawei-Certified
Modules for Access.
LiteOS Devices run LiteOS that No operating system * %
development | manages MCU resources. In | is required. Devices % %
addition, LiteOS has a built- | are connected to the
in 10T Device SDK Tiny that | platform directly,
can call functions to without using
connect to the platform. gateways.
This development mode
shortens the device
development duration and
reduces the development
difficulty.
Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 138

loT Device Access
Developer Guide

4 Development on the Device Side

Development | Feature Scenario Difficult
Mode y Level
Common The loT Device SDK Tiny is | There is sufficient +
development | integrated into the MCU time for devices to put S
and calls the SDK functions | into commercial use,
to connect to the platform. | and the flash and
This type of call is more RAM resources of the
convenient than API access. | MCU meet the
conditions for
integrating the loT
Device SDK Tiny.
OpenCPU Use the MCU capability in Devices with a small +*
development | the common module, and size have high security e
compile and run device requirements and
applications on the need to be quickly put
OpenCPU. into commercial use.
Gateway The loT Device SDK is pre- | Child devices +*
development | integrated into the CPU or | connected to the %
MPU and can call functions | platform using
to connect to the platform. | gateways.

4.2 Using loT Device SDKs for Access

4.2.1 Introduction to IoT Device SDKs

You can use Huawei loT Device SDKs to quickly connect devices to the loT
platform. After being integrated with an loT Device SDK, devices that support the
TCP/IP protocol stack can directly communicate with the platform. Devices that do
not support the TCP/IP protocol stack, such as Bluetooth and Zigbee devices, need
to use a gateway integrated with the loT Device SDK to communicate with the

platform.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

139

IoT Device Access
Developer Guide 4 Development on the Device Side

Data reporting

Cornrand/Property/Message receipt

OTA upgrade

loTDA

Custom topic reporting

Generic-protocol access

1. Create a product on the IoTDA console or by calling the API Creating a
Product.

2. Register the device on the I0TDA console or by calling the API Registering a
Device.

3. Implement the functions demonstrated in the preceding figure, including
reporting messages/properties, receiving commands/properties/messages,
OTA upgrades, topic customization, and generic-protocol access (see Demo).

The platform provides two types of SDKs. The table below describes their
differences.

SDK Type Pre-integration Solution loT Protocols
Supported
loT Device Embedded devices with strong computing | MQTT
SDK and storage capabilities, such as gateways
and collectors
loT Device Devices that have strict restrictions on LwM2M over
SDK Tiny power consumption, storage, and CoAP and MQTT

computing resources, such as single-chip
microcomputer and modules

The table below describes hardware requirements for devices.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 140

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/en-us/bestpractice-iothub/iot_bp_0009.html

IoT Device Access
Developer Guide 4 Development on the Device Side

SDK RAM Flash CPU OS Type Programmi
Capaci | Memory | Frequenc ng
ty y Language

loT Device >4MB|>2MB > 200 C (Linux), Java C, Java, C#,
SDK MHZ (Linux/ and
Windows), C# Android
(Windows), and
Android

loT Device > 32 > 128 KB | > 100 No special C
SDK Tiny KB MHZ requirements

SDKs for application access

SDKs for application access:
* {Now) Support for Java, Python, and PHP
= (Later) Support for Node.js, and C#

HUAWEI CLOUD loT platform

SDKs for device access

Device SDK Tiny: suitable for devices with weak compute power Device SDK: suitable for devices with strang compute power and thin gateways

e = @

Device SDK Tiny Device SDK
© MQTT, CoAP, and retransmission mechanism * MCITT(S) and HTTPS
* LWZh standard object, object 19, and all its resources * Device hinding
©DTLS and TLS * Device login
*FOTA and SOTA * Device data reponting
= Bootstrapping, and the client, server, and factory modes = Child device addition, deletion, and modification (device status update)
* C programming language * Child device data reporting

® Command recening
® Java and C programming languages
@ (Plan) Android, Node js, Pythan, and i05

For details on the SDK usage, visit the following links:

e loT Device SDK (C)

e |oT Device SDK (Java)

e loT Device SDK (C#)

e loT Device SDK (Android)
e |oT Device SDK Tiny

4.2.2 10T Device SDK (Java)

Preparations
e Ensure that the JDK (version 1.8 or later) and Maven have been installed.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 141

https://support.huaweicloud.com/en-us/devg-iothub/iot_02_0090.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_0089.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_0091.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_9980.html

IoT Device Access
Developer Guide 4 Development on the Device Side

e Download the SDK. The project contains the following subprojects:
#% iot-bridge-demao
% | iot-device-code-generator
#% iot-device-demo
#% iot-device-sdk-java

% | iot-gateway-demao

iot-device-sdk-java: SDK code
iot-device-demo: demo code of common directly connected devices
iot-gateway-demo: demo code of gateways

iot-bridge-demo: demo code of the bridge, which demonstrates how to
bridge a TCP device to the platform

iot-device-code-generator: device code generator, which can automatically
generate device code for different product models

e Go to the SDK root directory and run the mvn install command to compile
and install the SDK.

Creating a Product

We provide a smokeDetector product model to facilitate understanding. The
smoke detector can report the smoke density, temperature, humidity, and smoke
alarms, and execute the ring alarm command. The following procedures use the
smoke detector as an example to experience functions such as message reporting
and property reporting.

Step 1 Log in to the I0TDA console to view the MQTTS device access domain name, and
save the address.

Step 2 Choose Products in the navigation pane and click Create Product in the upper
right corner.

Step 3 Set the parameters as prompted and click Create Now.

Set Basic Info

Resource The platform automatically allocates the created product to the
Space default resource space. If you want to allocate the product to
another resource space, select the resource space from the
drop-down list box. If a resource space does not exist, create it

first.
Product Customize the product name. The value can contain letters,
Name numbers, underscores (_), and hyphens (-).
Protocol Select MQTT.

Data Type Select JSON.

Manufacturer | Customize the manufacturer name. The value can contain
letters, numbers, underscores (_), and hyphens (-).

Define Product Model

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 142

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0006.html

loT Device Access

Developer Guide 4 Development on the Device Side
Product In this example, we import a product model, rather than using a
Model preset product model. For details, see Uploading a Product
Model.
Industry Select the industry to which the product model belongs.
Device Type Customize the device type.

--—-End

Uploading a Product Model

Step 1 Download the product model smokeDetector to obtain the product model file.
Step 2 Select the product created in 3 and click View to access its details.

Step 3 On the Model Definition tab page, click Import Local Profile to upload the
product model file obtained in 1.

Model Definition Codec Deployment Online Debugging

Import Local Profile

o provue moues s venned for 2 device, the platform does not parse data reported by the device. Instead, it

enne provus imoves
just forwards the data,

Custom Model Import Local Profile import from Excel import Library Model | Learn more

----End

Registering a Device

Step 1 Choose Devices > All Devices, and click Individual Register in the upper right
corner.

Step 2 Set the parameters as prompted and click OK.

Parameter Description

Resource Ensure that the device and the product created in 3 belong to

Space the same resource space.

Product Select the product created in 3.

Node ID This parameter specifies the unique physical identifier of the
device. The value can be customized and consists of letters and
numbers.

Device Name | Customize the device name.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 143

IoT Device Access
Developer Guide 4 Development on the Device Side

Parameter Description

Authenticatio | Select Secret.
n Type

Secret Customize the device secret. If this parameter is not set, the
platform automatically generates a secret.

After the device is registered, save the node ID, device ID, and secret.

--—-End

Initializing the Device

1. Enter the device ID and secret obtained in Registering a Device and the
device interconnection information obtained in 1 in the format of ssl;//

Domain name:Port
loTDevice device = new loTDevice("ssl://iot-acc.cn-north-4.myhuaweicloud.com:8883",
"5e06bfee334dd4f33759f5b3_demo", "mysecret");

2. Establish a connection. Call the API init of the loT Device SDK. The thread is
blocked until a result is returned. If the connection is established, 0 is

returned.
if (device.init() !=0) {
return;
}
If the connection is successful, information similar to the following is
displayed:

2019-12-26 11:02:02 INFO MqttConnection:88 - Mqtt client connected. address :ssl://iot-acc.cn-
north-4.myhuaweicloud.com:8883

3. After the device is created and connected, it can be used for communication.
You can call the API getClient of the loT Device SDK to obtain the device
client. The client provides communication APIs for processing messages,
properties, and commands.

Reporting a Message

Message reporting is the process in which a device reports messages to the
platform.

1. Call the API getClient of the loT Device SDK to obtain the client from the
device.

2. Call the API reportDeviceMessage to enable the client to report a device

message. In the message sample below, messages are reported periodically.
while (true) {

device.getClient().reportDeviceMessage(new DeviceMessage("hello"), new ActionListener() {
@Override
public void onSuccess(Object context) {

}

@Override
public void onFailure(Object context, Throwable var2) {
log.error("reportDeviceMessagefail: "+var2);

}

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 144

loT Device Access

Developer Guide 4 Development on the Device Side

b

Thread.sleep(10000);
}
3. Replace the device parameters with the actual values in the main function of
the MessageSample class, and run this class. Then view the logs about

successful connection and message reporting.

2019-12-26 11:02:02 INFO MqttConnection:88 - Mqtt client connected. address :ssl://iot-acc.cn-

north-4.myhuaweicloud.com:8883

2019-12-26 11:02:02 INFO MgttConnection:214 - publish message topic = $oc/devices/

test_testDevice/sys/messages/up, msg = {"name":null,"id":null,"content":"hello","object_device_id":null}
4. On the IoTDA console, choose Devices > All Devices and check whether the

device is online.

All Devices

Batch Register
Device List Batch Registration Batch Deletion File Uploads analyze historical data
All resource spaces All products Device Name alle
Status Device Name Node ID Resource Space Product. Node Type Operation
Online streatlight et Abbytest BearPi_Street Directly conne. View = Delete Freeze
Inactive hhjxgx S Test BearPi_Smoke Directly conne.. View | Delete = Freeze

5. Select the device, click View, and enable message trace on the device details
page.

All Devices / Device Details

Overview Commands Device Shadow Message Trace Child Devices Tags
A mes: records a variety of operatior X reporting or command delivery, traced messages help you
quickly d identify failure causes. Leas ~ Start Trace
To prevent the platform from accupying too n race messages for up to 10 devices at a time for a single user,

and for no more than three days.

Message trace Is used during device debuggin onfPush is recommended.

. Device status Device message
Device command Device binding
Device configuration update

Duration 0 days | o hours | 30 minutes

Currently
duration

e trace applies only to APIs of V3. (Maximum

6. View the messages received by the platform.

Message Trace Data

Message Status

Successful

Successful

Successful

Successful

Successful

Service Type

Device command

Device command

Device binding

Device command

Device command

Service Step

SENDCMD_CMDH_SEND_CMD_TO_

SENDCMD_CMDH_NO_CACHE_CM.

DEVICEBIND_IOCM_RETURN_200_T..

SENDCMD_CMDH_SEND_CMD_TO.

SENDCMD_CMDH_NO_CACHE_CM

Service Details
triggered by kafka topic “IOCM.DEV.
processed in kafka handler "IOCM.D.
com huaweijom.devicemgrrpc.auth

triggered by kafka tapic "IOCM.DEV.

processed in kafka handler "IOCM.D.

All statuses

Recorded

Nov 04, 2020 10:33:00 GMT+08:00

Nov 04,

Nov 04, 202

Nov 04,

Nov 04, 2020 10:31:25 GMT+08:00

advanced Search

Operation

Note: Message trace may be delayed. If no data is displayed, wait for a while and
refresh the page.

Reporting Properties

Open the PropertySample class. In this example, the alarm, temperature,
humidity, and smokeConcentration properties are periodically reported to the
platform.

// Report properties periodically.
while (true) {

Map<String ,Object> json = new HashMap<>();

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 145

IoT Device Access
Developer Guide 4 Development on the Device Side

Random rand = new Random();

// Set properties based on the product model.
json.put("alarm", alarm);

json.put("temperature", rand.nextFloat()*100.0f);
json.put("humidity", rand.nextFloat()*100.0f);
json.put("smokeConcentration", rand.nextFloat() * 100.0f);

ServiceProperty serviceProperty = new ServiceProperty();

serviceProperty.setProperties(json);

serviceProperty.setServiceld("smokeDetector");// The serviceld must the consistent with that
defined in the product model.

device.getClient().reportProperties(Arrays.asList(serviceProperty), new ActionListener() {
@Override
public void onSuccess(Object context) {

log.info("pubMessage success");

@Override
public void onFailure(Object context, Throwable var2) {
log.error("reportProperties failed" + var2.toString());

}
b

Thread.sleep(10000);
}
}

Modify the main function of the PropertySample class and run this class. Then
view the logs about successful property reporting.

"C:\Program Files (xB6)\Java\jdkl.8.8_73\bin\java.exe" ...

2019-12-28 10:39:87 INFO MgttConnection:14@ - try to connect to ssl://ict-acc.cn-north-4.myhuaweicloud.com: 8883

2019-12-28 10:39:87 INFO MgttConnection:147 - connect success ssl://iot-acc.cn-north-4.myhuaweicloud.com:8883

2019-12-28 18:39:87 INFO MgttConnection:87 - Mgtt client connected. address :ssl://iot-acc.cn-north-4.myhuaweicloud.com:8883
2019-12-28 18:39:88 INFO MgttConnection:213 - publish message topic = $oc/devices/5eB6bfee334dd4f33759F5b3_demo/sys /properties/report
2019-12-28 16:39:88 INFO PropertySample:98 - pubMessage success

The latest property values are displayed on the device details page of the

platform.
Latest Data Reported I P [
alarm smokeConcentration temperature humidity

1 60 22 79.940155

smokeDetector mokeDetector> smokeDetector

Reading and Writing Properties

Call the setPropertyListener method of the client to set the property callback API.
In PropertySample, the property reading/writing API is implemented.

Property reading: Only the alarm property can be written.

Property reading: Assemble the local property value based on the API format.
device.getClient().setPropertyListener(new PropertyListener() {
// Process property writing.
@Override

public void onPropertiesSet(String requestld, List<ServiceProperty> services) {

// Traverse services.
for (ServiceProperty serviceProperty: services){

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 146

IoT Device Access
Developer Guide 4 Development on the Device Side

log.info("OnPropertiesSet, serviceld = " + serviceProperty.getServiceld());

// Traverse properties.
for (String name :serviceProperty.getProperties().keySet()){
log.info("property name = "+ name);
log.info("set property value = "+ serviceProperty.getProperties().get(name));
if (name.equals("alarm")){
// Change the local value.
alarm = (Integer) serviceProperty.getProperties().get(name);
}
}

}
// Change the local property value.
client.respondPropsSet(requestld, lotResult.SUCCESS);

}

// Process property reading.
@Override
public void onPropertiesGet(String requestld, String serviceld) {

log.info("OnPropertiesGet " + serviceld);

Map<String ,Object> json = new HashMap<>();

Random rand = new Random();

json.put("alarm", alarm);

json.put("temperature", rand.nextFloat()*100.0f);
json.put("humidity", rand.nextFloat()*100.0f);
json.put("smokeConcentration", rand.nextFloat() * 100.0f);

ServiceProperty serviceProperty = new ServiceProperty();
serviceProperty.setProperties(json);
serviceProperty.setServiceld("smokeDetector");

client.respondPropsGet(requestld, Arrays.asList(serviceProperty));
}
N;

Note:

1. The property reading/writing APl must call the respondPropsGet and
respondPropsSet APIs to report the operation result.

2. If the device does not allow the platform to proactively read data from the
device, the onPropertiesGet API can be left not implemented.

Run the PropertySample class and check whether the value of the alarm
property is 1 on the Device Shadow tab page.

Configure Property c
Service Property Access Mode Reported Value Desired Value @
smokeDetector alarm Read-onlywritable 1
smokeConcentration Read-only 227
temperature Read-only

humidity Read-only

Change the value of the alarm property to 0.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 147

IoT Device Access
Developer Guide 4 Development on the Device Side

Configure Property

Service Property Desired Value

smokeDetector alarm 0

Cancel

In the device logs, the value of alarm is 0.

2019-12-28 14:16:27 INFO MgttConnection:66 - messagelrrived topic = $oc/devices/SeB6bfee334dd4f33759F5b3_demo/sys/prope:
2819-12-28 14:16:27 INFO PropertySample:53 - OnPropertiesSet, serviceld = smokeDetector

2819-12-28 14:16:27 INFO PropertySample:57 - property name = alarm

2819-12-28 14:16:27 INFO PropertySample:58 - set property value = d

Delivering a Command

You can set a command listener to receive commands delivered by the platform.
The callback API needs to process the commands and report responses.

The CommandSample class prints commands after receiving them and calls
respondCommand to report the responses.

device.getClient().setCommandListener(new CommandListener() {
@Override
public void onCommand(String requestld, String serviceld, String commandName, Map<String,
Object> paras) {
log.info("onCommand, serviceld = " +serviceld);
log.info("onCommand , name =" + commandName);
log.info("onCommand, paras = " + paras.toString());

// Process the command.

// Send a command response.
client.respondCommand(requestld, new CommandRsp(0));

hE

Run the CommandSample class and deliver a command on the platform. In the
command, set serviceld to smokeDetector, name to ringAlarm, and paras to
duration=20.

The log shows that the device receives the command and reports a response.

2019-12-28 15:03:36 INFO MgttConnection:66 - messageArrived topic = $oc/devices/test_testDevice/sys/commands/request_id=4, msg = {“paras":{"duration":20},"service_id":"smc
2019-12-28 15:03:36 INFO CommandSample:62 - onCommand, servi
2019-12-28 15:03:36 INFO CommandSample:63 - onCommand ,
2019-12-28 15:03:36 INFO CommandSample:64 - onCommand, p
2019-12-28 15:03:36 INFO MgttConnec tion:213 - publish message topic = $oc/devices/test_testDevice/sys/commands/response/request_id=4, msg = {"paras”:null,"result_code":e,"

smokeDetector

Object-oriented Programming

Calling device client APIs to communicate with the platform is flexible but requires
you to properly configure each API.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 148

loT Device Access
Developer Guide

4 Development on the Device Side

The SDK provides a simpler method, object-oriented programming. You can use
the product model capabilities provided by the SDK to define device services and
call the property reading/writing API to access the device services. In this way, the
SDK can automatically communicate with the platform to synchronize properties
and call commands.

Object-oriented programming simplifies the complexity of device code and
enables you to focus only on services rather than the communications with the
platform. This method is much easier than calling client APIs and suitable for most
scenarios.

We use the smokeDetector example to demonstrate the process of object-oriented
programming.

1. Define the service class and properties based on the product model. (If there

are multiple services, define multiple service classes.)
public static class SmokeDetectorService extends AbstractService {

// Define properties based on the product model. Ensure that the device name and type are the
same as those in the product model. writeable indicates whether the property can be written, and
name indicates the property name.

@Property(name = "alarm", writeable = true)

int smokeAlarm = 1;

@Property(name = "smokeConcentration", writeable = false)
float concentration = 0.0f;

@Property(writeable = false)
int humidity;

@Property(writeable = false)

float temperature;
@Property indicates a property. You can use name to specify a property
name. If no property name is specified, the field name is used.

You can add writeable to a property to control permissions on it. If the
property is read-only, add writeable = false. If writeable is not added, the
property can be read and written.

2. Define service commands. The SDK automatically calls the service commands
when the device receives commands from the platform.

The type of input parameters and return values for APIs cannot be changed.
Otherwise, a runtime error occurs.

The following code defines a ring alarm command named ringAlarm.

// Define the command. The type of input parameters and return values for APIs cannot be changed.
Otherwise, a runtime error occurs.
@DeviceCommand(name = "ringAlarm")
public CommandRsp alarm(Map<String, Object> paras) {
int duration = (int) paras.get("duration");
log.info("ringAlarm duration =" + duration);
return new CommandRsp(0);

}
3. Define the getter and setter APIs.

- The device automatically calls the getter method after receiving the
commands for querying and reporting properties from the platform. The
getter method reads device properties from the sensor in real time or
from the local cache.

- The device automatically calls the setter method after receiving the
commands for setting properties from the platform. The setter method

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 149

IoT Device Access
Developer Guide 4 Development on the Device Side

updates the local values of the device. If a property is not writable, leave
the setter method not implemented.

// Ensure that the names of the setter and getter APIs comply with the JavaBean specifications so
that the APIs can be automatically called by the SDK.
public int getHumidity() {

// Simulate the action of reading data from the sensor.
humidity = new Random().nextInt(100);
return humidity;

}

public void setHumidity(int humidity) {
// You do not need to implement the humidity field, because it is read-only.
}

public float getTemperature() {

// Simulate the action of reading data from the sensor.
temperature = new Random().nextInt(100);
return temperature;

}

public void setTemperature(float temperature) {
// You do not need to implement the set API for read-only fields.
}

public float getConcentration() {

// Simulate the action of reading data from the sensor.
concentration = new Random().nextFloat()*100.0f;
return concentration;

}

public void setConcentration(float concentration) {
// You do not need to implement the set API for read-only fields.
}

public int getSmokeAlarm() {
return smokeAlarm;
}

public void setSmokeAlarm(int smokeAlarm) {

this.smokeAlarm = smokeAlarm;
if (smokeAlarm == 0){
log.info("alarm is cleared by app");
}
}

4. Create a service instance in the main function and add the service instance to

the device.
// Create a device.
loTDevice device = new loTDevice(serverUri, deviceld, secret);

// Create a device service.
SmokeDetectorService smokeDetectorService = new SmokeDetectorService();
device.addService("smokeDetector", smokeDetectorService);

if (device.init() !=0) {
return;
}

5. Enable periodic property reporting.
// Enable periodic property reporting.
smokeDetectorService.enableAutoReport(10000);
If you do not want to report properties periodically, you can call the API
firePropertiesChanged to manually report them.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 150

IoT Device Access
Developer Guide 4 Development on the Device Side

Run the SmokeDetector class to view the logs about property reporting.

2019-12-28 15:26:26 INFO MgttConnection:14@ - try to connect to ssl://iot-acc.cn-north-4.myhuaweicloud.com:8883
2019-12-28 15:26:26 INFO MgttConnection:147 - connect success ssl://iot-acc.cn-north-4.myhuaweicloud.com:8883
2019-12-28 15:26:26 INFO MgttConnection:87 - Mgtt client connected. address :ssl://iot-acc.cn-north-4.myhuaweicl
connect ok

2019-12-28 15:26:26 INFO MgttConnection:213 - publish message topic

$oc/devices/5eB6bfee33dddd4+33759F5b3_demo

View the device shadow on the platform.

Device Details

Overview Commands Device Shadow Message Trace Child Devices Tags

Configure Property c

Service Property Access Mode Reported Value Desired Value @

smokeDetector alarm Read-only,Writable 1
smokeConcentration Read-only 42755955
temperature Read-only 20842861

humidity Read-only 9.110051

Modify the alarm property on the platform and view the device logs about
property modification.

2019-12-28 15:44:29 INFU MgttConnection:bb - messageArrived topic = $oc/devices/test_testDevice/sys/properties/set/request_id=2Z, msg = { services :[{"pri
2019-12-28 15:44:29 TINFO AbstractService:187 - write pr‘d)er‘ty ok:alarm

Deliver the ringAlarm command on the platform.

View the logs about calling the ringAlarm command and reporting a
response.

2019-12-28 15:44:29 INFO MgttConnection:66 - messageArrived topic = $oc/devices/test_testDevice/sys/commands/request_id=1, msg = {"paras”:{"duration”:20}
2019-12-28 15:44:29 INFO DeviceServiceSample$SmokeDetectorService:S3 - ringAlarm duration = 20
2619-12-28 15:44:29 INFO MgttConnection:213 - publish message topic = S$oc/devices/test_testDevice/sys/commands/response/request_id=1, msg = {"paras":null

Using the Code Generator

The SDK provides a device code generator, which allows you to automatically
generate a device code framework only using a product model. The code
generator parses the product model, generates a service class for each service
defined in the model, and generates a device main class based on the service
classes. In addition, the code generator creates a device and registers a service
instance in the main function.

To use the code generator to generate device code, proceed as follows:

1. Download the huaweicloud-iot-device-sdk-java project, decompress it, go to
the huaweicloud-iot-device-sdk-java directory, and run the mvn install
command.

2. Check whether an executable JAR package is generated in the target folder of
iot-device-code-generator.

» Data (D) » git » huaweicloud-iot-device-sdk-java » iot-device-code-generator » target

MName ~ Date modified

classes
generated-sources
maven-archiver

| % iot-device-code-generator-0.2.0

| &/ iot-device-code-generator-0.2.0-with-deps

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 151

IoT Device Access
Developer Guide 4 Development on the Device Side

3. Save the product model to a local directory. For example, save the
smokeDetector_cb097d20d77b4240adf1f33d36b3c278_smokeDetector.zip
file to disk D.

4. Go to the iot-device-code-generator\target\ directory and run the java -jar
iot-device-code-generator-0.2.0-with-deps.jar D:
\smokeDetector_cb097d20d77b4240adf1f33d36b3c278_smokeDetector.zip
command.

5. Check whether the generated-demo package is generated in the
huaweicloud-iot-device-sdk-java directory.

Data (i) » git » huaweicloud-iot-device-sdk-java » generated-demo

Mame Date modified

T
y
W

src

[ay]

| rvnw

£
]
"W

My nw

T h

(]
-y
W

pom

The device code is generated.

To compile the generated code, proceed as follows:

1. Go to the huaweicloud-iot-device-sdk-java\generated-demo directory, and
run the mvn install command to generate a JAR package in the target folder.

Data (D7) » git » huaweicloud-iot-device-sdk-java » generated-demo » target »

Name Date modified

classes 03
16:03

generated-sources

maven-archiver

rJ

| £ iot-device-demo-ganerated-0.2.0

oh
ra

| £ iot-device-demo-ganerated-0.2.0-with-deps

2. Run the java -jar target\iot-device-demo-ganerated-0.2.0-with-deps.jar
5e06bfee334dd4f33759f5b3_demo ***** command.

You need to specify the device ID and password in the command to run the
generated demo.

To modify the extended code, proceed as follows:

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 152

IoT Device Access
Developer Guide 4 Development on the Device Side

Service definition and registration have already been completed through the
generated code. You only need to make small changes to the code.

1. Command API: Add specific implementation logic.

@heviceCommand

public CommandRsp ringhAlarm (Map<5tring, Object» paras) 1
//todo Add command processing code here.
return new CommandRsp(@);

¥

2. getter method: Change the value return mode of the generated code from
returning a random value to reading from the sensor.

3. setter method: Add specific processing logic, such as delivering instructions to
the sensor, because the generated code only modifies and saves the
properties.

Developing a Gateway

Gateways are special devices that provide child device management and message
forwarding in addition to the functions of common devices. The SDK provides the
AbstractGateway class to simplify gateway implementation. This class can collect
and save child device information (with a data persistence API), forward message
responses (with a message forwarding API), and report child device list, properties,
statuses, and messages.

e AbstractGateway Class

Inherit this class to provide APIs for persistently storing device information
and forwarding messages to child devices in the constructor.

public abstract void onSubdevCommand(String requestld, Command command);
public abstract void onSubdevPropertiesSet(String requestld, PropsSet propsSet);
public abstract void onSubdevPropertiesGet(String requestld, PropsGet propsGet);

public abstract void onSubdevMessage(DeviceMessage message);
e iot-gateway-demo Code

The iot-gateway-demo project implements a simple gateway with
AbstractGateway to connect TCP devices. The key classes include:

SimpleGateway: inherited from AbstractGateway to manage child devices
and forward messages to child devices.

StringTcpServer: implements a TCP server based on Netty. In this example,
child devices support the TCP protocol, and the first message is for
authentication.

SubDevicesFilePersistence: persistently stores child device information in a
JSON file and caches the file in the memory.

Session: stores the mapping between device IDs and TCP channels.
e SimpleGateway Class
Adding or Deleting a Child Device

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 153

loT Device Access
Developer Guide 4 Development on the Device Side

Adding a child device: The onAddSubDevices API of AbstractGateway can
store child device information. Additional processing is not required, and the
onAddSubDevices API does not need to be overridden for SimpleGateway.

Deleting a child device: You need to modify persistently stored information of
the child device and disconnect the device from the platform. Therefore, the
onDeleteSubDevices API is overridden to add the link release logic, and the
parent class qit onDeleteSubDevices is called.

@Override
public int onDeleteSubDevices(SubDevicesInfo subDevicesInfo) {

for (Devicelnfo subdevice : subDevicesInfo.getDevices()) {
Session session = nodeldToSesseionMap.get(subdevice.getNodeld());
if (session != null) {
if (session.getChannel() != null) {
session.getChannel().close();
channelldToSessionMap.remove(session.getChannel().id().asLongText());
nodeldToSesseionMap.remove(session.getNodeld());
}
}
}

return super.onDeleteSubDevices(subDevicesInfo);

}
e Processing Messages to Child Devices

The gateway needs to forward messages received from the platform to child
devices. The messages from the platform include device messages, property
reading/writing, and commands.

- Device messages: Obtain the nodeld based on the deviceld, and then
obtain the session of the device to get a channel for sending messages.

You can choose whether to convert messages during forwarding.
@Override
public void onSubdevMessage(DeviceMessage message) {

// Each platform API carries a deviceld, which consists of a nodeld and productld.
//deviceld = productld_nodeld
String nodeld = lotUtil.getNodeldFromDeviceld(message.getDeviceld());
if (nodeld == null) {
return;
}

// Obtain the session based on the nodeld for a channel.
Session session = nodeldToSesseionMap.get(nodeld);
if (session == null) {
log.error("subdev is not connected " + nodeld);
return;
}
if (session.getChannel() == null){
log.error("channel is null " + nodeld);
return;

}

// Directly forward messages to the child device.
session.getChannel().writeAndFlush(message.getContent());
log.info("writeAndFlush " + message);

}
- Property Reading and Writing
Property reading and writing include property setting and query.
Property setting:

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 154

loT Device Access
Developer Guide

4 Development on the Device Side

@Override
public void onSubdevPropertiesSet(String requestld, PropsSet propsSet) {

if (propsSet.getDeviceld() == null) {
return;
}

String nodeld = lotUtil.getNodeldFromDeviceld (propsSet.getDeviceld());
if (nodeld == null) {

return;
}

Session session = nodeldToSesseionMap.get(nodeld);
if (session == null) {

return;
}

// Convert the object into a string and send the string to the child device. Encoding/
Decoding may be required in actual situations.
session.getChannel().writeAndFlush(JsonUtil.convertObject2String (propsSet));

// Directly send a response. A more reasonable method is to send a response after the
child device processes the request.
getClient().respondPropsSet(requestld, lotResult.SUCCESS);

log.info("writeAndFlush " + propsSet);

}

Property query:
@Override
public void onSubdevPropertiesGet(String requestld, PropsGet propsGet) {

// Send a failure response. It is not recommended that the platform directly reads the
property of the child device.
log.error("not supporte onSubdevPropertiesGet");
deviceClient.respondPropsSet(requestld, lotResult.FAIL);
}

Commands: The procedure is similar to that of message processing.
Different types of encoding/decoding may be required in actual

situations.
@Override
public void onSubdevCommand(String requestld, Command command) {

if (command.getDeviceld() == null) {
return;
}

String nodeld = lotUtil.getNodeldFromDeviceld (command.getDeviceld());
if (nodeld == null) {

return;
}

Session session = nodeldToSesseionMap.get(nodeld);
if (session == null) {

return;
}

// Convert the command object into a string and send the string to the child device.
Encoding/Decoding may be required in actual situations.
session.getChannel().writeAndFlush (JsonUtil.convertObject2String(command));

// Directly send a response. A more reasonable method is to send a response after the
child device processes the request.

getClient().respondCommand(requestld, new CommandRsp(0));

log.info("writeAndFlush " + command);

}

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

155

IoT Device Access
Developer Guide 4 Development on the Device Side

e Upstream Message Processing

Upstream message processing is implemented by the channelRead0 API of
StringTcpServer. If no session exists, create a session.

If the child device information does not exist, the session cannot be created
and the connection is rejected.
@Override

protected void channelRead0(ChannelHandlerContext ctx, String s) throws Exception {

Channel incoming = ctx.channel();
log.info("channelRead0" + incoming.remoteAddress() + " msg :" + s);

// Create a session for the first message.
// Create a session for the first message.
Session session = simpleGateway.getSessionByChannel(incoming.id().asLongText());
if (session == null) {
String nodeld =s;
session = simpleGateway.createSession(nodeld, incoming);

// The session fails to create and the connection is rejected.
if (session == null) {
log.info("close channel");
ctx.close();
}
}

If the session exists, the message is forwarded.

else {
// Call reportSubDeviceProperties to report properties of the child device.
DeviceMessage deviceMessage = new DeviceMessage(s);
deviceMessage.setDeviceld(session.getDeviceld());
simpleGateway.reportSubDeviceMessage(deviceMessage, null);

}

For more information about the gateway, view the source code. The demo is
open-source and can be extended as required. For example, you can modify
the persistence mode, add message format conversion during forwarding, and
support other device access protocols.

e Using iot-gateway-demo
a. Register a gateway with the platform.

b. Modify the main function of StringTcpServer by replacing the
constructor parameters, and run this class.
simpleGateway = new SimpleGateway(new SubDevicesFilePersistence(),
"ssl://iot-acc.cn-north-4.myhuaweicloud.com:8883",
"5e06bfee334dd4f33759f5b3_demo", "mysecret");
c. After the gateway is displayed as Online on the platform, add a child
device.

All Devices / Device Details

Overview Commands Device Shadow Message Trace Child Devices Tags

ot report the

isplayed. The status of a child device indicates the access status to the gateway, and the gateway reports the status to the platform for updating. If the gateway

D displ
not updated.

st

the platform through ga
Id device status on the pl

Add Child Device X c
Add Child Device

Status Device Name Description Operation

Product testol0

subdevice

Node ID 2R

A log similar to the following is displayed on the gateway:

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 156

loT Device Access
Developer Guide

4 Development on the Device Side

2020-02-11 09:42:17 INFO SubDevicesFilePersistence:75 - add subdev: ffff

d. Run the TcpDevice class. After the connection is established, enter the
nodeld of the child device.

StringTcpServer
"C:\Program Files‘\Java\jdkl.8.8_212\bin\java.exe" ...
2028-81-88 16:55:86 INFO TcpDevice:85 - initChannel...

input string to send:

subdev?

| TepDevice

input string to send:

e. Check whether the child device is online on the platform.

Device Li Batch Registration
Statt Device Nam
o subdk

Batch Deletion

File Uploads

Node ID

Resource Space.

Defaultapp_w:

Product

29688730_iot i

f. Enable the child device to report messages.

Node Type

2028-81-88 16:55:86 INFO TcpDewice:85 - initChannel...

input string to send:

subdev?

input string to send:

hel Lo

Logs similar to the following show that messages are reported.

2020-01-08 16:55:11 INFO SimpleGateway:67 -
2020-81-88 16:56:17 INFO StringTcpServer:99 -
2020-81-08 16:56:17 INFO MgttConnection:223 -

g. View the messages traced.

directly connect

create new session okSession{nodeld="subdev2’, channel=[id: @x74e9c8f@, L:/127.0.0.1:8080
channelRead@/127.8.0.1:53981 msg :hello
publish message topic = $oc/devices/5e@6bfeel34dd4f33759f5b3_demo/sys/messages/up, msg = {“"name”:null,”id"

Click Message Trace on the gateway details page. Send data from the
child device to the platform, and view the messages after a while.

Message Trace Data
Message Status
Successful
Successful
Successful
Successful

Successful

4.2.3 10T Device SDK (C)

Service Type

Device command

Device command

Device binding

Device command

Device command

Service Step

SENDCMD_CMDH_SEND_CMD_TO_.

SENDCMD_CMDH_NO_CACHE_CM..

DEVICEBIND_IOCM_RETURN_200.T.

SENDCMD_CMDH_SEND_CMD_TO_

SENDCMD_CMDH_NO_CACHE_CM..

Service Details

triggered by kafka topic "JOCM.DEV.
processed in kafka handler "IOCM.D.
com huaweiiom devicemgr.pc.auth.
triggered by kafka topic "IOCM.DEV.

processed in kafka handler "IOCM.D,

All statuses

Recorded

Nov 04, 2020 10:33:00 GMT+08:00

Nov 04, 2020 10:33:00 GMT+08:00

MT+08:00

MT+08:00

31:25 GMT+08:00

Advanced Search v

Operation

The loT Device SDK (C) provides abundant demo code for devices to communicate
with the platform and implement device, gateway, and Over-The-Air (OTA)
services. For details on the integration guide, see loT Device SDK (C)

Development Guide.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

157

- Ri/127.0.0.1:5398.

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c

IoT Device Access
Developer Guide 4 Development on the Device Side

4.2.4 10T Device SDK (C#)

The |oT Device SDK (C#) provides abundant demo code for devices to
communicate with the platform and implement advanced services such as device,
gateway, and Over-The-Air (OTA) services. For details about the integration guide,
see 10T Device SDK (C#) Development Guide.

4.2.5 10T Device SDK (Android)

The loT Device SDK (Android) provides abundant demo code for devices to
communicate with the platform and implement advanced services such as device,
gateway, and Over-The-Air (OTA) services. For details on the integration guide, see
loT Device SDK (Android) Development Guide.

4.2.6 loT Device SDK Tiny (C)

The loT Device SDK Tiny is lightweight interconnection middleware suitable for
devices that have WAN capabilities, low power consumption, and limited storage
and computing resources. You only need to call APIs to enable these devices to
access the platform, report data, and receive commands. For details, see Huawei
LiteOS SDK Development Guide.

(11 NOTE

The loT Device SDK Tiny can run on devices that do not run Linux OS, and can also be
integrated into modules. However, it does not provide gateway services.

4.3 Using MQTT Demos for Access

4.3.1 MQTT

Introduction

Message Queuing Telemetry Transport (MQTT) is a publish/subscribe messaging
protocol that transports messages between clients and a server. It is suitable for
remote sensors and control devices (such as smart street lamps) that have limited
computing capabilities and work in low-bandwidth, unreliable networks through
persistent connections. To learn more about the MQTT syntax and interfaces, click
here.

MQTTS is a variant of MQTT that uses TLS encryption. MQTTS devices
communicate with the platform using encrypted data transmission.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 158

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-csharp
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/LiteOS/LiteOS_Lab/blob/iot_link/README.md
https://github.com/LiteOS/LiteOS_Lab/blob/iot_link/README.md
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/

IoT Device Access
Developer Guide 4 Development on the Device Side

Application

MQTT Broke

=9 L | r=19
o LI [T
o L] [T
%ﬂ P b L
At once ast e o [[
o L] [T
t\'r. -\'\‘I- L t\".'
@ @ (D)
m @
\ /
atewa JSON data Binary code
QoS reporting stream reporting

Child device
management

Service Flow

MQTT devices communicate with the platform without data encryption. For
security purposes, MQTTS access is recommended.

You are advised to use the loT Device SDK to connect devices to the platform
over MQTTS.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 159

IoT Device Access
Developer Guide 4 Development on the Device Side

Obtains the device access address
and certificate.

Performs authentication. {Devices
can be registered using the
console or application APls.)

Reports data. Device (See
the MQTT
demo for
loT platform :
P Subscribes to topics. native
protocol
Receives commands, properties, access.)

and messages.

Performs OTA upgrades.

Reports data using custom topics.

1. Create a product by using the I0TDA console or calling the API Creating a
Product.

2. Register a device by using the IoTDA console or calling the API Creating a
Device.

3. The registered device can report messages and properties, receive commands,
properties, and messages, perform OTA upgrades, and report data using
custom topics. For details about preset topics of the platform, see Topic
Definition.

(11 NOTE

You can use MQTT.fx to debug access using the native MQTT protocol. For details, see
Connecting MQTT Devices.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 160

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/en-us/qs-iothub/iot_05_0006.html

loT Device Access
Developer Guide

4 Development on the Device Side

Constraints

Item

Constraint

Supported MQTT version

3.1.1

Differences from the standard
MQTT protocol

e QoS 0 and QoS 1 are supported.
e Custom topics are supported.
e QoS 2 is not supported.

e will and retain msg are not
supported.

Security level supported by MQTTS

TCP channel + TLS (TLS v1, TLS v1.1, and
TLS v1.2)

Maximum number of MQTT
connection requests allowed for an
account per second

No limit

Maximum number of MQTT
connections allowed for a device
per minute

Maximum throughput of an MQTT
connection per second, including
directly connected devices and
gateways

3 KB/s

Maximum length of a message
reported by an MQTT device (A
message with the length greater
than this value is rejected.)

1 MB

Recommended heartbeat interval
for MQTT connections

Range: 30s to 1200s; recommended: 120s

Topic customization

Not supported

Message publishing and
subscription

A device can only publish and subscribe
to messages of its own topics.

Maximum number of subscriptions
per subscription request

No limit

Communication Between MQTT Devices and the Platform

The platform communicates with MQTT devices through topics, and they
exchange messages, properties, and commands using preset topics. You can also
create custom topics for connected devices to meet specific requirements.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

161

loT Device Access
Developer Guide

4 Development on the Device Side

Data | Message
Type | Type

Description

Upstr | Reporting
eam | device
data | properties

Devices report property data in the format defined in the
product model.

Reporting
device
messages

If a device cannot report data in the format defined in
the product model, the device can report data to the
platform using the device message reporting API. The
platform forwards the messages reported by devices to
an application or other HUAWEI CLOUD services for
storage and processing.

Batch
reporting
device
properties

A gateway reports property data of multiple devices to
the platform.

Reporting
device
events

Devices report event data in the format defined in the
product model.

Down | Delivering
strea | platform
m messages

The platform delivers data in a custom format to devices.

data -
Setting

device
properties

A product model defines the properties that the platform
can configure for devices. The platform or application
can modify the properties of a specific device.

Querying
device
properties

The platform or application can query real-time property
data of a specific device.

Delivering
platform
commands

The platform or application delivers commands in the
format defined in the product model to devices.

Delivering
platform
events

The platform or application delivers events in the format
defined in the product model to devices.

Preset Topics

The following table lists the preset topics of the platform.

Category Function Topic Publ | Subsc
isher | riber
Device Reporting $oc/devices/{device_id}/sys/ Devi | Platfo
message a Device messages/up ce rm
Message

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 162

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3016.html

loT Device Access
Developer Guide

4 Development on the Device Side

Category Function Topic Publ | Subsc
isher | riber
related Delivering | $oc/devices/{device_id}/sys/ Platf | Devic
topics a Device messages/down orm |e
Message
Device Delivering | $oc/devices/{device_id}/sys/ Platf | Devic
command a Device commands/request_id={request_id} |orm |e
related Command
topics - . -
Returning $oc/devices/{device_id}/sys/ Devi | Platfo
a commands/response/ ce rm
Command | request_id={request_id}
Response
Device Reporting $oc/devices/{device_id}/sys/ Devi | Platfo
property Device properties/report ce rm
related Property
topics Data
Reporting $oc/devices/{device_id}/sys/ Devi | Platfo
Property gateway/sub_devices/properties/ ce rm
Data by a report
Gateway
Setting $oc/devices/{device_id}/sys/ Platf | Devic
Device properties/set/ orm |e
Properties | request_id={request_id}
Returning $oc/devices/{device_id}/sys/ Devi | Platfo
a Response | properties/set/response/ ce rm
to Property | request_id={request_id}
Settings
Querying $oc/devices/{device_id}/sys/ Platf | Devic
Device properties/get/ orm |e
Properties request_id={request_id}
Returning $oc/devices/{device_id}/sys/ Devi | Platfo
a Response | properties/get/response/ ce rm
toa request_id={request_id}
Property
Query (The
response
will not
affect
device
properties
or
shadows.)
Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 163

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3017.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3017.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3017.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3011.html

loT Device Access
Developer Guide

4 Development on the Device Side

Category Function Topic Publ | Subsc
isher | riber
Obtaining $oc/devices/{device_id}/sys/ Devi | Platfo
Device shadow/get/request_id={request_id} | ce rm
Shadow
Data from
the
Platform
Returning $oc/devices/{device_id}/sys/ Platf | Devic
a Response | shadow/get/response/ orm |e
toa request_id={request_id}
Request for
Obtaining
Device
Shadow
Data
Device Reporting $oc/devices/{device_id}/sys/ Devi | Platfo
event a Device events/up ce rm
related Event
topics . . .
Delivering | $oc/devices/{device_id}/sys/events/ | Platf | Devic
an Event down orm |e

You can create custom topics on the console to report personalized data. For
details, see Custom Topics.

TLS Support for MQTT

TLS is recommended for secure transmission between devices and the platform.
Currently, TLS V1.0, V1.1, and V1.2 are supported. TLS V1.0 and V1.1 will soon be
deprecated. Therefore, TLS V1.2 is recommended. The platform only supports the
following cipher suites for TLS connections:
TLS_ECDHE_ECDSA WITH_AES 128 CBC_SHA
TLS_ECDHE_ECDSA _WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128 CBC_SHA
TLS_ECDHE_RSA_WITH_AES_256 _CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128 GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_128 GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

4.3.2 MQTT.fx

This section uses MQTT.fx as an example to describe how to connect devices to
the platform using the native MQTT protocol. MQTT.fx is a widely used MQTT
client that makes it easy to verify whether devices can interact with the platform
to publish or subscribe to messages.

Issue 01 (2020-12-0

1)

Copyright © Huawei Technologies Co., Ltd.

164

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3029.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3029.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3029.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3028.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3028.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_02_9992.html

IoT Device Access
Developer Guide 4 Development on the Device Side

Prerequisites
e You have registered a HUAWEI CLOUD account.

e You have completed real-name authentication on HUAWEI CLOUD.
e You have subscribed to the I0TDA service.

Obtaining Device Access Information

Perform the following procedure to obtain device access information on the lIoTDA
console:

Step 1 Log in to the loTDA console.

Step 2 Click Overview in the navigation pane, view the device access information, and
record the domain names and ports.

Platform Access Basic Edition

Access Type Access Protocol (Port) Domain Name

443 iotda.cn-north-4.myhuaweicloud.com o
Application access

5671 t-amgps.cn-north-4.myhuaweicloud.com o

5683 5684 iat-coaps.cn-north-4.myhuaweicloud.com]

Device access 8943 iot-https.cn-north-4.myhuaweicloud.com]
1883 8883 iot-mqtts.cn-north-4.myhuaweicloud.com]

(11 NOTE

For devices that cannot be connected to the platform using a domain name, run the ping
Domain name command in the CLI to obtain the corresponding IP address. Then you can
connect the devices to the platform using the IP address. The IP address is variable and
needs to be set using a configuration item.

--—-End

Creating a Product and Registering a Device

Step 1 (Optional) Create a product that uses MQTT. If an MQTT product already exists,
skip this step.

1. Choose Products in the navigation pane and click Create Product in the
upper right corner.

2. Set the parameters as prompted and click Create.

Set Basic Info

Resource The platform automatically allocates the created product to
Space the default resource space. If you want to allocate the
product to another resource space, select the resource space
from the drop-down list. If a resource space does not exist,
create it first.

Product Customize the product name. The value can contain letters,
Name numbers, underscores (_), and hyphens (-).

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 165

https://reg.huaweicloud.com/registerui/public/custom/register.html?locale=en-us#/register
https://account.huaweicloud.com/usercenter/?locale=en-us#/accountindex/realNameAuth
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0006.html

loT Device Access

Developer Guide

4 Development on the Device Side

Protocol Select MQTT.

Data Type Select JSON.

Manufactur | Customize the manufacturer name. The value can contain
er letters, numbers, underscores (_), and hyphens (-).

Define Product Model

Product You are advised to use a product model preset on the
Model platform to experience device access.
This section uses WaterMeter as an example. You can also
select other product models.
Industry Select the industry to which the product model belongs.
Device Type | If a product model preset on the platform is used, the device

type is automatically matched and does not need to be
manually specified.

Step 2 Register a device.

Choose Devices > All Devices, and click Individual Register in the upper

right corner.

Set the parameters as prompted and click OK.

Parameter Description

Resource Ensure that the device and the product created in 1 belong
Space to the same resource space.

Product Select the product created in 1.

Node ID This parameter specifies the unique physical identifier of the

device. The value can be customized and consists of letters
and numbers.

Device Name

Customize the device name.

Authenticatio
n Type

Select Secret.

Secret

Customize the secret used for device access. If the secret is
left blank, the platform automatically generates one.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 166

loT Device Access
Developer Guide 4 Development on the Device Side

Individual Register

Resource Space (B Abbytest -
Product productTest -
Mode 1D 1 8

Device Name deviceTest11

Authentication Type (@ m X.500 certificate

Secret

Confirm Secret

Cancel

After the device is registered, the platform automatically generates a device
ID and secret. Save the device ID and secret for device access.

Device Registered

The following device information is allecated automatically. You can use the information to activate the device.

Device ID

--—-End

Performing Connection Authentication

You can use the MQTT.fx tool to connect devices to the platform by referring to
Device Connection Authentication in the AP/ Reference.

Step 1 Visit the MQTT.fx website and download and install the latest version of MQTT.fx.

Step 2 Go to the 10TDA client ID generator page, enter the device ID and secret
generated after registering a device to generate connection information
(including Clientld, Username, and Password).

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 167

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3009.html
http://mqttfx.jensd.de/index.php/download
https://iot-tool.obs-website.cn-north-4.myhuaweicloud.com/

IoT Device Access
Developer Guide 4 Development on the Device Side

HUAWEI CLOUD loT MQTT Client ID Generator

This tool is used to generate MQTT Client IDs. For details about the algorithm of device connection authentication, click the button below.

Learn More

1 ERERRERRERO

Generate

Client ID

Para | Man | Type Description
met | dator

er y
Clien | Yes String(| The value of this parameter consists of a device ID,
tid 256) device type, password signature type, and timestamp,

which are separated by underscores (_).

e Device ID: A device ID uniquely identifies a device
and is generated when the device is registered with
the platform. The value usually consists of a device's
product ID and node ID which are separated by an
underscore ().

e Device type: The value is fixed at 0, indicating a
device ID.

e Password signature type: The length is 1 byte, and
the value can be 0 or 1.

- 0 indicates that the timestamp is not verified
using the HMAC-SHA256 algorithm.

- 1 indicates that the timestamp is verified using
the HMAC-SHA256 algorithm.

e Timestamp: The UTC time when the device
connects to the platform. The format is
"YYYYMMDDHH". For example, if the UTC time is
2018/7/24 17:56:20, the timestamp is 2018072417.

User | Yes String(| Device ID.
nam 256)

Pass | Yes String(| Device secret encrypted using the HMAC-SHA256
word 256) algorithm based on the timestamp.

The device secret is returned by the platform upon
successful device registration.

Each device performs authentication using the MQTT CONNECT message, which
must contain all information of the clientld. After receiving a CONNECT message,

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 168

IoT Device Access
Developer Guide 4 Development on the Device Side

the platform checks the authentication type and password digest algorithm of the
device.

The generated client ID is in the format " Device /D _0_0_Timestamp". By default,
the timestamp is not verified.

e If the timestamp is verified using the HMAC-SHA256 algorithm, the platform
checks whether the message timestamp is consistent with the platform time
and then checks whether the password is correct.

e If the timestamp is not verified using the HMAC-SHA256 algorithm, the
timestamp must also be contained in the CONNECT message, but the
platform does not check whether the time is correct. In this case, only the
password is checked.

If the authentication fails, the platform returns an error message and
automatically disconnects the MQTT connections.

Step 3 Open the MQTT.fx tool and click the setting icon.

& MQTTh-171 W w

Extras Help
L .
. 1ot b

Subscribe Scripts Broker Status Log

Step 4 Configure authentication parameters and click Apply.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 169

loT Device Access
Developer Guide

4 Development on the Device Side

B Edit Connection Profiles

local mosquitto

Profile Name | jot

Profile Type MQTT Broker v -‘\\ m
MQTT Broker Profile Settings

Broker Address | 11 Qepeee e

Broker Port | 1883

Client 1D 2@ £ s ma s 22 e el Generate

General BUESREEGENEIEN SSL/TLS Proxy LWT

User Name | 58 S0 Caa e a0a0n dn e Ca e aCeT e el

Password

Revert “ oK Apply

Parameter

Description

Broker Address

Enter the device connection address (domain name)
obtained from the IoTDA console. If the device cannot
be connected using a domain name, enter the IP
address obtained in 2.

Broker Port

The default value is 1883.

Client ID

Device Clientld obtained in 2.

User Name

Deviceld obtained in 2.

Password

Encrypted device secret obtained in 2.

If you choose secure access, set Broker Port to 8883, download the certificate,
and load the Java certificate in .pem format.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 170

https://developer.obs.cn-north-4.myhuaweicloud.com:443/cert/v2/certificate.zip

loT Device Access

Developer Guide 4 Development on the Device Side
B Edit Connection Profiles] x
iot
local mosquitto Profile Name | iot

e
Profile Type MQTT Broker - S‘T*m
MQTT Broker Profile Settings
Broker Address wIeZeZeZeDaDele
Broker Port | 3333
Client 1D | a8ff Generate
General User Credentials m Proxy LWT
Enable SSL/TLS \/e Protocol TLSv1.2
CA signed server certificate
® CAce :'fi:a:afile
CA Certificate File | D:\certificate\certificatejava'DigiCertGlobalRootCA crt.pem e
CA certificate keystore
Self signed certificates
Self signed certificates in keystores
& - Revert | cancel BESTS Apply

Step 5 Click Connect. If the device authentication is successful, the device is displayed
online on the platform.

Device List Batch Registration Batch Deletion File Uploads e data? analyze historical data
All resource spaces v | | Al products v || DeviceName ¥ Qlle
Status Device Name Node ID Resource Space Product Node Type Operation
Online deviceTest] 1 b Abbytest test010 Directly conne.. View | Delete | Freeze

Reporting Data

You can use the MQTT.fx tool to report data to the platform by referring to
Reporting Device Properties in the AP/ Reference.

If the device reports data through the MQTT channel, the data needs to be sent to
a specific topic in the format Soc/devices/{device_id}/sys/properties/report. For
devices that each has a different secret, specify device_id as the device ID
returned upon successful device registration.

Step 1 Enter the APl address in the format of "$oc/devices/{device id}/sys/properties/
report”, for example, Soc/devices/5ed4e2e92ac-164aefa8fouquani/sys/
properties/report.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 171

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html

loT Device Access
Developer Guide

4 Development on the Device Side

@ MOTTH- 174

File Extras Help

‘

Disconnect

m Subscribe Scripts Broker Status Log

foc/devices/ Sedel et mononon e tetatatu e e ettt Sttt S T w

"earure A" "Tamnaratira®

Step 2 Enter the data to report.

Request parameters

Field Manda
tory

Type

Description

services Yes

List<ServicePro
perty>

Service data list. (For details, see the
ServiceProperty structure in the
following table.)

ServiceProperty structure

e

Field Manda | Type Description
tory
service_id | Yes String Service ID.
propertie | Yes Object Service properties, which are defined in
S the product model associated with the
device.
eventTim | No String Indicates the UTC time when the device

collects data. The format is
yyyyMMddTHHmMmssZ, for example,
20161219T114920Z.

If this parameter is not carried in the
reported data or is in incorrect format, the
time when the platform receives the data
is used.

Example request

{

"services": [{

"service_id": "Connectivity",

"properties": {

"dailyActivityTime": 57

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 172

IoT Device Access
Developer Guide 4 Development on the Device Side

I
"event_time": "201512127121212Z"

"service_id": "Battery",

"properties™: {
"batteryLevel": 80

}

"event_time": "2015121271212122"

@ MQTTH- 171 - m| X

718 Extras Help

‘ Disconnect ﬂ °
m Subscribe Scripts Broker Status Log
$oc/devices/{device_id}/sys/properties/report - m @y Qos1 Qo5 2 Retained v
{
"services" [[
"service_id": "Connectivity",
"properties": {

"dailyActivityTime": 57
IS
"event_time': "20151212T121212F
I
{

"service_id": "Battery”,

"properties": {

"batteryLevel™: 30

3

“event_time': "201531212T1212127
i

1
}

Step 3 Click Publish. Then you can check whether the device successfully reports data on
the platform.

Online

beasees [Device Name R
S 13 Authentication Type Secret Reset Secret

Nov 10, 2020 18:58:58 GMT=08:00 Product MQTT

Directly connected

ource Space Abbytest

Latest Data Reported Query Historical Data @ | All Properties C
dailyActivityTime batterylLevel

57 80

Battery>

--—-End

Advanced Experience

After using MQTT.fx to connect a simulated MQTT device to the platform, you
may understand how the MQTT device interacts with the platform through open
APIs over MQTTS.

To better experience the 10TDA service, develop real-world applications and
devices and connect them to the platform. For details, see loTDA Developer
Guide.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 173

https://support.huaweicloud.com/en-us/devg-iothub/iot_02_9994.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_9994.html

IoT Device Access
Developer Guide 4 Development on the Device Side

4.3.3 Java Demo

Introduction

This section uses Java as an example to describe how to connect devices to the
platform over MQTTS/MQTT and how to report data and deliver commands
using platform APIs. For details about device access in other languages, see
Obtaining Resources.

Prerequisites

e You have installed Intelli) IDEA by following the instructions provided in
Installing Intelli) IDEA.

e You have obtained the device access address from the loTDA console. For
details, see Platform Connection Information.

e You have created a product and device on the I0TDA console. For details, see
Creating a Product, Registering an Individual Device, or Registering a
Batch of Devices.
Preparations
Installing Intelli) IDEA

1. Go to the Intelli)J IDEA website to download and install a desired version.
The following uses 64-bit IntelliJ IDEA 2019.2.3 Ultimate as an example.

Intelli) IDEA What's New Features Learn Buy

Download IntelliJ IDEA

Windows Mac Linux

Ultimate Community

For web and enterprise development For JVM and Android development

Version: 2020.1

9 April 2020

Release notes Free trial Free, open-source

System requirements
Installation Instructions License Commercial Open-source, Apache 2.0 [i]

Other versions
Java, Kotlin, Groovy, Scala v v

2. After the download is complete, run the installation file and install IntelliJ
IDEA as prompted.

Importing Sample Code

Step 1 Download the Java demo.

Step 2 Open the IDEA developer tool and click Import Project.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 174

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3002.html
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0054.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0032.html
https://www.jetbrains.com/idea/
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(java).zip

IoT Device Access
Developer Guide 4 Development on the Device Side

Welcome to Intelli) IDEA - be

IntelliJ IDEA

Version 2016.3.2

1t Create Mew Project

‘ ¥ Import Project ‘

Open

¥ Check out from Version Contral -

#* Configure ~ Get Help +

Step 3 Select the downloaded Java demo and click Next.
Import Praject X
() Create project from existing sources

© Import project from external model

- i
& Eclipse
& Gradle

Maven

WM|<:&MII| Help‘

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 175

loT Device Access
Developer Guide

4 Development on the Device Side

Step 4 Import the sample code.

B

mqttdemo ;[src [main » [java ;| com)
Project - [T - 23 i
mqttdemo C\Users)wxB85392Deskiop\mgttdeme
idea
src
main
Java
com.dema

resources
test

target

mqtt.log
mqtt.logdaily.2020-01-09.log
mqtt.logdaily.2020-01-10.log

m Mgttdemao.iml

pom.xml

--—-End

Establishing a Connection

Before you connect a device or gateway to the platform, establish a connection
between the device or gateway and the platform by providing the device or
gateway information.

1.

Before establishing a connection, modify the following parameters:

// MQTT interconnection address of the platform

static String serverlp = "iot-mqtts.cn-north-4.myhuaweicloud.com";

// Device ID and secret obtained during device registration (Replace them with the actual values.)
static String deviceld = "722cb** ik,

static String secret = "123456789";

- serverlp indicates the device interconnection address of the platform. To
obtain this address, see Platform Interconnection Information. (After
obtaining the domain name, run the ping Domain name command in the
CLI to obtain the corresponding IP address.)

- deviceld and secret indicate the device ID and secret, which can be
obtained after the device is registered.

Use MqttClient to set up a connection. The recommended heartbeat interval

for MQTT connections is 120 seconds. For details, see Constraints.
MgttConnectOptions options = new MqgttConnectOptions();
options.setCleanSession(false);

options.setKeepAlivelnterval(120); // Set the heartbeat interval from 30 to 1200 seconds.
options.setConnectionTimeout(5000);

options.setAutomaticReconnect(true);

options.setUserName(deviceld);

options.setPassword(getPassword().toCharArray());

client = new MqttAsyncClient(url, getClientld());

client.setCallback(callback);

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 176

https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html

loT Device Access
Developer Guide

4 Development on the Device Side

Port 1883 is a non-encrypted MQTT access port, and port 8883 is an
encrypted MQTTS access port (that uses SSL to load a certificate).
if (isSSL) {

url = "ssl://" + serverlp + ™" + 8883; // MQTTS connection

}else {
url = "tcp://" + serverlp + ":" + 1883; // MQTT connection

To establish an MQTTS connection, load the SSL certificate of the server and
add the SocketFactory parameter. The DigiCertGlobalRootCA.jks file stored
in the resources directory of the demo is a certificate for verifying the
platform identity. It is used for login authentication when the device connects
to the platform. You can download the certificate file using the link provided
in Certificates.

options.setSocketFactory(getOptionSocketFactory(MqttDemo.class.getClassLoader().getResource("Digi
CertGlobalRootCA.jks").getPath()));

Call client.connect(options, null, new IMqttActionListener()) to initiate a

connection. The MqgttConnectOptions object is passed.
client.connect(options, null, new IMqttActionListener()

The password passed by calling options.setPassword() is encrypted during
creation of the MqgttConnectOptions object. getPassword() is used to obtain

the encrypted password.
public static String getPassword() {
return sha256_mac(secret, getTimeStamp());

}
/* Call the SHA256 algorithm for hash calculation. */
public static String sha256_mac(String message, String tStamp) {
String passWord = null;
try {
Mac sha256_HMAC = Mac.getInstance("HmacSHA256");
SecretKeySpec secret_key = new SecretKeySpec(tStamp.getBytes(), "HmacSHA256");
sha256_HMAC.init(secret_key);byte[] bytes = sha256_HMAC.doFinal(message.getBytes());
passWord = byteArrayToHexString(bytes);
}catch (Exception e) {
LOGGER.info("Error HmacSHA256 ===========" + e.getMessage());
}

return passWord;

After the connection is established, the device becomes online.

e Lis Batch Registration Batch Deletion File Uploads analyze historical d

Al resource spaces ~ | | All products v || DeviceName T

Node ID Resource Space Product Node Type Operation

Online test2345 B2 Abbytest test010 Directly conne. View | Delete = Freeze

If the connection fails, the onFailure function executes backoff
reconnection. The example code is as follows:

@Override
public void onFailure(IMqttToken iMqttToken, Throwable throwable) {
System.out.println("Mqtt connect fail.");

// Backoff reconnection
int lowBound = (int) (defaultBackoff * 0.8);
int highBound = (int) (defaultBackoff * 1.2);
long randomBackOff = random.nextInt(highBound - lowBound);
long backOffWithlitter = (int) (Math.pow(2.0, (double) retryTimes)) * (randomBackOff +
lowBound);
long waitTImeUntilNextRetry = (int) (minBackoff + backOffWithlitter) > maxBackoff ?
maxBackoff : (minBackoff + backOffWithlitter);
System.out.println("---- " + waitTImeUntilNextRetry);
try {
Thread.sleep(waitTImeUntilNextRetry);
} catch (InterruptedException e) {
System.out.println("sleep failed, the reason is" + e.getMessage().toString());

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 177

IoT Device Access
Developer Guide 4 Development on the Device Side

}
retryTimes++;
MgttDemo.this.connect(true);

Subscribing to a Topic for Receiving Commands

Only devices that subscribe to a specific topic can receive messages about the
topic released by the MQTT broker. Learn about preset topics of the platform in
Topic Definition. For details about the APl information, see Delivering a
Command.

// Subscribe to a topic for receiving commands.
client.subscribe (getCmdRequestTopic(), gosLevel, null, new IMqttActionListener();

getCmdRequestTopic() is used to obtain the topic for receiving commands from

the platform and subscribe to the topic.
public static String getCmdRequestTopic() {
return "$oc/devices/" + deviceld + "/sys/commands/#";

}

Reporting Properties

Devices can report their properties to the platform. For details, see Reporting
Device Properties.

// Report)SON data. service_id must be the same as that defined in the product model.

String jsonMsg = "{\"services\": [{\"service_id\": \"Temperature\",\"properties\": {\"value\": 573} {\"service_id
\": \"Battery\",\"properties\": {\"level\": 80}}1}";

MqgttMessage message = new MqttMessage(jsonMsg.getBytes());

client.publish(getRreportTopic(), message, qosLevel, new IMqttActionListener();

The message body jsonMsg is assembled in JSON format, and service_id must be
the same as that defined in the product model. properties indicates a device
property, and 57 indicates the property value. event_time indicates the UTC time
when the device collects data. If this parameter is not specified, the system time is
used by default.

After a device or gateway is connected to the platform, you can call
MqttClient.publish(String topic,MgttMessage message) to report device
properties to the platform.

getRreportTopic() is used to obtain the topic for reporting data.
public static String getRreportTopic() {
return "$oc/devices/" + deviceld + "/sys/properties/report";

}

Viewing Reported Data

After the main method is called, you can view the reported device property data
on the device details page. For details about the API information, see Reporting
Device Properties.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 178

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html

IoT Device Access
Developer Guide 4 Development on the Device Side

Online

1 EERREEsT 1
Bl |

Nov 10, 2020 16:50:35 GMT+08:00 MQrT
Directly cannected

Abbytest

Latest Data Reported Query Historical Data @ | All Properties C
level value
88 57

<Battery>

(11 NOTE

If no latest data is displayed on the device details page, modify the services and properties
in the product model to ensure that the reported services and properties are the same as
those defined in the product model. Alternatively, go to the Products > Model Definition
page and delete all services.

Related Resources

You can refer to the MQTT API Reference to connect MQTT devices to the
platform. You can also use MQTT.fx to experience device access and verify
whether devices can interact with the platform and publish or subscribe to
messages.

4.3.4 Python Demo

Introduction

This section uses Python as an example to describe how to connect devices to the
platform over MQTTS/MQTT and how to report data and deliver commands
using platform APIs. For details about device access in other languages, see
Obtaining Resources.

Prerequisites

e You have installed Python by following the instructions provided in Installing
Python.

e You have installed a development tool (for example, PyCharm) by following
the instructions provided in Installing PyCharm.

e You have obtained the device access address from the loTDA console. For
details, see Platform Connection Information.

e You have created a product and device on the I0TDA console. For details, see
Creating a Product, Registering an Individual Device, or Registering a
Batch of Devices.

Preparations
e Installing Python

a. Go to the Python website to download and install a desired version.
(This procedure uses Windows OS as an example to describe how to
install Python 3.8.2.)

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 179

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3002.html
https://support.huaweicloud.com/en-us/qs-iothub/iot_05_0006.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3002.html
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0054.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0032.html
https://www.python.org/downloads/windows/

loT Device Access
Developer Guide 4 Development on the Device Side

About Downloads Documentation Community Success Stories News Events

Python »»Downloads »>Windows

Python Releases for Windows

|
E.- Latest Python 3 Release - Python 3.8.2 ;

s v F
= Latest Python 2 Release - Python 2.7.18

Stable Releases Pre-releases

= Python 2.7.18 - April 20, 2020 = Python 2.7.18rcl - April 4, 2020
= Download Windows debug information files = Download Windows debug information files
= Download Windows debug information files for 64-bit binaries = Download Windows debug information files for 64-bit bina
= Nawmnlnad Windoue hain fila = Nowmnlnad Windowe hain fila

b. After the download is complete, run the .exe file to install Python.

c. Select Add python 3.8 to PATH (if it is not selected, you need to
manually configure environment variables), click Customize installation,
and install Python as prompted.

2 Python 3.8.2 (B4-bit) Setup ==

Install Python 3.8.2 (64-bit)

Select Install Now to install Python with default settings, or che
Customize to enable or disable features.

— Install Now
ChUsers\hantiangi\AppData‘\Local\Programs\Python'\Python

Includes IDLE, pip and documentation
Creates shortcuts and file associations

— Customize installation
Choose location and features

python

for 1 Install launcher for all users (recommended)

WIﬂdUWS Add Python 3.8 to PATH

d. Check whether Python is installed.

Press Win+r, enter cmd, and press Enter to open the CLI. In the CLI,
enter python -V and press Enter. If the Python version is displayed, the
installation is successful.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 180

loT Device Access

Developer Guide 4 Development on the Device Side

EX Command Prompt

e Installing PyCharm (If you have already installed PyCharm, skip this step.)

a. Visit the PyCharm website, select a version, and click Download.

Download PyCharm

Professional Community

Scientific and Web Python For pure Python development

nent. With HTML, JS, and SOL

For both

8 Apr
o

System requirements
nstallation Instructions

Other versions

Get the Toolbox App to download PyCharm
and its future updates with ease

The professional edition is recommended.
b. Run the .exe file and install PyCharm as prompted.

Importing Sample Code

Step 1 Download the QuickStart (Python).
Step 2 Run PyCharm, click Open, and select the sample code downloaded.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 181

https://www.jetbrains.com/pycharm/download/#section=windows
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(python).zip

IoT Device Access
Developer Guide 4 Development on the Device Side

Version Control

Step 3 Import the sample code.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 182

loT Device Access
Developer Guide 4 Development on the Device Side

File Edit View Navigate Code Refacto

mqttdemo(python) loT_device_demo

Project = D =

mqttdemo(python)
v loT _device
client
% _init__.py
a loT_client.py
» loT_client_config.py
request
resources
utils
loT _device demo
» command_sample.py
& message_sample.py
» properties_sample.py

requestments.txt

Description of the directories:

e loT_device_demo: MQTT demo files
message_sample.py: Demo for devices to send and receive messages

command_sample.py: Demo for devices to respond to commands delivered by
the platform

properties_sample.py: Demo for reporting properties
e loT _device/client: Used for paho-mqtt encapsulation
loT_client_config.py: Client configurations, such as the device ID and secret.

loT_client.py: MQTT-related function configurations, such as connection,
subscription, release, and response.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 183

IoT Device Access
Developer Guide 4 Development on the Device Side

e loT_device/Utils: Tool methods, such as obtaining the timestamp and
encrypting a secret

e loT_device/resources: Stores certificates.

e loT_device/request: Encapsulates device properties, such as commands,
messages, and properties.

Step 4 (Optional) Install the paho-mqtt library, which is a third-party library that uses the
MQTT protocol in Python. If the paho-mqtt library has already been installed, skip
this step. You can install paho-mqtt using either of the following methods:

e Method 1: Use the pip tool to install paho-mqtt in the CLI. (The tool is already
provided when installing Python.)

In the CLI, enter pip install paho-mqtt and press Enter. If the message
Successfully installed paho-mqtt is displayed, the installation is successful. If
a message is displayed indicating that the pip command is not an internal or
external command, check the Python environment variables. See the figure
below.

BE CAwindows\system32\cmd.exe - [m] *

. done

e Method 2: Install paho-mqtt using PyCharm.

a. Open PyCharm, choose File > Setting > Project Interpreter, and click the
plus icon (+) on the right side to search for paho-mqtt.

Project: mqttdemo(python) > Project Interpreter

> Appearance & Behavior Project Interpreter: | igh Pyth
Keymap

» Editor
Plugins

» Version Control

¥ Project: mgttdemo(python)

» Build, Execution, Deployment
b Languages & Frameworks

> Tools

Pylint

b. Click Install Package in the lower left corner.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 184

IoT Device Access
Developer Guide 4 Development on the Device Side

PC| Available Pack

paho-mqtt

iottalk-paho-mqtt

trio-paho-mgtt

nstall to user's

nstall Package

--—-End

Establishing a Connection

Before you connect a device or gateway to the platform, establish a connection
between the device or gateway and the platform by providing the device or
gateway information.

1. Before establishing a connection, modify the following parameters. The

loTClientConfig class is used to configure client information.

Client configurations

client_cfg = loTClientConfig(server_ip='iot-mqtts.cn-north-4.myhuaweicloud.com’,

device_id='5e85a55f60b7b804c51ce15¢c_py123', secret='123456789', is_ssl=True)

Create a device.

iot_client = lotClient(client_cfg)

- server_ip: Indicates the device interconnection address of the platform.
To obtain this address, see Platform Interconnection Information. (After
obtaining the domain name, run the ping Domain name command in the

CLI to obtain the corresponding IP address.)
- device_id and secret: Obtain the values after the device is registered.

- is_ssl: True means to establish an MQTTS connection and False means to
establish an MQTT connection.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 185

https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html

loT Device Access
Developer Guide

4 Development on the Device Side

2. Call the connect method to initiate a connection.
iot_client.connect()

If the connection is successful, the following information is displayed:

----------------- Connection successful !!!

If the connection fails, the retreat_reconnection function executes backoff
reconnection. The example code is as follows:

Backoff reconnection
def retreat_reconnection(self):
print("---- Backoff reconnection")
global retryTimes
minBackoff = 1
maxBackoff = 30
defaultBackoff = 1
low_bound = (int) (defaultBackoff * 0.8)
high_bound = (int) (defaultBackoff * 1.2)
random_backoff = random.randint(0, high_bound - low_bound)
backoff_with_jitter = math.pow(2.0, retryTimes) * (random_backoff + low_bound)
wait_time_until_next_retry = min(minBackoff + backoff_with_jitter, maxBackoff)
print("the next retry time is ", wait_time_until_next_retry, " seconds")
retryTimes += 1
time.sleep(wait_time_until_next_retry)
self.connect()

Subscribing to a Topic

Only devices that subscribe to a specific topic can receive messages about the
topic released by the MQTT broker. Learn about preset topics of the platform in
Topic Definition.

The message_sample.py file provides functions such as subscribing to topics,
unsubscribing from topics, and reporting device messages.

To subscribe to a topic for receiving commands, do as follows:
iot_client.subscribe(r'$oc/devices/' + str(self__device_id) + r'/sys/commands/#")

If the subscription is successful, information similar to the following is displayed.
(topic indicates a custom topic, for example, topic_1.)

------ You have subscribed: topic

Responding to Command Delivery

The command_sample.py file provides the function of responding to commands
delivered by the platform. For details about the APl information, see Delivering a
Command.

Responding to commands delivered by the platform
def command_callback(request_id, command):

If the value of result_code is 0, the command is delivered . If the value is 1, the command fails to be
delivered.

iot_client.respond_command(request_id, result_code=0)
jot_client.set_command_callback(command_callback)

Reporting Properties

Devices can report their properties to the platform. For details, see Reporting
Device Properties.

The properties_sample.py file provides the functions of reporting device
properties, responding to platform settings, and querying device properties.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 186

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html

IoT Device Access
Developer Guide 4 Development on the Device Side

In the following code, the device reports properties to the platform every 10
seconds. service_property indicates a device property object. For details, see the
services_propertis.py file.

Reporting properties periodically

while True:
Set properties based on the product model.
service_property = ServicesProperties()
service_property.add_service_property(service_id="Battery", property='batteryLevel', value=1)
iot_client.report_properties(service_properties=service_property.service_property, qos=1)
time.sleep(10)

If the reporting is successful, the reported device properties are displayed on the
device details page.

MarT

Directly connected

Abbytest

Latest Data Reported Query Historical Data @ | Al Properties C
batteryLevel
1

<Battery>

(10 NOTE

If no latest data is displayed on the device details page, modify the services and properties
in the product model to ensure that the reported services and properties are the same as
those defined in the product model. Alternatively, go to the Products > Model Definition
page and delete all services.

Reporting Messages

Message reporting refers to the process in which a device reports messages to the
platform. The message_sample.py file provides the message reporting function.

Sending a message to the platform using the default topic
iot_client.publish_message('raw message: Hello Huawei cloud loT")

If the message is reported, the following information is displayed:

Publish success---mid = 1

4.3.5 Android Demo

Overview
This section uses Android as an example to describe how to connect a device to
the loT platform over MQTTS or MQTT and how to use platform APIs to report
data and deliver commands. For details on other programming languages, see
Device Development Resources.

Prerequisites

e You have installed Android Studio. If not, install Android Studio by following
the instructions provided on the Android website and then install the JDK.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 187

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3002.html
https://developer.android.google.cn/studio/#downloads

loT Device Access
Developer Guide

4 Development on the Device Side

Preparations

You have obtained the device access addresses from the loTDA console. For
details, see Platform Connection Information.

You have created a product and device on the 10TDA console. For details, see
Creating a Product, Registering an Individual Device, or Registering a

Batch of Devices.

Install Android Studio.

Go to the Android website to download and install a desired version. The
following uses Android Studio 3.5 running on 64-bit Windows 10 as an

example.

Android Studio downloads

Platform ‘Android Studio package Size

droid-studio-ide-192.6392135- dow:
android-studio-ide- windows.exe e
e Recommended
(64bit)
android-studio-ide-192.6392135-windows.zip 770MB

No _exe installer

windows android-studio-ide-192.6392135-windows32.zip

(@2b1) 770 MB

No _exe installer

Mac

(6451 android-studio-ide-192.6392135-mac.dmg 768 MB

Linux

(6a01) android-studio-ide-192.6392135-linux.tar.gz 772 M8

Chrome 08 android-studio-ide-192.6392135-cros.deb 653 MB

SHA-256 checksum

1d09e57fh151197155ef5f115f06e59

248f8ce467b935c25089b90cad402d21 dd45ddbadaliad3shaeeba14609e483

7b24742726bbe8b40a55dab1 7 1 do

Jea72b3a62572¢7 2bdeac37a0834b0a0984d9583

33ec961b20b71cal75cd39083b1379ebbaB96de78b826ea5df5d440c0add2a

59023aaabc7d5822fd7b1c5a715689b18e487caBd7fd4320c3547ee0ad390edca

Install the JDK. You can also use the built-in JDK of the IDE.

a. Go to the Oracle website to download a desired version. The following
uses JDK 8 for Windows x64 as an example.

b. After the download is complete, run the installation file and install the

JDK as prompted.

Importing Sample Code

Step 1 Download the sample code quickStart(Android).

Step 2 Run Android Studio, click Open, and select the sample code downloaded.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 188

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0054.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0032.html
https://developer.android.google.cn/studio/#downloads
https://www.oracle.com/java/technologies/javase-downloads.html
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/mqttdemo(android).zip

loT Device Access
Developer Guide

4 Development on the Device Side

Welcome to Android Studio

Open File or Project

L o R O Hide path
\MqttAndroidClient-master1\quickStart(Android) +

quickStart(Android)
® mqttdemo(android)
® app
libs
src
= .gitignore
& build.gradle
= proguard-rules.pro
gradle
wrapper
= .gitignore
& build.gradle
.1 gradle properties
= gradlew
= gradlew.bat
11 local.properties

G settings.gradle
| drop a file into the space above to quickly locate it in the tree

“ Canral Heln
Step 3 Import the sample code.

W j

Android Studio

Version 3.5

+ Start a new Android Studio project

&= Open an existing Android Studio project

|4 Check out project from Version Control =
[¢' Profile or debug APK

¥ Import project (Gradle, Eclipse ADT, etc.)

¥ Import an Android code sample

@ Events ¥ %X Configure

GetHelp =

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd.

189

loT Device Access

Developer Guide 4 Development on the Device Side
Android « 6 = 0 —
- app
manifests

we AndroidManifest.xml
java
com.iot. mgttdemo
€ ConnectUtils
€ MainActivity
com.iot. ngttdemo (androidTest)
com.iot. mgttdemo (test)
% java (generated)
assets
- DigiCertGlobalRootCA.bks
res
res (generated)
@ Gradle Scripts
build.gradle (Project: MqgttDemo)
build.gradle (Module: app)
.1 gradle-wrapper.properties (Gradle Version)
= proguard-rules.pro (FroGuard Rules for app)
.1 gradle.properties (Project Properties)
settings.gradle (Project Settings)
.1 local.properties (SDK Location)

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 190

loT Device Access
Developer Guide

4 Development on the Device Side

mqttdemo(android) app libs

&
H|4

Project =

mgttdemo(android) [MqttDemo]
.gradle
idea
app
build
libs
org.eclipse.paho.android.service-1.1.0.jar
org.eclipse.paho.client. ngttv3-1.2.0.jar
STC

.gitignore

app.iml
build.gradle
proguard-rules.pro

gradle

Description of the directories:

manifests: configuration file of the Android project
java: Java code of the project

MainActivity: demo Ul class

ConnectUtils: MQTT connection auxiliary class
asset: native file of the project

DigiCertGlobalRootCA.bks: certificate used by the device to verify the
platform identity. It is used for login authentication when the device connects
to the platform.

res: project resource file (image, layout, and character string)
gradle: global Gradle build script of the project
libs: third-party JAR packages used in the project

org.eclipse.paho.android.service-1.1.0.jar: component for Android to start
the background service component to publish and subscribe to messages

org.eclipse.paho.client.mqttv3-1.2.0.jar: MQTT java client component

Step 4 (Optional) Understand the key project configurations in the demo. (By default,
you do not need to modify the configurations.)

AndroidManifest.xml: Add the following information to support the MQTT
service.

<service android:name="org.eclipse.paho.android.service.MqttService" />

build.gradle: Add dependencies and import the JAR packages required for the
two MQTT connections in the libs directory. (You can also add the JAR
package to the website for reference.)

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 191

IoT Device Access
Developer Guide 4 Development on the Device Side

implementation files('libs/org.eclipse.paho.android.service-1.1.0.jar")
implementation files('libs/org.eclipse.paho.client. mqttv3-1.2.0.jar")

--—-End

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 192

IoT Device Access
Developer Guide 4 Development on the Device Side

Ul Display

MQTT Demo

Device ID device id

Device Secret device password

[] Ne SSL Encryption Qos 0

Service ID Battery

Property level Value 75

Operation Log (click to clear)

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 193

IoT Device Access
Developer Guide 4 Development on the Device Side

1. The MainActivity class provides Ul display. Enter the device ID and secret,
which are obtained after the device is registered on the IoTDA console or by
calling the API Creating a Device.

2. In the example, enter the domain name for device access. (The domain name
must match and be used together with the corresponding certificate file

during SSL-encrypted access.)
private final static String IOT_PLATFORM_URL = "iot-mqtts.cn-north-4.myhuaweicloud.com";

3. Select SSL encryption or no encryption when establishing a connection on the
device side and set the QoS mode to 0 or 1. Currently, QoS2 is not supported.

For details, see Constraints.
checkbox_mgqtt_connet_ssl.setOnCheckedChangeListener(new
CompoundButton.OnCheckedChangelListener() {
@Override
public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {
if (isChecked) {
isSSL = true;
checkbox_mgqtt_connet_ssl.setText ("SSL encryption");
}else {
isSSL = false;
checkbox_mqtt_connet_ssl.setText ("no SSL encryption");
}
}
)

Establishing a Connection

To connect a device or gateway to the platform, upload the device information to
bind the device or gateway to the platform.

1. Call the MainActivity class to establish an MQTT or MQTTS connection. By
default, MQTT uses port 1883, and MQTTS uses port 8883 (a certificate must

be loaded).

if (isSSL) {
editText_mqtt_log.append("Starting to establish an MQTTS connection" + "\n");
serverUrl = "ssl://" + IOT_PLATFORM_URL + ":8883";

}else {
editText_mqtt_log.append("Starting to establish an MQTT connection" + "\n");
serverUrl = "tcp://" + IOT_PLATFORM_URL + ":1883";

}

2. Call the getMqttsCerificate method in the ConnectUrtils class to load an SSL
certificate. This step is required only if an MQTTS connection is established.

The DigiCertGlobalRootCA.bks file is used to verify the platform identity
when the device connects to the platform. You can download the certificate

file using the link provided in Certificates.

SSLContext sslContext = SSLContext.getInstance("SSL");

KeyStore keyStore = KeyStore.getInstance("bks");

The keyStore.load(context.getAssets().open("DigiCertGlobalRootCA.bks"), null);// Load the certificate
in the libs directory.

TrustManagerFactory trustManagerFactory = TrustManagerFactory.getinstance("X509");
trustManagerFactory.init(keyStore);

TrustManager([] trustManagers = trustManagerFactory.getTrustManagers();

sslContext.init(null, trustManagers, new SecureRandom());

sslSocketFactory = sslContext.getSocketFactory();

3. Call the intitMgttConnectOptions method in the MainActivity class to
initialize MqttConnectOptions. The recommended heartbeat interval for
MQTT connections is 120 seconds. For details, see Constraints.
mqttAndroidClient = new MqttAndroidClient(mContext, serverUrl, clientld);
private MgttConnectOptions intitMgttConnectOptions(String currentDate) {

String password =
ConnectUtils.sha256_HMAC (editText_mqtt_device_connect_password.getText().toString(),

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 194

loT Device Access
Developer Guide 4 Development on the Device Side

currentDate);
MgttConnectOptions mqgttConnectOptions = new MqttConnectOptions();
mqttConnectOptions.setAutomaticReconnect(true);
mqttConnectOptions.setCleanSession(true);
mqttConnectOptions.setKeepAlivelnterval(120);
mqttConnectOptions.setConnectionTimeout(30);
mqttConnectOptions.setUserName(editText_mqtt_device_connect_deviceld.getText().toString());
mqttConnectOptions.setPassword (password.toCharArray());
return mqgttConnectOptions;

}

4. Call the connect method in the MainActivity class to set up a connection and
the setCallback method to process the message returned after the

connection is set up.
mqttAndroidClient.connect(mqttConnectOptions, null, new IMqttActionListener()
mqttAndroidClient.setCallback(new MqttCallBack4loTHub());

If the connection fails, the onFailure function in initMgttConnects executes
backoff reconnection. Sample code:

@Override
public void onFailure(IMgttToken asyncActionToken, Throwable exception) {
exception.printStackTrace();
Log.e(TAG, "Fail to connect to: " + exception.getMessage());
editText_mgqtt_log.append("Failed to set up the connection: "+ exception.getMessage() + "\n");

/ /Backoff reconnection
int lowBound = (int) (defaultBackoff * 0.8);
int highBound = (int) (defaultBackoff * 1.2);
long randomBackOff = random.nextInt(highBound - lowBound);
long backOffWithlitter = (int) (Math.pow(2.0, (double) retryTimes)) * (randomBackOff + lowBound);
long waitTImeUntilNextRetry = (int) (minBackoff + backOffWithlitter) > maxBackoff ? maxBackoff :
(minBackoff + backOffWithlitter);

try {

Thread.sleep(waitTImeUntilNextRetry);

} catch (InterruptedException e) {

System.out.println("sleep failed, the reason is" + e.getMessage().toString());

retryTimes++;
MainActivity.this.initMgttConnects();
}

Subscribing to a Topic

Only devices that subscribe to a specific topic can receive messages about the
topic released by the broker. Topic Definition describes preset topics of the
platform.

The MainActivity class provides the methods for delivering subscription
commands to topics, subscribing to topics, and unsubscribing from topics.

String mqtt_sub_topic_command_json = String.format("$oc/devices/%s/sys/commands/#",
editText_mqtt_device_connect_deviceld.getText().toString());
mqttAndroidClient.subscribe(getSubscriptionTopic(), qos, null, new IMqttActionListener()
mqttAndroidClient.unsubscribe (getSubscriptionTopic(), null, new IMgttActionListener()

If the connection is established, you can subscribe to the topic using a callback
function.

mqttAndroidClient.connect(mqgttConnectOptions, null, new IMqttActionListener() {
@Overridepublic void onSuccess(IMqttToken asyncActionToken) {
subscribeToTopic();
}

After the connection is established, the following information is displayed in the
log area of the application page:

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 195

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3004.html

loT Device Access
Developer Guide 4 Development on the Device Side

Levice ID
Device Secret -3:3:335:5535"!5:-!-
SSL Encryption Qos 0

Service ID Battery

Property level Value 75

Operation Log (click to clear)

1303
Subscribe to topic:Soc/devices/

MOQTT connection

established ssl:/fiot-mqtts.cn-north-4
.myhuaweicloud.com:8883

Topic subscribed.

Reporting Properties

A device reports its properties to the platform. For details on the API, see
Reporting Device Properties.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 196

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html

IoT Device Access
Developer Guide 4 Development on the Device Side

The MainActivity class implements the property reporting topic and property
reporting.

String mqtt_report_topic_json = String.format("$oc/devices/%s/sys/properties/report",
editText_mqtt_device_connect_deviceld.getText().toString());

MgttMessage mqttMessage = new MqttMessage();

mqttMessage.setPayload(publishMessage.getBytes());
mqttAndroidClient.publish(publishTopic, mgttMessage);

If the reporting is successful, the reported device properties are displayed on the
device details page.

Device Details

Overview Commands Device Shadow Message Trace Child Devices Tags

streetlight Online

streetlight £

Secret Reset Secret

BearPi Street

Directly connected

Abbytest

Latest Data Reported Query Historical Data @ All Properties C

luminance ECL
57 80
Sensor -Connectivity>
(11 NOTE

If no latest data is displayed on the device details page, modify the services and properties
in the product model to ensure that the reported services and properties are the same as
those defined in the product model. Alternatively, go to the Products > Model Definition
page and delete all services.

Receiving Commands

The MainActivity class provides the methods for receiving commands delivered by
the platform. After an MQTT connection is established, you can deliver commands
on the device details page of the IoTDA console or by using the demo on the
application side. For example, deliver a command carrying the parameter name
command and parameter value 5. After the command is delivered, a result is
received using the MQTT callback function.

private final class MqttCallBack4loTHub implements MqttCallbackExtended {

@Overridepublic void messageArrived(String topic, MgttMessage message) throws Exception {
Log.i(TAG, "Incoming message: " + new String(message.getPayload(), StandardCharsets.UTF_8));
editText_mgqtt_log.append ("MQTT receives the delivered command: " + message + "\n")

}

On the device details page, you can view the command delivery status. In this
example, timeout is displayed because this demo does not return a response to
the platform.

If the property reporting and command receiving are successful, the following
information is displayed in the log area of the application:

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 197

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/device/all-device
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

IoT Device Access
Developer Guide 4 Development on the Device Side

Device 11D I:I:l:l:l:I:I:I:I:l:l:I:I:I:I:l:l:l:I:I:I:I:I:I:I:I:I:I:l:l:l:l:l:l

Device Secret m

SSL Encryption Qos 0

Service [0 Battery

Property level Value 75

Operation Log (click to clear)

Properties to report: {"services"™
[{"service_id™:"Battery", properties"{level:"75"}}|}
roperty reporting topic: Soc/devices/

properties/report
MQTT message to push: {"services™

[{"service_id™."Battery", properties"{"level."75"}]}
Properties reported.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 198

IoT Device Access
Developer Guide 4 Development on the Device Side

4.3.6 C Demo

Overview
This section uses C as an example to describe how to connect a device to the loT
platform over MQTTS or MQTT and how to use platform APIs to report data and
deliver commands. For details on other programming languages, see Device
Development Resources.
Prerequisites
e You have installed the Linux operating system (OS) is used and GCC (4.8 or
later).
e You have obtained OpenSSL (required in MQTTS scenarios) and Paho library
dependencies.
e You have obtained the device access addresses from the 10TDA console. For
details, see Platform Connection Information.
e You have created a product and device on the IoTDA console. For details, see
Creating a Product, Registering an Individual Device, or Registering a
Batch of Devices.
Preparations

e Compile the OpenSSL library.

a. Visit the OpenSSL website (https://www.openssl.org/source/), download
the latest OpenSSL version (for example, openssl-1.1.1d.tar.gz), upload it
to the Linux compiler (for example, in the directory /home/test), and run
the following command to decompress the package:
tar -zxvf openssl-1.1.1d.tar.gz

b. Generate a makefile.

Run the following command to access the OpenSSL source code
directory:
cd openssl-1.1.1d

Run the following configuration command:

./config shared --prefix=/home/test/openssl --openssldir=/home/test/openssl/ssl

In this command, prefix is the installation directory, openssldir is the
configuration file directory, and shared is used to generate a dynamic-
link library (.so library).

If an exception occurs during the compilation, add no-asm to the
configuration command (indicating that the assembly code is not used).

./config no-asm shared --prefix=/home/test/openssl --openssldir=/home/
test/openssl/ssl

c. Generate library files.
Run the following command in the OpenSSL source code directory:
make depend

Run the following command for compilation:
make

Install OpenSSL.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 199

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3002.html
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0054.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0032.html
https://www.openssl.org/source/

IoT Device Access
Developer Guide 4 Development on the Device Side

make install
Find the lib directory in home/test/openssl under the OpenSSL

installation directory. The library files libcrypto.so.1.1, libssl.so.1.1,
libcrypto.so and libssl.so are generated.

Copy these files to the lib folder of the demo and copy the content in /
home/test/openssl/include/openssl to include/openssl of the demo.

engines-1.1
pkgconfig

| libcrypto

| libcrypto.so

| libcrypto.so.1.1

| libssl.a

| libsslso

| libsslso.1.1

Note: Some compilation tools are 32-bit. If these tools are used on a 64-
bit Linux computer, delete -m64 from the makefile before the
compilation.

e Compile the Eclipse Paho library file.
a. Visit https://github.com/eclipse/paho.mqtt.c to download the source
code paho.mqtt.c.
b. Decompress the package and upload it to the Linux compiler.
c. Modify the makefile.

i. Run the following command to edit the makefile:
vim Makefile

ii. Display the number of rows.
'set nu

ii. Add the following two lines (customized OpenSSL header files and

library files) after line 129:
CFLAGS += -I/home/test/openssl/include
LDFLAGS += -L/home/test/openssl/lib -lrt

CFL » +=

LDFLAGS +=

iv. Change the addresses in lines 195, 197, 199, and 201 to the
corresponding addresses.

ftest /AN L1b

ffopenss LS

d. Start the compilation.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 200

https://github.com/eclipse/paho.mqtt.c

loT Device Access
Developer Guide 4 Development on the Device Side

i. Run the following command:
make clean

ii. Run the following command:
make

e. After the compilation is complete, you can view the libraries that are
compiled in the build/output directory.

L

samples

test
| | libpaho-mqtt3a.so
| | libpaho-mqtt3a.so.l
| | libpaho-mqtt3a.so.1.0
| | libpaho-mott3as.zo
|| libpaho-mgtt3as.so.l
| | libpaho-mqtt3as.sc.1.0
| | libpaho-mgtt3c.so
| | libpaho-mgtt3c.so.l
| | libpaho-mqtt3c.so.1.0
| | libpaho-mqtt3cs.se.1.0
| | libpaho-mgtt3cs.s0.1.1
| | libpaho-mqttics.so.l.s0

| [paheo_c_version

f. Copy the Paho library file.

Currently, only libpaho-mqtt3as is used in the SDK. Copy the libpaho-
mqtt3as.so and libpaho-mqtt3as.so.1 files to the lib folder of the demo.
Go back to the Paho source code directory, and copy MQTTAsync.h,
MQTTClient.h, MQTTClientPersistence.h, MQTTProperties.h,
MQTTReasonCodes.h, and MQTTSubscribeOpts.h in the src directory to
the include/base directory of the demo.

Importing Sample Code

Step 1 Download the sample code quickStart(C).

Step 2 Copy the code to the Linux running environment. The following figure shows the
code file hierarchy.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 201

https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(c).zip

IoT Device Access
Developer Guide 4 Development on the Device Side

v == mgtt ¢ demo
[all Includes
v [src
w = util
l.g| string util.c
L] mgtt_c demo.c
v (= conf

= util
= lib
Malkefile

Description of the directories:

e src: source code directory
mqtt_c_demo: core source code of the demo
util/string_util.c: tool resource file

e conf: certificate directory

rootcert.pem: certificate used by the device to verify the platform identity. It
is used for login authentication when the device connects to the platform.

e include: header files
base: dependent Paho header files
openssl: dependent OpenSSL header files
util: header files of the dependent tool resources
e lib: dependent library file
libcrypto.so*/libssl.so*: OpenSSL library file
libpaho-mqtt3as.so*: Paho library file
o Makefile: Makefile

--—-End

Establishing a Connection

To connect a device or gateway to the platform, upload the device information to
bind the device or gateway to the platform.

1. Set parameters.
char *uri = "ssl://iot-mqtts.cn-north-4.myhuaweicloud.com:8883";
int port = 8883;
char *username = "5ebac693352cfb02c567ec88_test2345"; //deviceld
//char *username = "test6789";
char *password = "602d6cc77d87271be8f462f52d27d818";

Note: MQTTS uses port 8883 for access. If MQTT is used for access, the URL is
tcp://iot-mqgtts.cn-north-4.myhuaweicloud.com:1883 and the port is 1883.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 202

IoT Device Access
Developer Guide 4 Development on the Device Side

2. Start the connection.

- Run the make command to perform compilation. Delete -m64 from the
makefile in a 32-bit OS.

- Run export LD_LIBRARY_PATH=./lib/ to load the library file.
- Run./MQTT_Demo.o.

//connect

int ret = mqtt_connect();

if (ret!=0) {

printf("connect failed, result %d\n", ret);

3. If the connection is successful, the message "connect success" is displayed.
The device is also displayed as Online on the console.

begin to connect the server.

connect success.

All Devices Batch Registe

i Batch Registration Batch Deletion File Uploads

All resource spaces v || All products v || DeviceName ~ Qllc
Status Device Name Node ID Resource Space Product. Node Type Operation

Online streetlight et Abbytest BearPi_Street Directly conne, C Delete = Freeze

Inactive hhjxgx £ Test BearPl_Smoke Directly canne ew | Delete

If the connection fails, the mqtt_connect_failure function executes
backoff reconnection. Sample code:

void mqtt_connect_failure(void *context, MQTTAsync_failureData *response) {
retryTimes++;
printf("connect failed: messageld %d, code %d, message %s\n", response->token, response->code,
response->message);
/ /Backoff reconnection
int lowBound = defaultBackoff * 0.8;
int highBound = defaultBackoff * 1.2;
int randomBackOff = rand() % (highBound - lowBound + 1);
long backOffWithlitter = (int) (pow(2.0, (double)retryTimes) - 1) * (randomBackOff + lowBound);
long waitTImeUntilNextRetry = (int) (minBackoff + backOffWithlitter) > maxBackoff ? (minBackoff +
backOffWithlitter) : maxBackoff;

TimeSleep(waitTImeUntilNextRetry);

//connect
int ret = mqtt_connect();
if (ret !=0) {
printf("connect failed, result %d\n", ret);
}
}

Subscribing to a Topic

Only devices that subscribe to a specific topic can receive messages about the
topic released by the broker. Topic Definition describes preset topics of the
platform.

Subscribe to a topic.

//subcribe

char *cmd_topic = combine_strings(3, "$oc/devices/", username, "/sys/commands/#");
ret = mqtt_subscribe(cmd_topic);

free(cmd_topic);

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 203

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3004.html

loT Device Access
Developer Guide

4 Development on the Device Side

cmd_topic = NULL;
if (ret <0) {
printf("subscribe topic error, result %d\n", ret);

}

If the subscription is successful, the message "subscribe success" is displayed in the
demo.

Reporting Properties

Devices can report their properties to the platform. For details, see Reporting
Device Properties.

//publish data

char *payload = "{\"services\":[{\"service_id\":\"parameter\",\"properties\":{\"Load\":\"123\" \"ImbA_strVal\":
\"456\"}}1}";

char *report_topic = combine_strings(3, "$oc/devices/", username, "/sys/properties/report");

ret = mqtt_publish(report_topic, payload);

free(report_topic);

report_topic = NULL;

if (ret <0) {

printf("publish data error, result %d\n", ret);

}

If the property reporting is successful, the message "publish success" is displayed
in the demo.

The reported properties are displayed on the device details page.

Device Details

Overview Commands Device Shadow Message Trace Child Devices Tags

streetlight Online

streetlight £
Secret Reset Secret

BearPi Street

Directly connected

Abbytest

Latest Data Reported Query Historical Data @ | Al Properties
luminance ECL
57 80
Sensor Connectivity:

If no latest data is displayed on the device details page, modify the services and properties
in the product model to ensure that the reported services and properties are the same as
those defined in the product model. Alternatively, go to the Products > Model Definition
page and delete all services.

Receiving Commands

After subscribing to a command topic, you can deliver a synchronous command on
the console. For details, see Synchronous Command Delivery to MQTT Devices.

If the command delivery is successful, the command received is displayed in the
demo:

iccess, the topic is $oc

, the payload is {"paras

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 204

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/device/all-device
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0046.html#section3

IoT Device Access
Developer Guide 4 Development on the Device Side

The code for receiving commands in the demo is as follows:

//receive message from the server

int mqtt_message_arrive(void *context, char *topicName, int topicLen, MQTTAsync_message *message) {
printf("mqtt_message_arrive() success, the topic is %s, the payload is %s \n", topicName, message-
>payload);

return 1; //can not return 0 here, otherwise the message won't update or something wrong would happen

}
4.3.7 C# Demo

Overview
This section uses C# as an example to describe how to connect a device to the loT
platform over MQTTS or MQTT and how to use platform APIs to report data and
deliver commands. For details on other programming languages, see Device
Development Resources.
Prerequisites
e You have installed Microsoft Visual Studio. If not, follow the instructions
provided in Install Microsoft Visual Studio.
e You have obtained the device access addresses from the loTDA console. For
details, see Platform Connection Information.
e You have created a product and device on the IoTDA console. For details, see
Creating a Product, Registering an Individual Device, or Registering a
Batch of Devices.
Preparations

e Go to the Microsoft website to download and install Microsoft Visual Studio
of a desired version. (This document uses Windows 64-bit, Microsoft Visual
Studio 2017, and .NET Framework 4.5.1 as examples.)

e After the download is complete, run the installation file and install Microsoft
Visual Studio as prompted.
Importing Sample Code
Step 1 Download the sample code quickStart(C#).

Step 2 Run Microsoft Visual Studio 2017, click Open Project/Solution, and select the
sample downloaded.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 205

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3002.html
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0054.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0032.html
https://visualstudio.microsoft.com/zh-hans/
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(cSharp).zip

IoT Device Access
Developer Guide 4 Development on the Device Side

Open
Get code from a remote version control system or open

cout from:

Azure DevOps

Bl O pen Project / Solution
Open Folder

Open Website

New o) r"{'_'.'l_j ect

Recent project templates:

WPF App [.NET Framework)
Windows Forms (-MET Frame
App [.NET Core)

Class Library (NET Core)

Blank Ap p Il Iniversal Windows)

Class Library (MET Standard)

Step 3 Import the sample code.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 206

loT Device Access
Developer Guide

4 Development on the Device Side

Solution Explorer

(a1 OOF -

device demo_mgttnet
M Properties
=8 References

= Utility

E=] FrmMgttDem

™ FrmM qttDe

T Frrr iMgttDeme
CIR FrmMgttDemo

BN FrmMgttDen

" Program.c

PN Program

leam Explorer

Description of the directories:

App.config: server address and device information configuration file
C#: C# code of the project

EncryptUtil.cs: auxiliary class for device key encryption
FrmMgttDemao.cs: window Ul

Program.cs: entry for starting the demo

dll: third-party libraries used in the project

MQTTnet v3.0.11 is a high-performance .NET open-source library based on
MQTT communications. It supports both MQTT servers and clients. The
reference library file contains MQTTnet.dllL
MQTTnet.Extensions.ManagedClient: v3.0.11 is an extended library that
uses MQTTnet to provide additional functions for the managed MQTT client.

Step 4 Set the project parameters in the demo.

App.config: Set the server address, device ID, and device secret. When the
demo is started, the information is automatically written to the demo main

page.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 207

loT Device Access
Developer Guide

4 Development on the Device Side

Ul Display

<add key="serverUri" value="serveruri"/>
<add key="deviceld" value="deviceid"/>
<add key="deviceSecret" value="secret"/>
<add key="PortlsSsl" value="8883"/>
<add key="PortNotSsl" value="1883"/>

----End
85! MOTT Device Access Simulater - [m] x
[S5L Connection [] Enable Backoff Recormect QoS |0 ~ Conmect
Server Address [iotngtts cnmorth4. mybuaweicl| Device In [Sebde _test_L£d5746511 | Device Secret
Topic to Subscribe |$oc/devices,-"5eb4cc 31_test_1£d8746511sy=/command=s/% ‘
Log Clear Loz
Topic to Publish |$oe/devices/Beb i1_test_1fda746611 /sy=/properties/report
{:serviEes”;[{”propertiss”:y .
alarm”:1, “temperature” 92 670784, “humidi ty": 78. 37673, “smokeloncentration”: 19. 97906}, "service_id”: "smokeletector”, “event_time”:mull}]}

The FrmMgqttDemo class provides a Ul. By default, the FrmMqttDemo class
automatically obtains the server address, device ID, and device secret from the
App.config file after startup. Set the parameters based on the actual device
information.

- Server address: indicates the domain name. For details on how to obtain
the domain name, see Platform Connection Information.

- Device ID and secret: obtained after the device is registered on the
IoTDA console or the API Creating a Device is called.

In this example, enter the server address. (The server address must match and
be used together with the corresponding certificate file during SSL-encrypted
access.)

<add key="serverUri" value="iot-mqtts.cn-north-4.myhuaweicloud.com

[

Select SSL encryption or no encryption when establishing a connection on the
device side and set the QoS mode to 0 or 1. Currently, QoS2 is not supported.
For details, see Constraints.

Establishing a Connection

To connect a device or gateway to the platform, upload the device information to
bind the device or gateway to the platform.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 208

https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0046.html

loT Device Access
Developer Guide

4 Development on the Device Side

The FrmMqttDemo class provides methods for establish MQTT or MQTTS
connections. By default, MQTT uses port 1883, and MQTTS uses port 8883. (In
the case of MQTTS scenarios, you must load the
DigiCertGlobalRootCA.crt.pem certificate for verifying the platform identity.
The certificate is used for login authentication when the device connects to
the platform. You can download the certificate file from Obtaining
Resources.) Call the ManagedMqttClientOptionsBuilder class to set the
initial KeepAlivePeriod. The recommended heartbeat interval for MQTT

connections is 120 seconds. For details, see Constraints.
int portlsSsl = int.Parse(ConfigurationManager.AppSettings["PortlsSsl"]);
int portNotSsl = int.Parse(ConfigurationManager.AppSettings["PortNotSsl"]);

if (client == null)

{

client = new MqttFactory().CreateManagedMqttClient();
}

string timestamp = DateTime.Now.ToString("yyyyMMddHH");
string clientID = txtDeviceld.Text + "_0_0_" + timestamp;

// Encrypt passwords using HMAC SHA256.

string secret = string.Empty;

if (!string.IsNullOrEmpty(txtDeviceSecret.Text))

{

secret = EncryptUtil.HmacSHA256 (txtDeviceSecret.Text, timestamp);
}

// Check whether the connection is secure.

if (IcbSSLConnect.Checked)

{

options = new ManagedMqttClientOptionsBuilder()
.WithAutoReconnectDelay(TimeSpan.FromSeconds(RECONNECT_TIME))
\WithClientOptions(new MqttClientOptionsBuilder()
\WithTcpServer(txtServerUri.Text, portNotSsl)
.WithCommunicationTimeout(TimeSpan.FromSeconds(DEFAULT_CONNECT_TIMEOUT))
.WithCredentials(txtDeviceld.Text, secret)
\WithClientld(clientID)
.WithKeepAlivePeriod(TimeSpan.FromSeconds(DEFAULT_KEEPLIVE))
\WithCleanSession(false)
.WithProtocolVersion(MgttProtocolVersion.V311)
.Build())

Build();

}

else

{

string caCertPath = Environment.CurrentDirectory + @"\certificate\rootcert.pem";
X509Certificate2 crt = new X509Certificate2(caCertPath);

options = new ManagedMqttClientOptionsBuilder()
\WithAutoReconnectDelay(TimeSpan.FromSeconds(RECONNECT_TIME))
.WithClientOptions(new MqttClientOptionsBuilder()
WithTcpServer(txtServerUri.Text, portlsSsl)
.WithCommunicationTimeout(TimeSpan.FromSeconds(DEFAULT_CONNECT_TIMEOUT))
.WithCredentials(txtDeviceld.Text, secret)
\WithClientld(clientID)
.WithKeepAlivePeriod(TimeSpan.FromSeconds(DEFAULT_KEEPLIVE))
\WithCleanSession(false)
WithTls(new MqttClientOptionsBuilderTlsParameters()
{
AllowUntrustedCertificates = true,
UseTls = true,
Certificates = new List<X509Certificate> { crt },
CertificateValidationHandler = delegate { return true; },
IgnoreCertificateChainErrors = false,
IgnoreCertificateRevocationErrors = false
b
.WithProtocolVersion(MqttProtocolVersion.V311)

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 209

loT Device Access
Developer Guide

4 Development on the Device Side

.Build())
Build();
}

Call the StartAsync method in the FrmMqttDemo class to set up a
connection. After the connection is set up, the OnMqttClientConnected is

called to print connection success logs.
Invoke ((new Action(() =>

ShowLogs($"{"try to connect to server " + txtServerUri.Text{Environment.NewLine}");

)

if (client.IsStarted)

{

await client.StopAsync();
}

// Register an event.

client.ApplicationMessageProcessedHandler = new
ApplicationMessageProcessedHandlerDelegate (new
Action<ApplicationMessageProcessedEventArgs>(ApplicationMessageProcessedHandlerMethod)); //
Called when a message is published.

client.ApplicationMessageReceivedHandler = new
MgqttApplicationMessageReceivedHandlerDelegate(new
Action<MgqttApplicationMessageReceivedEventArgs>(MqttApplicationMessageReceived)); // Called
when a command is delivered.

client.ConnectedHandler = new MqttClientConnectedHandlerDelegate (new
Action<MgttClientConnectedEventArgs>(OnMgttClientConnected)); // Called when a connection is set
up.

Callback function when the client.DisconnectedHandler = new
MgttClientDisconnectedHandlerDelegate (new
Action<MgttClientDisconnectedEventArgs>(OnMgqttClientDisconnected)); // Called when a connection
is released.

// Connect to the platform.
await client.StartAsync(options);

If the connection fails, the OnMqttClientDisconnected function executes
backoff reconnection. Sample code:

private void OnMqttClientDisconnected (MqttClientDisconnectedEventArgs e)
{

try {

Invoke ((new Action(() =>

{

ShowLogs("mqtt server is disconnected" + Environment.NewLine);

txtSubTopic.Enabled = true;
btnConnect.Enabled = true;
btnDisconnect.Enabled = false;
btnPublish.Enabled = false;
btnSubscribe.Enabled = false;
m

if (cbReconnect.Checked)

Invoke((new Action(() =>
{
ShowLogs("reconnect is starting" + Environment.NewLine);

;i

// Backoff reconnection
int lowBound = (int) (defaultBackoff * 0.8);
int highBound = (int) (defaultBackoff * 1.2);
long randomBackOff = random.Next(highBound - lowBound);
long backOffWithlitter = (int) (Math.Pow(2.0, retryTimes)) * (randomBackOff + lowBound);
long waitTImeUtilNextRetry = (int) (minBackoff + backOffWithlitter) > maxBackoff ? maxBackoff :

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 210

IoT Device Access
Developer Guide 4 Development on the Device Side

(minBackoff + backOffWithlitter);
Invoke((new Action(() =>

ShowLogs("next retry time: " + waitTImeUtilNextRetry + Environment.NewLine);

M)
Thread.Sleep((int)waitTImeUtilNextRetry);
retryTimes++;

Task.Run(async () => { await ConnectMqttServerAsync(); });
}
}

catch (Exception ex)
Invoke ((new Action(() =>
{
ShowLogs("mqtt demo error: " + ex.Message + Environment.NewLine);

»);
}
}

Subscribing to a Topic

Only devices that subscribe to a specific topic can receive messages about the
topic released by the broker. Topic Definition describes preset topics of the
platform.

The FrmMgqttDemo class provides the method for delivering subscription
commands to topics.

List<MgqttTopicFilter> listTopic = new List<MqttTopicFilter>();

var topicFilterBulderPreTopic = new MqttTopicFilterBuilder().WithTopic(topic).Build();
listTopic.Add(topicFilterBulderPreTopic);

// Subscribe to a topic.
client.SubscribeAsync(listTopic.ToArray()).Wait();

After the connection is established and a topic is subscribed, the following
information is displayed in the log area on the home page of the demo:

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 211

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3004.html

loT Device Access

Developer Guide 4 Development on the Device Side
o5l MOTT Device Access Simulator — O X
[] 85L Comnection [Enable Backoff Recormect BoS 0 w Disconnect
Server Address ‘ts.cnmurthﬂi.mb'huaweicluud. com| Device IN |Sebdel Gl_test 1fdB746511 | Device Secret
Topic to Subseribe $oo/devices/Sebde 61_test 1£d5746511 /sys/conmands 4
Log Clear Loz
2020-11-12 02:22:36 — try to comnnect to server iot-matts. enmoerth—4. myhuaweiclound. com
2020-11-12 02:22:38 — commect to mqtt server success, deviceld is Bebde 61_test_lfdav46511
2020-11-12 02:22:47 — topic : [ec/devices/Bebdal 51_test_1fd8746511/svs/conmands 4] is subsoribe sucoess
Topic to Publish |$oc/devices/Gebdel 1_test_LEdS746511 /eys/properties/report \
{:servises”}:‘[{Npropertiss”:
alarm” 1, "temperature” :92. 670784, "hamidity” 78. 37673, “smokeConcentration”:19. 97006}, “service_id": “smokeDetecter”, “event_tine”:nnll}]}

Fublish

Receiving Commands

The FrmMqttDemo class provides the method for receiving commands delivered
by the platform. After an MQTT connection is established and a topic is
subscribed, you can deliver a command on the device details page of the loTDA
console or by using the demo on the application side. After the command is
delivered, the MQTT callback function receives the command delivered by the
platform.

private void MqttApplicationMessageReceived(MqttApplicationMessageReceivedEventArgs e)
{

Invoke ((new Action(() =>

ShowLogs($"received message is {Encoding.UTF8.GetString(e.ApplicationMessage.Payload)}
{Environment.NewLine}");

string msg = "{\"result_code\": 0,\"response_name\": \"COMMAND_RESPONSE\" \"paras\": {\"result\":
\"success\"}}";

string topic = "$oc/devices/" + txtDeviceld.Text + "/sys/commands/response/request_id=" +
e.ApplicationMessage.Topic.Split('=")[1];

ShowLogs($"{"response message msg = " + msg}H{Environment.NewLine}");

var appMsg = new MqttApplicationMessage();

appMsg.Payload = Encoding.UTF8.GetBytes(msg);

appMsg.Topic = topic;

appMsg.QualityOfServiceLevel = int.Parse(cbOosSelect.SelectedValue ToString()) == 0 ?
MqttQualityOfServiceLevel. AtMostOnce : MqttQualityOfServiceLevel.AtLeastOnce;

appMsg.Retain = false;

// Return the upstream response.
client.PublishAsync(appMsg).Wait();
)
}

For example, deliver a command carrying the parameter name smokeDetector:
SILENCE and parameter value 50.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 212

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

IoT Device Access
Developer Guide 4 Development on the Device Side

All Devices / Device Details

Overview Commands Device Shadow Message Trace Child Devices Tags
X

© If the product that the devie bk~ Deliver Command TT devices support synchronous command delivery, and NB-IoT devices support

asynchronous command deliven

Command SmakeDetectorControl: SILENCE v o
Synchronous Command De value 50 -] ﬂ Deliver Command ‘
Historical record query is unavalabl
O Cancel

After the command is delivered, the following information is displayed on the
demo page:

o5l MOTT Device Access Simulator — O x
[]55L Connection [Enable Backeff Reconnect Ho5 |0 ~ Disconmect
Server Address |ts.cn—nort}\—4.myhuaweicloud.com Tevice ID |Gebde 1_test_1fd5746511 | Device Secret
Topic to Subscribe $oc/devices/Febde G1_test 1£da746511 fzy=/command=/4#
Log Elloere far

2020-11-12 02:22:38 — try to connect to server lot-mgtts. cn—north—4 myhuaweicloud. com

2020-11-12 D2:22:39 — connect to mgtt server success, de\qce q ebd cd4049a5ab05 77 d4861_test 1fﬂﬂ?46511

Z0Z0-11-12 02:22:47 — topie : [$oc/dev1ces/5eb4ct d st lfd8746511/sys/commandsﬂt] is subseribe success
2020-11-12 02:24:17 - received meszage iz {" paras { valuete ervice_ 1d “smokeDetector”, command name”: “ST LENCE "1
2020-11-12 02:24:17 — response message msg = { result_code™: - name": “COMMAND_EESPONSE", “paras”: {"result”: "success”}}
£020-11-12 02:24:17 ~ publish messageId 01440099 —5095—46al 59 e bobboesieddd, topic:

foe/devices/Bebded; 51 _test lfd8F46511fs;,‘rs/commands/responsefrequest 1d=T0badZ3aBe88-47 860 fGddecZ0e4dd8, payload
{*result_code™ 0, “response_name”: “COMMARD_RESPOHSE”, “paraz”: ["result”: “succes="}} i= published success

Topic to Publish |$M;aev;ce;fsab4c 1_test_1£dAT46511 /sys/properties/report |

{ servlces [{ propartles : " .o ”
arn™ 1, "temperature” 92 670754, “humidi "1 78, 37673, "smokeConcentration” 19 87906}, “service_id": “snokeDetector”, "event_time":nnl1}]}

Publish

Publishing a Topic

Publishing a topic means that a device proactively reports its properties or
messages to the platform. For details, see the APl Reporting Device Properties.

The FrmMgqttDemo class implements the property reporting topic and property
reporting.

var appMsg = new MqttApplicationMessage();

appMsg.Payload = Encoding.UTF8.GetBytes(inputString);

appMsg.Topic = topic;

appMsg.QualityOfServiceLevel = int.Parse(cbOosSelect.SelectedValue ToString()) == 0 ?
MqttQualityOfServiceLevel. AtMostOnce : MqttQualityOfServiceLevel.AtLeastOnce;
appMsg.Retain = false;

// Return the upstream response.
client.PublishAsync(appMsg).Wait();

After a topic is published, the following information is displayed on the demo
page:

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 213

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html

loT Device Acces
Developer Guide

S

4 Development on the Device Side

4.3.8 Node

Overview

Prerequisites

a5l MOTT Device Access Simulator

- [m| X
[] 85L Commection [] Enable Backoff Recormect Qo3 0 w Disconnect
Server Address ‘ts. ennorth~4. myhuaweicloud com| Device ID |Bebde 1_test_1fd5746511 | Device Secret
Topic to Subseribe $oc/devices/Sebde 1_test_1fda746511/=ys/ conmands 4
Log Clear Loz

Z020-11-12 02:22:38 — try to commect to server iot-mgtts. cn—north—4 myhuaweiclond. com
20Z0-11-12 02:22:39 — comnmect to mqtt server success, deviceld is Beb
2020—11-12 02:82:47 = topic : [foc/derices/Beb _test 1£&B?46511fsysfcommands/u] iz subseribe success
2020-11-12 02:24:17 — received message iz paras {*valuetest” 50} service_ 1d “smokeletector”, command name”: “SILEHCE"}
2020-11-12 02:24:17 — response message msg = | result code”: 0, “response_name”: “COMMAND_RESFONSE”, paras R result “success 1}
2020-11-12 0224717 — publizh messageld 01440099-38954521-F97e—B86b50e33098d, topic:
$ocfdev1cesfseb4cd4049353b08?&?d4861 test 1£&8?4651lfs;'s/'commandsfresponsefrequest id= ?Uba4235_9089_4?&6_9025_8&&2020&4&&6 pavload:
["result_code”: 0, “response_name”: "COMMAND_RESEONSE", "paras”: {"result”: "success’}} is published success2020-11-12 02:35:23 — publish
message topic = $oc/devices/Gebdod4049a5ah0574744561 test lfd8F4651lfsys/propertles/report
2020-11-12 02:35:23 — publish messazeld dfcddf37-9elc—4767-bfATHadaRTE096a9, topic:
$oo/devices Bebdodd040E.b08TATA486] test 1EBT4EE11/sys/properties/report, pavload: {"services”: [{"properties™

“al

arn” 1, "temperature” (92, 670764, "Funi dty” 76. 37673, " smokeConcentration’ :19. 97906], “service id: “smokeDetector”, “event_time”:null]l}
iz published zucecess

test 1fd8?46511

Topic to Publish [$oc/devicss/Sebdc: 61_test_LEdBT46511 /sys/properties/report \

I”alam” 1, "temperature” 82 G70784, “humi di tv”: 78, 37673, “smokeConcentration” 19, g?gus}rservice_i 4" "smokeDetector”, “event_time”:nnll}]}

If the reporting is successful, the reported device properties are displayed on the
device details page.

Latest Data Reported

Query Historical Data @ | All Properties C
alarm smokeConcentration temperature humidity
1 12670784 18.37673 19.97906
smokeDetector <smokeDetector <smokeDetector> smokeDetector

If no latest data is displayed on the device details page, modify the services and properties
in the product model to ensure that the reported services and properties are the same as

those defined in the product model. Alternatively, go to the Products > Model Definition
page and delete all services.

.js Demo

This section uses Node.js as an example to describe how to connect a device to
the loT platform over MQTTS or MQTT and how to use platform APIs to report

data and deliver commands. For details on other programming languages, see
Device Development Resources.

e You have installed Node.js by following the instructions provided in Install

Node.js.

e You have obtained the device access addresses from the loTDA console. For

details, see Platform Connection Information.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 214

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/device/all-device
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3002.html
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

IoT Device Access
Developer Guide 4 Development on the Device Side

e You have created a product and device on the 10TDA console. For details, see
Creating a Product, Registering an Individual Device, or Registering a
Batch of Devices.
Preparations

1. Go to the Node.js website to download and install a desired version. This
document uses Windows 64-bit and Node.js v12.18.0 (npm 6.14.4) as an
example.

Downloads

Download the Node.js source code or a pre-built installer for your platform, and start developing today.

LTS Current
Recommended For Most Users Latest Features

[| 2 e~
] [¢ .’

Windows Installer macOS Installer Source Code

Windows Installer (.msi) 32-bit 64-bit
Windows Binary (.zip) 32-bit 64-bit
macOSs Installer (.pkg) 64-bit

mac0S Binary (.tar.gz) 64-bit

Linux Binaries (x64) 64-bit

Linux Binaries (ARM) ARMvT ARMvE
Source Code node-v12.18.0.tar.gz

2. After the download is complete, run the installation file and install Node.js as
prompted.

3. Verify that the installation is successful.

Press Win+r, enter cmd, and press Enter. The command-line interface (CLI) is
displayed.

Enter node -v and press Enter. The Node.js version is displayed. Enter npm -
v. If any version information is displayed, the installation is successful.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 215

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0054.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0032.html
https://nodejs.org/en/download/

IoT Device Access
Developer Guide 4 Development on the Device Side

&% Command Prompt —] X

Microsoft Windows [Version 10.0.18363.720]
(c) 2019 Microsoft Corporation. All rights reserved.

C: \Users\ N> node -v
v12.18.0

Importing Sample Code

Step 1 Download the sample code quickStart(Node.js) and decompress the package.

Step 2 Press Win+r, enter cmd, and press Enter to access the CLI. Run the following
commands to install the global module:

npm install mqtt -g: This command is used to install the MQTT protocol module.

npm install crypto-js -g: This command is used to install the device secret
encryption algorithm module.

npm install fs -g: This command is used to load the platform certificate.

Step 3 Find the directory where the file is decompressed.

B Command Prompt - O X

Microsoft Windows [Version 10.8.18363.7208]
(c) 2019 Microsoft Corporation. All rights reserved.

C: \Users\ 1 NEN———>d :
D:\>cd quickStart(nodejs)\huaweicloud-iot-device-nodejs-demo

D:\quicksStart(nodejs)\huaweicloud-iot-device-nodejs-demo>

Code directory:

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 216

https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(nodejs).zip

loT Device Access
Developer Guide

4 Development on the Device Side

Step 4

Step 5

e DigiCertGlobalRootCA.crt.pem: platform certificate file

e MgttDemo.js: Node.js source code for MQTT/MQTTS connection to the
platform, property reporting, and command delivery.

Set the project parameters in the demo. In MqttDemo.js, set the server address,
device ID, and device secret for connecting to the device registered on the console
when the demo is started.

e Server address: indicates the domain name. For details on how to obtain the
server address, see Platform Connection Information. The server address
must match and be used together with the corresponding certificate file
during SSL-encrypted access.

e Device ID and secret: obtained after the device is registered on the loTDA
console or the API Creating a Device is called.

var TRUSTED_CA = fs.readFileSync("DigiCertGlobalRootCA.crt.pem");// Obtain a certificate.

// MQTT interconnection address of the platform

var serverUrl = "iot-mqtts.cn-north-4.myhuaweicloud.com";

var deviceld = "****";// Enter the ID of the device registered with the platform.
var secret = "****";// Enter the secret of the device registered with the platform.
var timestamp = dateFormat("YYYYmmddHH", new Date());

var propertiesReportison = {'services":[{'properties'{'alarm':1,'temperature":12.670784,'humidity":
18.37673,'smokeConcentration':19.97906},'service_id":'smokeDetector','event_time":null}]};
var responseReqglson = {'result_code": 0,'response_name": '"COMMAND_RESPONSE','paras": {'result" 'success'}};

Select different options from mqtt.connect(options) to determine whether to
perform SSL encryption during connection establishment on the device. You are
advised to use the default MQTTS secure connection.

// Secure MQTTS connection
var options = {
host: serverUrl,
port: 8883,
clientld: getClientld(deviceld),
username: deviceld,
password:HmacSHA256(secret, timestamp).toString(),
ca: TRUSTED_CA,
protocol: 'mqtts’,
rejectUnauthorized: false,
keepalive: 120,
reconnectPeriod: 10000,
connectTimeout: 30000

}

// MQTT connection is insecure and is not recommended.
var option = {

host: serverUrl,

port: 1883,

clientld: getClientld(deviceld),

username: deviceld,

password: HmacSHA256(secret, timestamp).toString(),

keepalive: 120,

reconnectPeriod: 10000,

connectTimeout: 30000

//protocol: 'mqtts'

//rejectUnauthorized: false

}

// By default, options is used for secure connection.
var client = mqtt.connect(options);

--—-End

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 217

https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0046.html

IoT Device Access
Developer Guide 4 Development on the Device Side

Starting the Demo

To connect a device or gateway to the platform, upload the device information to
bind the device or gateway to the platform.

1. This demo provides methods such as establishing an MQTT or MQTTS
connection. By default, MQTT uses port 1883, and MQTTS uses port 8883. (In
the case of MQTTS connections, you must load the certificate for verifying the
platform identity. The certificate is used for login authentication when the
device connects to the platform.) Call the mqgtt.connect(options) method to

establish an MQTT connection.
var client = mqtt.connect(options);

client.on('connect’, function () {
log("connect to mqtt server success, deviceld is " + deviceld);
// Subscribe to a topic.
subScribeTopic();
// Publish a message.
publishMessage();
b

// Respond to the command.
client.on('message’, function (topic, message) {
log('received message is ' + message.toString());

var jsonMsg = responseReq;
client.publish(getResponseTopic(topic.toString().split("=")[1]), jsonMsg);
log('responsed message is ' + jsonMsg);

b))

Find the Node.js demo source code directory, modify key project parameters,
and start the demo.

B Command Prompt — [} X

Microsoft Windows [Version 10.0.18363.720]
(c) 2019 Microsoft Corporation. All rights reserved.

C:\Users\1 I >d:

D:\>cd quickStart(nodejs)\huaweicloud-iot-device-nodejs-demo

D:\quickStart(nodejs)\huaweicloud-iot-device-nodejs-demo>node MgttDemo.js

Before the demo is started, the device is in the offline state.

Batch Registration Batch Deletion File Uploads analyze historical data

All resource spaces ~ | | All products ~ | | DeviceName ~ allc

Status Device Name Node ID Res:

Product Node Type Operation

Inactive subdevice R Abbytest BearPi_Strest directly con ew | Delete

streetlight SRR Abbytest BearPi_Street Directly conne ew | Delete

After the demo is started, the device status changes to online.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 218

loT Device Access
Developer Guide

4 Development on the Device Side

All Devices Batch Registe:

ice Lis Batch Registration Batch Deletion File Uploads analyze historical data

All resource spaces v | | All products v | | Device Name Qlle
Status Device Name Node ID Resource Space Product Node Type Operation

online streetlight SRR et Abbytest BearPi_street Directly conne.. View | Delete | Freeze

Inactive hhjxgx e Test BearPi Smoke Directly conne.. View | Delete

If the connection fails, the reconnect function executes backoff
reconnection. Sample code:

client.on('reconnect’, () => {
log("reconnect is starting");

// Backoff reconnection
var lowBound = Number(defaultBackoff)*Number(0.8);
var highBound = Number(defaultBackoff)*Number(1.2);

var randomBackOff = parselnt(Math.random()*(highBound-lowBound+1),10);
var backOffWithlitter = (Math.pow(2.0, retryTimes)) * (randomBackOff + lowBound);

var waitTImeUtilNextRetry = (minBackoff + backOffWithlitter) > maxBackoff ? maxBackoff :
(minBackoff + backOffWithlitter);

client.options.reconnectPeriod = waitTImeUtilNextRetry;
log("next retry time: " + waitTImeUtilNextRetry);

retryTimes++;

b))

Only devices that subscribe to a specific topic can receive messages about the
topic released by the broker. Topic Definition describes preset topics of the
platform. This demo calls the subScribeTopic method to subscribe to a topic.
After the subscription is successful, wait for the platform to deliver a

command.
// Subscribe to a topic for receiving commands.
function subScribeTopic() {
client.subscribe(getCmdRequestTopic(), function (err) {
if (err) {
log("subscribe error:" + err);
}else {
log("topic : " + getCmdRequestTopic() + " is subscribed success");

b))
}

Publishing a topic means that a device proactively reports its properties or
messages to the platform. For details, see the APl Reporting Device
Properties. After the connection is successful, call the publishMessage

method to report properties.
// Report)SON data. serviceld must be the same as that defined in the product model.
function publishMessage() {

var jsonMsg = propertiesReport;

log("publish message topic is " + getReportTopic());

log("publish message is " + jsonMsg);

client.publish(getReportTopic(), jsonMsg);

log("publish message successful");

}

Reported properties in the JSON format:
var propertiesReportJson = {'services":[{'properties:{'alarm':1,'temperature’:12.670784,'humidity":
18.37673,'smokeConcentration':19.97906},'service_id":'smokeDetector','event_time":null}]};

The following figure shows the CLI.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 219

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html

loT Device Access
Developer Guide 4 Development on the Device Side

&8 Commond Prompt - node MqttDemo.js — O X

If the properties are reported, the following information is displayed on the
IoTDA console:

Latest Data Reported Query Historical Data @ | All Properties C
alarm smokeConcentration temperature humidity

1 12670784 18.37673 19.97906

smokeDetecto

tector

(11 NOTE

If no latest data is displayed on the device details page, modify the services and
properties in the product model to ensure that the reported services and properties are
the same as those defined in the product model. Alternatively, go to the Products >
Model Definition page and delete all services.

Receiving Commands

The demo provides the method for receiving commands delivered by the platform.
After an MQTT connection is established and a topic is subscribed, you can deliver
a command on the device details page of the IoTDA console or by using the
demo on the application side. After the command is delivered, the MQTT
callback function receives the command delivered by the platform.

For example, deliver a command carrying the parameter name smokeDetector:
SILENCE and parameter value 50.

All Devices / Device Details

Overview Commands Device Shadow Message Trace Child Devices Tags

x
@ If the product that the device e~ Deliver Command TT devices support synchronous command delivery, and NB-IoT evices support
asynchronous command deliven

Command SmokeDetectorControl: SILENCE -9

Synchronous Command De value 50 [o Deliver Command

Historical racord query is unavailabl

(] Cancal

After the command is delivered, the demo receives a 50 message. The following
figure shows the command execution page.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 220

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

IoT Device Access
Developer Guide 4 Development on the Device Side

[E% Commond Prompt - node MqttDemo.js —] X

4.4 Using Huawei-Certified Modules for Access

Overview

Certified modules are pre-integrated with the loT Device SDK Tiny. They have
passed Huawei test, and comply with Huawei's AT command specifications. The
following benefits are available for using Huawei-certified modules:

e Device manufacturers do not need to concern about how to connect to the
HUAWEI CLOUD IloT platform on the MCU (for example, how to set the secret
encryption algorithm and clientID composition mode during MQTT
connection setup). To connect their devices to the platform, they only need to
invoke AT commands, accelerating device interconnection and commissioning.

e The MCU does not need to integrate the MQTT protocol stack or loT Device
SDK Tiny, greatly reducing MCU resource consumption.

e Huawei releases certified modules on HUAWEI CLOUD Marketplace so that
device manufacturers and service providers can purchase these certified
modules to quickly connect to HUAWEI CLOUD loT.

The following figure shows how a certificated module is used to connect a device
to the platform.

HUAWEI CLOUD
loT

; : MaTT/
AT commands =Dk i o
¢ LWM2M over CoAP

MCu

— 5 | Application

Module

Device

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 221

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_1401.html

loT Device Access

Developer Guide 4 Development on the Device Side

Recommended Modules

Table 4-1 Certificated modules with pre-integrated Huawei SDKs

Module Manufacturer Model

4G Cat1 module Fibocom L610
China Mobile loT ML302

4G Cat4 module Quectel EC20CEFASG
Quectel EC20CEHDLG
Neoway N720

NB-loT module China Mobile loT M5319-A

(11 NOTE

e The LTE Cat4 module applies to the scenarios where the service data transmission rate

ranges from 50 Mbit/s to 150 Mbit/s. The LTE Cat1 module applies to the scenarios
where the service data transmission rate ranges from 5 Mbit/s to 10 Mbit/s.

e If you cannot find a required module in the preceding list, submit a service ticket to
describe your service scenario and requirements.

Table 4-2 Modules that are not integrated with Huawei SDKs but have passed

Huawei test
Module Manufacturer Model
NB-loT module Quectel BC39
BC95
BC35
BC26
BC28
Neoway N27
N25
N21
DWhnet TPB41
TPB23
Yuchen Technology CFB-608
Lierda NB86-G
4G Cat4 module Yuge CLM920_NC5

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd.

222

https://console.huaweicloud.com/ticket/?region=cn-north-4&locale=en-us#/ticketindex/createIndex

loT Device Access

Developer Guide 4 Development on the Device Side
Module Manufacturer Model
CLM920_NC3

Quectel EC20

4G Cat1 module Neoway N58
Quectel EC200S

2G/3G/4G module Quectel M25

ZigBee intelligent SHUNCOM SZ05

module

5G module Huawei MH5000

LoRa module Neoway LR70
WINEXT M100C

Prerequisites

e The SIM card data service has been enabled, and the module can access the
Internet.

e You have subscribed to the IoTDA service.

Development Process

The figure below shows the process for a manufacturer to develop a device.

e Purchase a HUAWEI CLOUD certificated module.
e C(Create a product and device on the IoTDA console.

e Run AT commands to connect the MCU to the HUAWEI CLOUD loT platform
and to receive data from and send data to the platform.

e Manage devices on the IoTDA console.

Purchasing a Certificated Module

Step 1 Visit HUAWEI CLOUD Marketplace.

Step 2 Purchase the required module. For details on available modules, see Table 4-1.

--—-End

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 223

loT Device Access

Developer Guide 4 Development on the Device Side

Connecting Hardware

Insert a 4G card into the SIM card slot. Ensure that the notch of the card faces

inwards and the chip faces upwards. (This document uses the L610 module as an
example.)

UsSB

ARGARAL j.- Antenna

Installing the USB Driver
e Install the USB driver.

a. Run the installation file and perform the installation as prompted.
(11 NOTE

The USB driver version varies according to the device manufacturer. Contact the
device manufacturer to obtain the required driver.
b. After the driver is installed, connect the USB port of the development

board to the PC and power on the PC. You can view the serial port
devices in the device manager.

v [Ports (COM and LPT)
ﬁ Intel(R) Active Management Technology - SOL (COM3)

Serial port device used as the AT channel

Serial port device used for firmware upgrades
ﬁ Quectel USE NMEA Port (COM19)

e Use a serial port tool to debug AT commands.
a. Run the installation file and perform the installation as prompted.
L] NOTE

The version of the serial port tool varies according to the device manufacturer.

Contact the device manufacturer to obtain a serial port tool that meets the
requirements.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 224

loT Device Access
Developer Guide

4 Development on the Device Side

Open the serial port tool, select an AT serial port enumerated in 2, set
the baud rate to 115200, and click Open Port.

Select File |D \SOEYBC26 4 B1909 120268002061 434 TOA00064E

[T Save Log |C Wsers\100448328 \Doounent s VACIML_LOG. txt

(10 NOTE

Load Test Seript ‘ Clear A1l Commands

Save As Seript

Q OCOM_ V1.6 - O X
About
COM Bort Setting Comnand List
oo Port: 22 7] W Stophits: [1 x| Parity [fome 7] [~ Choose a1l Conmands HEX [Enter Delay(m3)
[1 [AT+HOCMOTTCOWNECT=0, 30, “43. 4. 83 24 [[v [
ByteSize:[8 w| TFlow Control: [No Ctrl Flow | Open Port | [~ 2. [WTWOOETISERD=L, 102, " Crsglype” s [2 | [
[3 [AT+HWOCMQTTDISCORWECT M w [
[~ 4 [AT+HWOCMATTSEND=L, 102, The2edr3arsare [[V [
[5 [aTecesy W~ [
[& [AT+WOCMRTTCOWNECT=D, 30, "121 36 42 [[@ [
[7 [AT+WOCMOTTCOWRECT=1, 30, “iot—hs onm | [[
[~ & [ATMOCETTSENI=L, 109, " nsglype” 0 [W
[~ 9: [AT+HWOCMOTTIISCONNECT s [
[~ 10: [AT+HWOCMATTSEND=1, 109, The2edraarsart [@ [
[~ 11 [AT+WSTenable W~ [
[~ 12; [AT+WICCIDLIST o~ [
[~ 13 [AT+WWICCIDERABLE=G94450070310616378° [[v [
[~ 14; [AT+WETD o~ [
[~ 15 [AT+HOCMATTYERSION s [
[18: [a1T i~
[~ 17 [aT+COFS? s [
[~ 18: [AT+QPING=1, "121 36 42 100" i~
[~ 19 [AT+QPING=1, “45 4 &3 24° W [
[~ 20: [AT+CPIN? i~
[~ 21 [aT+csq " [
[~ 22: [AT+CosN i~
[~ 23 [AT+CoATT? 7 [
- [~ 24: [AT+ICCTID i~
St [25 [atrogree? il —
~ Information | [T DR [T RIS [™ View File [~ Show Time T O Pz | I
P Gt [" MEX String [Show In MEX [Send ¥ith Enter [27 [atvqnfe="disable_backaff _Lte" il [
[~ 28: [stvegdcont? i~
[~ 29 [AT+WOCMATTCORNECT=0, 30, “121 36 42 [[¢ [
RBun Times: 10

Telay Time(nS): |1000

o= | Fow |

Ensure that the settings are correct. Otherwise, the AT command cannot be

parsed or an error will occur during parsing.

Run the AT+COPS? command. Click Send Command. If OK is returned,
the network registration is successful. Otherwise, check the settings and

hardware cable connections.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

225

loT Device Access

Developer Guide 4 Development on the Device Side
€ 0CcoM V1.6 - m] b4
About
COM Fort Setting Command List
OO Port: [72 =] Beudrte: [TB20 =] StepBits: [T =] Parity: [lome o] | | | Cheoss AL Comands e LliEater lsley(as)
[1. [aT+mwoOmTTCONWECT=D,30, 4 4 mmze [Mt | [
EyteSize: 5 - | Flow Control: [We Cerl Flow Close Port | [~ 2 [AT+HWOOWTTSEND=1, 102, " [‘mselwpe 0 [M 2 | [
[~ 3 [AT+HRODETIDISCONWECT re 3 |
e [~ ¢ [AT+HWOOWTISEND=1, 107, Thezedraersdrs [M a4 | [
+COFS: 0,0, “CHE-CT”, 7 [~ 5 [aT+Cesy W =
[& [AT+HWOOWTTCONECT=0,70, l2l.3e 4z [M 6 | [
ox [7 [ATWOOMTICONNECT=L, 30, itz com | R 7 ||
[~ B [AT+HWOCYRTTSEND=1, 109, { mselype:+ [s [
[~ 9 [AT+HWOCDMTTOISCONNECT re~ s |[
[~ 10: [AT+HWOOWTISEND=1, 109, Thzzedraersdr [b w0 | [
[11: [AT+HWSDM=enable ry u |[
[~ 12: [AT+HWICCIDLIST rF |
[~ 13 [ATHWICCIDENABLE=G34450070319616378° [W 13 | [
[~ 14: [AT+HWEID rF |
[~ 15: [AT+HWOCMATTVERSION ¥ |
[~ 16: [atT & e |
[~ i [aT+cops? [=T N
[18: [AT+QPTNG=1, "121. 36.42. 100" r¥ |
[~ 19: [AT+QFIHG=1, 49 4.93.24" rw |
[~ 20: [AT+CPIN? ¥ = ||
[~ 21: [aT+C3q i AT N
[~ 2z: [aT+Cosy re 2 |[
[23: [AT+CGATT? rF & |
. [~ e4: [aT+I0CTD r ¥ 2 |
Oparation [25 [stroaeg? rF o= |
Clear Information [TDTR [~ RIS [¥iew File [~ Show Time 26 [rE = [
Tnput String: [~ HEX String [Show In HEX [Send With Enter [~ 27: [at+qefe="dizable_backeff lte" rF o2 |
e [~ 28 [at+ogdoont? W = |
AT+OOPS?° Send Command [~ 29 [AT-MWOCMRTTCONNECT=0, 30, 12l.36.42. [W 29 |[
Run Times: [10
Select File | [D:\SDK\BCZ6\B190912025600206143\T0000064¢ Send File ool Motz St | Bleer (I Eamentls Deley Tinelas): [[000
" Sare Loz | [01Wzers\100445325 \Docunent =\QCM_LOG. txt Save As Seript Run

L] NOTE
If the last digit of +COPS: 0,0,"CHN-CT",7 in the returned message is not 7, the

network is faulty. Replace the SIM card or check whether the SIM card can access
the Internet.

Creating a Product and Device

Step 1 Create a product that uses MQTT by following the instructions provided in
Creating a Product.

Step 2 Register a device.
L] NOTE
After the device is registered, keep the device ID and secret properly. The secret cannot be
retrieved. If you forget the secret, click Reset Secret on the device details page to obtain a

new one.

Step 3 Access the I0TDA console to obtain the MQTT/MQTTS device connection address.
If MQTT is used, the port is 1883. If MQTTS is used, the port is 8883.

--—-End

Connecting to the Platform

The module provides AT commands in two encoding modes to connect to
HUAWEI CLOUD: ASCII and hexstring. ASCII indicates the original encoding mode,
and hexstring indicates the hexadecimal encoding mode.

e Using the ASCIl mode

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 226

https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0054.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

IoT Device Access
Developer Guide 4 Development on the Device Side

[2020-06-04_14:39:29:877]
2020-06-04_14:39:30:111
[2020-06-04_14:39:30:111]0K

AT=HMCON=0,30,"121.36.42.100","8883", "5 od FEaom i e aess TR 1" T8 e
+HMCON OK Connectto the loT platform

2020-06-04_14:39:30:111]+HMSTS: 0

Send datato the platform

[

2020-06-04_14:39:32:516]AT+HMPUB=1,"$oc/devices/5t = 1 i port”,74,"{"services™:[{"service_id":" DeviceStatus","properti
[2020-06-04_14:39:32:661]+HMPUB OK
[
[
[

“radioValue™:7)j]}"

[2020-06-04_14:39:32:661]0K

2020-06-04_14:39:36:932]
[2020-06-04_14:39:36:932] * HMREC ="$oc/devices/5edE

22551/5ys/commands/request_id=eb03fa3c-84b7-4cda-9c32-2b1562c68eca”, 75, ("paras™{"value™:1},"service_id":"DeviceStatus”,"comi
[2020-06-04_14:39:48:335]AT+HMDIS .

[2020-06-04_14:39:49:351]}+HMDIS OK Disconnect from the platform

[2020-06-04_14:39:49:351J0K

a. Connect to the platform. Send the command AT
+HMCON-=bs, lifetime," serverip"," serverport’," devicelD"," passwd",cod
ec, for example, AT+HMCON=0,300,"iot-mqtts.cn-
north-4.myhuaweicloud.com","8883","devicelD","passwd",0. If
+HMCON OK is received, the device is connected to the platform.

The parameters in the preceding command are described as follows:

" bsmode: whether device provisioning is used. Set this parameter to
0. The value 0 means that the device is directly connected to the
platform, and 1 means that the device is connected to the platform
through device provisioning.

= lifetime: MQTT heartbeat time. The default value is 300.

= serverip: MQTT/MQTTS connection address. For details, see
Platform Connection Information. If the device is connected to the
platform through device provisioning, set this parameter to the
address provisioned by the device. For details, see Device
Provisioning.

= serverport: port for device access. If MQTT is used, the port is 1883.
If MQTTS is used, the port is 8883. If device provisioning is used, the
service provisioning port is used.

= devicelD: device ID returned for the registered device. For details, see
2.

= passwd: secret set during device registration. For details on how to
obtain the secret, see 2. If the certificate mode is used, you can leave
this parameter unspecified. However, you must set the public key and
private key certificates of the device in advance.

® codec: data transmission mode. Set this parameter to 0 or 1. The
value 0 indicates the ASCIl mode, and 1 indicates the hexstring
mode. If the ASCII mode is used, the data mode is len,ascii_payload,
for example, 2,"ab". If the hextring mode is used, the value is
2,"6162".

b. Subscribe to a custom topic. Send the AT+HMSUB=gos, topic command,
for example, AT+HMSUB=0,"Soc/devices/device_id/user/mytopic". If
+HMSUB OK is received, the subscription is successful.

The parameters in the preceding command are described as follows:

"= qos: QoS of the topic. The default value is 0.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 227

loT Device Access
Developer Guide

4 Development on the Device Side

® topic: a new custom topic. For details, see Adding a Custom Topic.
Set the device operation permission to Subscribe and replace
devicelD with the actual device ID.

Report a message. Send the AT+HMPUB=gqos, topic,payload_len,payload
command, for example,

AT+HMPUB=0,"Soc/devices/device_id/user/mytopic",16,"{\"test\":
\"hello\"}". If +HMPUB OK is received, the reporting is successful.

(11 NOTE

The payload is in ASCIl mode. The string must start and end with double
quotation marks (""), and the special characters in the string must be escaped.

The parameters in the preceding command are described as follows:
® qos: QoS defined in MQTT. The recommended value is 0.

® topic: a new custom topic. For details, see Adding a Custom Topic.
Set the device operation permission to Publish and replace devicelD
with the actual device ID.

" payload_len: length of the reported message, excluding the slash (\).

" payload: reported message.

Report a property. Send the AT+HMPUB=gos, topic,payload len,payload
command, for example,

AT+HMPUB=0,"$oc/devices/device_id/sys/properties/report",
82,"{\"services\":[{\"service_id\":\"Clock\" \"properties\":{\"card_no\":
\"3028\",\"use_type\":1}}1}". If +tHMPUB OK is received, the reporting is
successful. You can view the reported property values on the device
details page.

(11 NOTE

Before reporting properties, customize a product model or use the preconfigured
product model. For details, see Developing a Product Model Online and
Preconfigured Product Models.

" gos: QoS defined in MQTT. The recommended value is 0.

® topic: topic preconfigured on the platform. For more topics, see
Topic Definition. Replace devicelD with the actual device ID.

® payload_len: length of the reported property, excluding the slash (\).

" payload: reported property.

Deliver a command. On the Commands tab page of the device details
page of the IoTDA console, click Deliver Command on the right of
Synchronous Command Delivery. Select the command to deliver and
the command value. After the delivery is successful, the device receives
+HMREC: topic payload_len,payload, for example, +HMREC: "Soc/
devices/device_id/sys/commands/request_id={request_id}{"paras":
{"value":
1},"service_id":"SmokeDetectorControl","command_name":"QUITSILE
NCE"}",86,{"paras":{"value":

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 228

https://support.huaweicloud.com/en-us/usermanual-iothub/iot_02_9992.html#section3
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_02_9992.html#section3
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_0005.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_01_0053.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3004.html

loT Device Access
Developer Guide 4 Development on the Device Side

1},"service_id":"SmokeDetectorControl","command_name":"QUITSILE
NCE"}.

Overview Commands Device Shadow Message Trace Child Devices Tags

@ 1f the product that the device belongs to has defined commands, you can call the platform APIs or click Deliver Command to deliver a command. Currently, MQTT devices support synchronous command delivery, and NB-IoT devices support
asynchronous command delivery.

Synchronous Command Delivery Deliver Comman

Deliver Command o
Historical record query is unavailable for synchronous

SmakeDetectorControl: SILENCE]

Asynchronous Command Delivery alue 1 (2] Deliver Command

Queued Commands Historical Cot

Q Advanced Search ~

The parameters in the preceding command are described as follows:

® qos: QoS defined in MQTT. The recommended value is 0.

® topic: topic preconfigured on the platform. For more topics, see
Topic Definition. Replace devicelD with the actual device ID.
{request_id} is used to uniquely identify the request. If this
parameter is carried in a message sent by a device, ensure that the
parameter value is unique on the device by using an incremental
number or UUID. If this parameter is carried in a message received
by a device, the parameter value needs to be also carried in the
response message sent to the platform.

" payload_len: length of the delivered command, excluding the slash
(\).
" payload: delivered command.

f. Unsubscribe from the custom topic. Send the AT+HMUNS="topic"
command, for example, AT+HMUNS="Soc/devices/devicelD/user/
mytopic"”. If +HMUNS OK is received, the unsubscription is successful.

In the preceding command, topic is the custom topic added in 2. Replace
devicelD with the actual device ID.

g. Disconnect the device from the platform by sending the AT+HMDIS
command.

h. Set the server or client certificate.

® To set a CA certificate, run AT+HMPKS=type,para1,
[para2],"Certificate", for example, AT+HMPKS=0,1360.

" To set a client certificate, run AT+HMPKS=type,paral,
[para2],"Certificate", for example, AT+HMPKS=1,1022.

® To set a private key certificate, run AT+HMPKS=type,para1,
[para2],"Certificate", for example, AT+HMPKS=1,1732.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 229

c

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3004.html

loT Device Access
Developer Guide

4 Development on the Device Side

{11 NOTE

e type: The value can be 0, 1, or 2, indicating a CA certificate, client certificate,
and private key certificate, respectively. All the certificates are transmitted
using paral. If a password is available, the password is transmitted through
para2.

e paral/[para2]: The paral parameter specifies the certificate. If it is left
blank, the certificate is to be deleted. The para2 parameter specifies the
password of the private certificate. It is valid only when the private certificate
is set and the certificate is transmitted in the PEM format.

e Certificate: character length of the certificate content.

Using the hexstring mode

[2020-06-04_14:45:40:877]AT+HMCON=0,30,"121.36.42.100","8883"," Sed 2
[2020-06-04_14:45:42:788]+HMCON OK

[2020-06-04_14:45:42:788]0K

[2020-06-04_14:45:42:788]+HMSTS: 0

01", " 6 2 R 1
Connectto the platform in hexstring mode

[2020-06-04_14:45:46:100]AT+HMPUB=0,"$oc/devices/5ed RRuamas:

[2020-06-04_14:45:46:100]+HMPUB OK

TERE01/sys/properties/report’,74,7b227365727669636573223a5b7b22736572766963655/6964223a224465766963655374617475732
[2020-06-04_14:45:46:100JOK send

Recelve hexstring data from the platirom
[2020-06-04_14:46:03:765]
[2020-06-04_14:46:03:765]+HMREC="$oc/devices, = 1/sys/c ds/reqt _id=e8f4c348-0b80-4ef4-aa36-c8c7a75cafd4",75,7B227061726173223A7B2276616C7565223A317D2C22

[2020-06-04_14:46:12:650]AT+HMDIS
[2020-06-04_14:46:13:678]+HMDIS OK | Di
[2020-06-04_14:46:13:678]0K

a. Connect to the platform by sending the command AT
+HMCON-=bs, lifetime," serverip"," serverport’," devicelD"," passwd",cod
ec, for example, AT+HMCON=0,300,"iot-mqtts.cn-
north-4.myhuaweicloud.com","8883","devicelD","passwd",0. If
+HMCON OK is received, the device is connected to the platform.

For details on the parameters, see 1.

b. Subscribe to a custom topic by sending the AT+HMSUB=qos, topic
command, for example, AT+HMSUB=0,"Soc/devices/device_id/user/
mytopic. If +HMSUB OK is received, the subscription is successful.

For details on the parameters, see 2.

Cc. Report a message by sending the AT
+HMPUB=qos, topic,payload_len,payload command, for example, AT
+HMPUB=0,"Soc/devices/device_id/user/mytopic",
16,7b2274657374223a2268656¢c6c6f227d.

Note: The payload is in hexadecimal data format and can be a
hexadecimal character string without double quotation marks at the
beginning or end.

For details on the parameters, see 3.

d. Deliver a command. On the Commands tab page of the device details
page of the 10TDA console, click Deliver Command on the right of
Synchronous Command Delivery. Select the command to deliver and
the command value. After the command is delivered, the device receives
the +HMREC, topic,payload len,payload command, for example,

+HMREC: "$oc/devices/device_id/sys/commands/request_id={request_id}",
102,7B227061726173223A7B2276616C7565223A22313233343536373839
3071617A77737865646372667674676279686E756A6D696B6F6C70227D2
C22736572766963655F6964223A224E42444FAF52222C22636F6D6D616E
645F6E616D65223A2273656E64227D

For details on the parameters, see 5.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 230

IoT Device Access
Developer Guide 4 Development on the Device Side

e. Unsubscribe from the custom topic by sending the AT+HMUNS=" topic"
command, for example, AT+HMUNS="Soc/devices/device_id/user/
mytopic”. If +HMUNS OK is received, the cancellation is successful.

For details on the parameters, see 6.

f. Disconnect the device from the platform by sending the AT+HMDIS
command.

Device Management

The platform supports batch device management, remote control and
monitoring, OTA upgrades, and flexible data forwarding to other HUAWEI
CLOUD services.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 231

https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0030.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0030.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0027.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0022.html

IoT Device Access
Developer Guide 5 Development on the Application Side

Development on the Application Side

5.1 API
5.2 Subscription and Push
5.3 Java Demo

5.4 Debugging Using Postman

5.1 API

The loT platform provides a variety of APIs to make application development
easier and more efficient. You can call these open APIs to quickly integrate
platform functions, such as product, device, subscription, and rule management,
as well as device command delivery.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 232

loT Device Access
Developer Guide

5 Development on the Application Side

Application-side APIs (see API

Java demo)

Gets authenticated.

Returns a token.

Clueries the application access
address on the console,

Creates and manages a product,

Creates and manages a device.

Delivers a command, properties, or
a message.

Makes a subscription.

Pushes data.

1. An application must get authenticated by Identity and Access Management
(IAM) and obtain a token. For details on how to obtain a token, see
Debugging the API Used to Obtain the Token for an IAM User.

2. The application can implement functions such as product management,
device management, command/property/message delivery, subscription, and
push message receipt. For details on the functions, see the following
description, as well as APl JAVA Demo or Debugging Using Postman.

API Introduction

API Group

Scenario

Subscriptio
n
Manageme
nt

Applications subscribe to resources provided by the platform. If
the subscribed resources change, the platform notifies the
applications of the change.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 233

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01201.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01201.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01201.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01201.html

loT Device Access
Developer Guide

5 Development on the Application Side

API Group Scenario

Tag Applications bind tags to or unbind tags from resources.

Nianageme Currently, only devices support tags.

n

Batch Task | Applications perform batch operations on devices connected to
the platform.

e Software and firmware can be upgraded in batches, and
devices can be created, deleted, frozen, or unfrozen in
batches.

e Up to 10 unfinished tasks of the same type is allowed for a
single user. After the maximum number is reached, new tasks
cannot be created.

Device CA Applications manage device CA certificates, including uploading,
Certificate | verifying, and querying certificates. The platform supports device
Manageme | access authentication using certificates.

nt

Device Applications manage device groups, including managing device
Group group information and devices in a device group.

Manageme

nt

Device Applications transparently transmit messages to devices.
Message

Product Applications manage product models that have been imported to
Manageme | the platform. (A product model defines the capabilities or

nt features of all devices under a product.)

Device Applications manage basic device information and device data.
Manageme

nt

Device Applications manage the device shadow, which is a file used to
Shadow store and retrieve the status of a device.

e Each device has only one device shadow, which is uniquely
identified by the device ID.

e The device shadow saves only the latest data reported by the
device and the desired data set by an application.

e You can use the device shadow to query and set the device
status regardless of whether the device is online.

Device Applications deliver commands defined in the product model to
Command devices through the platform.
Device Applications deliver properties defined in the product model to
Property devices through the platform.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

234

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0009.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0009.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0009.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0028.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0053.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0053.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0053.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0053.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0058.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0058.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0080.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0080.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0080.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0079.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0079.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0038.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0038.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0034.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0034.html

loT Device Access
Developer Guide

5 Development on the Application Side

API Group Scenario

Data Applications set rules to implement service linkage or forward
forwarding | data to other HUAWEI CLOUD services. Device linkage and data
and Device | forwarding rules are available.

Linkage

e Device linkage: You can set trigger conditions and actions.
When the preset triggering conditions are met, the
corresponding actions are triggered, such as delivering
commands, sending notifications, reporting alarms, and
clearing alarms.

e Data forwarding: You can set forwarding data, set forwarding
targets, and start rules. Data can be forwarded to Data
Ingestion Service (DIS), Distributed Message Service (DMS)
for Kafka, Object Storage Service (OBS), ROMA Connect,
third-party application (HTTP push), and AMQP message
queue.

5.2 Subscription and Push

5.2.1 Overview

A device can connect to and communicate with the platform. The device reports
data to the platform using custom topics or product models. After the
subscription/push configuration on the console is complete, the platform pushes
messages about device lifecycle changes, reported device properties, reported
device messages, device message status changes, device status changes, and batch
task status changes to the application.

The platform supports two subscription modes: HTTP/HTTPS and AMQP.

HTTP/HTTPS subscription/push: An application calls the platform APIs
Creating a Rule Trigger Condition, Creating a Rule Action, and Modifying
a Rule Trigger Condition to configure and activate rules. The platform
pushes the changed device service details and management details to the
application with a specified URL. (Service details include device lifecycle
management, device data reporting, device message status, and device status.
Management details include software/firmware upgrade status and result.)

AMQP subscription/push: Data can be forwarded without interconnecting with
other HUAWEI CLOUD services. An application calls the platform APIs
Creating a Rule Trigger Condition, Creating a Rule Action, and Modifying
a Rule Trigger Condition to configure and activate rules. After a connection
is established between the AMQP client and the platform, the platform
pushes the changes to a specified AMQP message queue based on the type of
data subscribed. For details, see 5.2.3 AMQP Subscription/Push.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 235

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01306.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01306.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0082.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0082.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html

loT Device Access
Developer Guide

5 Development on the Application Side

Subscription/ | Application Scenario Advantages Restrictions
Push and
Disadvantage
s
HTTP/HTTPS An application functions as Data cannot -
subscription/ | the server and passively be obtained
push receives messages from the proactively.
platform.
AMQP An application functions as Data can be For details,
subscription/ | the client and proactively pulls | obtained see
push messages from the platform proactively. Connection
or passively receives messages Specificatio
from the platform by means ns.
of listening.

5.2.2 HTTP/HTTPS Subscription/Push

Overview

Subscription: An application calls the platform APIs Creating a Rule Trigger
Condition, Creating a Rule Action, and Modifying a Rule Trigger Condition to
configure and activate rules, in order to obtain changed device service details and
management details. (Service details include device lifecycle management, device
data reporting, device message status, and device status. Management details
include software/firmware upgrade status and result.) The URL of the application,
also called the callback URL, must be specified during subscription. Click here to
see what is a callback URL?

Push: After a subscription is successful, the platform pushes the corresponding
change to a specified callback URL based on the type of data subscribed. (For
details on the pushed content, see Transferring Data.) If an application does not
subscribe to a specific type of data notification, the platform does not push the
data to the application even if the data has changed. The platform pushes data, in
JSON format, using HTTP or HTTPS. HTTPS requires authentication and is more
secure. Therefore, HTTPS is recommended.

The figure below shows the subscription and push process.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 236

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/en-us/iothub_faq/iot_faq_00101.html
https://support.huaweicloud.com/en-us/iothub_faq/iot_faq_00101.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01200.html

IoT Device Access
Developer Guide 5 Development on the Application Side

Application loT platform ﬂ

Uploads the application
certificate via HTTPS.

Subscribes to data (by setting data to
forward and the URL of the forwarding
party, and activating the rule).

Reports data.

Pushes the data.

Before pushing HTTPS messages to an application, the platform must verify the
application authenticity. Therefore, the application CA certificate must be loaded
to the platform. (You can use a commissioning certificate during commissioning
and replace it with a commercial certificate during commercial use to avoid
security risks.)

Push mechanism: After receiving a push message from the platform, the
application returns a 200 OK message. If the application does not respond within
15 seconds or returns a 501, 502, 503, or 504 message, the message delivery fails.
The platform caches the message for 10 minutes. Then the platform retries to
push the message to each failed application in polling mode. If the retry also fails
and the message cache time elapses, the platform does not attempt delivery
again. If the platform fails to send a push message 10 consecutive times within
the message cache time, the platform sets the callback URL to invalid and checks
the validity of all failed URLs in polling mode. If a URL is confirmed to be valid,
the platform resets the URL to valid. You can log in to the I0TDA console, choose
Resource Spaces in the navigation pane, click View in the row of a resource
space, and view the URL status on the Subscription/Push tab page.

Subscribing to Data
After connecting to I0TDA, an application calls an API to subscribe to data.

e For details on how to configure HTTP or HTTPS subscriptions on the console,
see Configuring HTTP/HTTPS Subscription and Loading the CA Certificate.

e For details on how to subscribe to data through APIs, see Calling APls,
Creating a Rule Trigger Condition, Creating a Rule Action, and Modifying
a Rule Trigger Condition.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 237

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0090.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html

loT Device Access
Developer Guide

5 Development on the Application Side

Format of Pushed Data

For details on the format of data pushed by the platform to applications after
data subscription is created, see Transferring Data.

Loading the CA Certificate

If HTTPS is used, you must load the push certificate by following the instructions
provided in this section. Then create a subscription task on the console by
following the instructions provided in Configuring HTTP/HTTPS Subscription.

If the application cancels the subscription and then re-subscribes the data

again (with the URL unchanged), the CA certificate must be loaded to the
platform again.

If a subscription type (URL) is added, you must load the CA certificate

corresponding to the URL to the platform. Even if the CA certificate used by
the new URL is the same as that used by the original URL, the CA certificate
must be loaded again.

Step 1 Log in to the loTDA console.

Step 2 In the navigation pane, click Resource Spaces. On the page displayed, click View
in the row of a resource space to access its details.

Step 3 On the Subscription/Push tab page, click Configure Certificate, set the
parameters based on the data below, and click OK to load the certificate.

Parameter | Description
CA A CA certificate from the application can be applied for and
Certificate | purchased in advance.
NOTE
You can prepare a commissioning certificate during commissioning. For
security reasons, you are advised to replace the commissioning certificate
with a commercial certificate during commercial use.
Domain/IP | Specify the domain name or IP address and port used by the
and Port platform to push messages to the application. Set this parameter
to the domain name or IP address and port in the URL of the API
Creating a Rule Action, for example, api.huawei.com:9001 and
172.0.1.2:8080.
Check Specify whether the common name of the CA certificate is to be
Common verified to see whether the loaded certificate matches the applied
Name certificate. It is recommended that the common name be verified.
Common This parameter is displayed when Check Common Name is
Name enabled. Obtain the name of the CA certificate from the certificate
applicant.
SNI If multiple servers use the same IP address and port, select SNI
Support Supported, and set Common Name to the domain name of the

server that is required to receive push messages. Then the specified
server sends its device certificate to the platform. This parameter is
not selected by default.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 238

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01200.html
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01302.html

IoT Device Access
Developer Guide 5 Development on the Application Side

Parameter | Description

Use Device | Retain the default value Disable.
Certificate

--—-End

Creating an X.509 Commissioning Certificate

A commissioning certificate, or a self-signed certificate, is used for authentication
when the client accesses the server through HTTPS. When the platform uses
HTTPS to push data to an application, the platform authenticates the application.
This section uses the Windows operating system as an example to describe how to
use OpenSSL to make a commissioning certificate. The generated certificate is in
PEM format and the suffix is .cer.

The table below lists common certificate storage formats.

Storage Description

Format

DER Binary code. The suffix is .der, .cer, or .crt.

PEM Base64 code. The suffix is .pem, .cer, or .crt.
JKS Java certificate storage format. The suffix is .jks.
{10 NOTE

The commissioning certificate is used only for commissioning. During commercial use, you
must apply for certificates from a trusted CA. Otherwise, security risks may occur.

Step 1 Visit https://slproweb.com/products/Win320penSSL.html to download and
install OpenSSL.

Step 2 Open the CLI as user admin.

Step 3 Run cd c:\openssl\bin (replace c:\openssl\bin with the actual OpenSSL
installation directory) to access the OpenSSL view.

Step 4 Generate the private key file ca_private.key of the CA root certificate.
openssl genrsa -passout pass:123456 -aes256 -out ca_private.key 2048
e aes256: encryption algorithm
e passout pass: private key password

e 2048: key length

Step 5 Use the private key file of the CA root certificate to generate the file ca.csr.
openssl req -passin pass:123456 -new -key ca_private.key -out ca.csr -subj "/C=CN/ST=GD/L=SZ/O=Huawei/
OU=loT/CN=CA"

Modify the following information based on actual conditions:

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 239

https://slproweb.com/products/Win32OpenSSL.html

loT Device Access
Developer Guide

5 Development on the Application Side

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

e C: country, for example, CN

e ST: region, for example, GD

e L:city, for example, SZ

e O: organization, for example, Huawei

e OU: organization unit, for example, loT

e CN: common name (the organization name of the CA), for example, CA

Create the CA root certificate ca.cer.

openssl x509 -req -passin pass:123456 -in ca.csr -out ca.cer -signkey ca_private.key -CAcreateserial -days
3650

Modify the following information based on actual conditions:

e passin pass: The value must be the same as the private key password set in 4.
e days: validity period of the certificate.

Generate the private key file for the application.
openssl genrsa -passout pass:123456 -aes256 -out server_private.key 2048

Generate the .csr file for the application.

openssl req -passin pass:123456 -new -key server_private.key -out server.csr -subj "/C=CN/ST=GD/L=SZ/
O=Huawei/OU=loT/CN=appserver.iot.com"

Modify the following information based on actual conditions:

e C: country, for example, CN

e ST: region, for example, GD

e L:city, for example, SZ

e O: organization, for example, Huawei

e OU: organization unit, for example, loT

e CN: common name. Enter the domain name or IP address of the application.

Use the CA private key file ca_private.key to sign the file server.csr and generate
the server certificate file server.cer.

openssl x509 -req -passin pass:123456 -in server.csr -out server.cer -sha256 -CA ca.cer -CAkey ca_private.key
-CAserial ca.srl -CAcreateserial -days 3650

(Optional) If you need a .crt or .pem certificate, proceed this step. The following
uses the conversion from server.cer to server.crt as an example. To convert the
ca.cer certificate, replace server in the command with ca.

openssl x509 -inform PEM -in server.cer -out server.crt

In the bin folder of the OpenSSL installation directory, obtain the CA certificate
(ca.cer/ca.crt/ca.pem), application server certificate (server.cer/server.crt/
server.pem), and private key file (server_private.key). The CA certificate is loaded
to the platform, and the application server certificate and private key file are
loaded to the application.

----End

Configuring HTTP/HTTPS Subscription

This section describes how to configure HTTP or HTTPS subscription on the
console.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 240

IoT Device Access
Developer Guide 5 Development on the Application Side

Step 1 Log in to the lI0TDA console.

Step 2 In the navigation pane, choose Rules > Data Forwarding, and click Create Rule
in the upper right corner.

Step 3 Set the parameters based on the table below and click Create Rule.

Parameter Description
Rule Name Specify the name of a rule to create.
Description Describe the rule.

Data Source e Device: Device information, such as device addition, deletion,
and update, will be forwarded. When Data Source is set to
Device, quick configuration is not supported.

e Device property: A property value reported by a device in a
resource space will be forwarded. Click Quick Configuration
on the right and select the product, property, and service
data to forward.

e Device message: A message reported by a device in a
resource space will be forwarded. Click Quick Configuration
on the right and select data of a specified topic to forward.
Select the product to which the topic belongs and enter the
topic name. You can use a custom topic on the product
details page or a preset topic.

e Device message status: The status of device messages
exchanged between the device and platform will be
forwarded. For details on the device message status, see
Message Status. When Data Source is set to Device
message status, quick configuration is not supported.

e Device status: The status change of a directly connected
device in a resource space will be forwarded. Click Quick
Configuration on the right to forward information about
devices whose status is Online, Offline, or Abnormal to
other services. For details on the status of devices directly
connected to the loT platform, see Device Status.

e Batch task: The batch task status will be forwarded. When
Data Source is set to Batch Task, quick configuration is not

supported.
Trigger After the data source is selected, the platform automatically
matches the trigger event.
Resource You can select a single resource space or all resource spaces. If
Space All resource spaces is selected, quick configuration is not
supported.

Step 4 Under Set Forwarding Target, click Add. On the displayed page, set the
parameters based on the table below and click OK.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 241

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_02_9992.html#section3
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0046.html#section2
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0065.html#section0

loT Device Access
Developer Guide

5 Development on the Application Side

Step 5

FAQs

APIs

Parameter Description

Forwarding Select Third-party application (HTTP push).

Target

Push URL Specify the domain name or IP address and port used by the

platform to push messages to the application. for example,
api.huawei.com:9001 and 172.0.1.2:8080.

NOTE
Ensure that the URL is the same as the domain name/IP address

entered in Loading the CA Certificate.

After the rule is defined, click Start Rule to start forwarding data to the HTTP or
HTTPS message queue.

--—-End

The following lists the frequently asked questions about the subscription and push
service. For more questions, click here.

e How Do | Obtain Certificates?

e How Do | Obtain the Callback URL When Calling the Subscription API?
e Can a Domain Name Be Used in a Callback URL?

e What Should | Do If an Error Code 503 Is Displayed?

e Why Does an Application Receive Multiple Push Messages After a Device
Reports a Piece of Data?

e Why Is the Callback URL Invalid During the Subscription API Call?

e How Can | Obtain the subscriptionld Needed in Calling the API for
Deleting a Subscription?

Creating a Rule Action
Creating a Rule Trigger Condition
Modifying a Rule Trigger Condition

Forwarding Data

5.2.3 AMQP Subscription/Push

5.2.3.1 Overview

Subscription: AMQP is short for Advanced Message Queuing Protocol. You can
create a subscription task on the [0TDA console. You can call platform APIs
Creating a Rule Trigger Condition, Creating a Rule Action, and Modifying a
Rule Trigger Condition to configure and activate rules for obtaining changed
device service details and management details. (Service details include device

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 242

https://support.huaweicloud.com/en-us/iothub_faq/iot_faq_00234.html
https://support.huaweicloud.com/en-us/iothub_faq/iot_faq_000249.html
https://support.huaweicloud.com/en-us/iothub_faq/iot_faq_00101.html
https://support.huaweicloud.com/en-us/iothub_faq/iot_faq_00077.html
https://support.huaweicloud.com/en-us/iothub_faq/iot_faq_00065.html
https://support.huaweicloud.com/en-us/iothub_faq/iot_faq_00070.html
https://support.huaweicloud.com/en-us/iothub_faq/iot_faq_00070.html
https://support.huaweicloud.com/en-us/iothub_faq/iot_faq_00070.html
https://support.huaweicloud.com/en-us/iothub_faq/iot_faq_00064.html
https://support.huaweicloud.com/en-us/iothub_faq/iot_faq_00064.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01200.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html

loT Device Access
Developer Guide

5 Development on the Application Side

lifecycle management, device data reporting, device message status, and device
status. Management details include software/firmware upgrade status and result.)
The AMQP message channel must be specified during subscription creation.

Push: After a subscription is created, the platform pushes the corresponding
change to the specified AMQP message queue based on the type of data
subscribed. If an application does not subscribe to a specific type of data
notification, the platform does not push the data to the application even if the
data has changed. You can use the AMQP client to establish a connection with the
platform to receive data. The figure below shows the subscription and push
process.

Application loT platform

Subscribes to data (by setting data to
forward and the URL of the forwarding
party, and activating the rule).

Creates a persistent AMQP connection (by
entering the AMQP domain name, accessKey,
accessCode, and AMQP queue name).

Reports data.

Pushes or pulls data.

Push mechanism: After receiving a message from the platform, the application
returns a response. (The automatic response mode is recommended.) If the
application does not pull data after the connection is established, data will be
stacked on the server. When the maximum cache duration (one day) is reached,
the platform clears the data. If the application does not respond in time after
receiving the message and the persistent connection is interrupted, the
corresponding data will be pushed again in the next connection established.

Subscribing to Data

After connecting to I0TDA, an application calls an API to subscribe to data.

e For details on how to configure subscriptions on the console, see 5.2.3.2
Configuring AMQP Server Subscription.

e For details on how to subscribe to data through APIs, see Calling APIs,
Creating a Rule Trigger Condition, Creating a Rule Action, and Modifying
a Rule Trigger Condition.

Format of Pushed Data

For details on the format of data pushed by the platform to applications after
data subscription is created, see Transferring Data.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 243

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0090.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01200.html

IoT Device Access
Developer Guide 5 Development on the Application Side

APIs
Creating a Rule Action
Creating a Rule Trigger Condition
Modifying a Rule Trigger Condition
Transferring Data
Creating an AMQP Queue
Querying the AMQP List
Querying an AMQP Queue

Generating an Access Credential

5.2.3.2 Configuring AMQP Server Subscription

This topic describes how to set and manage AMQP server subscription on the loT
platform.

Step 1 Log in to the lI0TDA console.

Step 2 In the navigation pane, choose Rules > Data Forwarding, and click Create Rule
in the upper right corner.

Step 3 Set the parameters based on the table below and click Create Rule.

Parameter Description
Rule Name Specify the name of a rule to create.
Description Describe the rule.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 244

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01200.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0103.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0102.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0104.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0111.html
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

IoT Device Access
Developer Guide 5 Development on the Application Side

Parameter Description

Data Source e Device: Device information, such as device addition, deletion,
and update, will be forwarded. When Data Source is set to
Device, quick configuration is not supported.

e Device property: A property value reported by a device in a
resource space will be forwarded. Click Quick Configuration
on the right and select the product, property, and service
data to forward.

e Device message: A message reported by a device in a
resource space will be forwarded. Click Quick Configuration
on the right and select data of a specified topic to forward.
Select the product to which the topic belongs and enter the
topic name. You can use a custom topic on the product
details page or a preset topic.

e Device message status: The status of device messages
exchanged between the device and platform will be
forwarded. For details on the device message status, see
Message Status. When Data Source is set to Device
message status, quick configuration is not supported.

e Device status: The status change of a directly connected
device in a resource space will be forwarded. Click Quick
Configuration on the right to forward information about
devices whose status is Online, Offline, or Abnormal to
other services. For details on the status of devices directly
connected to the loT platform, see Device Status.

e Batch task: The batch task status will be forwarded. When
Data Source is set to Batch Task, quick configuration is not

supported.
Trigger After the data source is selected, the platform automatically
matches the trigger event.
Resource You can select a single resource space or all resource spaces. If
Space All resource spaces is selected, quick configuration is not
supported.

Step 4 Under Set Forwarding Target, click Add. On the displayed page, set the
parameters based on the table below and click OK.

Parameter Description
Forwarding Select AMQP message queue.
Target

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 245

https://support.huaweicloud.com/en-us/usermanual-iothub/iot_02_9992.html#section3
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0046.html#section2
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0065.html#section0

IoT Device Access
Developer Guide 5 Development on the Application Side

Parameter Description

Message Queue | Click Select to select a message queue.

e If no message queue is available, create one. The queue
name must be unique and can contain a maximum of 128
characters that consist of letters, numbers, underscores (),
hyphens (-), and vertical bars (]). Other characters such as
the slash (/) are not allowed.

e To delete a message queue, click Delete on the right of
the message queue.

NOTE
A subscribed queue cannot be deleted.

Step 5 After the rule is defined, click Enable Rule to start forwarding data to the AMQP
message queue.

--—-End

5.2.3.3 AMQP Client Access

After configuring and activating rules by calling the platform APIs Creating a Rule
Trigger Condition, Creating a Rule Action, and Modifying a Rule Trigger
Condition, connect the AMQP client to the IoT platform. Then run the AMQP
client on your server to receive subscribed-to messages.

Protocol Version
For details on AMQP, see AMQP.
The loT platform supports only AMQP 1.0.

Connection Establishment and Authentication

1. The AMQP client establishes a TCP connection with the platform and
performs TLS handshake verification.

(10 NOTE

To ensure security, the AMQP client must use TLS1.2 or a later version for encryption.
Non-encrypted TCP transmission is not supported.

The client requests to set up a connection.

3. The client sends a request to the platform to establish a receiver link (a
unidirectional channel for the platform to push data to the client).

The receiver link must be set up within 15 seconds after the connection is set
up on the client. Otherwise, the platform will close the connection.

After the receiver link is set up, the client is connected to the platform.

(10 NOTE

Only one receiver link can be created for a connection, and sender links cannot be
created. Therefore, the platform can push messages to the client, but the client cannot
send messages to the platform.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 246

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html
https://www.amqp.org/?spm=a2c4g.11186623.2.16.4954719fdfh8Qf

loT Device Access
Developer Guide

5 Development on the Application Side

Connection Configuration Parameters

The table below describes the connection address and connection authentication
parameters for the AMQP client to connect to the platform.

e AMAQP access domain name: amgps://${UUCID}.iot-amqps.cn-
north-4.myhuaweicloud.com
e Connection string: amqps://${UUCID}.iot-amgps.cn-
north-4.myhuaweicloud.com :5671?
amgp.vhost=default&amgqp.idleTimeout=8000&amgqp.saslMechanisms=PLAIN
Parameter Description
UuciD Short for unique user connect ID, which is automatically
generated for each account. You can view the UUCID on
the Overview page of the 10TDA console.
Platform Access Basic Edition
Access Type Access Protocol (Port) Domain Name
443 iotda.cn-north-4.myhuaweicloud.com
Application ac...
5671 UUCTID —— e aoameamameataame 3 Mg ps.cn-north-4.myhuafveicloud.com
5683 5684 iot-coaps.cn-north-4.myhuaweicloud.cor
Device access 8943 iot-https.cn-north-4.myhuaweicloud.com
1883 8883 iot-mgtts.cn-north-4.myhuaweicloud.com
amgp.vhost Currently, AMQP uses the default host. Only the default
host is supported.
amgp.saslMech | Connection authentication mode. Currently, PLAIN-SASL is
anisms supported.
idle-time-out Heartbeat interval, in milliseconds. If the heartbeat
interval expires and no frame is transmitted on the
connection, the platform closes the connection.
e Port: 5671

e Client identity authentication parameters
username = "accessKey=${accessKey}|timestamp=1599116822987|"

password = "${accessCode}"

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd.

247

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

IoT Device Access
Developer Guide 5 Development on the Application Side

Parameter | Mandato | Description

ry or
Optional

accessKey | Mandator | An accessKey can be used to establish a

y maximum of 32 concurrent connections. When
establishing a connection for the first time, preset
the parameter by following the instructions
provided in Obtaining the AMQP Access
Credential.

timestamp | Mandator | Indicates the current time. The value is a 13-digit
y timestamp, accurate to milliseconds.

The server verifies the client timestamp. There is a
5-minute difference between the client
timestamp and server timestamp.

accessCode | Mandator | The value can contain a maximum of 256

y characters. When establishing a connection for
the first time, preset the parameter by following
the instructions provided in Resources. If the
accessCode is lost, you can call the API
Generating an Access Token or follow the
instructions provided in Obtaining the AMQP
Access Credential to reset the accessCode.

Obtaining the AMQP Access Credential

If an application uses AMQP to access the platform for data transfer, preset an
access credential. You can call the API Generating an Access Credential or use
the console to preset an access credential. The procedure for using the console to
generate an access credential is as follows:

1. In the navigation pane, click loTDA Instances. On the page displayed, click
Details under Basic Edition to access the details.

2. Click Preset Access Credential to preset the accessCode and accessKey.

Instance Details

Default

ccess Details

Access Type Access Protocol (Port) Access Address Operation

HTTPS (443 iotda.cn-north-4myhuaweicloud com @
Application acce.
AMQPS (567 W maps.c-north 4 myhuawelcloud.com g

COAP (5683) = COAPS (5684) fot-coaps.cn-north-4 myhuaweicloud.com [m]

Tot-https cn-north-4 myhuaw

u

MQTT (1883) = MQTTS (8883 fot-matts.cn-north-4.myhuaw

[m]

(10 NOTE

If you already have an access credential, the accessKey cannot be used after you
preset the access credential again.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 248

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0111.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0111.html

IoT Device Access
Developer Guide 5 Development on the Application Side

Connection Specifications

Key Documentation

Maximum number of queues that can | 10
be connected to a connection

Maximum number of queues for a 100
user

Maximum number of connections for 32
a tenant

Maximum number of cached messages | 9,000
for an loTDA instance

Maximum number of concurrent 1,000
connections

Cache duration of a message (days) 1

Receiving Push Messages

After the receiver link between the client and platform is established, the client
can proactively pull data or register a listener to enable the platform to push data.
The proactive mode is recommended, because the client can pull data based on its
own capability.

5.2.3.4 Java SDK Access Example

An AMQP-compliant JMS client connects to the loT platform and receives
subscribed messages from the platform.

Requirements for the Development Environment

JDK 1.8 or later has been installed.

Obtaining the Java SDK

The AMQP SDK is an open-source SDK. If you use Java, you are advised to use the
Apache Qpid JMS client. Visit Qpid JMS 0.50.0 to download the client and view
the instructions for use.

Adding a Maven Dependency

<!-- amgp 1.0 gpid client -->
<dependency>
<groupld>org.apache.qpid</groupld>
<artifactld>qgpid-jms-client</artifactld>
<version>0.50.0</version>
</dependency>

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 249

https://qpid.apache.org/releases/qpid-jms-0.47.0/index.html

loT Device Access
Developer Guide

5 Development on the Application Side

Code Samples

You can click here to obtain the Java SDK access example. For details on the
parameters involved in the demo, see 5.2.3.3 AMQP Client Access.

package com.huawei.iot.amgp.jms;

import org.apache.gpid.jms.JmsConnection;

import org.apache.qpid.jms.JmsConnectionFactory;

import org.apache.qpid.jms.JmsConnectionListener;

import org.apache.gpid.jms.message.JmsinboundMessageDispatch;
import org.apache.qgpid.jms.transports.TransportOptions;

import org.apache.qgpid.jms.transports.TransportSupport;

import javax.jms.*;

import javax.naming.Context;

import javax.naming.InitialContext;

import java.net.URI;

import java.util. Hashtable;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

public class HwlotAmgpJavaClientDemo{
// Asynchronous thread pool. You can adjust the parameters based on service features or use other
asynchronous processing modes.
private final static ExecutorService executorService = new
ThreadPoolExecutor(Runtime.getRuntime().availableProcessors(),
Runtime.getRuntime().availableProcessors() * 2, 60,
TimeUnit.SECONDS, new LinkedBlockingQueue<>(5000));

public static void main(String[] args) throws Exception{

// accessKey for the access credential.

String accessKey = "${yourAccessKey}";

long timeStamp = System.currentTimeMillis();

// Method to assemble userName. For details, see AMQP Client Access.

String userName = "accessKey=" + accessKey + "|timestamp=" + timeStamp;

// accessCode for the access credential.

String password = "${yourAccessCode}";

// Assemble the connection URL according to the gpid-jms specifications.

String connectionUrl = "amgps://${UUCID}.iot-amgps.cn-north-4.myhuaweicloud.com:5671?
amgp.vhost=default&amgp.idleTimeout=8000&amgp.sasiIMechanisms=PLAIN";

Hashtable<String, String> hashtable = new Hashtable<>();

hashtable.put("connectionfactory.HwConnectionURL", connectionUrl);

// Queue name. You can use DefaultQueue.

String queueName = "${yourQueue}";

hashtable.put("queue.HwQueueName", queueName);

hashtable.put(Context.INITIAL_CONTEXT_FACTORY,
"org.apache.gpid.jms.jndi.JmsInitialContextFactory");

Context context = new InitialContext(hashtable);

JmsConnectionFactory cf = (JmsConnectionFactory) context.lookup("HwConnectionURL");

// Multiple queues can be created for one connection. Match queue.HwQueueName with
queue.HwQueueName.

Destination queue = (Destination) context.lookup("HwQueueName");

// Trust the server.
TransportOptions to = new TransportOptions(); to.setTrustAll(true);
cf.setSslContext(TransportSupport.createJdkSslContext(to));

// Create a connection.

Connection connection = cf.createConnection(userName, password);
((JmsConnection) connection).addConnectionListener(myJmsConnectionListener);
// Create a session.

// Session.CLIENT_ACKNOWLEDGE: After receiving a message, manually call message.acknowledge().

// Session.AUTO_ACKNOWLEDGE: The SDK automatically responds with an ACK message.
(recommended processing)

Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

connection.start();

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd.

250

https://developer.obs.cn-north-4.myhuaweicloud.com/manage/amqp/HwIotAmqpJavaClientDemo.zip

IoT Device Access
Developer Guide 5 Development on the Application Side

// Create a receiver link.

MessageConsumer consumer = session.createConsumer(queue);

// Messages can be processed in either of the following ways:

// 1. Proactively pull data (recommended processing). For details, see receiveMessage(consumer).

// 2. Add a listener. For details, see consumer.setMessageListener(messageListener). The server
proactively pushes data to the client at an acceptable data rate.

receiveMessage(consumer);

// consumer.setMessagelListener(messagelistener);

}

private static void receiveMessage(MessageConsumer consumer) throws JMSException{
while (true){
try{
// It is recommended that received messages be processed asynchronously. Ensure that the
receiveMessage function does not contain time-consuming logic.
Message message = consumer.receive(); processMessage(message);
} catch (Exception e) {
System.out.println("receiveMessage hand an exception: " + e.getMessage());
e.printStackTrace();
}
}

}

private static MessageListener messageListener = new MessageListener(){
@Override
public void onMessage(Message message){
try {
// It is recommended that received messages be processed asynchronously. Ensure that the
onMessage function does not contain time-consuming logic.
// If the service processing takes a long time and blocks the thread, the normal callback after the
SDK receives the message may be affected.
executorService.submit(() -> processMessage(message));
} catch (Exception e){
System.out.println("submit task occurs exception: " + e.getMessage());
e.printStackTrace();

* Service logic for processing the received messages
*/
private static void processMessage(Message message) {
try {
String body = message.getBody(String.class); String content = new String(body);
System.out.println("receive an message, the content is " + content);
} catch (Exception e){
System.out.println("processMessage occurs error: " + e.getMessage());
e.printStackTrace();
}
}

private static JmsConnectionListener myJmsConnectionListener = new JmsConnectionListener(){
/**
* Connection established.
*/
@Override
public void onConnectionEstablished (URI remoteURI){
System.out.println("onConnectionEstablished, remoteUri:" + remoteURI);

}
/**

* The connection fails after the maximum number of retries is reached.

*/

@Override

public void onConnectionFailure(Throwable error){
System.out.println("onConnectionFailure, " + error.getMessage());

}

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 251

IoT Device Access
Developer Guide 5 Development on the Application Side

/**

* Connection interrupted.

*/

@Override

public void onConnectioninterrupted (URI remoteURI){
System.out.println("onConnectioninterrupted, remoteUri:" + remoteURI);

}
/**

* Automatic reconnection.

*/

@Override

public void onConnectionRestored(URI remoteURI){
System.out.println("onConnectionRestored, remoteUri:" + remoteURI);

}

@Override
public void onlnboundMessage(JmsinboundMessageDispatch envelope){
System.out.println("oninboundMessage, " + envelope);

}

@Override
public void onSessionClosed(Session session, Throwable cause){
System.out.println("onSessionClosed, session="+ session + ", cause =" + cause);

}

@Override
public void onConsumerClosed(MessageConsumer consumer, Throwable cause){
System.out.println("MessageConsumer, consumer=" + consumer + ", cause =" + cause);

}

@Override
public void onProducerClosed(MessageProducer producer, Throwable cause){
System.out.println("MessageProducer, producer=" + producer + ", cause =" + cause);
}
%
}

5.2.3.5 Node.js SDK Access Example

This topic describes how to use a Node.js AMQP SDK to connect to the HUAWEI
CLOUD loT platform and receive subscribed messages from the platform.

Development Environment

Node.js 8.0.0 or later is used.

Downloading the SDK

For the AMQP SDK using Node.js, rhea is recommended. Visit rhea to download
the repository and view the user guide.

Adding Dependencies

Add the following dependencies to the package.json file:

"dependencies": {
"rhea": "A1.0.12"
}

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 252

https://github.com/amqp/rhea

loT Device Access

Developer Guide

5 Development on the Application Side

Sample Code

You can click here to obtain the SDK access example. For details on the
parameters involved in the demo, see 5.2.3.3 AMQP Client Access.

const container = require('rhea');
// Obtain the timestamp.
var timestamp = Math.round(new Date() / 1000);

// Set up a connection.
var connection = container.connect({
// Access domain name. For details, see AMQP Client Access.
'host": '${UUCID}.iot-amgps.cn-north-4.myhuaweicloud.com’,
'port': 5671,
'transport': 'tls',
'reconnect": true,
'idle_time_out': 8000,
// Method to assemble username. For details, see AMQP Client Access.
'username’: 'accessKey=%${yourAccessKey}|timestamp='+ timestamp + |,
// accessCode. For details, see AMQP Client Access.
'password": '${yourAccessCode}’,
'sasIMechannisms': 'PLAIN',
'rejectUnauthorized": false,
'hostname': 'default’,

b

// Create a Receiver connection. You can use DefaultQueue.
var receiver = connection.open_receiver('${yourQueue}');

// Callback function for receiving messages pushed from the cloud
container.on('message’, function (context) {

var msg = context.message;

var content = msg.body;

console.log(content);

// Send an ACK message. Note that the callback function should not contain time-consuming logic.

context.delivery.accept();

b

5.3 Java Demo

This topic describes how to use the sample code (Java) for calling APIs. For details

(Optional) Preparing the Java Development Environment

Step 1

on these APIs, see APl Reference on the Application Side.

If you have prepared the Java development environment, skip this section.

This section describes how to install the JDK 1.8 and Eclipse in the Windows

operating system. If you use another development environment, deploy the two

tools based on project situations.

Download JDK 1.8 (for example, jdk-8u161-windows-x64.exe) from the Java JDK

website, and double-click it to install it.

Step 2 Configure Java environment variables.

1. Right-click Computer and choose Properties.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd.

253

https://iotda-document.obs.cn-north-4.myhuaweicloud.com:443/HwIotAmqpClient.zip
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0001.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

IoT Device Access
Developer Guide 5 Development on the Application Side

Open

Open with FAR

Compile to HTML Help with FAR
Copy/Backup with FAR

Manage

Map network drive...

Disconnect network drive...

Create shortcut
Delete

Rename

Properties

2. Select Advanced system settings.

P
@-v-vlj » Contral Panel » All Control Panel tems » System

File Edit View Tools Help

Control Panel Home . - .
View basic information about your computer

% Device Manager Windows edition

¥ Remote settings Windows 7 Professional

f¥ System protection Copyright © 2009 Microsoft Corporation. All rights reserved.
B¢ Advanced system settings Service Pack 1

3. In the System Properties dialog box, choose Advanced > Environment
Variables.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 254

IoT Device Access
Developer Guide 5 Development on the Application Side

System Properties @

| Computer Mame | Hardware | Advanced |5'_.rsie.-m Protection | H.E.TI'ID‘tE.'|

“fou must be logged on as an Administrator to make most of these changes.

Performance
Visual effects, processor scheduling, memony usage, and virtual memaony

IJzer Profiles
Desktop settings related to your logon

Startup and Recoveny
System startup, system failure, and debugging information

[Environmert Variables...]

0K || Ccancel Apply

4. Configure the system variables. Configure the following three variables:
JAVA_HOME, Path, and CLASSPATH (where the variable names are case-
insensitive). If a variable name already exits, click Edit. If a variable name
does not exist, click New to create one. Generally, the Path variable exists,
and the JAVA_HOME and CLASSPATH variables need to be added.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 255

loT Device Access
Developer Guide

5 Development on the Application Side

Environment Variables

Iser variables for

(=)

Variable
AppData

TEMP
™P

Value

Sl ISERPROFILE %eAppDataR.oaming
%Ll ISERPROFILESR\AppDataiLocal\Temp
YLl ISERPROFILESR\AppDataiLocal\Temp

New.. || Edit.. || Delete
System variables
Variable Value ~
PRO_LAMG zh-n
PROCESSOR_A... AMDo4

PROCESSOR_ID...
PROCESSOR._LE...

Intela4 Family & Model 62 Stepping 4, G...

] [Cancel

]

JAVA_HOME indicates the JDK installation path and is set to C:\ProgramFiles
\Java\jdk1.8.0_45. This path contains the lib and bin files.

P

Mew Systern Variable

==

Variable name:

Variable value:

LIAVA_HOME
CAProgramFiles\Java\jdk1.8.0_45

Cancel

O

-

Path enables the system to recognize a Java command in any path. If the
Path variable exists, add a path at the end of the variable value.

Configuration example: ;C:\Program Files\Java\jdk1.8.0_45\bin;C:\Program
Files\Java\jdk1.8.0_45\jre\bin

Separate two paths using a semicolon (;).

P

Mew Systern Variable

==

Variable name:

Variable value:

Path
gram Files\Javaljdk1.8.0_45\re\bin

Cancel

OK

-

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

256

loT Device Access
Developer Guide

5 Development on the Application Side

CLASSPATH specifies the path of loaded Java classes (class or lib). Java
commands can be identified only if they are contained in the class path.
Configuration example: .;%JAVA_HOME%\Llib\dt.jar;%JAVA_HOME%\Llib
\tools.jar

Note: The path starts with a dot (.), indicating the current path.

-

Mew Systern Variable @
Variable name: CLASSPATH
Variable value: ibdt jar;BJAVA_HOMESGiDitools. jar

| Cancel |

Choose Start > Run, enter cmd, and run the following commands: Java -
version, java, and javac. If the commands can be run, the environment
variables are set.

C:~lzeprs~=0@8293999>java —version
Java version “1.8.68_45"

JavatTM> SE RBuntime Environment ¢huild 1.8.8_45-bi5>
Java HotSpot<TM> Client UM <build 25.45-hB82, mixed model

Step 3 Download the Eclipse installation package from the IDEA website and
decompress it to the local directory.

--—-End

Importing the Demo Project

This section describes how to call APIs based on the Java sample code. Do not use
the sample code for commercial use. For details on these APIs, see APl Reference
on the Application Side.

Step 1 Download and decompress the APl demo in Java.

Step 2 Open IDEA, click Import Project, select pom.xml in the decompressed demo
folder, and click OK.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 257

https://www.jetbrains.com/
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0001.html
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/north/Java/ApiDemo/javaApiDemo2.zip

IoT Device Access
Developer Guide 5 Development on the Application Side

1)

IntelllJ IDEA

+ Create New Project
L [mport Project
= Cpen

¥ Get from Yersion Control

2 Configure» GetHelpw

Step 3 Choose File > Setting > Build, Execution, Deployment > Build Tools > Maven,
set User setting file to the path of the settings.xml file of Maven, and set Local
repository to the path of the local Maven repository.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 258

loT Device Access
Developer Guide 5 Development on the Application Side

Build, Execution, Deployment : Build Tools * Maven

» Appearance & Behavior
Keymap

» Editor
Plugins

» Version Control

¥ Build, Execution, Deployment

¥ Build Tools

he-maven-3.5.2

--—-End

Obtaining a Token

Before accessing platform APIs, an application must call the APl Obtaining the
Token of an IAM User for authentication. After the authentication is successful,
HUAWEI CLOUD returns the authentication token X-Subject-Token to the
application.

This section describes how to call the authentication API based on the Java code
sample of the API.

Step 1 In IDEA, choose JavaApiDemo > src > main > java > com.huawei,.util >
Constants.java, and then change the values of TOKEN_BASE_URL and
IOTDM_BASE_URL.

Parameters are described as follows:

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 259

https://support.huaweicloud.com/en-us/api-iam/iam_30_0001.html
https://support.huaweicloud.com/en-us/api-iam/iam_30_0001.html

loT Device Access
Developer Guide 5 Development on the Application Side

e TOKEN_BASE_URL: Enter the address for interconnecting with 1AM, that is,
the IAM endpoint, which can be obtained from IAM Regions and Endpoints.

e |IOTDM_BASE_URL: Enter the address for interconnecting with 10TDA, that is,
the I0TDA endpoint, which can be obtained from loTDA Regions and
Endpoints.

(11 NOTE

The endpoints vary depending on the region. Obtain the endpoints based on project
conditions. For example, if you have subscribed to IoTDA in CN North-Beijing 4, obtain
the endpoint of CN North-Beijing 4 from 10TDA Regions and Endpoints.

Step 2 In the imported sample code, choose JavaApiDemo > src > main > java >
com.huawei.demo.auth > Authentication.java.

Change the account information to your own account information, right-click
Authentication.java, and choose Run Authentication.main() to run the code.

Step 3 View the response log on the console. If a token is obtained, the authentication is
successful.

Keep the token secure. It will be used when you call other APIs.

If no correct response is obtained, check whether the global constants are
modified correctly or whether a network fault occurs.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 260

https://developer.huaweicloud.com/en-us/endpoint?IAM
https://developer.huaweicloud.com/en-us/endpoint?IoTDA
https://developer.huaweicloud.com/en-us/endpoint?IoTDA
https://developer.huaweicloud.com/en-us/endpoint?IoTDA

IoT Device Access
Developer Guide 5 Development on the Application Side

Note: For each attempt to obtain a new token, the system preferentially retrieves
the existing token stored in the file. If the token has expired, the system deletes
the token.text file and obtains a new one.

huawei

¥ B demo

PN auth

Authenticatic

----End

Device Registration (Token Authentication)

Before connecting a device to the platform, an application must call the API
Creating a Device. Each device connecting to the platform carries the device ID to
complete access authentication. For details, see APl Reference.

This section describes how to call the API based on the Java sample code of the
API.

Step 1 In IDEA, choose JavaApiDemo > src > main > java > com.huawei.demo.device >
CreateDevice.java.

Modify parameters such as nodeld, timeout, secret, deviceName, and productld.
For details on the parameter description, see the API Creating a Device.

Add the obtained token to the X-Auth-Token request header.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 261

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0003.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0046.html

IoT Device Access
Developer Guide 5 Development on the Application Side

Step 2 In IDEA, right-click CreateDevice.java and choose Run CreateDevice.main() to
run the code.

Step 3 View the response log on the console. If all types of subscriptions obtain the
response "201" as well as deviceld, the subscription is successful.

HTTP/1.1 201

{"app_id":"58680 ', "device_id":"5e5888f0f92c9902fc1eB9a8_111122222333344455" , "node_id" : "1

--—-End

Device Query (Token Authentication)

Applications can call the API Querying a Device to query details about a device
registered with the platform.

This section describes how to call the API based on the Java code sample of the
API.

Step 1 In IDEA, choose JavaApiDemo > src > main > java > com.huawei.demo.device >
QueryDevicelist.java, and then modify the corresponding parameters.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 262

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0055.html

IoT Device Access
Developer Guide 5 Development on the Application Side

map . put (

Httr_‘.ll_.'til_‘-_- }"ttr_‘.ll_.'ti]__‘-_- =
h ,
e httpRespo

Step 2 Right-click QueryDevicelList and choose Run QueryDeviceList.main() to run the
code.

Step 3 View the response log on the console. If deviceld is obtained, the query is
successful.

--—-End

Device Registration (AK/SK Authentication)

In addition to token authentication, AK/SK authentication is supported for calling
platform APIs. This section describes how to call the AK/SK authentication API
based on the sample code (Java) for calling APIs.

Step 1 In IDEA, choose JavaApiDemo > src > main > java > com.huawei.demo.device >
CreateDeviceByAK.java, modify the corresponding parameters, and call the
SignUtil.signRequest() method to sign the request.

HashMap: 9]

[Parameters to be
(atied 1L ey i aaseablad i the UL

Step 2 In IDEA, choose JavaApiDemo > src > main > java > com.huawei.demo.apig >
SignUtil.java, and modify the AK/SK in the signRequest() method. For details,
see Obtaining an AK/SK.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 263

https://support.huaweicloud.com/en-us/devg-apisign/api-sign-provide.html#api-sign-provide__section5742192219435

IoT Device Access
Developer Guide 5 Development on the Application Side

= signRequest(String url, String

Request()

Step 3 In IDEA, right-click CreateDeviceByAK.java and choose Run
CreateDeviceByAK.main() to run the code.

Step 4 View the response log on the console. If all types of subscriptions obtain the
response "201" as well as deviceld, the subscription is successful.

HTTP/1.1 201

{"app_id":"58f68008ce5adec8b5caf3d1910cas9a”, "device id":"5e5880F0f92c9902fc1e@9a8 111122

--—-End

Device Query (AK/SK Authentication)

Applications can call the API Querying a Device to query details about a device
registered with the platform.

This section describes how to call the API based on the Java code sample of the
API.

Step 1 In IDEA, choose JavaApiDemo > src > main > java > com.huawei.demo.device >
QueryDeviceListByAK.java, modify the corresponding parameters, sign the
request, and replace the AK/SK in the signature method. For details, see
Obtaining an AK/SK.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 264

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0055.html
https://support.huaweicloud.com/en-us/devg-apisign/api-sign-provide.html#api-sign-provide__section5742192219435

IoT Device Access
Developer Guide 5 Development on the Application Side

Parameters to

Fequest UREL Fequest method Fequest mEssagEle assenbled
body in the UEL

HttpRequestBase httpRequestBase = SignUtil.sign

HttpUtils httpUtils = HttpUtils()
httpUtils.initClient();|

mClosedH
(http
.println(http

Step 2 Right-click QueryDeviceListByAK and choose Run QueryDeviceListByAK.main()
to run the code.

Step 3 View the response log on the console. If deviceld is obtained, the query is
successful.

--—-End

Development of Other APIs

For details on how to develop other APIs, see APl Reference.

Performing Single-Step Debugging

To intuitively view requests sent by applications and responses from the platform,
use the breakpoint debugging method of IDEA.

Step 1 Set breakpoints in the code where HTTP or HTTPS messages are sent. For
example, set three breakpoints for the execute method in the sample code
HttpsUtil.java. (Set the breakpoints based on your actual code.)

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 265

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0003.html

IoT Device Access
Developer Guide 5 Development on the Application Side

Step 2 Right-click the class to debug, for example, CreateDevice.java, and choose Debug
> CreateDevice.main().

Step 3 After the program stops running at the breakpoint, click Step Over to perform
single-step debugging. You can view the content of the variables in the Variables
window, such as the request and response.

variables

"[Cont

Step 4 Expand the request variable in the Variables window to view the content.

1. When the request variable is selected, the URL of the request sent by the
application is displayed in the uri area, and the content of the request is
displayed in the entity area.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 266

loT Device Access

Developer Guide 5 Development on the Application Side

null
QQAYIKoZIhveNAQcCollQMTCCEC

{HeaderGroup@ uth-Token: M

Content-Type: applicatio

In the sample code, all classes other than Authentication.java call the
Authentication API in the first step. Therefore, if you want to obtain a new token
during single-step debugging on a class other than Authentication.java, view the
variable content when the program reaches the breakpoint for the second time.

--—-End

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 267

IoT Device Access
Developer Guide 5 Development on the Application Side

5.4 Debugging Using Postman

Overview
Postman is a visual editing tool for building and testing API requests. It provides
an easy-to-use Ul to send HTTP requests, including GET, PUT, POST, and DELETE
requests, and modify parameters in HTTP requests. Postman also returns response
to your requests.
To fully understand APIs, read API Reference on the Application Side in advance.
The Postman Collection is already available, in which the structure of API call
requests are ready for use.
This topic uses Postman as an example to describe how to debug the following
APIs to connect an application to the loT platform using HTTPS:
e Obtaining the Token of an IAM User
e Listing Projects Accessible to an IAM User
e Creating a Product
e Querying a Product
e Creating a Device
e Querying a Device

Prerequisites

e You have installed Postman. If Postman is not installed, install it by following
the instructions provided in Installing and Configuring Postman.

e You have downloaded the Collection.
e You have developed a product model and codec on the IoTDA console.
Installing and Configuring Postman

Step 1 Install Postman.

1. Visit the Postman website to download and install Postman. (Postman 7.17.0
is used as an example.)

Choose your platform:

Postman for Mac Postman for Windows Postman for Linux

Download x64 Download x64 Download

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 268

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0001.html
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/Collection_environment_of_postman_V5.zip
https://www.getpostman.com/apps

IoT Device Access
Developer Guide 5 Development on the Application Side

(11 NOTE

- Postman requires the .NET Framework 4.5 component. If you do not have this
component, click .NET Framework 4.5 to download and install it.

- To ensure successful API calls, you are advised to download Postman 7.17.0.
2. Enter the email address, username, and password to register Postman.

Step 2 Import the Postman environment variables.

1. Click t in the upper right corner. The MANAGE ENVIRONMENTS window
is displayed.

No Environment v © #

2. Click Import to import the loTDA.postman_environment.json file (obtained
after the Collection package is decompressed).

MANAGE ENVIRONMENTS

Learn more about environments

ate an environment

o -

3. Click Manage Environments and select the imported |I0TDA environment.

IoTDA r © |I¥

Manage Environments

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 269

https://www.microsoft.com/en-us/download/details.aspx?id=42642
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/Collection_environment_of_postman_V5.zip

IoT Device Access
Developer Guide 5 Development on the Application Side

MANAGE ENVIRONMENTS

loTDA ~ Share]

| 4=

4. Change the values of IAMEndpoint, IOTDAEndpoint, IAMUserName,
IAMPassword, IAMDoaminld, and region.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 270

loT Device Access
Developer Guide

5 Development on the Application Side

MANAGE ENVIRONMENTS

Environment Name

loTDA

VARIABLE

CURRENT VALUE @ e*s | Persist /

IAMEndpoint
IOTDAENndpaint
I1AMUserName
l1AMPassword

I1AMDoaminld

region

iarmn.cn-north-4.myhuaweicloud.com
iotda.cn-north-4.myhuaweicloud.com
FhhkhkhkE

Fhdhhhik

Fhhkh ki

cn-north-4

X-Awuth-Token
project_id

product_id

Sl @

device_id

-

sharing sensitive values with your team. Learn mor

Use variables to reuse values in different places. Work with the current value of a variable to prevent

(11 NOTE

- IAMEndpoint: Obtain the IAM endpoint from IAM Regions and Endpoints.
- 1OTDAEndpoint: Obtain the IAM endpoint from loT Platform Endpoints.

- If you have subscribed to I0TDA in CN North-Beijing4, change the IAM user name,
login password, and account name by following the instructions provided in My

Credentials.

5. Return to the home page and set the environment variable to the imported
IoTDA.

Step 3 Upload the API call (V5 version).postman_collection.json file.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

271

https://developer.huaweicloud.com/en-us/endpoint?IAM
https://developer.huaweicloud.com/en-us/endpoint?IoTDA
https://console.huaweicloud.com/iam/?agencyId=7c10e4f5f39e4860870661bfd7e54257®ion=cn-north-4&locale=en-us#/mine/apiCredential
https://console.huaweicloud.com/iam/?agencyId=7c10e4f5f39e4860870661bfd7e54257®ion=cn-north-4&locale=en-us#/mine/apiCredential

IoT Device Access
Developer Guide 5 Development on the Application Side

IMPORT

File Folder Link Raw Text

Upload Files

After the file is uploaded, the dialog box shown in the following figure is
displayed.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 272

IoT Device Access
Developer Guide 5 Development on the Application Side

& Postman
File Edit View Help

New T Import Runner !|. b
Q
History Collections APls
<+ New Collection
v B APIVS version)

-
o requests

* B 01Token management R
Get |AM user token
* B 02Project management wee
GET Query the list of projects that IAM...
* B 03Product management sem
Create product
GET Query product

DEL Delete product

v B 04Device management sem
GET Query device
DEL Delete device
--—-End

Debugging the API Used to Obtain the Token for an IAM User

Before accessing platform APIs, an application must call the APl Obtaining the
Token for an IAM User for authentication. After the authentication is successful,
HUAWEI CLOUD returns the authentication token X-Subject-Token to the
application.

To call this API, the application constructs an HTTP request. An example request is
as follows:

POST https://iam.cn-north-4.myhuaweicloud.com/v3/auth/tokens
Content-Type: application/json

{

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 273

IoT Device Access
Developer Guide 5 Development on the Application Side

"auth": {
"identity": {
"methods": [
"password"
]

5
"password": {
"user": {
"name": "username",
"password": "********ll’
"domain": {
"name": "domainname"
}
}
}
by
"scope": {
"project": {
"name": "xxxxxxxx"
}

}
}
}

Note: username indicates the IAM user name, password indicates the password
for logging in to HUAWEI CLOUD, domainname indicates the account name, and
projectname indicates the project name. You can obtain them from the My
Credentials page.

A HuAwEI cLOUD

2B RS RRRRSSERS a-north-1 CN North-eljing!

Debug the API by following the instructions provided in Obtaining a User Token
Through Password Authentication.

Step 1 Configure the HTTP method, URL, and headers of the API.

1oTDA - ®
X A e ¢ s

» Get IAM user token Examples 0 v

Step 2 Configure the body of the API.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 274

https://console.huaweicloud.com/iam/?locale=en-us#/mine/apiCredential
https://console.huaweicloud.com/iam/?locale=en-us#/mine/apiCredential
https://support.huaweicloud.com/en-us/api-iam/iam_30_0001.html
https://support.huaweicloud.com/en-us/api-iam/iam_30_0001.html

loT Device Access
Developer Guide

5 Development on the Application Side

Get IAM user token

+ Get 1AM user token

POST v | hups//{IAMEndpoind}h:
Param
form-dat
¢ "auth”:{
"identit)

IoTDA v o £

Examples 0~

Send v Save ¥

Step 3 Click Send. The returned code and response are displayed in the lower part of the

page.

Headers (16)
KEY

Date

Content-Type
Content-Length
Connection
X-IAM-Trace-Id
Cache-Control

Pragma

Expires

X-Subject-Token
X-Request-ld

Server
Strict-Transport-Security
X-Frame-Options
X-Content-Type-Options
X-Download-Options

X-XSS-Protection

Status: 201 Created Time: 473ms Size: 27.77KB Save Response v

VALUE

Wed, 04 Mar 2020 01:00:53 GMT

application/json; charset=UTF-8

18468

keep-alive
token_cn-north-4_null_5e627fb3ddfc776374456e059¢3666a8
no-cache, no-store, must-revalidate

no-cache

Thu, 01 Jan 1970 00:00:00 GMT
MIIbZAYJKoZIhveNAQCColIbVTCCG1ECAQEXDTALBgIghkgBZQMEAGEWghI2BgkqhkiGIWOBBWGggh...
€93¢1b0311803c589f61b89efo00b48d

api-gateway

max-age=31536000; includeSubdomains;

SAMEORIGIN

nosniff

noopen

1; mode=block;

Step 4 Use the returned X-Subject-Token value in the header field to update X-Auth-
Token in the I0TDA environment so that it can be used in other API calls. If the
token expires, the Authentication APl must be called again to obtain a new

token.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 275

IoT Device Access
Developer Guide 5 Development on the Application Side

MANAGE ENVIRONMENTS

Environment Name

loTDA
VARIABLE LURRENI VALUE @ wes | pErsiSCA Keser A
IAMEndpaint iarn.cn-north-4. myhuaweicloud.com
= IOTDAEndpoint iotda.cn-north-4.myhuaweicloud.com X wee
IAMUserName FEREEE
IAMPassword FEAEEEE
IAMDoaminld
region cn-north-4
X-Auth-Token MIlXsgY]KoZlhveNAQcColXozCCFS8CAQEXDTALEE];
project_id 06f54d66beB02668XXOCONOON0MK
product_id 5ea8df2bX00CCOCOG0000K
device_id 5eaBdf2bb772bT 07 X0COCOONNOO0C000GHK
ﬂ' Use variables to reuse values in different places. Work with the current value of a variable to prevent ~
sharing sensitive values with your team. Learn more about variable values
Cancel Update

The X-Auth-Token parameter is automatically updated in Postman. You do not
need to manually update it.

10TDA - ©
Get IAM user token X 4 e o
» Get 1AM user token Examples 0 v
POST v | haps/{{AMEndpoingiA3/auth/z

“ s .

s the authentication header field of subsequent requests

4 pm.environment.set("X-Auth-Token", token);

--—-End

Debugging the API Listing Projects Accessible to an IAM User

Before accessing platform APIs, the application must call the API Listing Projects
Accessible to an IAM User to obtain the project ID of the user.

To call this API, the application constructs an HTTP request. An example request is
as follows:

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 276

IoT Device Access
Developer Guide 5 Development on the Application Side

GET https://iam.cn-north-4.myhuaweicloud.com/v3/auth/projects
Content-Type: application/json
X-Auth-Token; ****¥¥*x

Debug the API by following the instructions provided in Listing Projects
Accessible to an IAM User.

Step 1 Configure the HTTP method, URL, and headers of the API.

I16TDA v o ¥

Examples 0 v

cer + | haps{AMEndpoing)Alauthprojects m -

KeY VALUE DESCRIPTION

Step 2 Click Send. The returned code and response are displayed in the lower part of the

page.
Body (15) Status: 200 OK
Pretty BETA JSON v =)
1q
2 "projects": [
3 {
4 "domain_id": "ba21fbl2cfc44@569954a2ac9a99323a",
5 "is_domain": false,
6 "parent_id": "ba21fbl2cfc44@569954a2ac9a99323a",
7 "name": "ap-southeast-1",
8 "description": "",
9 "links": {
10 "self": "https://iam.myhuaweicloud.com/v3/projects/072a8dcbc980100d2f0ec01461237196"
1 b
12 "id": "@72a8dcbc980100d2feec0146f237196",
13 “enabled": true
14 }s
15 {
16 "domain_id": "ba21fbl2cfc440569954a2ac9a99323a",
17 "is_domain": false,
18 "parent_id": "ba2lfbl2cfc440569954a2ac9a99323a",
19 "name": "MOS",
20 "description": "",
21 "links": {
22 "self": "https://iam.myhuaweicloud.com/v3/projects/b6c7508ff62e4beb91ceelclced9ecd9”
23 iR
24 "id": "bé6c7508ff62e4beb9lceelclced9ecds”,
25 "enabled": true
26 %

Step 3 The returned body contains a list of projects. Search for the item whose name is
the same as the value of region in the IoTDA environment, and use the id value
to update project_id in the I0TDA environment so that it can be used in other API
calls.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 277

https://support.huaweicloud.com/en-us/api-iam/iam_06_0003.html
https://support.huaweicloud.com/en-us/api-iam/iam_06_0003.html

loT Device Access

Developer Guide 5 Development on the Application Side
Body H (15) R Status: 200 OK
Pretty BETA JSON ¥ =
95 }s
96 "id": "@72a8dcbde8026542f00c014ee62ff50",
97 "enabled": true
98 }s
99 {
100 "domain_id": "ba21fbl2cfc440569954a2ac9a99323a",
101 "is_domain": false,
102 "parent_id": "ba21fbl2cfc440569954a2ac9a99323a",

103 : "cn-north-4",

104 "description": "",

105 "links": {

106 "self": "https://iam.myhuaweicloud.com/v3/projects/06f54d66be8026682f21c014815a69ba"
107 Y,

108 ‘"id": "06f54d66be8026682f21c014815a69ba",

109 "enabled": true

110 }s

111 {

112 "domain_id": "ba21lfbl2cfc440569954a2ac9a99323a",

113 "is_domain": false,

114 "parent_id": "ba21fbl2cfc440569954a2ac9a99323a",

115 "name": "ap-southeast-3",

116 "description": "",

117 "links": {

118 "self": "https://iam.myhuaweicloud.com/v3/projects/072a8dcbcdee26502fblcol4ead6fc7a”
119 }s

120 "id": "@72a8dcbcdee26502fblcoldeadefc7a”,

121 "enabled": true

122 T,

MANAGE ENVIRONMENTS

Environment Name

IoTDA
VARIABLE CURRENT VALUE W Ter | pPErSISTA MESET All
IAMEndpaint iam.cn-north-4.myhuaweicloud.com
IOTDAEndpoint iotda.cn-north-4.myhuaweicloud.com
IAMUserName FREEEEE
|IAMPassword FREE A
|AMDoaminld FEREEAS
region cn-north-4
X-Auth-Token MIXsg¥]KoZlhveNAQcColXozCCFS8CAQEXDTALEEI;
project_id 06f54d66be 802668}
product_id SeaBdf2 O OOE X
device_id 5ea8df2b6772b707XO00COOOCKOOCONOCCONN

ﬂ Use variables to reuse values in different places. Work with the current value of a variable to prevent

sharing sensitive values with your team. Learn more about variable values

Cancel Update

In this example, the project_id parameter is automatically updated in Postman.
You do not need to manually update it.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 278

loT Device Access
Developer Guide

5 Development on the Application Side

s tharf X | | 4 | ==

» Query the list of projects that IAM users can access

ig", projects[i].id);

----End

Debugging the API Used to Create a Product

1oTDA v o

Before connecting a device to the platform, an application must call the API
Creating a Product. The product created will be used during device registration.

To call this API, the application constructs an HTTP request. An example request is

as follows:

POST https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/{project_id}/products

Content-Type: application/json
X-Auth-Token: ******xx

{
"name" : "Thermometer",
"device_type" : "Thermometer",
"protocol_type" : "MQTT",
"data_format" : "binary",
"manufacturer_name" : "ABC",
"industry" : "smartCity",

"description" : "this is a thermometer produced by Huawei",

"service_capabilities" : [{
"service_type" : "temperature",
"service_id" : "temperature",
"description" : "temperature",
"properties" : [{

"unit" : "centigrade",
"min" : "1",

"method" : "R",

"max" : "100",
"data_type" : "decimal”,
"description" : "force",
"step" : 0.1,

"enum_Llist" : ["string"],
"required" : true,
"property_name" : "temperature",
"max_length" : 100

jap
"commands" : [{
"command_name" : "reboot",
"responses" : [{

"response_name" : "ACK",

"paras" : [{
"unit" : "km/h",
"min® ;"7

"max" : "100",
"para_name" : "force",
"data_type" : "string",
"description" : "force",
"step" : 0.1,

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 279

IoT Device Access
Developer Guide 5 Development on the Application Side

"enum_list" : ["string"],
"required" : false,
"max_length" : 100

1]

IR

"paras" : [{
"unit" : "km/h",
"min" : "1",

"max" : "100",
"para_name" : "force",
"data_type" : "string",
"description" : "force",
"step" : 0.1,
"enum_Llist" : ["string"],
"required" : false,
"max_length" : 100
1]
11
"option" : "Mandatory"

11
"app_id" : "jeQDJQZItUSIKgFFoW060F55GZka"

Debug the API by following the instructions provided in Creating a Product.

Note: Only the parameters used in the debugging example are described in the
following steps.

Step 1 Configure the HTTP method, URL, and headers of the API.

loTDA v ©
X+ o *
» Create product Examples o+
POST v | hopsi/I{IOTDAENd poing}Astiot/{{project idjproducts send ~ (ISR
Param: Head Body @ P Tess ® i
e vaLve DESCRIPTION
IoTDA v ©
Crea x + -
» Create product Examples 0~
Params Au n ody PrerequestSeript Tests® Settings Cookies Code
5 h

Step 3 Click Send. The returned code and response are displayed in the lower part of the
page.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 280

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0050.html

loT Device Access
Developer Guide

5 Development on the Application Side

Body Cookies

Pretty

0NV WN e

PR R
NP oY

Headers (6) Test Results Status: 201 Created

Raw Preview Visualize JSON ~« 5

"app_id": "PAutVGQZoEVlICncftiaSMFeeUlEa",
"app_name": "DefaultApp_hwstaff_yee465615_iot",
"product_id": "Sea8df2b6772b707c6d8d35f",
"name": "Thermometers",

"device_type": "Thermometer",

"protocol_type": "MQTT",

"data_format": "binary",

"manufacturer_name": "ABC",

"industry": "smartCity",

"description": "this is a thermometer produced by Huawei",
"service_capabilities": [

Step 4 Use the returned product_id value to update the product_id parameter in the
loTDA environment so that it can be used in other API calls.

MANAGE ENVIRONMENTS

Environment Name

loTDA

VAHRIABLE CURHENIT VALUE O

i
il

IAMEndpaint iam.cn-north-4.myhuaweicloud.com

IOTDAEndpoint iotda.cn-north-4.myhuaweicloud.com
IAMUserName FhededdA
|IAMPassword e
|AMDoaminld ko
region cn-north-4

X-Auth-Token MIXsgY]KoZlhveNAQcCollXozCCFS8CAQEXDTAX. ee

(IR HE<BE<BN<BE<BEC<BEC<BN<HN<

project_id 06f54d66be B0266BXOO0N0O0000{
product_id 5eaBdf2bXO0R00000000000M
device_id 5ealdf2b6772bT070000C0000O00N00000C00N

Use variables to reuse values in different places. Work with the current value of a variable to prevent

e about variable values

sharing sensitive values with your team. Learn more

Cancel

Note: The product_id parameter is automatically updated in Postman. You do not
need to manually update it.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd. 281

IoT Device Access
Developer Guide 5 Development on the Application Side

IoTDA v o ¥
» Create product Examples 0 v

POST

--—-End

Debugging the API Querying a Product

An application can call the APl Querying a Product to query details about a
product.

To call this API, the application constructs an HTTP request. An example request is
as follows:

GET https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/{project_id}/products/{product_id}

Content-Type: application/json
X-Auth-Token: ******+*

Debug the API by following the instructions provided in Querying a Product.

Note: Only the parameters used in the debugging example are described in the
following steps.

Step 1 Configure the HTTP method, URL, and headers of the API.

_—m 1oTDA hd ©
6T Query produc X e ¢ *

» Query product Examples o v

KEY VALUE DESCRIPTION

Step 2 Click Send. The returned code and response are displayed in the lower part of the
page.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 282

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0052.html

loT Device Access
Developer Guide

5 Development on the Application Side

Body Cookies Headers (6) Test Results Status: 200 OK
Pretty Raw Preview Visualize JSON ¥ _:.>
1
2 "app_id": "PAutVGQZoEVICncftiaSMFeeUlEa",
3 "app_nam DefaultApp_hwstaff_y@e465615_iot",
4 "product_id": "S5ea8df2b6772b707c6d8d35f",
5 "name": "Thermometers",
6 "device_type": "Thermometer",
7 "protocol_typ "MQTT",
8 "data_format": "binary",
9 "manufacturer_name": "ABC",
10 "industry": "smartCity",
11 "description": "this is a thermometer produced by Huawei",
12 "service_capabilities": [
13 {
14 "service_id": "temperature",
15 "service_type": "temperature",
16 "properties": [
17 {
18 "property_name": "temperature",
19 "required": true,
20 "data_type": "decimal",
21 “enum_list": [
22 "string"
23 1
24 “min": "1",
25 "max": "1ee",
26 "max_length": 100,
27 "step": 0.1,
28 "unit": "centigrade",
29 "method": "R",
30 "description": "force",
31 "default_value": null
32 ¥
33]
----End

Debugging the API Creating a Device

Step 1

Before connecting a device to the platform, an application must call the API
Registering a Device. Then, the device can use the unique identification code to
get authenticated and connect to the platform.

To call this API, the application constructs an HTTP request. An example request is
as follows:

POST https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/{project_id}/devices
Content-Type: application/json
X-Auth-Token: ***xk

{

"node_id" : "ABC123456789",

"device_name" : "dianadevice",

"product_id" : "b640f4c203b7910fc3cbd446ed437cbd",

"auth_info" : {
"auth_type" : "SECRET",
"secure_access" : true,
"fingerprint" : "dc0f1016f495157344ac5f1296335cff725ef22f",
"secret" : "3b935a250c50dc2c6d481d048cefdc3c",
"timeout" : 300

1

"description" : "watermeter device"

}

Debug the API by following the instructions provided in Creating a Device.

Note: Only the parameters used in the debugging example are described in the
following steps.

Configure the HTTP method, URL, and headers of the API.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 283

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0046.html

loT Device Access
Developer Guide

5 Development on the Application Side

1oTDA v o
= x o+ ° =
» Register device Examples 0 v
POST v | hapsig{l0
Params Authorization Headers (10) Body ® PrerequestScript Tests® Settings
Headers @
Key VaLUE DESCRIPTION BulkEdic Presers v
Content-Type application/json
Y-Auth-Token {X-Auth-Token|
1oTDA v ©
<+ . oS
» Register device Examples 0 v
POST v | hups//{IOTDAEndpoint}}ivS/iot{{project id}}/devices
Params Authorization Headers (10) Body ® PrevequestScript Tests® Settings
none form-data xewnww-form-uriencoded @ raw binary GraphQL JSON
=k

C0710167435157344205 712663350 F 7252722,
9 '3b9352258c58dc2c6d481d048cefdc3c”,

10 300

1 1

12 “description”: "watermeter device”

13)

Step 3 Click Send. The returned code and response are displayed in the lower part of the

page.

Body (7)

Pretty HEL JSON v =)

1
2 "app_id": "PAutVGQZoEVICncftiaSMFeeUlEa",

3 "device_id": "SeSefefc9071cb07289e7733_ABC123456789",
4 "node_id": "ABC123456789",

5 "gateway_id": "SeSefefc9071cb07289e7733_ABC123456789",
6 "device_name": "dianadevice",

7 "node_type": "GATEWAY",

8

9

"description": "watermeter device",
"fw_version": null,

10 "sw_version": null,

11 "auth_info": {

12 "auth_type": "SECRET",

13 "secret": "3b935a250c50dc2c6d481do48cefdc3c”,

14 "fingerprint": null,

15 "secure_access": true,

16 "timeout": 3e0

17 1,

18 "product_id": "S5e5efefc9071cb07289e7733",

19 "status": "INACTIVE",

20 "create_time": "20200304T010621Z",

21 "tags": []

22 }

Status: 201 Created

Step 4 Use the returned device_id value to update the device_id parameter in the loTDA

environment so that it can be used in other API calls.

Issue 01 (2020-12-01)

Copyright © Huawei Technologies Co., Ltd.

284

IoT Device Access
Developer Guide 5 Development on the Application Side

MANAGE ENVIRONMENTS

Environment Name
loTDA
VARIABLE LURHENT VALUE W === | pErsistA MESET A

IAMEndpaint iam.cn-north-4.myhuaweicloud.com
IOTDAEndpoint iotda.cn-north-4.myhuaweicloud.com
IAMUserName FEREEEEE
|AMPassword FEEEEEE
IAMDoaminld e
region cr-north-4
X-Auth-Token MIlXsgY]KoZlhveNAQoColXozCCFS8CAQEXDTALEEIE
project_id 06f54d66be 30266 8X000NCO0G00(
product_id 5eaddf2bX0O000CO0OCHN
device_id Seaddf2bb772b7 07 X000COOOCKOGONOCONN

0 Use variables to reuse values in different places. Work with the current value of a variable to prevent v

sharing sensitive values with your team. Learn more about variable values
Cance Update

Note: The device_id parameter is automatically updated in Postman. You do not
need to manually update it.

1oTDA v ©

ister device X e oy
» Register device Examples o~
POST hups:/

“ s .

evice_id);

--—-End

Debugging the API Querying a Device

An application can call the APl Querying a Device to query details about a device
registered with the platform.

To call this API, the application constructs an HTTP request. An example request is
as follows:

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 285

loT Device Access
Developer Guide 5 Development on the Application Side

GET https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/{project_id}/devices/{device_id}
Content-Type: application/json

X-Auth-Token; **¥trkek

Debug the API by following the instructions provided in Querying a Device.

Note: Only the parameters used in the debugging example are described in the
following steps.

Step 1 Configure the HTTP method, URL, and headers of the API.

IoTDA - e
667 G x + ° b
+ Query device Examples 0 ¥
GET v | hpsUAIOTOAEndpeindiSlicprojec (fdevicslfdeice “ .
Param Authorization Headers (8 Bod PrerequestScripe Tests Semings Cookies Code
Head

KeY VALUE DESCRIPTION
Content-Type applicati

X-Auth-Token

Step 2 Click Send. The returned code and response are displayed in the lower part of the
page.

Body (14) Status: 200 OK

Pretty BETA JSON ¥)
1

2 "app_id": "PAutVGQZoEVlCncftiaSMFeeUlEa",

3 "device_id": "SeSefefc9071cb07289e7733_ABC123456789",
4 "node_id": "ABC123456789",

5 "gateway_id": "SeSefefc9071cb@7289e7733_ABC123456789",
6 "device_name": "dianadevice",

7 "node_type": "GATEWAY",

8 "description": "watermeter device",

9 "fw_version": null,

10 "sw_version": null,

11 "auth_info": {

12 "auth_type": "SECRET",

13 "secret": "HEEEEEN)

14 "fingerprint": null,

15 "secure_access": true,

16 "timeout": o

17 %

18 "product_id": "SeSefefc9071cb@7289e7733",

19 "status": "INACTIVE",

20 "create_time": "20200304T010621Z",

21 "tags": []

22 ¥

----End

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 286

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0055.html

	Contents
	1 Before You Start
	2 Obtaining Resources
	3 Product Development
	3.1 Product Development Guide
	3.2 Creating a Product
	3.3 Developing a Product Model
	3.3.1 Definition
	3.3.2 Developing a Product Model Online
	3.3.3 Developing a Product Model Offline
	3.3.4 Exporting and Importing Product Models

	3.4 Developing a Codec
	3.4.1 Definition
	3.4.2 Graphical Development
	3.4.3 Developing a Codec Using JavaScript
	3.4.4 Offline Codec Development
	3.4.5 Downloading and Uploading a Codec

	3.5 Online Debugging

	4 Development on the Device Side
	4.1 Device Access Guide
	4.2 Using IoT Device SDKs for Access
	4.2.1 Introduction to IoT Device SDKs
	4.2.2 IoT Device SDK (Java)
	4.2.3 IoT Device SDK (C)
	4.2.4 IoT Device SDK (C#)
	4.2.5 IoT Device SDK (Android)
	4.2.6 IoT Device SDK Tiny (C)

	4.3 Using MQTT Demos for Access
	4.3.1 MQTT
	4.3.2 MQTT.fx
	4.3.3 Java Demo
	4.3.4 Python Demo
	4.3.5 Android Demo
	4.3.6 C Demo
	4.3.7 C# Demo
	4.3.8 Node.js Demo

	4.4 Using Huawei-Certified Modules for Access

	5 Development on the Application Side
	5.1 API
	5.2 Subscription and Push
	5.2.1 Overview
	5.2.2 HTTP/HTTPS Subscription/Push
	5.2.3 AMQP Subscription/Push
	5.2.3.1 Overview
	5.2.3.2 Configuring AMQP Server Subscription
	5.2.3.3 AMQP Client Access
	5.2.3.4 Java SDK Access Example
	5.2.3.5 Node.js SDK Access Example

	5.3 Java Demo
	5.4 Debugging Using Postman

