
IoT Device Access

Developer Guide

Issue 01

Date 2020-12-01

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2020. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. i

Contents

1 Before You Start... 1

2 Obtaining Resources... 4

3 Product Development...11
3.1 Product Development Guide... 11
3.2 Creating a Product.. 13
3.3 Developing a Product Model.. 15
3.3.1 Definition.. 15
3.3.2 Developing a Product Model Online.. 17
3.3.3 Developing a Product Model Offline.. 21
3.3.4 Exporting and Importing Product Models...35
3.4 Developing a Codec... 36
3.4.1 Definition.. 37
3.4.2 Graphical Development...38
3.4.3 Developing a Codec Using JavaScript...88
3.4.4 Offline Codec Development.. 105
3.4.5 Downloading and Uploading a Codec... 131
3.5 Online Debugging.. 133

4 Development on the Device Side.. 137
4.1 Device Access Guide.. 137
4.2 Using IoT Device SDKs for Access... 139
4.2.1 Introduction to IoT Device SDKs.. 139
4.2.2 IoT Device SDK (Java)... 141
4.2.3 IoT Device SDK (C)... 157
4.2.4 IoT Device SDK (C#).. 158
4.2.5 IoT Device SDK (Android).. 158
4.2.6 IoT Device SDK Tiny (C)... 158
4.3 Using MQTT Demos for Access... 158
4.3.1 MQTT.. 158
4.3.2 MQTT.fx.. 164
4.3.3 Java Demo... 174
4.3.4 Python Demo..179
4.3.5 Android Demo.. 187

IoT Device Access
Developer Guide Contents

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. ii

4.3.6 C Demo... 199
4.3.7 C# Demo.. 205
4.3.8 Node.js Demo... 214
4.4 Using Huawei-Certified Modules for Access... 221

5 Development on the Application Side... 232
5.1 API..232
5.2 Subscription and Push.. 235
5.2.1 Overview.. 235
5.2.2 HTTP/HTTPS Subscription/Push... 236
5.2.3 AMQP Subscription/Push... 242
5.2.3.1 Overview... 242
5.2.3.2 Configuring AMQP Server Subscription... 244
5.2.3.3 AMQP Client Access.. 246
5.2.3.4 Java SDK Access Example... 249
5.2.3.5 Node.js SDK Access Example... 252
5.3 Java Demo...253
5.4 Debugging Using Postman... 268

IoT Device Access
Developer Guide Contents

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. iii

1 Before You Start

Overview
To create an IoT solution based on the HUAWEI CLOUD IoT platform, you must
perform the operations described in the table below.

Operation Description

Product
development

Manage products, develop product models and codecs, and
perform online debugging on the IoT Device Access (IoTDA)
console.

Development
on the
application
side

Carry out development for interconnection between
applications and the platform, including calling APIs, obtaining
service data, and managing HTTPS certificates.

Development
on the device
side

Carry out development for interconnection between devices
and the platform, including connecting devices to the
platform, reporting service data to the platform, and
processing commands delivered by the platform.

Service Process
The figure below shows the process of using IoTDA, including product, application,
device, and routine management.
● Product development: You can perform development operations on the IoTDA

console. For example, you can create a product or device, develop a product
model or codec online, perform online debugging, carrying out self-service
testing, and release a product. The self-service testing and product release
functions are not rolled out yet.

● Application development: The platform provides robust device management
capabilities through APIs. You can develop applications based on the APIs to
meet requirements in different industries such as smart city, smart campus,
smart industry, and IoV.

● Device development: You can connect devices to the platform by integrating
SDKs or modules, or using native protocols.

IoT Device Access
Developer Guide 1 Before You Start

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 1

● Routine management: After a physical device is connected to the platform,
you can perform routine device management on the IoTDA console or by
calling APIs.

IoT Device Access
Developer Guide 1 Before You Start

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 2

IoT Device Access
Developer Guide 1 Before You Start

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 3

2 Obtaining Resources

Platform Connection Information
Before connecting applications and devices to the IoT platform, you must obtain
platform access addresses.

IoT Device Access
Developer Guide 2 Obtaining Resources

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 4

Platform
Environment

How to Obtain

IoT Device
Access

Log in to the IoTDA console, access the Overview page, and
view the device and application access addresses.

Figure 2-1 Shared domain name

For users who have subscribed to IoTDA since 00:00 on July
14, 2020 (Beijing time), the platform allocates a unique
region-level ID to each user based on the shared domain
name. Users can connect to the platform using their
independent domain names. If you want to change a device
from Basic Edition to Enterprise Edition and use a domain
name for device access, you do not need to modify devices.
Contact Huawei engineers to migrate data.

Figure 2-2 Independent domain names

Note: You can still use the shared domain name to access
the platform.

IoT Device Access
Developer Guide 2 Obtaining Resources

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 5

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

Platform
Environment

How to Obtain

Log in to the IoTDA console, choose IoTDA Instances >
Basic Edition, click Details to open the instance details
page, and click Preset Access Credential to preset the
accessCode and accessKey.

Device Development Resources
The platform allows device access using MQTT or LwM2M over CoAP. Devices can
connect to the platform by calling APIs or integrating with SDKs.

Resource Package Description Download Link

IoT Device SDK (Java) Devices can connect to
the platform by
integrating the IoT
Device SDK (Java). The
demo provides sample
code for calling SDK
APIs. For details, see IoT
Device SDK (Java).

IoT Device SDK (Java)

IoT Device SDK (C) Devices can connect to
the platform by
integrating the IoT
Device SDK (C). The
demo provides sample
code for calling SDK
APIs. For details, see IoT
Device SDK (C).

IoT Device SDK (C)

IoT Device SDK (C#) Devices can connect to
the platform by
integrating the IoT
Device SDK (C#). The
demo provides sample
code for calling SDK
APIs. For details, see IoT
Device SDK (C#).

IoT Device SDK (C#)

IoT Device Access
Developer Guide 2 Obtaining Resources

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 6

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-cSharp
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-cSharp
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-cSharp

Resource Package Description Download Link

IoT Device SDK
(Android)

Devices can connect to
the platform by
integrating the IoT
Device SDK (Android).
The demo provides
sample code for calling
SDK APIs. For details, see
IoT Device SDK
(Android).

IoT Device SDK
(Android)

IoT Device SDK Tiny (C) Devices can connect to
the platform by
integrating the IoT
Device SDK Tiny (C). The
demo provides sample
code for calling SDK
APIs. For details, see IoT
Device Tiny SDK (C).

IoT Device SDK Tiny (C)

Native MQTT or MQTTS
access example

Devices can be
connected to the
platform using the native
MQTT or MQTTS
protocol. The demo
provides sample code for
SSL-encrypted link setup,
TCP link setup, data
reporting, and topic
subscription.
Examples: Java, Python,
Android, C, C#, and
Node.js

quickStart(Java)
quickStart(Android)
quickStart(Python)
quickStart(C)
quickStart(C#)
quickStart(Node.js)

Product model template Product model templates
of typical scenarios are
provided. You can
customize product
models based on the
templates.
For details, see
Developing a Product
Model Offline.

Product Model Example

Codec example Demo codec projects are
provided for you to
perform secondary
development.
For details, see Offline
Codec Development.

Codec Example

IoT Device Access
Developer Guide 2 Obtaining Resources

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 7

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/LiteOS/LiteOS_Lab
https://github.com/LiteOS/LiteOS_Lab
https://github.com/LiteOS/LiteOS_Lab
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(java).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/mqttdemo(android).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(python).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(c).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(cSharp).zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(nodejs).zip
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/ProfileDemo/ProfileSample.zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/tool/CodecDemo/CodecDemoV2.zip

Resource Package Description Download Link

Codec test tool The tool is used to check
whether the codec
developed offline is
normal.

Codec Test Tool

NB-IoT device simulator The tool is used to
simulate the access of
NB-IoT devices to the
platform using LwM2M
over CoAP for data
reporting and command
delivery.
For details, see
Developing Products on
the Console.

NB-IoT Device
Simulator

IoT Link Studio
(originally named IoT
Studio)

IoT Link Studio is an
integrated development
environment (IDE)
developed for the IoT
Device SDK Tiny. It
provides one-stop
development capabilities,
such as compilation,
programming, and
debugging, and supports
multiple development
languages like C, C++,
and assembly language.
For details, see
Developing a Smart
Street Lamp Using NB-
IoT BearPi.

IoT Link Studio

Application Development Resources
The platform provides a wealth of application-side APIs to ease application
development. Application development is the process in which an application calls
platform APIs to implement service scenarios such as secure access, device
management, data collection, and command delivery.

IoT Device Access
Developer Guide 2 Obtaining Resources

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 8

https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/pluginDetector/IoT_Codec_Test_Tool.zip
https://support.huaweicloud.com/en-us/bestpractice-iothub/iot_bp_0014.html
https://support.huaweicloud.com/en-us/bestpractice-iothub/iot_bp_0014.html
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/NBSimulate/NB-IoTDeviceSimulatorEn.zip
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/NBSimulate/NB-IoTDeviceSimulatorEn.zip
https://support.huaweicloud.com/en-us/bestpractice-iothub/iot_bp_0007.html
https://support.huaweicloud.com/en-us/bestpractice-iothub/iot_bp_0007.html
https://support.huaweicloud.com/en-us/bestpractice-iothub/iot_bp_0007.html
https://marketplace.visualstudio.com/items?itemName=iotlink.iot-studio&ssr=false#overview

Resource Package Description Download Link

Application API Java
Demo

You can call application-
side APIs to experience
service functions and
service processes.
For details, see Java
Demo.

API Java Demo

Application Java SDK You can use Java
methods to call
application-side APIs to
communicate with the
platform. For details, see
Java SDK.

Java SDK

Application C# SDK You can use C# methods
to call application-side
APIs to communicate
with the platform. For
details, see C# SDK.

C# SDK

Application Python SDK You can use Python
methods to call
application-side APIs to
communicate with the
platform. For details, see
Python SDK.

Python SDK

Certificates
To connect a device to the platform in some scenarios, you must load a certificate
to the device.

NO TE

This certificate applies only to the platform and must be used together with the device
access domain name.

The table below describes the certificate type, format, and usage.

IoT Device Access
Developer Guide 2 Obtaining Resources

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 9

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0001.html
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/north/Java/ApiDemo/javaApiDemo2.zip
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/releases
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/releases
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-python-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-python-v3/releases

Certificate
Package
Name

Certific
ate
Type

Certifica
te
Format

Description Download
Link

certificate
(Basic edition
in CN North-
Beijing4)

Device
certifica
te

pem, jks,
and bks

Used by a device to verify
the platform identity. The
certificate must be used
together with the device
access domain name.
Note: The old domain
name (iot-acc.cn-
north-4.myhuaweicloud.c
om) must be used
together with the old
certificate.

Certificate
file

certificate
(Standard
edition in CN
North-
Beijing4)

Device
certifica
te

pem, jks,
and bks

Used by a device to verify
the platform identity. The
certificate must be used
together with the device
access domain name.

Certificate
file

certificate
(Standard
edition in CN
East-
Shanghai1)

Device
certifica
te

pem, jks,
and bks

Used by a device to verify
the platform identity. The
certificate must be used
together with the device
access domain name.

Certificate
file

certificate
(CN North-
Beijing4)

Applicat
ion
certifica
te

pem Used by the application
to verify the platform
identity in the
subscription/push
scenario.

Certificate
file

IoT Device Access
Developer Guide 2 Obtaining Resources

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 10

https://developer.obs.cn-north-4.myhuaweicloud.com:443/cert/certificate.zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/cert/certificate.zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/cert/v2/certificate.zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/cert/v2/certificate.zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/cert/v2/cn-beijing4-deviceCert-biaozhunban.zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/cert/v2/cn-beijing4-deviceCert-biaozhunban.zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/cert/v2/cn-shanghai1-deviceCert-biaozhunban.zip
https://developer.obs.cn-north-4.myhuaweicloud.com:443/cert/v2/cn-shanghai1-deviceCert-biaozhunban.zip
https://iotda-document.obs.cn-north-4.myhuaweicloud.com/CnNorth4IotPushCert.zip
https://iotda-document.obs.cn-north-4.myhuaweicloud.com/CnNorth4IotPushCert.zip

3 Product Development

3.1 Product Development Guide

3.2 Creating a Product

3.3 Developing a Product Model

3.4 Developing a Codec

3.5 Online Debugging

3.1 Product Development Guide
In the IoT platform integration solution, the IoT platform provides open APIs for
applications to connect devices using various protocols. To provide richer device
management capabilities, the IoT platform needs to understand the device
capabilities and the formats of data reported by devices. Therefore, you need to
develop product models and codecs to the IoT platform.

● A product model is a JSON file that describes device capabilities. It defines
basic device properties and message formats for data reporting and command
delivery. Defining a product model is to construct an abstract model of a
device in the platform to enable the platform to understand the device
properties.

● A codec is developed based on the format of reported data. If Data Type of
data reported is Binary, a codec must be developed for the product. If Data
Type is JSON, codec development is not required. The IoT platform uses
codecs to convert data between the binary and JSON formats. The binary
data reported by a device is decoded into the JSON format for the NA to read,
and the commands delivered by the NA are encoded into the binary format
for the device to understand and execute.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 11

Product Development Process
The IoTDA console provides a one-stop development tool to help developers
quickly develop products (product models and codecs) and perform self-service
tests.

● Product creation: A product is a collection of devices with the same
capabilities or features. In addition to physical devices, a product includes
product information, product models (profiles), and codecs generated during
IoT capability building.

● Model definition: Product model development is the most important part of
product development. A product model is used to describe the capabilities

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 12

and features of a device. You can construct an abstract model for a device
type by defining a product model on the platform, allowing the platform to
understand the services, properties, and commands supported by the device.

● Codec development: If a device reports data in binary code stream format,
you must develop a codec so that the platform can convert the binary format
to the JSON format. If the device reports data in JSON format, you do not
need to develop a codec.

● Online commissioning: The IoTDA console provides application and device
simulators for you to commission data reporting and command delivery
before developing real applications and physical devices. You can also use the
application simulator to verify the service flow after the physical device is
developed.

3.2 Creating a Product
On the IoT platform, a product is a collection of devices with the same capabilities
or features.

Procedure

Step 1 Log in to the IoTDA console.

Step 2 Click Create Product in the upper right corner, enter information as prompted,
and click Create to create a product.

Set Basic Info

Resource
Space

The platform automatically allocates the created product to the
default resource space. If you want to allocate the product to
another resource space, select the resource space from the drop-
down list box. If the corresponding resource space does not exist,
create a resource space first.

Product
Name

Define a product name. The product name must be unique in an
account. The product name can contain letters, digits,
underscores (_), and hyphens (-).

Protocol ● MQTT: MQTT is used by devices to access the platform. The
data format can be binary or JSON. If the binary format is
used, the codec must be deployed.

● LwM2M/CoAP: LwM2M/CoAP is used only by NB-IoT devices
with limited resources (including storage and power
consumption). The data format is binary. The codec must be
deployed to interact with the platform.

● HTTP/HTTP2: HTTP/HTTP2 is used by devices to access the
platform. Currently, only command and property is supported.

● Modbus: Modbus is used by devices to access the platform.
Devices that use the Modbus protocol to connect to IoT edge
nodes are called indirectly connected devices.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 13

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0006.html

Data Type ● JSON: JSON is used for the communication protocol between
the platform and devices.

● Binary: You need to develop a codec on the IoTDA console to
convert binary code data reported by devices into JSON data.
The devices can communicate with the platform only after the
JSON data delivered by the platform is parsed into binary
code.

Manufacture
r

Enter the manufacturer name of the device. The value can
contain letters, digits, underscores (_), and hyphens (-).

Define Product Model

Product
Model

The platform provides multiple methods for defining a product
model, such as customizing models (developing product models
online), uploading models (importing product models offline),
importing models from an Excel file, and importing preset
models. You can select a method based on your service
requirements. For details, see the following:
● Developing a Product Model Online
● Developing a Product Model Offline
● Exporting and Importing Product Models

Industry Set this parameter based on the live network environment. If the
product model preset on the platform is used, set this parameter
based on the industry to which the product model belongs.

Device Type Set this parameter based on the live network environment. If the
product model preset on the platform is used, the device type is
automatically matched and does not need to be manually
entered.

You can click Delete to delete a product that is no longer used. After the product
is deleted, its resources such as the product models and codecs will be cleared.
Exercise caution when deleting a product.

----End

Follow-Up Procedure
1. In the product list, click the name of a product to access its details. On the

product details page displayed, you can view basic product information, such
as the product ID, product name, device type, data format, manufacturer
name, resource space, and protocol type. The product ID is automatically
generated by the platform. Other information is defined by users during
product creation.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 14

https://support.huaweicloud.com/en-us/devg-iothub/iot_02_0156.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_0005.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_4012.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_9995.html#section1
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0054.html

2. On the product details page, develop a product model, develop a codec,
perform online debugging, and customize topics.

3.3 Developing a Product Model

3.3.1 Definition
A product model describes the capabilities and features of a device. You can build
an abstract model of a device by defining a product model on the IoT platform so
that the platform can know what services, properties, and commands are
supported by the device, such as its color and on or off switches it might have.
After defining a product model, you can use it during device registration.

A product model consists of product details and service capabilities.

● Product details
Product details describe basic information about a device, including the
manufacturer ID, manufacturer name, device type, and protocol.
For example, for a water meter, the manufacturer name could be HZYB,
manufacturer ID TestUtf8ManuId, device type WaterMeter, and protocol
CoAP.

● Service capabilities
The service capabilities of a device are divided into several services. Properties,
commands, and command parameters are defined for each service.
For example, a water meter has multiple capabilities. It reports the water
flow, alarms, battery life, and connection data, and it receives commands too.
When describing the capabilities of a water meter, the profile includes five
services, and each service has its own properties or commands.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 15

https://support.huaweicloud.com/en-us/devg-iothub/iot_01_0063.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_0156.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_9988.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_02_9992.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html

Service Type Description

WaterMeterBasic Defines parameters reported by the water meter, such
as the water flow, temperature, and pressure. If these
parameters need to be controlled or modified using
commands, parameters in the commands need to be
defined.

WaterMeterAlarm Defines various scenarios where the water meter will
report an alarm. Commands need to be defined if
necessary.

Battery Defines the voltage and current intensity of a water
meter.

DeliverySchedule Defines transmission rules for water meters.
Commands need to be defined if necessary.

Connectivity Defines connectivity parameters of the water meter.

Note: You can define the number of services as required. For example, the
WaterMeterAlarm service can be further divided into WaterPressureAlarm
and WaterFlowAlarm services or be integrated into the WaterMeterBasic
service.

The platform provides multiple methods for developing product models. You can
select a method as required.
● Custom Model (online development): Build a product model from scratch.

For details, see Developing a Product Model Online.
● Import Local Profile (offline development): Upload a local product model

to the platform. For details, see Developing a Product Model Offline.
● Import from Excel: Define product functions by importing an Excel file. This

method can lower the product model development threshold for developers
because they only need to fill in parameters based on the Excel file. It also
helps high-level developers and integrators improve the development
efficiency of complex models in the industry. For example, the auto-control air
conditioner model contains more than 100 service items. Developing the
product model by editing the excel file greatly improves the efficiency. You
can edit and adjust parameters at any time. For details, see Import from
Excel.

● Import Library Model: You can use a preset product model to quickly develop
a product. The platform provides standard and manufacturer-specific product
models. Standard product models comply with industry standards and are
suitable for devices of most manufacturers in the industry. Manufacturer-
specific product models are suitable for devices provided by a small number
of manufacturers. You can select a product model as required.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 16

https://support.huaweicloud.com/en-us/devg-iothub/iot_02_0005.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_4012.html

3.3.2 Developing a Product Model Online

Overview
Before developing a product model online, you need to create a product. When
creating a product, you need to enter information such as the product name,
manufacturer name, industry, and device type. The product model uses the
information as the values of device capability fields. The IoT platform provides
standard models and vendor models. These models involve multiple domains and
provide edited profile files. You can modify, add, or delete fields in the product
model as required. If you want to custom a product model, you need to define a
complete profile.

This section uses a product model that contains a service as an example. The
product model contains services and fields in scenarios such as data reporting,
command delivery, and command response delivery.

Procedure

Step 1 Log in to the IoTDA console.

Step 2 In the navigation pane, choose Products. In the product list, click the name of a
product to access its details.

Step 3 On the Model Definition tab page, click Custom Model to add a service for the
product.

Step 4 Specify Service ID, Service Type, and Description, and click OK.
● Service ID: The first letter of the value must be capitalized, for example,

WaterMeter and StreetLight.
● Service Type: You are advised to set this parameter to the service ID.
● Description: Define the properties of light intensity (Light_Intensity) and

status (Light_Status).

After the service is added, define the properties and commands in the Properties/
Commands area. A service can contain properties and/or commands. Configure
the properties and commands based on your requirements.

Step 5 In the property/command list, click Add Property. In the dialog box displayed, set
property parameters and click OK.

Parameter Description

Property
Name

The value of Property Name must start with a letter.
camelCase is recommended, for example, batteryLevel and
internalTemperature.

Mandatory You are advised to select this option.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 17

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

Parameter Description

Data Type ● int: Select this value if the reported data is an integer or
Boolean value.

● decimal: Select this value if the reported data is a decimal.
You are advised to set this parameter to decimal when
configuring the longitude and latitude properties.

● string: Select this value if the reported data is a string, an
enumerated value, or a Boolean value. If enumerated or
Boolean values are reported, use commas (,) to separate the
values.

● dateTime: Select this value if the reported data is a date.
● jsonObject: Select this value if the reported data is in JSON

structure.

Access
Permissions

● Read: You can query the property through APIs.
● Write: You can modify the property value through APIs.
● Execute: After the application subscribes to the data change

notification, the device reports the property value, and the
application receives the push notification.

Value Range Set these parameters according to the actual situation of the
device.

Step

Unit

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 18

Step 6 Click Add Command. In the dialog box displayed, set command parameters.

● Command Name: The command name must start with a letter. It is
recommended that you use uppercase letters and underscores (_) to separate
words, for example, DISCOVERY and CHANGE_STATUS.

● Downlink Parameter: Click Add Input Parameter. In the dialog box
displayed, set the parameters of the command to be delivered and click OK.

Parameter Description

Parameter
Name

The parameter name must start with a letter. It is
recommended that you capitalize the first letter of each
word in a compound word except the first word, for
example, valueChange.

Mandatory You are advised to select this option.

Data Type Set these parameters according to the actual situation of the
device.

Value Range

Step

Unit

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 19

● Click Add Output Parameter to add parameters of a command response
when necessary. In the dialog box displayed, set the parameters and click OK.

Parameter Description

Parameter
Name

The parameter name must start with a letter. It is
recommended that you capitalize the first letter of each
word in a compound word except the first word, for
example, valueResult.

Mandatory You are advised to select this option.

Data Type Set these parameters according to the actual situation of the
device.

Value Range

Step

Unit

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 20

----End

3.3.3 Developing a Product Model Offline

Overview
A product model is essentially a ZIP package that combines one devicetype-
capability.json file and several serviceType-capability.json files in the following
hierarchy, in which WaterMeter indicates the device type, TestUtf8Manuld
identifies the manufacturer, and WaterMeterBasic/WaterMeterAlarm/Battery
indicates the service type.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 21

In this regard, offline product model definition is defining device capabilities in the
devicetype-capability.json file and service capabilities in the servicetype-
capability.json files in JSON format based on the profile definition rules, which is
time-consuming and requires familiarity with the JSON format.

Therefore, 3.3.2 Developing a Product Model Online is recommended.

Naming Rules

The profile must comply with the following naming rules:

● Capitalize device types, service types, and service IDs. Example: WaterMeter
and Battery.

● Capitalize the first letter of each word in a property name except the first
word, for example, batteryLevel and internalTemperature.

● For commands, capitalize all characters, with words separated by underscores.
For example: DISCOVERY and CHANGE_COLOR.

● A device capability profile (.json file) must be named devicetype-
capability.json.

● A service capability profile (.json file) must be named servicetype-
capability.json.

● The manufacturer ID must be unique in different product models and can
only be in English.

● You must ensure that names are universal and concise and service capability
descriptions clearly indicate corresponding functions. For example, you can
name a multi-sensor device MultiSensor and name a service that displays the
battery level Battery.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 22

Profile Templates
To connect a new device to the IoT platform, you need to define a profile for the
device. The IoT platform provides some profile templates. If the types and
functions of devices newly connected to the IoT platform are included in these
templates, directly use the templates. If the types and functions are not included
in the device profile templates, define your profile.

For example, if a water meter is connected to the IoT platform, you can directly
select the corresponding product model on the IoT platform and modify the device
service list.

NO TE

The profile template provided by the IoT platform is updated continuously. The following
table provides some examples of device types and service types, which are for reference
only.

Device identification properties

Property Key in the Profile Value

Device Type deviceType WaterMeter

Manufacturer ID manufacturerId TestUtf8ManuId

Manufacturer Name manufacturerName HZYB

Protocol Type protocolType CoAP

Service list

Service Service ID Service Type Value

Basic water meter
function

WaterMeterBasic Water Mandatory

Alarm service WaterMeterAlarm Battery Mandatory

Battery service Battery Battery Optional

Data reporting
rule

DeliverySchedule DeliverySchedule Mandatory

Connectivity Connectivity Connectivity Mandatory

Device Capability Definition Example
The devicetype-capability.json file records basic information about a device.

{
 "devices": [
 {
 "manufacturerId": "TestUtf8ManuId",
 "manufacturerName": "HZYB",

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 23

 "protocolType": "CoAP",
 "deviceType": "WaterMeter",
 "omCapability":{
 "upgradeCapability" : {
 "supportUpgrade":true,
 "upgradeProtocolType":"PCP"
 },
 "fwUpgradeCapability" : {
 "supportUpgrade":true,
 "upgradeProtocolType":"LWM2M"
 },
 "configCapability" : {
 "supportConfig":true,
 "configMethod":"file",
 "defaultConfigFile": {
 "waterMeterInfo" : {
 "waterMeterPirTime" : "300"
 }
 }
 }
 },
 "serviceTypeCapabilities": [
 {
 "serviceId": "WaterMeterBasic",
 "serviceType": "WaterMeterBasic",
 "option": "Mandatory"
 },
 {
 "serviceId": "WaterMeterAlarm",
 "serviceType": "WaterMeterAlarm",
 "option": "Mandatory"
 },
 {
 "serviceId": "Battery",
 "serviceType": "Battery",
 "option": "Optional"
 },
 {
 "serviceId": "DeliverySchedule",
 "serviceType": "DeliverySchedule",
 "option": "Mandatory"
 },
 {
 "serviceId": "Connectivity",
 "serviceType": "Connectivity",
 "option": "Mandatory"
 }
]
 }
]
}

The fields are described as follows:

Fiel
d

Sub-field Mandatory
or
Optional

Description

devi
ces

Mandatory Complete capability information
about a device (the root node cannot
be modified).

manufactur
erId

Optional Manufacturer ID of the device.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 24

Fiel
d

Sub-field Mandatory
or
Optional

Description

manufactur
erName

Mandatory Manufacturer name of the device (he
value must be in English).

protocolTyp
e

Mandatory Protocol used by the device to
connect to the IoT platform. For
example, the value is CoAP for NB-
IoT devices.

deviceType Mandatory Type of the device.

omCapabili
ty

Optional Software upgrade, firmware upgrade,
and configuration update capabilities
of the device. For details, see the
description of the omCapability
structure below.
If software or firmware upgrade is
not involved, this field can be
deleted.

serviceType
Capabilities

Mandatory Service capabilities of the device.

servic
eId

Mandatory Service ID. If a service type includes
only one service, the value of
serviceId is the same as that of
serviceType. If the service type
includes multiple services, the
services are numbered
correspondingly, such as Switch01,
Switch02, and Switch03.

servic
eType

Mandatory Type of the service. The value of this
field must be the same as that of
serviceType in the servicetype-
capability.json file.

optio
n

Mandatory Type of the service field. The value
can be Master, Mandatory, or
Optional.
This field is not a functional field but
a descriptive one.

Description of the omCapability structure

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 25

Parameter Sub-field Man
dator
y or
Optio
nal

Description

upgradeCa
pability

Optio
nal

Software upgrade capabilities of the device.

supportUpg
rade

Optio
nal

true: The device supports software upgrades.
false: The device does not support software
upgrades.

upgradePro
tocolType

Optio
nal

Protocol type used by the device for
software upgrades. It is different from
protocolType of the device. For example,
the software upgrade protocol of CoAP
devices is PCP.

fwUpgrad
eCapabilit
y

Optio
nal

Firmware upgrade capabilities of the device.

supportUpg
rade

Optio
nal

true: The device supports firmware
upgrades.
false: The device does not support firmware
upgrades.

upgradePro
tocolType

Optio
nal

Protocol type used by the device for
firmware upgrades. It is different from
protocolType of the device. Currently, the
IoT platform supports only firmware
upgrades of LWM2M devices.

configCap
ability

Optio
nal

Configuration update capabilities of the
device.

supportConf
ig

Optio
nal

true: The device supports configuration
updates.
false: The device does not support
configuration updates.

configMeth
od

Optio
nal

file: Configuration updates are delivered in
the form of files.

defaultConf
igFile

Optio
nal

Default device configuration information (in
JSON format). The specific configuration
information is defined by the manufacturer.
The IoT platform stores the information for
delivery but does not parse the
configuration fields.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 26

Service Capability Definition Example

The servicetype-capability.json file records service information about a device.

{
 "services": [
 {
 "serviceType": "WaterMeterBasic",
 "description": "WaterMeterBasic",
 "commands": [
 {
 "commandName": "SET_PRESSURE_READ_PERIOD",
 "paras": [
 {
 "paraName": "value",
 "dataType": "int",
 "required": true,
 "min": 1,
 "max": 24,
 "step": 1,
 "maxLength": 10,
 "unit": "hour",
 "enumList": null
 }
],
 "responses": [
 {
 "responseName": "SET_PRESSURE_READ_PERIOD_RSP",
 "paras": [
 {
 "paraName": "result",
 "dataType": "int",
 "required": true,
 "min": -1000000,
 "max": 1000000,
 "step": 1,
 "maxLength": 10,
 "unit": null,
 "enumList": null
 }
]
 }
]
 }
],
 "properties": [
 {
 "propertyName": "registerFlow",
 "dataType": "int",
 "required": true,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "R",
 "unit": null,
 "enumList": null
 },
 {
 "propertyName": "currentReading",
 "dataType": "string",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": "L",
 "enumList": null

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 27

 },
 {
 "propertyName": "timeOfReading",
 "dataType": "string",
 "required": false,
 "min": 0,
 "max": 0,
 "step": 1,
 "maxLength": 0,
 "method": "W",
 "unit": null,
 "enumList": null
 },

]
 }
]
}

The fields are described as follows:

Par
am
eter

Sub-field Man
dat
ory
or
Opti
onal

Description

serv
ices

Man
dato
ry

Complete information about a service
(the root node cannot be modified).

ser
vic
eTy
pe

Man
dato
ry

Type of the service. The value of this
field must be the same as that of
serviceType in the devicetype-
capability.json file.

des
cri
pti
on

Man
dato
ry

Description of the service.
This field is not a functional field but a
descriptive one. It can be set to null.

co
m
ma
nds

Man
dato
ry

Command supported by the device. If
the service has no commands, set the
value to null.

com
man
dNa
me

Man
dato
ry

Name of the command. The command
name and parameters together form a
complete command.

para
s

Man
dato
ry

Parameters contained in the command.

para
Nam
e

Man
dato
ry

Name of a parameter in the command.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 28

Par
am
eter

Sub-field Man
dat
ory
or
Opti
onal

Description

dataT
ype

Man
dato
ry

Data type of the parameter in the
command.
Value: string, int, enum, boolean, ,
string list, decimal, DateTime, or
jsonObject
Complex types of reported data are as
follows:
● string list:["str1","str2","str3"]
● DateTime: The value is in the format

of yyyyMMdd'T'HHmmss'Z', for
example, 20151212T121212Z.

● jsonObject: The value is in
customized JSON format, which is
not parsed by the IoT platform and is
transparently transmitted only.

requir
ed

Man
dato
ry

Whether the command is mandatory.
The value can be true or false. The
default value is false, indicating that
the command is optional.
This field is not a functional field but a
descriptive one.

min Man
dato
ry

Minimum value.
This field is valid only when dataType is
set to int or decimal.

max Man
dato
ry

Maximum value.
This field is valid only when dataType is
set to int or decimal.

step Man
dato
ry

Step.
This field is not used. Set it to 0.

maxL
ength

Man
dato
ry

Character string length.
This field is valid only when dataType is
set to string, string list, or DateTime.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 29

Par
am
eter

Sub-field Man
dat
ory
or
Opti
onal

Description

unit Man
dato
ry

Unit.
The value is determined by the
parameter, for example:
Temperature unit: C or K
Percentage unit: %
Pressure unit: Pa or kPa

enum
List

Man
dato
ry

List of enumerated values.
For example, the status of a switch can
be set as follows:
"enumList" : ["OPEN","CLOSE"]
This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.

resp
onse
s

Man
dato
ry

Responses to command execution.

respo
nseN
ame

Man
dato
ry

You can add _RSP to the end of
commandName in the command
corresponding to responses.

paras Man
dato
ry

Parameters contained in a response.

pa
ra
Na
m
e

Man
dato
ry

Name of a parameter in the command.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 30

Par
am
eter

Sub-field Man
dat
ory
or
Opti
onal

Description

da
ta
Ty
pe

Man
dato
ry

Data type.
Value: string, int, string list, decimal,
DateTime, or jsonObject
Complex types of reported data are as
follows:
● string list:["str1","str2","str3"]
● DateTime: The value is in the format

of yyyyMMdd'T'HHmmss'Z', for
example, 20151212T121212Z.

● jsonObject: The value is in
customized JSON format, which is
not parsed by the IoT platform and is
transparently transmitted only.

re
qu
ire
d

Man
dato
ry

Whether the command response is
mandatory. The value can be true or
false. The default value is false,
indicating that the command response
is optional.
This field is not a functional field but a
descriptive one.

mi
n

Man
dato
ry

Minimum value.
This field is valid only when dataType is
set to int or decimal. The value must
be greater than or equal to the value of
min.

m
ax

Man
dato
ry

Maximum value.
This field is valid only when dataType is
set to int or decimal. The value must
be less than or equal to the value of
max.

ste
p

Man
dato
ry

Step.
This field is not used. Set it to 0.

m
ax
Le
ng
th

Man
dato
ry

Character string length.
This field is valid only when dataType is
set to string, string list, or DateTime.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 31

Par
am
eter

Sub-field Man
dat
ory
or
Opti
onal

Description

un
it

Man
dato
ry

Unit.
The value is determined by the
parameter, for example:
Temperature unit: C or K
Percentage unit: %
Pressure unit: Pa or kPa

en
u
m
Lis
t

Man
dato
ry

List of enumerated values.
For example, the status of a switch can
be set as follows:
"enumList" : ["OPEN","CLOSE"]
This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.

pro
per
ties

Man
dato
ry

Reported data. Each sub-node indicates
a property.

prop
erty
Nam
e

Man
dato
ry

Name of the property.

data
Type

Man
dato
ry

Data type.
Value: string, int, string list, decimal,
DateTime, or jsonObject
Complex types of reported data are as
follows:
● string list:["str1","str2","str3"]
● DateTime: The value is in the format

of yyyyMMdd'T'HHmmss'Z', for
example, 20151212T121212Z.

● jsonObject: The value is in
customized JSON format, which is
not parsed by the IoT platform and is
transparently transmitted only.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 32

Par
am
eter

Sub-field Man
dat
ory
or
Opti
onal

Description

requi
red

Man
dato
ry

Whether the property is mandatory. The
value can be true or false. The default
value is false, indicating that the
property is optional.
This field is not a functional field but a
descriptive one.

min Man
dato
ry

Minimum value.
This field is valid only when dataType is
set to int or decimal. The value must
be greater than or equal to the value of
min.

max Man
dato
ry

Maximum value.
This field is valid only when dataType is
set to int or decimal. The value must
be less than or equal to the value of
max.

step Man
dato
ry

Step.
This field is not used. Set it to 0.

met
hod

Man
dato
ry

Access mode.
R indicates reading, W indicates writing,
and E indicates subscription.
Value: R, RW, RE, RWE, or null

unit Man
dato
ry

Unit.
The value is determined by the
parameter, for example:
Temperature unit: C or K
Percentage unit: %
Pressure unit: Pa or kPa

max
Leng
th

Man
dato
ry

Character string length.
This field is valid only when dataType is
set to string, string list, or DateTime.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 33

Par
am
eter

Sub-field Man
dat
ory
or
Opti
onal

Description

enu
mLis
t

Man
dato
ry

List of enumerated values.
For example, batteryStatus can be set
as follows:
"enumList" : [0, 1, 2, 3, 4, 5, 6]
This field is not a functional field but a
descriptive one. It is recommended that
this field be defined accurately.

Product Model Packaging

After the product model is completed, package it in the format shown below.

The following requirements must be met for product model packaging:

● The profile hierarchy must be the same as that shown above and cannot be
added or deleted. For example, the second level can contain only the profile
and service folders, and each service must contain the profile folder.

● The names in orange cannot be changed.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 34

● The product model is compressed in .zip format.

● The product model must be named in the format of
deviceType_manufacturerId. The values of deviceType, manufacturerId must
be the same as those in the devicetype-capability.json file. For example, the
following provides the main fields of the devicetype-capability.json file.
{
 "devices": [
 {
 "manufacturerId": "TestUtf8ManuId",
 "manufacturerName": "HZYB",

 "protocolType": "CoAP",
 "deviceType": "WaterMeter",
 "serviceTypeCapabilities": ****
 }
]
}

● WaterMeterBasic, WaterMeterAlarm, and Battery in the figure are services
defined in the devicetype-capability.json file.

The product model is in JSON format. After the product model is edited, you can
use format verification websites on the Internet to check the validity of the JSON
file.

3.3.4 Exporting and Importing Product Models
Product models can be exported from or imported to the IoT platform.

● After a product is developed, tested, and verified, you can export the online
defined product model to the local host.

● If you have a complete product model (developed offline or exported from
other projects or platforms) or use an Excel file to edit a product model, you
can directly import the product model to the platform.

Exporting a Product Model

After a product is developed, tested, and verified, you can export the online
defined product model to the local host.

Step 1 Log in to the IoTDA console.

Step 2 In the navigation pane, choose Products. In the product list, select a product and
click View.

Step 3 On the product details page, click to download the product model to the
local host.

----End

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 35

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

Importing a Product Model
If you have a complete product model (developed offline or exported from other
projects or platforms) or use an Excel file to edit a product model, you can directly
import the product model to the platform.

NO TE

The product model imported from the local host does not contain a codec. If the device
reports binary code, go to the IoTDA console to develop or import a codec.

● Import Local Profile

a. Log in to the IoTDA console.
b. In the navigation pane, choose Products. In the product list, select a

product and click View.
c. On the Model Definition tab page, click Import Local Profile. In the

dialog box displayed, load the local profile and click OK.

● Import from Excel

a. Log in to the IoTDA console.
b. In the navigation pane, choose Products. In the product list, select a

product and click View.
c. On the Model Definition tab page, click Import from Excel. In the

product template downloaded, enter the service ID on the Device sheet
and set parameters such as properties, commands, and events on the
Parameter sheet. Import the Excel file and click OK.

3.4 Developing a Codec

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 36

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

3.4.1 Definition
If a device reports binary data, a codec must be developed for data format
conversion. If a device reports JSON data, codec development is not required.

For example, in the NB-IoT scenario where devices communicate with the IoT
platform using CoAP, the payload of the CoAP message is data at the application
layer and the data type is defined by the device. As NB-IoT devices require low
power consumption, data at the application layer is in binary format instead of
JSON. However, the platform sends data in JSON format to applications.
Therefore, codec development is required for the platform to convert data
between binary and JSON formats.

Data Reporting

In the data reporting process, the codec is used in the following scenarios:

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 37

● Decoding binary data reported by a device into JSON data and sending the
decoded data to an application

● Encoding JSON data returned by an application into binary data and sending
the encoded data to a device

Command Delivery

In the command delivery process, the codec is used in the following scenarios:

● Encoding JSON data delivered by an application into binary data and sending
the encoded data to a device

● Decoding binary data returned by a device into JSON data and reporting the
decoded data to an application

Graphical Development and Offline Development
The platform provides three methods for developing codecs. Offline codec
development is complex and time-consuming. Graphical codec development is
recommended.

● Graphical development: The codec of a product can be quickly developed in
a visualized manner on the IoTDA console.

● Offline development: A codec is developed through the secondary
development based on the Java codec demo to implement encoding,
decoding, packaging, and quality inspection.

● Script-based development: JavaScript scripts are used to implement
encoding and decoding.

3.4.2 Graphical Development
Currently, Huawei IoT platform codecs are developed only for NB-IoT devices.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 38

https://support.huaweicloud.com/en-us/devg-iothub/iot_02_0008.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_4020.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_0009.html

On the IoTDA console, you can quickly develop codecs in a visualized manner.
Some preset product models contain developed codecs. If you use such a product
model to create a product, you can directly use or modify the codec. If you choose
to customize a product, you need to develop a codec.

This section uses an NB-IoT smoke detector as an example to describe how to
develop an codec that supports data reporting and command delivery as well as
command execution result reporting. The other two scenarios are used as
examples to describe how to develop and commission complex codecs.

● Codec for Data Reporting and Command Delivery
● Codec for Strings and Variable-Length Strings
● Codec for Arrays and Variable-Length Arrays

Codec for Data Reporting and Command Delivery
Scenario

A smoke detector provides the following functions:

● Reporting smoke alarms (fire severity) and temperature
● Remote control commands, which can enable the alarm function remotely.

For example, the smoke detector can report the temperature on the fire scene
and remotely trigger a smoke alarm for evacuation.

● Reporting command execution results

Defining a Product Model

Define the product model on the product details page of the smoke detector.
● level: indicates the fire severity.
● temperature: indicates the temperature at the fire scene.
● SET_ALARM: indicates whether to enable or disable the alarm function. The

value 0 indicates that the alarm is disabled, and the value 1 indicates that the
alarm is enabled.

Developing a Codec

Step 1 On the product details page of the smoke detector, select Codec Development
and click Online Develop.

Step 2 Click Add Message to add a smokerinfo message. This step is performed to
decode the binary code stream message uploaded by the device to the JSON
format so that the platform can understand the message. The following is a
configuration example:

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 39

● Message Name: smokerinfo

● Message Type: Data reporting

● Add Response Field: selected. After response fields are added, the platform
delivers the response data set by the application to the device after receiving
the data reported by the device.

● Response: AAAA0000 (default)

1. Click Add Field, select Tagged as address field, and add the messageID field,
which indicates the message type. In this scenario, the message type for
reporting the fire severity and temperature is 0x0. When a device reports a
message, the first field of each message is messageID. For example, if the
message reported by a device is 0001013A, the first field 00 indicates that the
message is used to report the fire severity and temperature. The subsequent
fields 01 and 013A indicate the fire severity and temperature, respectively. If
there is only one data reporting message and one command delivery
message, the messageID field does not need to be added.

– Data Type is configured based on the number of data reporting message
types. The default data type of the messageID field is int8u.

– The value of Offset is automatically filled based on the field location and
the number of bytes of the field. messageID is the first field of the
message. The start position is 0, the byte length is 1, and the end position
is 1. Therefore, the value of Offset is 0-1.

– The value of Length is automatically filled based on the value of Data
Type.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 40

– Default Value can be changed but must be in hexadecimal format. In
addition, the corresponding field in data reporting messages must be the
same as the default value.

2. Add a level field to indicate the fire severity.
– Field Name can contain only letters, digits, underscores (_), and dollar

signs ($) and cannot start with a digit.
– Data Type is configured based on the data reported by the device and

must match the type defined in the product model. The level property
defined in the product model is int, and the maximum value is 9.
Therefore, set Data Type to int8u.

– The value of Offset is automatically filled based on the field location and
the number of bytes of the field. The start position of the level field is
the end position of the previous field. The end position of the previous
field messageID is 1. Therefore, the start position of the level field is 1.
The length of the level field is 1 byte, and the end position is 2.
Therefore, set Offset to 1-2.

– The value of Length is automatically filled based on Data Type.
– If you do not set Default Value, the value of temperature is not fixed

and has no default value.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 41

3. Add the temperature field to indicate the temperature at the fire scene.
– Data Type: In the product model, the data type of the temperature

property is int and the maximum value is 1000. Therefore, set Data Type
to int16u in the codec to meet the value range of the temperature
property.

– Offset is automatically configured based on the number of characters
between the first field and the end field. The start position of the
temperature field is the end position of the previous field. The end
position of the previous field level is 2. Therefore, the start position of
the temperature field is 2. The length of the temperature field is 2
bytes, and the end position is 4. Therefore, set Offset to 2-4.

– The value of Length is automatically filled based on Data Type.
– If you do not set Default Value, the value of temperature is not fixed

and has no default value.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 42

Step 3 Click Add Message to add a SET_ALARM message and set the temperature
threshold for fire alarms. For example, if the temperature exceeds 60°C, the device
reports an alarm. This step is performed to encode the command message in
JSON format delivered by the IoT platform into binary data so that the smoke
detector can understand the message. The following is a configuration example:
● Message Name: SET_ALARM
● Message Type: Command delivery
● Add Response Field: selected. After a response field is added, the device

reports the command execution result after receiving the command. You can
determine whether to add response fields as required.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 43

a. Click Add Field to add the messageID field, which indicates the message
type. For example, set the message type of the fire alarm threshold to
0x3. For details about the messageID, data type, length, default value,
and offset, see 1.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 44

b. Add the mid field. This field is generated and delivered by the platform
and is used to associate the delivered command with the command
delivery response. The data type of the mid field is int16u by default. For
details about the length, default value, and offset, see 2.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 45

c. Add the value field to indicate the parameter value of the delivered
command. For example, deliver the temperature threshold for a fire
alarm. For details about the data type, length, default value, and offset,
see 2.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 46

d. Click Add Response Field to add the messageId field, which indicates
the message type. The command delivery response is an upstream
message, which is differentiated from the data reporting message by the
messageId field. The message type for reporting the temperature
threshold of the fire alarm is 0x4. For details about the messageID, data
type, length, default value, and offset, see 1.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 47

e. Add the mid field. This field must be the same as that in the command
delivered by the IoT platform. It is used to associate the delivered
command with the command execution result. The data type of the mid
field is int16u by default. For details about the length, default value, and
offset, see 2.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 48

f. Add the errcode field to indicate the command execution status. 00
indicates success and 01 indicates failure. If this field is not carried, the
command is executed successfully by default. The data type of the
errcode field is int8u by default. For details about the length, default
value, and offset, see 2.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 49

g. Add the result field to indicate the command execution result. For
example, the device returns the current alarm threshold to the platform.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 50

Step 4 Drag the property fields and command fields in Device Model on the right to set
up a mapping relationship between the fields in the data reporting message and
the corresponding ones in the command delivery message.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 51

Step 5 Click Save and then Deploy to deploy the codec on the platform.

----End

Testing the Codec

Step 1 On the product details page of the smoke detector, select Online Debugging and
click Add Test Device.

Step 2 You can use a real device or virtual device for debugging based on your service
scenario. For details, see Online Debugging. The following uses a simulated
device as an example to describe how to debug a codec.

In the Add Test Device dialog box, select Virtual device and click OK. The virtual
device name contains Simulator. Only one virtual device can be created for each
product.

Step 3 Click Debug to access the debugging page.

Step 4 Use the device simulator to report data. For example, a hexadecimal code stream
(0008016B) is reported. In this code stream, 00 indicates messageID. 08 indicates
the fire severity, and its length is one byte. 016B indicates the temperature and its
length is two bytes.

View the data reporting result ({level=8, temperature=363}) in Application
Simulator. 8 is the decimal number converted from the hexadecimal number 08
and 363 from the hexadecimal number 018B.

In the Device Simulator area, the response data AAAA0000 delivered by the IoT
platform is displayed.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 52

https://support.huaweicloud.com/en-us/devg-iothub/iot_02_9988.html

Step 5 Use the application simulator to deliver a command and set value to 1. The
command {"serviceId": "Smokeinfo", "method": "SET_ALARM", "paras": "{\"value\":
1}"} is delivered.

View the command receiving result in Device Simulator, which is 03000E01. 03
indicate the messageID field, 000E indicates the mid field, and 01 is the
hexadecimal value converted from the decimal value 1.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 53

----End

Summary

● If the codec needs to parse the command execution result, the mid field must
be defined in the command and the command response.

● The length of the mid field in a command is two bytes. For each device, mid
increases from 1 to 65535, and the corresponding code stream ranges from
0001 to FFFF.

● After a command is executed, the mid field in the reported command
execution result must be the same as that in the delivered command. In this
way, the IoT platform can update the command status.

Codec for Strings and Variable-Length Strings
If the smoke detector needs to report the description information in strings or
variable-length strings, perform the following steps to create messages:

Model Definition

Define the product model on the product details page of the smoke detector.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 54

Developing a Codec

Step 1 On the product details page of the smoke detector, select Codec Development
and click Online Develop.

Step 2 Click Add Message to add the otherinfo message and report the description of
the character string type. This step is performed to decode the binary code stream
message of the character string uploaded by the device to the JSON format so
that the platform can understand the message. The following is a configuration
example:
● Message Name: otherinfo
● Message Type: Data reporting
● Add Response Field: selected. After response fields are added, the platform

delivers the response data set by the application to the device after receiving
the data reported by the device.

● Response: AAAA0000 (default)

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 55

1. Click Add Field to add the messageId field, which indicates the message
type. In this scenario, the value 0x0 is used to identify the message that
reports the fire severity and temperature, 0x1 is used to identify the message
that reports only the temperature, and 0x2 is used to identify the message
that reports the description (of the string type). For details about the
messageID, data type, length, default value, and offset, see 1.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 56

2. Add the other_info field to indicate the description of the string type. In this
scenario, set Data Type to string and Length to 6. For details about the field
name, default value, and offset, see 2.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 57

Step 3 Click Add Message, add the other_info2 message name, and configure the data
reporting message to report the description of the variable-length string type. This
step is performed to decode the binary code stream message of variable-length
strings uploaded by the device to the JSON format so that the platform can
understand the message. The following is a configuration example:
● Message Name: other_info2
● Message Type: Data reporting
● Add Response Field: selected. After response fields are added, the platform

delivers the response data set by the application to the device after receiving
the data reported by the device.

● Response: AAAA0000 (default)

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 58

1. Add the messageId field to indicate the message type. In this scenario, the
value 0x0 is used to identify the message that reports the fire severity and
temperature, 0x1 is used to identify the message that reports only the
temperature, and 0x3 is used to identify the message that reports the
description (of the variable-length string type). For details about the
messageID, data type, length, default value, and offset, see 1.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 59

2. Add the length field to indicate the length of a variable-length string. Data
Type is configured based on the length of the variable-length string. If the
string contains 255 or fewer characters in this scenario, set this parameter to
int8u. For details about the length, default value, and offset, see 2.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 60

3. Add the other_info field and set Data Type to varstring, which indicates the
description of the variable-length string type. Set Length Correlation Field to
length. The values of Length Correlation Field Difference and Length are
automatically filled. Retain the default value 0xff for Mask. For details about
the offset value, see 2.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 61

Step 4 Drag the property fields in Device Model on the right to set up a mapping
relationship between the corresponding fields in the data reporting messages.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 62

Step 5 Click Save and then Deploy to deploy the codec on the platform.

----End

Testing the Codec

Step 1 On the product details page of the smoke detector, select Online Debugging and
click Add Test Device.

Step 2 You can use a real device or virtual device for debugging based on your service
scenario. For details, see Online Debugging. The following uses a simulated
device as an example to describe how to debug a codec.

In the Add Test Device dialog box, select Virtual device and click OK. The virtual
device name contains Simulator. Only one virtual device can be created for each
product.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 63

https://support.huaweicloud.com/en-us/devg-iothub/iot_02_9988.html

Step 3 Click Debug to access the debugging page.

Step 4 Use the device simulator to report the description of the string type.

For example, a hexadecimal code stream (0231) is reported. 02 indicates the
messageId field and specifies that this message reports the description of the
string type. 31 indicates the description and its length is one byte.

View the data reporting result ({other_info=null}) in Application Simulator. The
length of the description is less than six bytes. Therefore, the codec cannot parse
the description.

In the second hexadecimal code stream example (02313233343536), 02 indicates
the messageId field and specifies that this message reports the description of the
string type. 313233343536 indicates the description and its length is six bytes.

View the data reporting result ({other_info=123456}) in Application Simulator.
The length of the description is six bytes. The description is parsed successfully by
the codec.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 64

In the third hexadecimal code stream example (023132333435363738), 02
indicates the messageId field and specifies that this message reports the
description of the string type. 3132333435363738 indicates the description and its
length is eight bytes.

View the data reporting result ({other_info=123456}) in Application Simulator.
The length of the description exceeds six bytes. Therefore, the first six bytes are
intercepted and parsed by the codec.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 65

In the fourth hexadecimal code stream example (02013132333435), 02 indicates
the messageId field and specifies that this message reports the description of the
string type. 013132333435 indicates the description and its length is six bytes.

View the data reporting result ({other_info=\u000112345}) in Application
Simulator. In the ASCII code table, 01 indicates start of headline which cannot
be represented by specific characters. Therefore, 01 is parsed to \u0001.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 66

Step 5 Use the device simulator to report the description of the variable-length string
type.

For example, a hexadecimal code stream (030141) is reported. In this code stream,
03 indicates the messageId field and specifies that this message reports the
description of the variable-length string type. 01 indicates the length of the
description (one byte) and its length is one byte. 41 indicates the description and
its length is one byte.

View the data reporting result ({other_info=A}) in Application Simulator. A
corresponds to 41 in the ASCII code table.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 67

In the second hexadecimal code stream example (03024142), 03 indicates the
messageId field and specifies that this message reports the description of the
variable-length string type. 02 indicates the length of the description (two bytes)
and its length is one byte. 4142 indicates the description and its length is two
bytes.

View the data reporting result ({other_info=AB}) in Application Simulator. A
corresponds to 41 and B corresponds to 42 in the ASCII code table.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 68

In the third hexadecimal code stream example (030341424344), 03 indicates the
messageId field and specifies that this message reports the description of the
variable-length string type. The second 03 indicates the length of the description
(three bytes) and its length is one byte. 41424344 indicates the description and its
length is four bytes.

View the data reporting result ({other_info=ABC}) in Application Simulator. The
length of the description exceeds three bytes. Therefore, the first three bytes are
intercepted and parsed. In the ASCII code table, A corresponds to 41, B to 42, and
C to 43.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 69

In the fourth hexadecimal code stream example (0304414243), 03 indicates the
messageId field and specifies that this message reports the description of the
variable-length string type. 04 indicates the string length (four bytes) and its
length is one byte. 414243 indicates the description and its length is four bytes.

View the data reporting result ({other_info=null}) in Application Simulator. The
length of the description is less than four bytes. The codec fails to parse the
description.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 70

----End

Summary

● When data is a string or a variable-length string, the codec processes the data
based on the ASCII code. When data is reported, the hexadecimal code stream
is decoded to a string. For example, 21 is parsed to an exclamation mark (!),
31 to 1, and 41 to A. When a command is delivered, the string is encoded into
a hexadecimal code stream. For example, an exclamation mark (!) is encoded
into 21, 1 into 31, and A into 41.

● When the data type of a field is varstring(variable-length string type), the
field must be associated with the length field. The data type of the length
field must be int.

● For variable-length strings, the codecs for command delivery and data
reporting are developed in the same way.

● Codecs developed in graphical mode encode and decode strings and variable-
length strings using the ASCII hexadecimal standard table. During decoding
(data reporting), if the parsing results cannot be represented by specific
characters such as start of headline, start of text, and end of text, the \u+2
byte code stream values are used to indicate the results. For example, 01 is
parsed to \u0001 and 02 to \u0002. If the parsing results can be represented
by specific characters, specific characters are used.

Codec for Arrays and Variable-Length Arrays
If the smoke detector needs to report the description information in arrays or
variable-length arrays, perform the following steps to create messages:

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 71

Model Definition

Define the product model on the product details page of the smoke detector.

Developing a Codec

Step 1 On the product details page of the smoke detector, select Codec Development
and click Online Develop.

Step 2 Click Add Message to add the otherinfo message and report the description of
the array type. This step is performed to decode the array binary code stream
message uploaded by the device to the JSON format so that the platform can
understand the message. The following is a configuration example:
● Message Name: otherinfo
● Message Type: Data reporting
● Add Response Field: selected. After response fields are added, the platform

delivers the response data set by the application to the device after receiving
the data reported by the device.

● Response: AAAA0000 (default)

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 72

1. Click Add Field to add the messageId field, which indicates the message
type. In this scenario, the value 0x0 is used to identify the message that
reports the fire severity and temperature, 0x1 is used to identify the message
that reports only the temperature, and 0x2 is used to identify the message
that reports the description (of the array type). For details about the
messageID, data type, length, default value, and offset, see 1.

2. Add the other_info field and set Data Type to array, which indicates the
description of the array type. In this scenario, set Length to 5. For details
about the field name, default value, and offset, see 2.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 73

Step 3 Click Add Message to add the other_info2 message and report the description of
the variable-length array type. This step is performed to decode the binary code
stream message of variable-length arrays uploaded by the device to the JSON
format so that the platform can understand the message. The following is a
configuration example:
● Message Name: other_info2
● Message Type: Data reporting
● Add Response Field: selected. After response fields are added, the platform

delivers the response data set by the application to the device after receiving
the data reported by the device.

● Response: AAAA0000 (default)

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 74

1. Click Add Field to add the messageId field, which indicates the message
type. In this scenario, the value 0x0 is used to identify the message that
reports the fire severity and temperature, 0x1 is used to identify the message
that reports only the temperature, and 0x3 is used to identify the message
that reports the description (of the variable-length array type). For details
about the messageID, data type, length, default value, and offset, see 1.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 75

2. Add the length field to indicate the length of an array. Data Type is
configured based on the length of the variable-length array. If the array
contains 255 or fewer characters, set this parameter to int8u. For details
about the length, default value, and offset, see 2.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 76

3. Add the other_info field and set Data Type to variant, which indicates the
description of the variable-length array type. Set Length Correlation Field to
length. The values of Length Correlation Field Difference and Length are
automatically filled. Retain the default value 0xff for Mask. For details about
the offset value, see 2.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 77

Step 4 Drag the property fields in Device Model on the right to set up a mapping
relationship between the corresponding fields in the data reporting messages.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 78

Step 5 Click Save and then Deploy to deploy the codec on the platform.

----End

Testing the Codec

Step 1 On the product details page of the smoke detector, select Online Debugging and
click Add Test Device.

Step 2 You can use a real device or virtual device for debugging based on your service
scenario. For details, see Online Debugging. The following uses a simulated
device as an example to describe how to debug a codec.

In the Add Test Device dialog box, select Virtual device and click OK. The virtual
device name contains Simulator. Only one virtual device can be created for each
product.

Step 3 Click Debug to access the debugging page.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 79

https://support.huaweicloud.com/en-us/devg-iothub/iot_02_9988.html

Step 4 Use the device simulator to report the description of the array type.

For example, a hexadecimal code stream (0211223344) is reported. In this code
stream, 02 indicates the messageId field and specifies that this message reports
the description of the array type. 11223344 indicates the description and its
length is four bytes.

View the data reporting result ({other_info=null}) in Application Simulator. The
length of the description is less than five bytes. Therefore, the codec cannot parse
the description.

In the second hexadecimal code stream example (021122334455), 02 indicates
the messageId field and specifies that this message reports the description of the
array type. 1122334455 indicates the description and its length is five bytes.

View the data reporting result ({other_info=ESIzRF=}) in Application Simulator.
The length of the description is five bytes. The description is parsed successfully by
the codec.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 80

In the third hexadecimal code stream example (02112233445566), 02 indicates
the messageId field and specifies that this message reports the description of the
array type. 112233445566 indicates the description and its length is six bytes.

View the data reporting result ({other_info=ESIzRF=}) in Application Simulator.
The length of the description exceeds six bytes. Therefore, the first five bytes are
intercepted and parsed by the codec.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 81

Step 5 Use the device simulator to report the description of the variable-length array
type.

For example, a hexadecimal code stream (030101) is reported. In this code stream,
03 indicates the messageId field and specifies that this message reports the
description of the variable-length array type. The first 01 indicates the length of
the description (one byte) and its length is one byte. The second 01 indicates the
description and its length is one byte.

View the data reporting result ({other_info=AQ==}) in Application Simulator.
AQ== is the encoded value of 01 using the Base64 encoding mode.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 82

In the second hexadecimal code stream example (03020102), 03 indicates the
messageId field and specifies that this message reports the description of the
variable-length array type. 02 indicates the length of the description (two bytes)
and its length is one byte. 0102 indicates the description and its length is two
bytes.

View the data reporting result ({other_info=AQI=}) in Application Simulator.
AQI= is the encoded value of 01 using the Base64 encoding mode.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 83

In the third hexadecimal code stream example (03030102), 03 indicates the
messageId field and specifies that this message reports the description of the
variable-length array type. 03 indicates the length of the description (three bytes)
and its length is one byte. 0102 indicates the description and its length is two
bytes.

View the data reporting result ({other_info=null}) in Application Simulator. The
length of the description is less than three bytes. The codec fails to parse the
description.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 84

In the fourth hexadecimal code stream example (0303010203), 03 indicates the
messageId field and specifies that this message reports the description of the
variable-length array type. The second 03 indicates the length of the description
(three bytes) and its length is one byte. 010203 indicates the description and its
length is three bytes.

View the data reporting result ({other_info=AQID}) in Application Simulator.
AQID is the encoded value of 010203 using the Base64 encoding mode.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 85

In the fifth hexadecimal code stream example (030301020304), 03 indicates the
messageId field and specifies that this message reports the description of the
variable-length array type. The second 03 indicates the length of the description
(three bytes) and its length is one byte. 01020304 indicates the description and its
length is four bytes.

View the data reporting result ({other_info=AQID}) in Application Simulator. The
length of the description exceeds three bytes. Therefore, the first three bytes are
intercepted and parsed. AQID is the encoded value of 010203 using the Base64
encoding mode.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 86

----End

Description of Base64 Encoding Modes

In Base64 encoding mode, three 8-bit bytes (3 x 8 = 24) are converted into four 6-
bit bytes (4 x 6 = 24), and 00 are added before each 6-bit byte to form four 8-bit
bytes. If the code stream to be encoded contains less than three bytes, fill the
code stream with 0 at the end. The byte that is filled with 0 is displayed as an
equal sign (=) after it is encoded.

Developers can encode hexadecimal code streams as characters or values using
the Base64 encoding modes. The encoding results obtained in the two modes are
different. The following uses the hexadecimal code stream 01 as an example:

● Use 01 as the characters. 01 contains fewer than three characters. Therefore,
add one 0 to obtain 010. Query the ASCII code table to convert the characters
into an 8-bit binary number, that is, 0 is converted into 00110000 and 1 into
00110001. Therefore, 010 can be converted into 001100000011000100110000
(3 x 8 = 24). The binary number can be split into four 6-bit numbers: 001100,
000011, 000100, and 110000. Then, pad each 6-bit number with 00 to obtain
the following numbers: 00001100, 00000011, 00000100, and 00110000. The
decimal numbers corresponding to the four 8-bit numbers are 12, 3, 4, and
48, respectively. You can obtain M (12), D (3), and E (4) by querying the
Base64 coding table. As the last character of 010 is obtained by adding 0, the
fourth 8-bit number is represented by an equal sign (=). Finally, MDE= is
obtained by using 01 as characters.

● Use 01 as a value (that is, 1). It contains fewer than three characters.
Therefore, add 00 to obtain 100. Convert 100 into an 8-bit binary number,

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 87

that is, 0 is converted into 00000000 and 1 is converted to 00000001.
Therefore, 100 can be converted to 000000010000000000000000 (3 x 8 = 24).
The binary number can be split into four 6-bit numbers: 000000, 010000,
000000, and 000000. Then, pad each 6-bit number with 00 to obtain
00000000, 00010000, 00000000, and 00000000. The decimal numbers
corresponding to the four 8-bit numbers are 0, 16, 0, and 0, respectively. You
can obtain A (0) and Q (16) by querying the Base64 coding table. As the last
two characters of 100 are obtained by adding 0, the third and fourth 8-bit
numbers are represented by two equal signs (==). Finally, AQ== is obtained
by using 01 as a value.

Summary

● When the data is an array or a variable-length array, the codec encodes and
decodes the data using Base64. For data reporting messages, the hexadecimal
code streams are encoded using Base64. For example, 01 is encoded into
AQ==. For command delivery messages, characters are decoded using Base64.
For example, AQ== is decoded to 01.

● When the data type of a field is variant(variable-length array type), the
field must be associated with the length field. The data type of the length
field must be int.

● For variable-length arrays, the codecs for command delivery and data
reporting are developed in the same way.

● When the codecs that are developed graphically encode data using Base64,
hexadecimal code streams are encoded as values.

3.4.3 Developing a Codec Using JavaScript
The IoT platform can encode and decode JavaScript scripts. Based on the script
files you submit, the IoT platform can convert between binary data and JSON
data. This topic uses a smoke detector as an example to describe how to develop
a JavaScript codec that supports device property reporting and command delivery,
and describes the format conversion requirements and debugging method of the
codec.

NO TE

● JavaScript syntax rules must comply with ECMAScript 5.1 specifications.
● The size of a JavaScript script cannot exceed 1 MB.
● After the JavaScript script is deployed on a product, the JavaScript script parses

upstream and downstream data of all devices under the product. When you develop a
JavaScript codec, take all upstream and downstream scenarios into consideration.

● The JSON upstream data obtained after being decoded by the JavaScript codec must
meet the format requirements of the platform. For details about the format
requirements, see Data Decoding Format Definition.

● For the JSON format definition of downstream commands, see Data Encoding Format
Definition. If the JavaScript codec is used for encoding, the JSON format of the platform
must be converted into the corresponding binary code stream.

Example of a Smoke Detector
Scenario

A smoke detector provides the following functions:

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 88

https://www.ecma-international.org/ecma-262/5.1/

● Reporting smoke alarms (fire severity) and temperature
● Remote control commands, which can enable the alarm function remotely.

For example, the smoke detector can report the temperature on the fire scene
and remotely trigger a smoke alarm for evacuation.

● The smoke detector has weak capabilities and cannot report data in JSON
format defined by the device interface, but reporting simple binary data.

Profile Definition

Define the product model on the product details page of the smoke detector.
● level: indicates the fire severity.
● temperature: indicates the temperature at the fire scene.
● SET_ALARM: indicates whether to enable or disable the alarm function. The

value 0 indicates that the alarm is disabled, and the value 1 indicates that the
alarm is enabled.

Developing a Codec

Step 1 On the product details page of the smoke detector, select Codec Development
and click Edit Script.

Step 2 Compile a script to convert binary data into JSON data. The script must implement
the following methods:
● Decode: Converts the binary data reported by a device into the JSON format

defined in the product model. For details about the JSON format
requirements, see Data Decoding Format Definition.

● Encode: Converts JSON data into binary data supported by a device when the
platform sends downstream data to the device. For details about the JSON
format requirements, see Data Encoding Format Definition.

The following is an example of JavaScript implemented for the current smoke
detector:

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 89

// Upstream message type
var MSG_TYPE_PROPERTIES_REPORT = 'properties_report'; //Reporting device properties
var MSG_TYPE_COMMAND_RSP = 'command_response'; //Returning a command response
var MSG_TYPE_PROPERTIES_SET_RSP = 'properties_set_response'; //Returning a response for property setting
var MSG_TYPE_PROPERTIES_GET_RSP = 'properties_get_response'; //Returning a response for property query
var MSG_TYPE_MESSAGE_UP = 'message_up'; //Reporting device messages
//Downstream message type
Command Delivery from the var MSG_TYPE_COMMANDS = 'commands'; //Delivering a command
var MSG_TYPE_PROPERTIES_SET = 'properties_set'; //Delivering a property setting request
 varMSG_TYPE_PROPERTIES_GET='properties_get';//Delivering a property query request
var MSG_TYPE_MESSAGE_DOWN = 'messages'; //Delivering platform messages
//Mapping between topics and message types for upstream messages sent by devices
var TOPIC_REG_EXP = {
 'properties_report': new RegExp('\\$oc/devices/(\\S+)/sys/properties/report'),
 'properties_set_response': new RegExp('\\$oc/devices/(\\S+)/sys/properties/set/response/request_id=(\\S
+)'),
 'properties_get_response': new RegExp('\\$oc/devices/(\\S+)/sys/properties/get/response/request_id=(\\S
+)'),
 'command_response': new RegExp('\\$oc/devices/(\\S+)/sys/commands/response/request_id=(\\S+)'),
 'message_up': new RegExp('\\$oc/devices/(\\S+)/sys/messages/up')
};
/*
Example: When a smoke detector reports properties and returns a command response, it uses binary code
streams. The JavaScript script will decodes the binary code streams into JSON data that complies with the
product model definition.
Input parameters:
 payload:[0x00, 0x50, 0x00, 0x5a]
 topic:$oc/devices/cf40f3c4-7152-41c6-a201-a2333122054a/sys/properties/report
Output parameters:
 {"msg_type":"properties_report","services":[{"service_id":"smokerdector","properties":{"level":
80,"temperature":90}}]}
Input parameters:
 payload: [0x02, 0x00, 0x00, 0x01]
 topic: $oc/devices/cf40f3c4-7152-41c6-a201-a2333122054a/sys/commands/response/
request_id=bf40f0c4-4022-41c6-a201-c5133122054a
Output parameters:
 {"msg_type":"command_response","result_code":
0,"command_name":"SET_ALARM","service_id":"smokerdector","paras":{"value":"1"}}
*/
function decode(payload, topic) {
 var jsonObj = {};
 var msgType = '';
 //If the topic parameter exists, parse the message type based on the topic parameter.
 if (null != topic) {
 msgType = topicParse(topic);
 }
 //Perform the AND operation on the payload by using 0xFF to obtain the corresponding complementary
code.
 var uint8Array = new Uint8Array(payload.length);
 for (var i = 0; i < payload.length; i++) {
 uint8Array[i] = payload[i] & 0xff;
 }
 var dataView = new DataView(uint8Array.buffer, 0);
 //Convert binary data to the format used for property reporting.
 if (msgType == MSG_TYPE_PROPERTIES_REPORT) {
 //Set the value of serviceId, which corresponds to smokerdector in the product model.
 var serviceId = 'smokerdector';
 //Obtain the level value from the code stream.
 var level = dataView.getInt16(0);
 //Obtain the temperature value from the code stream.
 var temperature = dataView.getInt16(2);
 //Convert data to the JSON format used by property reporting.
 jsonObj = {"msg_type":"properties_report","services":[{"service_id":serviceId,"properties":
{"level":level,"temperature":temperature}}]};
 }else if (msgType == MSG_TYPE_COMMAND_RSP) { //Convert binary data to the format used by a
command response.
 //Set the value of serviceId. The value corresponds to smokerdector in the product model.
 var serviceId = 'smokerdector';
 var command = dataView.getInt8(0); //Obtain the command name ID from the binary code stream.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 90

 var command_name = '';
 if (2 == command) {
 command_name = 'SET_ALARM';
 }
 var result_code = dataView.getInt16(1); //Obtain the command execution result from the binary code
stream.
 var value = dataView.getInt8(3); //Obtain the returned value of the command execution result from
the binary code stream.
 //Convert data to the JSON format used by the command response.
 jsonObj =
{"msg_type":"command_response","result_code":result_code,"command_name":command_name,"service_id":
serviceId,"paras":{"value":value}};
 }
 //Convert data to a character string in JSON format.
 return JSON.stringify(jsonObj);
}
/*
Sample data: When a command is delivered, data in JSON format on the platform is encoded into a binary
code stream using the encode method of JavaScript.
Input parameters ->
 {"msg_type":"commands","command_name":"SET_ALARM","service_id":"smokerdector","paras":{"value":
1}}
Output parameters->
 [0x01,0x00, 0x00, 0x01]
*/
function encode(json) {
 //Convert data to a JSON object.
 var jsonObj = JSON.parse(json);
 //Obtain the message type.
 var msgType = jsonObj.msg_type;
 var payload = [];
 //Convert data in JSON format to binary data.
 if (msgType == MSG_TYPE_COMMANDS) //Command delivery
 {
 payload = payload.concat(buffer_uint8(1)); //Identifies the command delivery.
 if (jsonObj.command_name == 'SET_ALARM') {
 payload = payload.concat(buffer_uint8(0)); //Indicates the command name.
 }
 var paras_value = jsonObj.paras.value;
 payload = payload.concat(buffer_int16(paras_value)); //Set the command property value.
 }
 //Return the encoded binary data.
 return payload;
}
//Parse the message type based on the topic name.
function topicParse(topic) {
 for(var type in TOPIC_REG_EXP){
 var pattern = TOPIC_REG_EXP[type];
 if (pattern.test(topic)) {
 return type;
 }
 }
 return '';
}
//Convert an 8-bit unsigned integer into a byte array.
function buffer_uint8(value) {
 var uint8Array = new Uint8Array(1);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setUint8(0, value);
 return [].slice.call(uint8Array);
}
//Convert a 16-bit unsigned integer into a byte array.
function buffer_int16(value) {
 var uint8Array = new Uint8Array(2);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setInt16(0, value);
 return [].slice.call(uint8Array);
}
//Convert a 32-bit unsigned integer into a byte array.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 91

function buffer_int32(value) {
 var uint8Array = new Uint8Array(4);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setInt32(0, value);
 return [].slice.call(uint8Array);
}

Step 3 Debug the script online. After the script is edited, select the simulation type and
enter the simulation data to debug the script online.

1. Use the simulation device to convert binary code streams into JSON data
when reporting property data.
– Select the topic reported by the device: $oc/devices/{device_id}/sys/

properties/report .
– Select Decode for Simulation Type, enter the following simulated device

data, and click Debug.
0050005a

– The script codec engine converts binary code streams into the JSON
format based on input parameters and the decode method in the
submitted JavaScript script, and displays the debugging result in the text
box.

– Check whether the debugging result meets the expectation. If the
debugging result does not meet the expectation, modify the code and
perform debugging again.

2. Convert a command delivered by an application into binary code streams that
can be identified by the device.
– Select Encode for Simulation Type, enter the command delivery format

to be simulated, and click Debug.
{
 "msg_type": "commands",
 "request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "command_name": "SET_ALARM",
 "service_id": "smokerdector",
 "paras": {
 "value": "1"
 }
}

– The script codec engine converts JSON data into the binary code streams
based on input parameters and the encode method in the submitted
JavaScript script, and displays the debugging result in the text box.

– Check whether the debugging result meets the expectation. If the
debugging result does not meet the expectation, modify the code and
perform debugging again.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 92

Step 4 Deploy the script. After confirming that the script can be correctly encoded and
decoded, click Deploy to submit the script to the IoT platform so that the IoT
platform can invoke the script when data is sent and received.

Step 5 Use a physical device for online debugging. Before using the script, use a real
device to communicate with the IoT platform to verify that the IoT platform can
invoke the script and parse upstream and downstream data.

----End

JavaScript Codec Template
The following is an example of the JavaScript codec template. Developers need to
implement the corresponding API based on the template provided by the platform.

/**
* When a device reports data to the IoT platform, the IoT platform calls this API to decode the original data
of the device into JSON data that complies with the product model definition.
* The API name and input parameters have been defined. You only need to implement the API.
* @param byte[] payload Original code stream reported by the device
* @param string topic Topic to which an MQTT device reports data. This parameter is not carried when a
non-MQTT device reports data.
* @return string json JSON character string that complies with the product model definition
 */
function decode(payload, topic) {
 var jsonObj = {};
 return JSON.stringify(jsonObj);
}

/**
* When the IoT platform delivers a command, it calls this API to encode the JSON data defined in the
product model into the original code stream of the device.
* The API name and input parameter format have been defined. You only need to implement the API.
* @param string json JSON character string that complies with the product model definition
* @return byte[] payload Original code stream after being encoded
 */
function encode(json) {
 var payload = [];
 return payload;
}

JavaScript Codec Example for MQTT Device Access
The following is an example of JavaScript codec of MQTT devices. You can convert
the binary format to the JSON format in the corresponding scenario based on the
example.

// Upstream message type
var MSG_TYPE_PROPERTIES_REPORT = 'properties_report'; //Reporting device properties
The var MSG_TYPE_COMMAND_RSP = 'command_response'; //Returning a command response
The var MSG_TYPE_PROPERTIES_SET_RSP = 'properties_set_response'; //Returning a property setting
response
var MSG_TYPE_PROPERTIES_GET_RSP = 'properties_get_response'; //Returning a property query response
var MSG_TYPE_MESSAGE_UP = 'message_up'; //Reporting message devices

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 93

//Downstream message type
var MSG_TYPE_COMMANDS = 'commands'; //Delivering a command
var MSG_TYPE_PROPERTIES_SET = 'properties_set'; //Delivering a property setting request
 varMSG_TYPE_PROPERTIES_GET='properties_get';//Delivering a property query request
var MSG_TYPE_MESSAGE_DOWN = 'messages'; //Delivering platform messages
//Mapping between topics and message types for upstream messages sent by devices
var TOPIC_REG_EXP = {
 'properties_report': new RegExp('\\$oc/devices/(\\S+)/sys/properties/report'),
 'properties_set_response': new RegExp('\\$oc/devices/(\\S+)/sys/properties/set/response/request_id=(\\S
+)'),
 'properties_get_response': new RegExp('\\$oc/devices/(\\S+)/sys/properties/get/response/request_id=(\\S
+)'),
 'command_response': new RegExp('\\$oc/devices/(\\S+)/sys/commands/response/request_id=(\\S+)'),
 'message_up': new RegExp('\\$oc/devices/(\\S+)/sys/messages/up')
};
/*
Example: When a smoke detector reports properties and returns a command response, it uses binary code
streams. The JavaScript script will decode the binary code streams into JSON data that complies with the
product model definition.
Input parameters:
 payload:[0x00, 0x50, 0x00, 0x5a]
 topic:$oc/devices/cf40f3c4-7152-41c6-a201-a2333122054a/sys/properties/report
Output parameters:
 {"msg_type":"properties_report","services":[{"service_id":"smokerdector","properties":{"level":
80,"temperature":90}}]}
Input parameters:
 payload: [0x02, 0x00, 0x00, 0x01]
 topic: $oc/devices/cf40f3c4-7152-41c6-a201-a2333122054a/sys/commands/response/
request_id=bf40f0c4-4022-41c6-a201-c5133122054a
Output parameters:
 {"msg_type":"command_response","result_code":
0,"command_name":"SET_ALARM","service_id":"smokerdector","paras":{"value":"1"}}
*/
function decode(payload, topic) {
 var jsonObj = {};
 var msgType = '';
 //If the topic parameter exists, parse the message type based on the topic parameter.
 if (null != topic) {
 msgType = topicParse(topic);
 }
 //Perform the AND operation on the payload by using 0xFF to obtain the corresponding complementary
code.
 var uint8Array = new Uint8Array(payload.length);
 for (var i = 0; i < payload.length; i++) {
 uint8Array[i] = payload[i] & 0xff;
 }
 var dataView = new DataView(uint8Array.buffer, 0);
 //Convert binary data to the format used for property reporting.
 if (msgType == MSG_TYPE_PROPERTIES_REPORT) {
 //Set the value of serviceId, which corresponds to smokerdector in the product model.
 var serviceId = 'smokerdector';
 //Obtain the level value from the code stream.
 var level = dataView.getInt16(0);
 //Obtain the temperature value from the code stream.
 var temperature = dataView.getInt16(2);
 //Convert the code stream to the JSON format used for property reporting.
 jsonObj = {
 "msg_type": "properties_report",
 "services": [{"service_id": serviceId, "properties": {"level": level, "temperature": temperature}}]
 };
 } else if (msgType == MSG_TYPE_COMMAND_RSP) { //Convert binary data to the format used by a
command response.
 //Set the value of serviceId, which corresponds to smokerdector in the product model.
 var serviceId = 'smokerdector';
 var command = dataView.getInt8(0); //Obtain the command name ID from the binary code stream.
 var command_name = '';
 if (2 == command) {
 command_name = 'SET_ALARM';
 }

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 94

 var result_code = dataView.getInt16(1); //Obtain the command execution result from the binary code
stream.
 var value = dataView.getInt8(3); //Obtain the returned value of the command execution result from
the binary code stream.
 //Convert data to the JSON format used by the command response.
 jsonObj = {
 "msg_type": "command_response",
 "result_code": result_code,
 "command_name": command_name,
 "service_id": serviceId,
 "paras": {"value": value}
 };
 } else if (msgType == MSG_TYPE_PROPERTIES_SET_RSP) {
 //Convert data to the JSON format used by the property setting response.
 //jsonObj = {"msg_type":"properties_set_response","result_code":0,"result_desc":"success"};
 } else if (msgType == MSG_TYPE_PROPERTIES_GET_RSP) {
 //Convert data to the JSON format used by the property query response.
 //jsonObj = {"msg_type":"properties_get_response","services":[{"service_id":"analog","properties":
{"PhV_phsA":"1","PhV_phsB":"2"}}]};
 } else if (msgType == MSG_TYPE_MESSAGE_UP) {
 //Convert the code stream to the JSON format used by message reporting.
 //jsonObj = {"msg_type":"message_up","content":"hello"};
 }
 //Convert data to a character string in JSON format.
 return JSON.stringify(jsonObj);
}
/*
Sample data: When a command is delivered, JSON dataon the IoT platform is encoded into binary code
streams using the encode method of JavaScript.
Input parameters ->
 {"msg_type":"commands","command_name":"SET_ALARM","service_id":"smokerdector","paras":{"value":
1}}
Output parameters->
 [0x01,0x00, 0x00, 0x01]
*/
function encode(json) {
 //Convert data to a JSON object.
 var jsonObj = JSON.parse(json);
 //Obtain the message type.
 var msgType = jsonObj.msg_type;
 var payload = [];
 //Convert data in JSON format to binary data.
 if (msgType == MSG_TYPE_COMMANDS) {//Command delivery
 //Command delivery format example:
{"msg_type":"commands","command_name":"SET_ALARM","service_id":"smokerdector","paras":{"value":1}}
 //Convert the format used by command delivery to a binary code stream.
 payload = payload.concat(buffer_uint8(1)); //Identifies the command delivery.
 if (jsonObj.command_name == 'SET_ALARM') {
 payload = payload.concat(buffer_uint8(0)); //Command name.
 }
 var paras_value = jsonObj.paras.value;
 payload = payload.concat(buffer_int16(paras_value)); //Set the command property value.
 } else if (msgType == MSG_TYPE_PROPERTIES_SET) {
 //Property setting format example: {"msg_type":"properties_set","services":
[{"service_id":"Temperature","properties":{"value":57}}]}
 //Convert the JSON format to the corresponding binary code streams if the property setting scenario is
involved.
 } else if (msgType == MSG_TYPE_PROPERTIES_GET) {
 //Property query format example: {"msg_type":"properties_get","service_id":"Temperature"}
 //Convert the JSON format to the corresponding binary code streams if the property query scenario is
involved.
 } else if (msgType == MSG_TYPE_MESSAGE_DOWN) {
 //Message delivery format example: {"msg_type":"messages","content":"hello"}
 //Convert the JSON format to the corresponding binary code streams if the message delivery scenario
is involved.
 }
 //Return the encoded binary data.
 return payload;
}

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 95

//Parse the message type based on the topic name.
function topicParse(topic) {
 for (var type in TOPIC_REG_EXP) {
 var pattern = TOPIC_REG_EXP[type];
 if (pattern.test(topic)) {
 return type;
 }
 }
 return '';
}
//Convert an 8-bit unsigned integer into a byte array.
function buffer_uint8(value) {
 var uint8Array = new Uint8Array(1);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setUint8(0, value);
 return [].slice.call(uint8Array);
}

//Convert a 16-bit unsigned integer into a byte array.
function buffer_int16(value) {
 var uint8Array = new Uint8Array(2);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setInt16(0, value);
 return [].slice.call(uint8Array);
}
//Convert a 32-bit unsigned integer into a byte array.
function buffer_int32(value) {
 var uint8Array = new Uint8Array(4);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setInt32(0, value);
 return [].slice.call(uint8Array);
}

JavaScript Codec Example for NB-IoT Device Access

The following is an example of the JavaScript codec for NB-IoT devices. Developers
can develop codecs for data reporting and command delivery of NB-IoT devices
based on the example.

// Upstream message type
var MSG_TYPE_PROPERTIES_REPORT = 'properties_report'; //Reporting device properties
var MSG_TYPE_COMMAND_RSP = 'command_response'; //Returning a command response
//Downstream message type
var MSG_TYPE_COMMANDS = 'commands'; //Delivering a command
var MSG_TYPE_PROPERTIES_REPORT_REPLY = 'properties_report_reply'; //Response for property reporting
//Message type list
var MSG_TYPE_LIST = {
 0: MSG_TYPE_PROPERTIES_REPORT, //In the code stream, 0 indicates that the device property is
reported.
 1: MSG_TYPE_PROPERTIES_REPORT_REPLY, //In the code stream, 1 indicates the response for property
reporting.
 2: MSG_TYPE_COMMANDS, //In the code stream, 2 indicates the command delivery from the
platform.
 3: MSG_TYPE_COMMAND_RSP //In the code stream, 3 indicates the command response from
the device.
};
/*
Example: When a smoke detector reports properties and returns a command response, it uses binary code
streams. The JavaScript script will decode the binary code streams into JSON data that complies with the
product model definition.
Input parameters:
 payload:[0x00, 0x00, 0x50, 0x00, 0x5a]
Output parameters:
 {"msg_type":"properties_report","services":[{"service_id":"smokerdector","properties":{"level":
80,"temperature":90}}]}
Input parameters:
 payload: [0x03, 0x01, 0x00, 0x00, 0x01]
Output parameters:

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 96

 {"msg_type":"command_response","request_id":1,"result_code":0,"paras":{"value":"1"}}
*/
function decode(payload, topic) {
 var jsonObj = {};
 //Perform the AND operation on the payload by using 0xFF to obtain the corresponding complementary
code.
 var uint8Array = new Uint8Array(payload.length);
 for (var i = 0; i < payload.length; i++) {
 uint8Array[i] = payload[i] & 0xff;
 }
 var dataView = new DataView(uint8Array.buffer, 0);
 //Obtain the message type from the first byte of the message code stream.
 var messageId = dataView.getInt8(0);
 //Convert binary data to the format used for property reporting.
 if (MSG_TYPE_LIST[messageId] == MSG_TYPE_PROPERTIES_REPORT) {
 //Set the value of serviceId, which corresponds to smokerdector in the product model.
 var serviceId = 'smokerdector';
 //Obtain the level value from the code stream.
 var level = dataView.getInt16(1);
 //Obtain the temperature value from the code stream.
 var temperature = dataView.getInt16(3);
 //Convert data to the JSON format used by property reporting.
 jsonObj = {"msg_type":"properties_report","services":[{"service_id":serviceId,"properties":
{"level":level,"temperature":temperature}}]};
 }else if (MSG_TYPE_LIST[messageId] == MSG_TYPE_COMMAND_RSP) { //Convert binary data to the
format used by the command response.
 var requestId = dataView.getInt8(1);
 var result_code = dataView.getInt16(2); //Obtain the command execution result from the binary code
stream.
 var value = dataView.getInt8(4); //Obtain the returned value of the command execution result from
the binary code stream.
 //Convert data to the JSON format used by the command response.
 jsonObj = {"msg_type":"command_response","request_id":requestId,"result_code":result_code,"paras":
{"value":value}};
 }
 //Convert data to a character string in JSON format.
 return JSON.stringify(jsonObj);
}
/*
Sample data: When a command is delivered, data in JSON format on the platform is encoded into a binary
code stream using the encode method of JavaScript.
Input parameters ->
 {"msg_type":"commands","request_id":
1,"command_name":"SET_ALARM","service_id":"smokerdector","paras":{"value":1}}
Output parameters->
 [0x02, 0x00, 0x00, 0x00, 0x01]
Sample data: When a response is returned for property reporting, data in JSON format on the platform is
encoded into a binary code stream using the encode method of JavaScript.
Input parameters ->
 {"msg_type":"properties_report_reply","request":"000050005a","result_code":0}
Output parameters->
 [0x01, 0x00]
*/
function encode(json) {
 //Convert data to a JSON object.
 var jsonObj = JSON.parse(json);
 //Obtain the message type.
 var msgType = jsonObj.msg_type;
 var payload = [];
 //Convert data in JSON format to binary data.
 if (msgType == MSG_TYPE_COMMANDS) { //Command delivery
 payload = payload.concat(buffer_uint8(2)); //Identifies the command delivery.
 payload = payload.concat(buffer_uint8(jsonObj.request_id)); //Command ID
 if (jsonObj.command_name == 'SET_ALARM') {
 payload = payload.concat(buffer_uint8(0)); //Command name.
 }
 var paras_value = jsonObj.paras.value;
 payload = payload.concat(buffer_int16(paras_value)); //Set the command property value.
 } else if (msgType == MSG_TYPE_PROPERTIES_REPORT_REPLY) { //Response for device property reporting

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 97

 payload = payload.concat(buffer_uint8(1)); //Response to property reporting
 if (0 == jsonObj.result_code) {
 payload = payload.concat(buffer_uint8(0)); //The property reporting message is successfully
processed.
 }
 }
 //Return the encoded binary data.
 return payload;
}
//Convert an 8-bit unsigned integer into a byte array.
function buffer_uint8(value) {
 var uint8Array = new Uint8Array(1);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setUint8(0, value);
 return [].slice.call(uint8Array);
}
//Convert a 16-bit unsigned integer into a byte array.
function buffer_int16(value) {
 var uint8Array = new Uint8Array(2);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setInt16(0, value);
 return [].slice.call(uint8Array);
}
//Convert a 32-bit unsigned integer into a byte array.
function buffer_int32(value) {
 var uint8Array = new Uint8Array(4);
 var dataView = new DataView(uint8Array.buffer);
 dataView.setInt32(0, value);
 return [].slice.call(uint8Array);
}

Requirements on the JavaScript Codec Format
Data Decoding Format Definition

In the data parsing scenario, when the platform receives data from a device, it
sends the binary code stream in the payload to the JavaScript script by using the
encode method. The decode method of the script needs to decode the data to the
JSON format defined in the product model of the platform. The platform has the
following requirements on the parsed JSON data:

● Device Reporting Properties
{
 "msg_type": "properties_report",
 "services": [{
 "service_id": "Battery",
 "properties": {
 "batteryLevel": 57
 },
 "event_time": "20151212T121212Z"
 }]
}

Field Manda
tory or
Option
al

Type Description

msg_typ
e

Manda
tory

String Indicates the message type. The value is
fixed at properties_report.

services Manda
tory

List<Service
Property>

Indicates a list of device services. For
details, see ServiceProperty structure.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 98

ServiceProperty structure

Field Mand
atory
or
Optio
nal

Type Description

service_i
d

Manda
tory

String Identifies a service of the device.

properti
es

Manda
tory

Object Indicates service properties, which are
defined in the product model associated
with the device.

event_ti
me

Option
al

String Indicates the UTC time when the device
collects data. The format is
yyyyMMddTHHmmssZ, for example,
20161219T114920Z.
If this parameter is not carried in the
reported data or is in incorrect format,
the time when the platform receives the
data is used.

● Response for device property setting

{
 "msg_type": "properties_set_response",
 "request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "result_code": 0,
 "result_desc": "success"
}

Field Mand
atory
or
Optio
nal

Type Description

msg_type Mand
atory

String Indicates the message type. The value is
fixed at properties_set_response.
properties_set_response

request_id Optio
nal

String Uniquely identifies a request. If this
parameter is carried in a message
received by a device, the parameter
value needs to be carried in the
response message sent to the platform.
If the decoded message does not
contain this field, the value of
request_id in the topic is used.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 99

result_cod
e

Optio
nal

Integer Indicates the command execution result.
0 indicates an execution success,
whereas other values indicate an
execution failure. If this parameter is
not carried, the execution is considered
to be successful.

result_des
c

Optio
nal

String Indicates the description of the response
to the request for setting properties.

● Response for device property query

{
"msg_type": "properties_get_response",
"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "services": [
 {
 "service_id": "analog",
 "properties": {
 "PhV_phsA": "1",
 "PhV_phsB": "2"
 },
 "event_time": "20190606T121212Z"
 }
]
}

Field Manda
tory or
Option
al

Type Description

msg_typ
e

Manda
tory

String The value is fixed at
properties_get_response.

request_i
d

Option
al

String Uniquely identifies a request. If this
parameter is carried in a message
received by a device, the parameter
value needs to be carried in the
response message sent to the platform.
If the decoded message does not
contain this field, the value of
request_id in the topic is used.

services Manda
tory

List<Service
Property>

Indicates a list of device services. For
details, see ServiceProperty structure.

ServiceProperty structure

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 100

Field Mand
atory
or
Optio
nal

Type Description

service_i
d

Manda
tory

String Identifies a service of the device.

properti
es

Manda
tory

Object Indicates service properties, which are
defined in the product model associated
with the device.

event_ti
me

Option
al

String Indicates the UTC time when the device
collects data. The format is
yyyyMMddTHHmmssZ, for example,
20161219T114920Z.
If this parameter is not carried in the
reported data or is in incorrect format,
the time when the platform receives the
data is used.

● Response for the platform to deliver a command

{
 "msg_type": "command_response",
 "request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "result_code": 0,
 "command_name": "ON_OFF",
 "service_id": "WaterMeter",
 "paras": {
 "value": "1"
 }
}

Field Mand
atory
or
Optio
nal

Type Description

msg_type Mand
atory

String The value is fixed at
command_response.

request_id Optio
nal

String Uniquely identifies a request. If this
parameter is carried in a message
received by a device, the parameter
value needs to be carried in the
response message sent to the platform.
If the decoded message does not
contain this field, the value of
request_id in the topic is used.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 101

result_cod
e

Optio
nal

Integer Indicates the command execution result.
0 indicates an execution success,
whereas other values indicate an
execution failure. If this parameter is
not carried, the execution is considered
to be successful.

response_
name

Optio
nal

String Indicates the response name, which is
defined in the product model associated
with the device.

paras Optio
nal

Object Indicates the response parameters,
which are defined in the product model
associated with the device.

● Device message reporting

{
 "msg_type": "message_up",
 "content": "hello"
}

Field Mand
atory
or
Optio
nal

Type Description

msg_type Mand
atory

String The value is fixed at message_up.

content Optio
nal

String Message content.

Data Encoding Format Definition

In the data parsing scenario, when the IoT platform delivers a command, it sends
the data in JSON format defined by the product model to the JavaScript using the
encode method. The encode method needs to encode the data in JSON format
into binary code streams that can be identified by the device. During encoding, the
JSON format transferred from the platform to the script is as follows:

● Command delivery
{
 "msg_type": "commands",
 "request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "command_name": "ON_OFF",
 "service_id": "WaterMeter",
 "paras": {
 "value": 1
 }
}

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 102

Field Mand
atory
or
Optio
nal

Type Description

msg_type Manda
tory

String The value is fixed at commands.

request_id Manda
tory

String Uniquely identifies a request. The ID is
delivered to the device through a
topic.

service_id Option
al

String Identifies a service of the device.

command
_name

Option
al

String Indicates the device command name,
which is defined in the product model
associated with the device.

paras Option
al

Object Indicates the command execution
parameters, which are defined in the
product model associated with the
device.

● Setting Device Properties

{
"msg_type": "properties_set",
"request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "services": [{
 "service_id": "Temperature",
 "properties": {
 "value": 57
 }
 },
 {
 "service_id": "Battery",
 "properties": {
 "level": 80
 }
 }
]
}

Field Mand
atory
or
Optio
nal

Type Description

msg_type Mand
atory

String The value is fixed at properties_set.

request_i
d

Mand
atory

String Uniquely identifies a request. If this
parameter is carried in a message
received by a device, the parameter
value needs to be carried in the response
message sent to the platform.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 103

services Mand
atory

List<Service
Property>

Indicates a list of device service data.

ServiceProperty structure

Field Mand
atory
or
Optio
nal

Type Description

service_i
d

Manda
tory

String Identifies a service of the device.

properti
es

Manda
tory

Object Service properties, which are defined in
the product model.

● Querying device properties

{
 "msg_type": "properties_get",
 "request_id": "42aa08ea-84c1-4025-a7b2-c1f6efe547c2",
 "service_id": "Temperature"
}

Field Manda
tory or
Option
al

Type Description

msg_typ
e

Manda
tory

String The value is fixed at properties_get.

request_i
d

Manda
tory

String Uniquely identifies a request. The ID is
delivered to the device through a topic.

service_i
d

Option
al

String Identifies a service of the device.

● Response for property reporting (response to property reporting during NB-

IoT device access)
{
 "msg_type": "properties_report_reply",
 "request": "213355656",
 "result_code": 0
}

Field Mand
atory
or
Optio
nal

Type Description

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 104

msg_type Mand
atory

String The value is fixed at
properties_report_reply.

request Optio
nal

byte[] Binary code stream for property
reporting.

result_cod
e

Optio
nal

Integer Execution result of property reporting.

has_more Optio
nal

Boolean Whether a cache command exists.

● Message delivery

{
 "msg_type": "messages",
 "content": "hello"
}

Field Mand
atory
or
Optio
nal

Type Description

msg_type Mand
atory

String The value is fixed at messages.

content Optio
nal

String Content of command delivery.

3.4.4 Offline Codec Development
A codec can convert binary messages into JSON messages. The JSON format is
defined in the profile. Therefore, before developing a codec, you must define the
product model of the device.

Codec demo projects are provided to improve the integration efficiency of offline
codec development. You are advised to perform secondary development based on
a demo project.

Note: Offline codec development is complex and time-consuming. Therefore,
graphical development is recommended.

Preparing the Development Environment
● Download the Eclipse installation package from the official website and

decompress it to a local directory. You can use the software without
installation.

● Download the Maven plug-in package (in .zip format) from the official
website and decompress it to a local directory.

● Install the JDK and configure the Java development environment.

Maven configuration involves setting environment variables on Windows and
setting Maven on Eclipse. For details on setting environment variables on

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 105

https://support.huaweicloud.com/en-us/devg-iothub/iot_02_1004.html#section1
http://www.eclipse.org/downloads
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi

Windows, see other online resources. Maven can be configured on Eclipse as
follows:

Step 1 Start Eclipse and choose Windows > Preferences. In the Preferences window,
choose Maven > Installations. On the right pane, click Add.

Step 2 Select the path where the Maven plug-in package is stored and click Finish to
import the Maven plug-in.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 106

Step 3 Select the imported Maven plug-in and click OK.

----End

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 107

Importing the Demo Project of the Codec

Step 1 Download the demo project, obtain the codecDemo.zip file from the source_code
folder, and decompress the file to a local directory.

Step 2 Open Eclipse, right-click the blank area in Project Explorer on the left of Eclipse,
and choose Import > Import....

Step 3 Expand Maven, select Existing Maven Projects, and click Next.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 108

Step 4 Click Browse, select the codecDemo folder obtained in step 1, select /pom.xml,
and click Finish.

----End

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 109

Implementation Sample Interpretation

The following figure shows the structure of the imported codec demo project.

This project is a Maven project. You can modify the following content based on
this sample project to obtain the required codec.

Step 1 Modify the configuration files of the Maven project.
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.thrid.party</groupId>
<!-- Change it to the name of your codec. The naming rule is as follows: device type-manufacturer ID,
for example: WaterMeter-Huawei.-->
<artifactId>WaterMeter-Huawei</artifactId>
<version>1.0.0</version>
<!-- Check that the value is bundle. The value cannot be jar. -->
<packaging>bundle</packaging>

......

<dependencies>
......
 <!-- Codec interface provided by Huawei, which must be introduced. -->
 <!-- Replace systemPath with your local \codecDemo\lib\com.huawei.m2m.cig.tup-1.3.1.jar -->
 <dependency>

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 110

 <groupId>com.huawei</groupId>
 <artifactId>protocal-jar</artifactId>
 <version>1.3.1</version>
 <scope>system</scope>
 <systemPath>${basedir}/lib/com.huawei.m2m.cig.tup-1.3.1.jar</systemPath>
 </dependency>
......
</dependencies>
<build>
<plugins>
 <!-- OSGi packaging configuration -->
 <plugin>
 <configuration>
 <instructions>
 <!-- Change it to the name of your codec. The naming rule is as follows: device type-
manufacturer ID, for example: WaterMeter-Huawei. -->
 <Bundle-SymbolicName>WaterMeter-Huawei</Bundle-SymbolicName>
 </instructions>
 </configuration>
 </plugin>
</plugins>
</build>
</project>

Step 2 In the ProtocolAdapterImpl.java file, change the values of MANU_FACTURERID.
private static final Logger logger = LoggerFactory.getLogger(ProtocolAdapterImpl.class);
//Manufacturer name
private static final String MANU_FACTURERID = "Huawei";

Step 3 Modify the code in the CmdProcess.java file so that the codec can encode
delivered commands and responses to reported data.
package com.Huawei.NBIoTDevice.WaterMeter;

import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.node.ObjectNode;

public class CmdProcess {

 //private String identifier = "123";
 private String msgType = "deviceReq";
 private String serviceId = "Brightness";
 private String cmd = "SET_DEVICE_LEVEL";
 private int hasMore = 0;
 private int errcode = 0;
 private int mid = 0;
 private JsonNode paras;

 public CmdProcess() {
 }

 public CmdProcess(ObjectNode input) {

 try {
 // this.identifier = input.get("identifier").asText();
 this.msgType = input.get("msgType").asText();
 /*
 The IoT platform receives messages reported by the device and encodes the ACK message.
 {
 "identifier":"0",
 "msgType":"cloudRsp",
 "request": ***,//Stream reported by the device
 "errcode":0,
 "hasMore":0
 }
 * */
 if (msgType.equals("cloudRsp")) {
 //Assemble the values of fields in the ACK message.
 this.errcode = input.get("errcode").asInt();

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 111

 this.hasMore = input.get("hasMore").asInt();
 } else {
 /*
 The IoT platform delivers a command to the device with parameters specified as follows:
 {
 "identifier":0,
 "msgType":"cloudReq",
 "serviceId":"WaterMeter",
 "cmd":"SET_DEVICE_LEVEL",
 "paras":{"value":"20"},
 "hasMore":0

 }
 * */
 //Compatibility must be considered. If the MID is not transferred, it is not encoded.
 if (input.get("mid") != null) {
 this.mid = input.get("mid").intValue();
 }
 this.cmd = input.get("cmd").asText();
 this.paras = input.get("paras");
 this.hasMore = input.get("hasMore").asInt();
 }

 } catch (Exception e) {
 e.printStackTrace();
 }

 }

 public byte[] toByte() {
 try {
 if (this.msgType.equals("cloudReq")) {
 /*
 The NA delivers a control command. In this example, there is only one command:
SET_DEVICE_LEVEL.
 If there are other commands, determine them.
 * */
 if (this.cmd.equals("SET_DEVICE_LEVEL")) {
 int brightlevel = paras.get("value").asInt();
 byte[] byteRead = new byte[5];
 ByteBufUtils buf = new ByteBufUtils(byteRead);
 buf.writeByte((byte) 0xAA);
 buf.writeByte((byte) 0x72);
 buf.writeByte((byte) brightlevel);

 //Compatibility must be considered. If the MID is not transferred, it is not encoded.
 if (Utilty.getInstance().isValidofMid(mid)) {
 byte[] byteMid = new byte[2];
 byteMid = Utilty.getInstance().int2Bytes(mid, 2);
 buf.writeByte(byteMid[0]);
 buf.writeByte(byteMid[1]);
 }

 return byteRead;
 }
 }

 /*
 After receiving the data reported by the device, the IoT platform encodes the ACK message as
required and responds to the device. If null is returned, the IoT platform does not need to respond.
 * */
 else if (this.msgType.equals("cloudRsp")) {
 byte[] ack = new byte[4];
 ByteBufUtils buf = new ByteBufUtils(ack);
 buf.writeByte((byte) 0xAA);
 buf.writeByte((byte) 0xAA);
 buf.writeByte((byte) this.errcode);
 buf.writeByte((byte) this.hasMore)
 return ack;

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 112

 }
 return null;
 } catch (Exception e) {
 // TODO: handle exception
 e.printStackTrace();
 return null;
 }
 }

}

Step 4 Modify the code in the ReportProcess.java file so that the codec can decode data
reported by devices and command execution results.
package com.Huawei.NBIoTDevice.WaterMeter;

import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.node.ArrayNode;
import com.fasterxml.jackson.databind.node.ObjectNode;

public class ReportProcess {
 //private String identifier;

 private String msgType = "deviceReq";
 private int hasMore = 0;
 private int errcode = 0;
 private byte bDeviceReq = 0x00;
 private byte bDeviceRsp = 0x01;

 //serviceId = Brightness
 private int brightness = 0;

 //serviceId = Electricity
 private double voltage = 0.0;
 private int current = 0;
 private double frequency = 0.0;
 private double powerfactor = 0.0;

 //serviceId = Temperature
 private int temperature = 0;

 private byte noMid = 0x00;
 private byte hasMid = 0x01;
 private boolean isContainMid = false;
 private int mid = 0;

 /**
 * @param binaryData: Payload of the CoAP packet sent by the device to the IoT platform
 * Input parameters in this example: AA 72 00 00 32 08 8D 03 20 62 33 99
 * byte[0]--byte[1]: AA 72 command header
 * byte[2]: 00 mstType: 00 represents deviceReq, which indicates that data is reported by
the device.
 * byte[3]: 00 hasMore: 0 indicates that there is no subsequent data and 1 indicates that
there is subsequent data. If the hasMore field is not contained, the value 0 is used.
 * byte[4]--byte[11]: indicates service data, which is parsed as required.//If the service data is
deviceRsp, byte[4] indicates whether the MID is carried and byte[5] to byte[6] indicate the short command
ID.
 * @return
 */
 public ReportProcess(byte[] binaryData) {
 //The identifier parameter can be obtained based on the input parameter stream. In this example, the
default value is 123.
 // identifier = "123";

 /*
 If the data is reported by the device, the return value is in the following format:
 {
 "identifier":"123",
 "msgType":"deviceReq",
 "hasMore":0,

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 113

 "data":[{"serviceId":"Brightness",
 "serviceData":{"brightness":50},
 {
 "serviceId":"Electricity",
 "serviceData":{"voltage":218.9,"current":800,"frequency":50.1,"powerfactor":0.98},
 {
 "serviceId":"Temperature",
 "serviceData":{"temperature":25},
]
 }
 */
 if (binaryData[2] == bDeviceReq) {
 msgType = "deviceReq";
 hasMore = binaryData[3];

 //serviceId = Brightness
 brightness = binaryData[4];

 //serviceId = Electricity
 voltage = (double) (((binaryData[5] << 8) + (binaryData[6] & 0xFF)) * 0.1f);
 current = (binaryData[7] << 8) + binaryData[8];
 powerfactor = (double) (binaryData[9] * 0.01);
 frequency = (double) binaryData[10] * 0.1f + 45;

 //serviceId = Temperature
 temperature = (int) binaryData[11] & 0xFF - 128;
 }
 /*
 If the data is a response sent by the device to a command of the IoT platform, the return value is in
the following format:
 {
 "identifier":"123",
 "msgType":"deviceRsp",
 "errcode":0,
 "body" :{****} Note that the body is a JSON structure.
 }
 */
 else if (binaryData[2] == bDeviceRsp) {
 msgType = "deviceRsp";
 errcode = binaryData[3];
 //Compatibility must be considered. If the MID is not transferred, it is not encoded.
 if (binaryData[4] == hasMid) {
 mid = Utilty.getInstance().bytes2Int(binaryData, 5, 2);
 if (Utilty.getInstance().isValidofMid(mid)) {
 isContainMid = true;
 }

 }
 } else {
 return;
 }

 }

 public ObjectNode toJsonNode() {
 try {
 //Assemble the body.
 ObjectMapper mapper = new ObjectMapper();
 ObjectNode root = mapper.createObjectNode();

 // root.put("identifier", this.identifier);
 root.put("msgType", this.msgType);

 //Assemble the message body based on the msgType field.
 if (this.msgType.equals("deviceReq")) {
 root.put("hasMore", this.hasMore);
 ArrayNode arrynode = mapper.createArrayNode();

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 114

 //serviceId = Brightness
 ObjectNode brightNode = mapper.createObjectNode();
 brightNode.put("serviceId", "Brightness");
 ObjectNode brightData = mapper.createObjectNode();
 brightData.put("brightness", this.brightness);
 brightNode.put("serviceData", brightData);
 arrynode.add(brightNode);
 //serviceId = Electricity
 ObjectNode electricityNode = mapper.createObjectNode();
 electricityNode.put("serviceId", "Electricity");
 ObjectNode electricityData = mapper.createObjectNode();
 electricityData.put("voltage", this.voltage);
 electricityData.put("current", this.current);
 electricityData.put("frequency", this.frequency);
 electricityData.put("powerfactor", this.powerfactor);
 electricityNode.put("serviceData", electricityData);
 arrynode.add(electricityNode);
 //serviceId = Temperature
 ObjectNode temperatureNode = mapper.createObjectNode();
 temperatureNode.put("serviceId", "Temperature");
 ObjectNode temperatureData = mapper.createObjectNode();
 temperatureData.put("temperature", this.temperature);
 temperatureNode.put("serviceData", temperatureData);
 arrynode.add(temperatureNode);

 //serviceId = Connectivity
 ObjectNode ConnectivityNode = mapper.createObjectNode();
 ConnectivityNode.put("serviceId", "Connectivity");
 ObjectNode ConnectivityData = mapper.createObjectNode();
 ConnectivityData.put("signalStrength", 5);
 ConnectivityData.put("linkQuality", 10);
 ConnectivityData.put("cellId", 9);
 ConnectivityNode.put("serviceData", ConnectivityData);
 arrynode.add(ConnectivityNode);

 //serviceId = Battery
 ObjectNode batteryNode = mapper.createObjectNode();
 batteryNode.put("serviceId", "battery");
 ObjectNode batteryData = mapper.createObjectNode();
 batteryData.put("batteryVoltage", 25);
 batteryData.put("battervLevel", 12);
 batteryNode.put("serviceData", batteryData);
 arrynode.add(batteryNode);

 root.put("data", arrynode);

 } else {
 root.put("errcode", this.errcode);
 //Compatibility must be considered. If the MID is not transferred, it is not decoded.
 if (isContainMid) {
 root.put("mid", this.mid);//mid
 }
 //Assemble the body. The body must be an ObjectNode object.
 ObjectNode body = mapper.createObjectNode();
 body.put("result", 0);
 root.put("body", body);
 }
 return root;
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }
 }
}

----End

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 115

Description of decode API
The input parameter binaryData over the decode API is the payload in the CoAP
message sent by a device.

Upstream messages reported by the device need to be processed by the codec in
the following two scenarios (message (4) is the protocol ACK message returned
by the module and does not need to be processed by the codec):

● Reported device data (message (1) in the figure)

Paramet
er

Type Man
dato
ry or
Opti
onal

Description

identifier String No Identifier of the device in the application
protocol. The IoT platform obtains the
parameter over the decode API, encodes
the parameter over the encode API, and
places the parameter in a stream.

msgType String Yes This parameter has a fixed value of
deviceReq, which indicates that the
device reports data to the IoT platform.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 116

Paramet
er

Type Man
dato
ry or
Opti
onal

Description

hasMore Int No Specifies whether the IoT platform has
subsequent commands to deliver. 0: The
IoT platform does not have subsequent
commands to deliver. 1: The IoT platform
has subsequent commands to deliver.
Subsequent data indicates that a piece of
data reported by a device may be
reported multiple times. After the data is
reported the current time, the IoT
platform determines whether there are
subsequent messages using the hasMore
field. The hasMore field is valid only in
PSM mode. When the hasMore field of
reported data is set to 1, the IoT
platform does not deliver cached
commands until it receives reported data
whose hasMore field is set to 0. If the
reported data does not contain the
hasMore field, the IoT platform
processes the data on the basis that the
hasMore field is set to 0.

data ArrayNode Yes Content of the data reported by the
device.

Table 3-1 Definition of ArrayNode

Parameter Type Man
dato
ry or
Opti
onal

Description

serviceId String Yes Service ID.

serviceDat
a

ObjectNod
e

Yes Data of a service. The detailed
parameters are defined in the profile.

eventTime String No Specifies the time when the device
collects data. The format is
yyyyMMddTHHmmssZ,
for example, 20161219T114920Z.

Example:

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 117

{
 "identifier": "123",
 "msgType": "deviceReq",
 "hasMore": 0,
 "data": [{
 "serviceId": "NBWaterMeterCommon",
 "serviceData": {
 "meterId": "xxxx",
 "dailyActivityTime": 120,
 "flow": "565656",
 "cellId": "5656",
 "signalStrength": "99",
 "batteryVoltage": "3.5"
 },
 "eventTime": "20160503T121540Z"
 },
 {
 "serviceId": "waterMeter",
 "serviceData": {
 "internalTemperature": 256
 },
 "eventTime": "20160503T121540Z"
 }]
}

● Device response to the command delivered by the IoT platform (message (5)
in the figure)

Paramete
r

Type Description Mandat
ory or
Optiona
l

identifier String Identifier of the device in the
application protocol. The IoT platform
obtains the parameter over the decode
API, encodes the parameter over the
encode API, and places the parameter
in a stream.

No

msgType String This parameter has a fixed value of
deviceRsp, which indicates a response
sent by a device to the IoT platform.

Yes

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 118

Paramete
r

Type Description Mandat
ory or
Optiona
l

mid Int Specifies a 2-byte unsigned command
ID. If the device must return the
command execution result (deviceRsp),
this field is used to associate the
command execution result (deviceRsp)
with the corresponding command.
When the IoT platform delivers a
command over the encode API, the IoT
platform places the MID allocated by
the IoT platform into a stream and
delivers the stream to the device
together with the command. When the
device reports the command execution
result (deviceRsp), the device returns
the MID to the IoT platform. In this
way, the IoT platform associates the
delivered command with the command
execution result (deviceRsp) and
updates the command delivery status
accordingly.

Yes

errcode Int Request processing result code. The IoT
platform determines the command
delivery status based on this field.
The value 0 indicates success, and the
value 1 indicates failure.

Yes

body ObjectNo
de

Command response, whose fields are
defined in the profile.
Note: The body is not an array.

No

Example:
{
 "identifier": "123",
 "msgType": "deviceRsp",
 "mid": 2016,
 "errcode": 0,
 "body": {
 "result": 0
 }
}

Description of encode API
Input parameters of the encode API are commands or responses in JSON format
delivered by the IoT platform.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 119

The downstream messages of the IoT platform can be classified into two types:

● Response from the IoT platform to the data reported by the device (message
(2) in the figure)

Table 3-2 Definition of input parameters of the encode API over which the
IoT platform responds to data reported by a device

Paramete
r

Type Description Mandat
ory or
Optiona
l

identifier String Identifier of the device in the
application protocol. The IoT platform
obtains the parameter over the decode
API, encodes the parameter over the
encode API, and places the parameter
in a stream.

No

msgType String This field has a fixed value of
cloudRsp, which indicates that the IoT
platform sends a response to data
reported by a device.

Yes

request byte[] Indicates the data reported by the
device.

Yes

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 120

Paramete
r

Type Description Mandat
ory or
Optiona
l

errcode int Request processing result code. The IoT
platform determines the command
delivery status based on this field.
The value 0 indicates success, and the
value 1 indicates failure.

Yes

hasMore int Specifies whether the IoT platform has
subsequent messages to be sent. The
value 0 indicates that the IoT platform
does not have subsequent messages to
be sent. The value 1 indicates that the
IoT platform has subsequent messages
to be sent.
Subsequent messages indicate that the
IoT platform still needs to deliver
commands, and the hasMore field is
used to tell the device not to sleep. The
hasMore field is valid only in PSM
mode with the downstream message
indication function enabled.

Yes

Note: If msgType is set to cloudRsp and null is returned by the codec
detection tool, the codec does not define the response to the reported data
and the IoT platform does not need to respond.
Example:
{
 "identifier": "123",
 "msgType": "cloudRsp",
 "request": [
 1,
 2
],
 "errcode": 0,
 "hasMore": 0
}

● Commands delivered by the IoT platform (message (3) in the figure)

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 121

Table 3-3 Definition of input parameters of the encode API over which the
IoT platform delivers commands

Paramete
r

Type Description Mandat
ory or
Optiona
l

identifier String Identifier of the device in the
application protocol. The IoT platform
obtains the parameter over the decode
API, encodes the parameter over the
encode API, and places the parameter
in a stream.

No

msgType String This parameter has a fixed value of
cloudReq, which indicates a command
delivered by the IoT platform.

Yes

serviceId String Service ID. Yes

cmd String Command name. For details, see the
profile.

Yes

paras ObjectNo
de

Command parameters, which are
defined in the profile.

Yes

hasMore Int Specifies whether the IoT platform has
subsequent commands to deliver. 0:
The IoT platform does not have
subsequent commands to deliver. 1:
The IoT platform has subsequent
commands to deliver.
Subsequent commands indicate that
the IoT platform still needs to deliver
commands, and the hasMore field is
used to tell the device not to sleep. The
hasMore field is valid only in PSM
mode with the downstream message
indication function enabled.

Yes

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 122

Paramete
r

Type Description Mandat
ory or
Optiona
l

mid Int A 2-byte unsigned command ID that is
allocated by the IoT platform. (The
value ranges from 1 to 65535.)
When the IoT platform delivers a
command over the encode API, the IoT
platform places the MID allocated by
the IoT platform into a stream and
delivers the stream to the device
together with the command. When the
device reports the command execution
result (deviceRsp), the device returns
the MID to the IoT platform. In this
way, the IoT platform associates the
delivered command with the command
execution result (deviceRsp) and
updates the command delivery status
accordingly.

Yes

Example:
{
 "identifier": "123",
 "msgType": "cloudReq",
 "serviceId": "NBWaterMeterCommon",
 "mid": 2016,
 "cmd": "SET_TEMPERATURE_READ_PERIOD",
 "paras": {
 "value": 4
 },
 "hasMore": 0}
}

Description of getManufacturerId API

This API is used to return the manufacturer ID in the format of a character string.
The IoT platform calls this API to obtain the manufacturer ID.

Example:

@Override
public String getManufacturerId() {
 return "TestUtf8ManuId";
}

Precautions on Interface Implementation

Support for Thread Security Required

The decode and encode functions must ensure thread security. Therefore, member
or static variables cannot be added to cache intermediate data.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 123

● Incorrect example: When multiple threads are started at the same time, the
status of thread A is set to Failed while the status of thread B is set to
Success. As a result, the status is incorrect, and the program running is
abnormal.
public class ProtocolAdapter {
private String status;

@Override
public ObjectNode decode(finalbyte[] binaryData) throws Exception {
 if (binaryData == null) {
 status = "Failed";
 return null;
 }
 ObjectNode node;
 ...;
 status = "Success";//The thread is insecure.
 return node;
}
}

● Correct example: Encoding and decoding are performed based on the input
parameters, and the encoding and decoding library does not process services.

Explanation of the mid Field

The IoT platform delivers orders in sequence. However, the IoT platform does not
respond to the order execution results in the same sequence as the delivered
orders. The MID is used to associate the order execution result response with the
delivered order. On the IoT platform, whether the MID is implemented affects the
message flow.

● When the MID is implemented:

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 124

If the MID is implemented and the order execution result is reported
successfully:

a. The status (SUCCESSFUL/FAILED) in the order execution result is
updated to the record of the order in the IoT platform database.

b. The order execution result notification sent by the IoT platform to the NA
server contains commandId.

c. The query result of the NA server indicates that the status of the order is
SUCCESSFUL/FAILED.

● When the MID is not implemented:

If the MID is not implemented and the order execution result is reported
successfully:

a. The status (SUCCESSFUL/FAILED) in the order execution result is not
updated to the record of the order in the IoT platform database.

b. The order execution result notification sent by the IoT platform to the NA
server does not contain commandId.

c. The query result of the NA server indicates that the final status of the
order is DELIVERED.

NO TE

The preceding two message flows are used to explain the function of the mid field. Some
message flows are simplified in the figures.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 125

In scenarios where whether orders are sent to the device is of concern but the
order execution is not, the device and codec do not need to implement the mid
field.

If the mid field is not implemented, the NA server cannot obtain the order
execution result from the IoT platform. Therefore, the NA server needs to
implement the solution by itself. For example, after receiving the order execution
result response (without commandId), the NA server can do as follows:
● Match the response with the order according to the sequence in which orders

are delivered. In this way, when the IoT platform delivers multiple orders to
the same device at the same time, the order execution result is matched with
the delivered order incorrectly if packet loss occurs. Therefore, it is
recommended that the NA server deliver only one order to the same device
each time. After receiving the order execution result response, the NA server
delivers the next order.

● The codec can add order-related information, such as an order code, to the
resultDetail field of the order response to help identify the order. The NA
server identifies the mapping between the order execution result response
and the delivered order according to the information in the resultDetail field.

Do Not Use DirectMemory

The DirectMemory field directly calls the OS interface to apply for memory and is
not controlled by the JVM. Improper use of the DirectMemory field may cause
insufficient memory of the OS. Therefore, the DirectMemory cannot be used in
codec plug-in code.

Example of improper use: Use UNSAFE.allocateMemory to apply for direct
memory.

if ((maybeDirectBufferConstructor instanceof Constructor))
{
 address = UNSAFE.allocateMemory(1L);
 Constructor<?> directBufferConstructor;
 ...
}
else
{
 ...
}

Codec Input and Output Examples
The following table describes the definition of a service supported by a kind of
water meter.

Service
Type

Property
Name

Property
Description

Property Type (Data Type)

Battery - - -

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 126

Service
Type

Property
Name

Property
Description

Property Type (Data Type)

- batteryLevel Specifies the
battery level in
the unit of
percent. The
value ranges from
0 to 100.

int

Meter - - -

- signalStrength Indicates the
signal strength.

int

- currentReading Specifies the
current read
value.

int

- dailyActivityTi
me

Specifies the daily
activated
communication
duration.

string

The following shows the decode interface output for data reported by a device to
the IoT platform.

{
 "identifier": "12345678",
 "msgType": "deviceReq",
 "data": [
 {
 "serviceId": "Meter",
 "serviceData": {
 "currentReading": "46.3",
 "signalStrength": 16,
 "dailyActivityTime": 5706
 },
 "eventTime": "20160503T121540Z"
 },
 {
 "serviceId": "Battery",
 "serviceData": {
 "batteryLevel": 10
 },
 "eventTime": "20160503T121540Z"
 }
]
}

The following shows the encode interface input when the IoT platform receives
data reported by the device and sends a response to the device.

{
 "identifier": "123",
 "msgType": "cloudRsp",
 "request":[
 1,
 2
],
 "errcode": 0,

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 127

 "hasMore": 0
}

The following table describes the commands supported by a kind of water meter.

Basic
Function

Category Name Command
Parameter

Data Type Enumerat
ed Value

WaterMete
r

Water
meter

- - - -

- CMD SET_TEMPE
RATURE_RE
AD_PERIO
D

- - -

- - - value int -

- RSP SET_TEMPE
RATURE_RE
AD_PERIO
D_RSP

- - -

- - - result int The value
0 indicates
success.
The value
1 indicates
invalid
input. The
value 2
indicates
execution
failed.

The following shows the input parameters of the encode interface when the IoT
platform sends an order to the device.

{
 "identifier": "12345678",
 "msgType": "cloudReq",
 "serviceId": "WaterMeter",
 "cmd": "SET_TEMPERATURE_READ_PERIOD",
 "paras": {
 "value": 4
 },
 "hasMore": 0
}

After the IoT platform receives a response from the device, the IoT platform
invokes the decode interface for decoding. The decode interface output is as
follows:

{
 "identifier": "123",
 "msgType": "deviceRsp",
 "errcode": 0,
 "body": {

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 128

 "result": 0
 }
}

Packaging the Codec

After the codec is developed, use the Maven to pack the codec into a JAR package
and create it as a codec package.

Maven Packaging

Step 1 Open the DOS window and access the directory where the pom.xml file is located.

Step 2 Run mvn package.

Step 3 After BUILD SUCCESS is displayed in the DOS window, open the target folder in
the same directory as the pom.xml file to obtain the .jar package.

The naming rule of the .jar package is as follows: device type-manufacturer ID-
device model-version.jar, for example: WaterMeter-Huawei-NBIoTDevice-
version.jar.

● The com directory stores class files.

● The META-INF directory stores description files of .jar packages under the
OSGi framework, which are generated based on configurations in the
pom.xml file.

● The OSGI-INF directory stores service configuration files and is used to
register the codec as a service for the platform to call (only one .xml file can
be called).

● Other .jar packages are .jar packages referenced by codecs.

----End

Preparing a Codec Package

Step 1 Create a folder named package, which contains the preload/ sub-folder.

Step 2 Place the packaged .jar package in the preload/ folder.

Step 3 In the package folder, create the package-info.json file. The fields and templates
in this file are described as follows:

Note: The package-info.json file is encoded using UTF-8 without BOM. Only
English characters are supported.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 129

Table 3-4 Description of fields in the package-info.json file

Parameter Description Mandator
y or
Optional

specVersion Specifies the version of the description file.
The value is fixed at 1.0.

Yes

fileName Specifies the name of the software package.
The value is fixed at codec-demo.

Yes

version Specifies the version number of the
software package. The version of the
package.zip file must be the same as the
value of bundleVersion.

Yes

deviceType Specifies the device type, which must be the
same as that defined in the profile.

Yes

manufacturerName Specifies the manufacturer name, which
must be the same as that defined in the
profile. Otherwise, the package-info.json
file cannot be uploaded to the IoT platform.

Yes

platform Specifies the platform type, which is the
operating system of the IoT platform on
which the codec package runs. The value is
fixed at linux.

Yes

packageType Specifies the software package type. This
field is used to describe the IoT platform
module where the codec is deployed. The
value is fixed at CIGPlugin.

Yes

date Specifies the time when a packet is sent.
The format is as follows: yyyy-MM-dd HH-
mm-ss. For example, 2017-05-06 20:48:59.

No

description Specifies the self-defined description about
the software package.

No

ignoreList Specifies the list of bundles to be ignored.
The default value is null.

Yes

bundles Specifies the description of a bundle.
Note: A bundle is a .jar package in a
compressed package. Only one bundle
needs to be described.

Yes

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 130

Table 3-5 Description of the bundles field

Parameter Description Mandator
y or
Optional

bundleName Specifies the bundle name, which is
consistent with the value of Bundle-
SymbolicName in the pom.xml file.

Yes

bundleVersion Specifies the bundle version, which must be
the same as the value of version.

Yes

priority Specifies the bundle priority. This parameter
can be set to the default value 5.

Yes

fileName Specifies the codec file name. Yes

bundleDesc Describes the bundle function. Yes

versionDesc Describes the functions and features of
different versions.

Yes

Template of the package-info.json file

{
 "specVersion":"1.0",
 "fileName":"codec-demo",
 "version":"1.0.0",
 "deviceType":"WaterMeter",
 "manufacturerName":"Huawei",
 "description":"codec",
 "platform":"linux",
 "packageType":"CIGPlugin",
 "date":"2017-02-06 12:16:59",
 "ignoreList":[],
 "bundles":[
 {
 "bundleName": "WaterMeter-Huawei",
 "bundleVersion": "1.0.0",
 "priority":5,
 "fileName": "WaterMeter-Huawei-1.0.0.jar",
 "bundleDesc":"",
 "versionDesc":""
 }]
}

Step 4 Select all files in the package folder and compress them into a package.zip file.

Note: The package.zip file cannot contain the package directory.

----End

3.4.5 Downloading and Uploading a Codec
The codec developed online can be download to a local directory. The local codec
can also be uploaded to any other IoT platform.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 131

Downloading a Codec

Step 1 Log in to the IoTDA console.

Step 2 In the navigation pane, choose Products. In the product list, click the name of a
product to access its details.

Step 3 Choose Codec Development > Online Develop. On the page displayed, select
More in the upper right corner and choose Download to download the codec
package.

----End

Uploading a Codec

If a codec (such as a codec developed offline) is available on the local host, the
codec can be uploaded to the IoT platform.

Step 1 Log in to the IoTDA console.

Step 2 In the navigation pane, choose Products. In the product list, click the name of a
product to access its details.

Step 3 On the product details page, click Codec Development, select Upload Codec,
select a local codec package, and click Upload.

NO TE

Device Type, Model, and Manufacturer ID of the codec package must be the same as
those of the product.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 132

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

If the message "Offline codec uploaded successfully" is displayed, the codec has
been deployed on the IoT platform.

----End

3.5 Online Debugging

Overview
After the product model and codec are developed, the application can receive data
reported by the device and deliver commands to the device through the IoT
platform.

The IoTDA provides application and device simulators for you to commission data
reporting and command delivery before developing real applications and physical
devices. You can also use the application simulator to verify the service flow after
the physical device is developed.

Commissioning a Product by Using a Virtual Device
When both device development and application development are not completed,
you can create virtual devices and use the application simulator and device
simulator to test product models and codecs. The structure of the virtual device
testing interface is as follows:

Step 1 On the product details page, click the Online Debugging tab and click Add Test
Device.

Step 2 In the Add Test Device dialog box, select Virtual device for Device Type and click
OK. The virtual device name contains Simulator. Only one virtual device can be
created for each product.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 133

Step 3 In the device list, select the new virtual device and click Debug to enter the
Online Debugging page.

Step 4 In Device Simulator, enter a hexadecimal code stream or JSON data (for
example, enter a hexadecimal code stream) and click Send. View the data
reporting result in Application Simulator and the processing logs of the IoT
platform in Message Tracing.

Step 5 Deliver a command in Application Simulator. View the received command (for
example, a hexadecimal code stream) in Device Simulator and the processing
logs of the IoT platform in Message Tracing.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 134

----End

Debugging a Product by Using a Physical Device
When the device development is complete but the application development is not,
you can add physical devices and use the application simulator to test devices,
product models, and codecs. The structure of the physical device testing interface
is as follows:

Step 1 On the product details page of the smoke detector, select Online Debugging and
click Add Test Device.

Step 2 In the Add Test Device dialog box, select Physical device for Device Type, set the
parameters of the device, and click OK.

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 135

Note: If DTLS is used for device access, set Registration Mode to Encrypted and
keep the secret properly.

NO TE

The newly added device is in the inactive state. In this case, online debugging cannot be
performed. For details, see Connection Authentication. After the device is connected to
the platform, perform the debugging.

Step 3 Click Debug to access the debugging page.

Step 4 Simulate a scenario where a control command is remotely delivered. In
Application Simulator, Set Service to StreetLight, Command to SWITCH_LIGHT,
and Command Value to ON, and click Send. The street lamp is turned on.

----End

IoT Device Access
Developer Guide 3 Product Development

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 136

https://support.huaweicloud.com/en-us/qs-iothub/iot_05_0005.html#section3

4 Development on the Device Side

4.1 Device Access Guide

4.2 Using IoT Device SDKs for Access

4.3 Using MQTT Demos for Access

4.4 Using Huawei-Certified Modules for Access

4.1 Device Access Guide
The HUAWEI CLOUD IoT platform provides multiple access modes to meet the
requirements of device fleets in different access scenarios. You can select a proper
development mode based on the device type.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 137

Development
Mode

Feature Scenario Difficult
y Level

Certificated
MCU
development

The IoT Device SDK Tiny
has been pre-integrated
into the main control unit
(MCU) and can call
methods to connect to the
platform.

Devices need to be
quickly put into
commercial use, with
low R&D costs.
Devices are connected
to the platform
directly, without using
gateways.

Certificated
module
development

The IoT Device SDK Tiny
has been pre-integrated
into the module and can
invoke AT commands to
connect to the platform.

There are few MCU
resources. Devices are
connected to the
platform directly,
without using
gateways. For details,
see 4.4 Using
Huawei-Certified
Modules for Access.

LiteOS
development

Devices run LiteOS that
manages MCU resources. In
addition, LiteOS has a built-
in IoT Device SDK Tiny that
can call functions to
connect to the platform.
This development mode
shortens the device
development duration and
reduces the development
difficulty.

No operating system
is required. Devices
are connected to the
platform directly,
without using
gateways.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 138

Development
Mode

Feature Scenario Difficult
y Level

Common
development

The IoT Device SDK Tiny is
integrated into the MCU
and calls the SDK functions
to connect to the platform.
This type of call is more
convenient than API access.

There is sufficient
time for devices to put
into commercial use,
and the flash and
RAM resources of the
MCU meet the
conditions for
integrating the IoT
Device SDK Tiny.

OpenCPU
development

Use the MCU capability in
the common module, and
compile and run device
applications on the
OpenCPU.

Devices with a small
size have high security
requirements and
need to be quickly put
into commercial use.

Gateway
development

The IoT Device SDK is pre-
integrated into the CPU or
MPU and can call functions
to connect to the platform.

Child devices
connected to the
platform using
gateways.

4.2 Using IoT Device SDKs for Access

4.2.1 Introduction to IoT Device SDKs
You can use Huawei IoT Device SDKs to quickly connect devices to the IoT
platform. After being integrated with an IoT Device SDK, devices that support the
TCP/IP protocol stack can directly communicate with the platform. Devices that do
not support the TCP/IP protocol stack, such as Bluetooth and Zigbee devices, need
to use a gateway integrated with the IoT Device SDK to communicate with the
platform.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 139

1. Create a product on the IoTDA console or by calling the API Creating a
Product.

2. Register the device on the IoTDA console or by calling the API Registering a
Device.

3. Implement the functions demonstrated in the preceding figure, including
reporting messages/properties, receiving commands/properties/messages,
OTA upgrades, topic customization, and generic-protocol access (see Demo).

The platform provides two types of SDKs. The table below describes their
differences.

SDK Type Pre-integration Solution IoT Protocols
Supported

IoT Device
SDK

Embedded devices with strong computing
and storage capabilities, such as gateways
and collectors

MQTT

IoT Device
SDK Tiny

Devices that have strict restrictions on
power consumption, storage, and
computing resources, such as single-chip
microcomputer and modules

LwM2M over
CoAP and MQTT

The table below describes hardware requirements for devices.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 140

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/en-us/bestpractice-iothub/iot_bp_0009.html

SDK RAM
Capaci
ty

Flash
Memory

CPU
Frequenc
y

OS Type Programmi
ng
Language

IoT Device
SDK

> 4 MB > 2 MB > 200
MHZ

C (Linux), Java
(Linux/
Windows), C#
(Windows), and
Android

C, Java, C#,
and
Android

IoT Device
SDK Tiny

> 32
KB

> 128 KB > 100
MHZ

No special
requirements

C

For details on the SDK usage, visit the following links:

● IoT Device SDK (C)
● IoT Device SDK (Java)
● IoT Device SDK (C#)
● IoT Device SDK (Android)
● IoT Device SDK Tiny

4.2.2 IoT Device SDK (Java)

Preparations
● Ensure that the JDK (version 1.8 or later) and Maven have been installed.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 141

https://support.huaweicloud.com/en-us/devg-iothub/iot_02_0090.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_0089.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_0091.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_9980.html

● Download the SDK. The project contains the following subprojects:

iot-device-sdk-java: SDK code

iot-device-demo: demo code of common directly connected devices

iot-gateway-demo: demo code of gateways

iot-bridge-demo: demo code of the bridge, which demonstrates how to
bridge a TCP device to the platform

iot-device-code-generator: device code generator, which can automatically
generate device code for different product models

● Go to the SDK root directory and run the mvn install command to compile
and install the SDK.

Creating a Product

We provide a smokeDetector product model to facilitate understanding. The
smoke detector can report the smoke density, temperature, humidity, and smoke
alarms, and execute the ring alarm command. The following procedures use the
smoke detector as an example to experience functions such as message reporting
and property reporting.

Step 1 Log in to the IoTDA console to view the MQTTS device access domain name, and
save the address.

Step 2 Choose Products in the navigation pane and click Create Product in the upper
right corner.

Step 3 Set the parameters as prompted and click Create Now.

Set Basic Info

Resource
Space

The platform automatically allocates the created product to the
default resource space. If you want to allocate the product to
another resource space, select the resource space from the
drop-down list box. If a resource space does not exist, create it
first.

Product
Name

Customize the product name. The value can contain letters,
numbers, underscores (_), and hyphens (-).

Protocol Select MQTT.

Data Type Select JSON.

Manufacturer Customize the manufacturer name. The value can contain
letters, numbers, underscores (_), and hyphens (-).

Define Product Model

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 142

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0006.html

Product
Model

In this example, we import a product model, rather than using a
preset product model. For details, see Uploading a Product
Model.

Industry Select the industry to which the product model belongs.

Device Type Customize the device type.

----End

Uploading a Product Model

Step 1 Download the product model smokeDetector to obtain the product model file.

Step 2 Select the product created in 3 and click View to access its details.

Step 3 On the Model Definition tab page, click Import Local Profile to upload the
product model file obtained in 1.

----End

Registering a Device

Step 1 Choose Devices > All Devices, and click Individual Register in the upper right
corner.

Step 2 Set the parameters as prompted and click OK.

Parameter Description

Resource
Space

Ensure that the device and the product created in 3 belong to
the same resource space.

Product Select the product created in 3.

Node ID This parameter specifies the unique physical identifier of the
device. The value can be customized and consists of letters and
numbers.

Device Name Customize the device name.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 143

Parameter Description

Authenticatio
n Type

Select Secret.

Secret Customize the device secret. If this parameter is not set, the
platform automatically generates a secret.

After the device is registered, save the node ID, device ID, and secret.

----End

Initializing the Device
1. Enter the device ID and secret obtained in Registering a Device and the

device interconnection information obtained in 1 in the format of ssl://
Domain name:Port.
 IoTDevice device = new IoTDevice("ssl://iot-acc.cn-north-4.myhuaweicloud.com:8883",
 "5e06bfee334dd4f33759f5b3_demo", "mysecret");

2. Establish a connection. Call the API init of the IoT Device SDK. The thread is
blocked until a result is returned. If the connection is established, 0 is
returned.
 if (device.init() != 0) {
 return;
 }

If the connection is successful, information similar to the following is
displayed:
2019-12-26 11:02:02 INFO MqttConnection:88 - Mqtt client connected. address :ssl://iot-acc.cn-
north-4.myhuaweicloud.com:8883

3. After the device is created and connected, it can be used for communication.
You can call the API getClient of the IoT Device SDK to obtain the device
client. The client provides communication APIs for processing messages,
properties, and commands.

Reporting a Message
Message reporting is the process in which a device reports messages to the
platform.

1. Call the API getClient of the IoT Device SDK to obtain the client from the
device.

2. Call the API reportDeviceMessage to enable the client to report a device
message. In the message sample below, messages are reported periodically.
 while (true) {

 device.getClient().reportDeviceMessage(new DeviceMessage("hello"), new ActionListener() {
 @Override
 public void onSuccess(Object context) {
 }

 @Override
 public void onFailure(Object context, Throwable var2) {
 log.error("reportDeviceMessagefail: "+var2);
 }

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 144

 });

 Thread.sleep(10000);
 }

3. Replace the device parameters with the actual values in the main function of
the MessageSample class, and run this class. Then view the logs about
successful connection and message reporting.
2019-12-26 11:02:02 INFO MqttConnection:88 - Mqtt client connected. address :ssl://iot-acc.cn-
north-4.myhuaweicloud.com:8883
2019-12-26 11:02:02 INFO MqttConnection:214 - publish message topic = $oc/devices/
test_testDevice/sys/messages/up, msg = {"name":null,"id":null,"content":"hello","object_device_id":null}

4. On the IoTDA console, choose Devices > All Devices and check whether the
device is online.

5. Select the device, click View, and enable message trace on the device details
page.

6. View the messages received by the platform.

Note: Message trace may be delayed. If no data is displayed, wait for a while and
refresh the page.

Reporting Properties
Open the PropertySample class. In this example, the alarm, temperature,
humidity, and smokeConcentration properties are periodically reported to the
platform.

 // Report properties periodically.
 while (true) {

 Map<String ,Object> json = new HashMap<>();

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 145

 Random rand = new Random();

 // Set properties based on the product model.
 json.put("alarm", alarm);
 json.put("temperature", rand.nextFloat()*100.0f);
 json.put("humidity", rand.nextFloat()*100.0f);
 json.put("smokeConcentration", rand.nextFloat() * 100.0f);

 ServiceProperty serviceProperty = new ServiceProperty();
 serviceProperty.setProperties(json);
 serviceProperty.setServiceId("smokeDetector");// The serviceId must the consistent with that
defined in the product model.

 device.getClient().reportProperties(Arrays.asList(serviceProperty), new ActionListener() {
 @Override
 public void onSuccess(Object context) {
 log.info("pubMessage success");
 }

 @Override
 public void onFailure(Object context, Throwable var2) {
 log.error("reportProperties failed" + var2.toString());
 }
 });

 Thread.sleep(10000);
 }
 }

Modify the main function of the PropertySample class and run this class. Then
view the logs about successful property reporting.

The latest property values are displayed on the device details page of the
platform.

Reading and Writing Properties
Call the setPropertyListener method of the client to set the property callback API.
In PropertySample, the property reading/writing API is implemented.

Property reading: Only the alarm property can be written.

Property reading: Assemble the local property value based on the API format.

 device.getClient().setPropertyListener(new PropertyListener() {

 // Process property writing.
 @Override
 public void onPropertiesSet(String requestId, List<ServiceProperty> services) {

 // Traverse services.
 for (ServiceProperty serviceProperty: services){

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 146

 log.info("OnPropertiesSet, serviceId = " + serviceProperty.getServiceId());

 // Traverse properties.
 for (String name :serviceProperty.getProperties().keySet()){
 log.info("property name = "+ name);
 log.info("set property value = "+ serviceProperty.getProperties().get(name));
 if (name.equals("alarm")){
 // Change the local value.
 alarm = (Integer) serviceProperty.getProperties().get(name);
 }
 }

 }
 // Change the local property value.
 client.respondPropsSet(requestId, IotResult.SUCCESS);
 }

 // Process property reading.
 @Override
 public void onPropertiesGet(String requestId, String serviceId) {

 log.info("OnPropertiesGet " + serviceId);
 Map<String ,Object> json = new HashMap<>();
 Random rand = new Random();
 json.put("alarm", alarm);
 json.put("temperature", rand.nextFloat()*100.0f);
 json.put("humidity", rand.nextFloat()*100.0f);
 json.put("smokeConcentration", rand.nextFloat() * 100.0f);

 ServiceProperty serviceProperty = new ServiceProperty();
 serviceProperty.setProperties(json);
 serviceProperty.setServiceId("smokeDetector");

 client.respondPropsGet(requestId, Arrays.asList(serviceProperty));
 }
 });

Note:

1. The property reading/writing API must call the respondPropsGet and
respondPropsSet APIs to report the operation result.

2. If the device does not allow the platform to proactively read data from the
device, the onPropertiesGet API can be left not implemented.

Run the PropertySample class and check whether the value of the alarm
property is 1 on the Device Shadow tab page.

Change the value of the alarm property to 0.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 147

In the device logs, the value of alarm is 0.

Delivering a Command
You can set a command listener to receive commands delivered by the platform.
The callback API needs to process the commands and report responses.

The CommandSample class prints commands after receiving them and calls
respondCommand to report the responses.

 device.getClient().setCommandListener(new CommandListener() {
 @Override
 public void onCommand(String requestId, String serviceId, String commandName, Map<String,
Object> paras) {
 log.info("onCommand, serviceId = " +serviceId);
 log.info("onCommand , name = " + commandName);
 log.info("onCommand, paras = " + paras.toString());

 // Process the command.

 // Send a command response.
 client.respondCommand(requestId, new CommandRsp(0));
 }
 });

Run the CommandSample class and deliver a command on the platform. In the
command, set serviceId to smokeDetector, name to ringAlarm, and paras to
duration=20.

The log shows that the device receives the command and reports a response.

Object-oriented Programming
Calling device client APIs to communicate with the platform is flexible but requires
you to properly configure each API.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 148

The SDK provides a simpler method, object-oriented programming. You can use
the product model capabilities provided by the SDK to define device services and
call the property reading/writing API to access the device services. In this way, the
SDK can automatically communicate with the platform to synchronize properties
and call commands.

Object-oriented programming simplifies the complexity of device code and
enables you to focus only on services rather than the communications with the
platform. This method is much easier than calling client APIs and suitable for most
scenarios.

We use the smokeDetector example to demonstrate the process of object-oriented
programming.

1. Define the service class and properties based on the product model. (If there
are multiple services, define multiple service classes.)
public static class SmokeDetectorService extends AbstractService {

 // Define properties based on the product model. Ensure that the device name and type are the
same as those in the product model. writeable indicates whether the property can be written, and
name indicates the property name.
 @Property(name = "alarm", writeable = true)
 int smokeAlarm = 1;

 @Property(name = "smokeConcentration", writeable = false)
 float concentration = 0.0f;

 @Property(writeable = false)
 int humidity;

 @Property(writeable = false)
 float temperature;

@Property indicates a property. You can use name to specify a property
name. If no property name is specified, the field name is used.
You can add writeable to a property to control permissions on it. If the
property is read-only, add writeable = false. If writeable is not added, the
property can be read and written.

2. Define service commands. The SDK automatically calls the service commands
when the device receives commands from the platform.
The type of input parameters and return values for APIs cannot be changed.
Otherwise, a runtime error occurs.
The following code defines a ring alarm command named ringAlarm.
// Define the command. The type of input parameters and return values for APIs cannot be changed.
Otherwise, a runtime error occurs.
 @DeviceCommand(name = "ringAlarm")
 public CommandRsp alarm(Map<String, Object> paras) {
 int duration = (int) paras.get("duration");
 log.info("ringAlarm duration = " + duration);
 return new CommandRsp(0);
 }

3. Define the getter and setter APIs.
– The device automatically calls the getter method after receiving the

commands for querying and reporting properties from the platform. The
getter method reads device properties from the sensor in real time or
from the local cache.

– The device automatically calls the setter method after receiving the
commands for setting properties from the platform. The setter method

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 149

updates the local values of the device. If a property is not writable, leave
the setter method not implemented.

// Ensure that the names of the setter and getter APIs comply with the JavaBean specifications so
that the APIs can be automatically called by the SDK.
 public int getHumidity() {

 // Simulate the action of reading data from the sensor.
 humidity = new Random().nextInt(100);
 return humidity;
 }

 public void setHumidity(int humidity) {
 // You do not need to implement the humidity field, because it is read-only.
 }

 public float getTemperature() {

 // Simulate the action of reading data from the sensor.
 temperature = new Random().nextInt(100);
 return temperature;
 }

 public void setTemperature(float temperature) {
 // You do not need to implement the set API for read-only fields.
 }

 public float getConcentration() {

 // Simulate the action of reading data from the sensor.
 concentration = new Random().nextFloat()*100.0f;
 return concentration;
 }

 public void setConcentration(float concentration) {
 // You do not need to implement the set API for read-only fields.
 }

 public int getSmokeAlarm() {
 return smokeAlarm;
 }

 public void setSmokeAlarm(int smokeAlarm) {

 this.smokeAlarm = smokeAlarm;
 if (smokeAlarm == 0){
 log.info("alarm is cleared by app");
 }
 }

4. Create a service instance in the main function and add the service instance to
the device.
 // Create a device.
 IoTDevice device = new IoTDevice(serverUri, deviceId, secret);

 // Create a device service.
 SmokeDetectorService smokeDetectorService = new SmokeDetectorService();
 device.addService("smokeDetector", smokeDetectorService);

 if (device.init() != 0) {
 return;
 }

5. Enable periodic property reporting.
// Enable periodic property reporting.
smokeDetectorService.enableAutoReport(10000);

If you do not want to report properties periodically, you can call the API
firePropertiesChanged to manually report them.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 150

Run the SmokeDetector class to view the logs about property reporting.

View the device shadow on the platform.

Modify the alarm property on the platform and view the device logs about
property modification.

Deliver the ringAlarm command on the platform.
View the logs about calling the ringAlarm command and reporting a
response.

Using the Code Generator
The SDK provides a device code generator, which allows you to automatically
generate a device code framework only using a product model. The code
generator parses the product model, generates a service class for each service
defined in the model, and generates a device main class based on the service
classes. In addition, the code generator creates a device and registers a service
instance in the main function.

To use the code generator to generate device code, proceed as follows:

1. Download the huaweicloud-iot-device-sdk-java project, decompress it, go to
the huaweicloud-iot-device-sdk-java directory, and run the mvn install
command.

2. Check whether an executable JAR package is generated in the target folder of
iot-device-code-generator.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 151

3. Save the product model to a local directory. For example, save the
smokeDetector_cb097d20d77b4240adf1f33d36b3c278_smokeDetector.zip
file to disk D.

4. Go to the iot-device-code-generator\target\ directory and run the java -jar
iot-device-code-generator-0.2.0-with-deps.jar D:
\smokeDetector_cb097d20d77b4240adf1f33d36b3c278_smokeDetector.zip
command.

5. Check whether the generated-demo package is generated in the
huaweicloud-iot-device-sdk-java directory.

The device code is generated.

To compile the generated code, proceed as follows:

1. Go to the huaweicloud-iot-device-sdk-java\generated-demo directory, and
run the mvn install command to generate a JAR package in the target folder.

2. Run the java -jar target\iot-device-demo-ganerated-0.2.0-with-deps.jar
5e06bfee334dd4f33759f5b3_demo ***** command.
You need to specify the device ID and password in the command to run the
generated demo.

To modify the extended code, proceed as follows:

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 152

Service definition and registration have already been completed through the
generated code. You only need to make small changes to the code.

1. Command API: Add specific implementation logic.

2. getter method: Change the value return mode of the generated code from
returning a random value to reading from the sensor.

3. setter method: Add specific processing logic, such as delivering instructions to
the sensor, because the generated code only modifies and saves the
properties.

Developing a Gateway

Gateways are special devices that provide child device management and message
forwarding in addition to the functions of common devices. The SDK provides the
AbstractGateway class to simplify gateway implementation. This class can collect
and save child device information (with a data persistence API), forward message
responses (with a message forwarding API), and report child device list, properties,
statuses, and messages.

● AbstractGateway Class
Inherit this class to provide APIs for persistently storing device information
and forwarding messages to child devices in the constructor.
 public abstract void onSubdevCommand(String requestId, Command command);

 public abstract void onSubdevPropertiesSet(String requestId, PropsSet propsSet);

 public abstract void onSubdevPropertiesGet(String requestId, PropsGet propsGet);

 public abstract void onSubdevMessage(DeviceMessage message);

● iot-gateway-demo Code
The iot-gateway-demo project implements a simple gateway with
AbstractGateway to connect TCP devices. The key classes include:
SimpleGateway: inherited from AbstractGateway to manage child devices
and forward messages to child devices.
StringTcpServer: implements a TCP server based on Netty. In this example,
child devices support the TCP protocol, and the first message is for
authentication.
SubDevicesFilePersistence: persistently stores child device information in a
JSON file and caches the file in the memory.
Session: stores the mapping between device IDs and TCP channels.

● SimpleGateway Class
Adding or Deleting a Child Device

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 153

Adding a child device: The onAddSubDevices API of AbstractGateway can
store child device information. Additional processing is not required, and the
onAddSubDevices API does not need to be overridden for SimpleGateway.

Deleting a child device: You need to modify persistently stored information of
the child device and disconnect the device from the platform. Therefore, the
onDeleteSubDevices API is overridden to add the link release logic, and the
parent class qit onDeleteSubDevices is called.

 @Override
 public int onDeleteSubDevices(SubDevicesInfo subDevicesInfo) {

 for (DeviceInfo subdevice : subDevicesInfo.getDevices()) {
 Session session = nodeIdToSesseionMap.get(subdevice.getNodeId());
 if (session != null) {
 if (session.getChannel() != null) {
 session.getChannel().close();
 channelIdToSessionMap.remove(session.getChannel().id().asLongText());
 nodeIdToSesseionMap.remove(session.getNodeId());
 }
 }
 }
 return super.onDeleteSubDevices(subDevicesInfo);

 }

● Processing Messages to Child Devices

The gateway needs to forward messages received from the platform to child
devices. The messages from the platform include device messages, property
reading/writing, and commands.

– Device messages: Obtain the nodeId based on the deviceId, and then
obtain the session of the device to get a channel for sending messages.
You can choose whether to convert messages during forwarding.
 @Override
 public void onSubdevMessage(DeviceMessage message) {

 // Each platform API carries a deviceId, which consists of a nodeId and productId.
 //deviceId = productId_nodeId
 String nodeId = IotUtil.getNodeIdFromDeviceId(message.getDeviceId());
 if (nodeId == null) {
 return;
 }

 // Obtain the session based on the nodeId for a channel.
 Session session = nodeIdToSesseionMap.get(nodeId);
 if (session == null) {
 log.error("subdev is not connected " + nodeId);
 return;
 }
 if (session.getChannel() == null){
 log.error("channel is null " + nodeId);
 return;
 }

 // Directly forward messages to the child device.
 session.getChannel().writeAndFlush(message.getContent());
 log.info("writeAndFlush " + message);
 }

– Property Reading and Writing

Property reading and writing include property setting and query.

Property setting:

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 154

 @Override
 public void onSubdevPropertiesSet(String requestId, PropsSet propsSet) {

 if (propsSet.getDeviceId() == null) {
 return;
 }

 String nodeId = IotUtil.getNodeIdFromDeviceId(propsSet.getDeviceId());
 if (nodeId == null) {
 return;
 }

 Session session = nodeIdToSesseionMap.get(nodeId);
 if (session == null) {
 return;
 }

 // Convert the object into a string and send the string to the child device. Encoding/
Decoding may be required in actual situations.
 session.getChannel().writeAndFlush(JsonUtil.convertObject2String(propsSet));

 // Directly send a response. A more reasonable method is to send a response after the
child device processes the request.
 getClient().respondPropsSet(requestId, IotResult.SUCCESS);

 log.info("writeAndFlush " + propsSet);

 }

Property query:
 @Override
 public void onSubdevPropertiesGet(String requestId, PropsGet propsGet) {

 // Send a failure response. It is not recommended that the platform directly reads the
property of the child device.
 log.error("not supporte onSubdevPropertiesGet");
 deviceClient.respondPropsSet(requestId, IotResult.FAIL);
 }

– Commands: The procedure is similar to that of message processing.
Different types of encoding/decoding may be required in actual
situations.
@Override
 public void onSubdevCommand(String requestId, Command command) {

 if (command.getDeviceId() == null) {
 return;
 }

 String nodeId = IotUtil.getNodeIdFromDeviceId(command.getDeviceId());
 if (nodeId == null) {
 return;
 }

 Session session = nodeIdToSesseionMap.get(nodeId);
 if (session == null) {
 return;
 }

 // Convert the command object into a string and send the string to the child device.
Encoding/Decoding may be required in actual situations.
 session.getChannel().writeAndFlush(JsonUtil.convertObject2String(command));

 // Directly send a response. A more reasonable method is to send a response after the
child device processes the request.
 getClient().respondCommand(requestId, new CommandRsp(0));
 log.info("writeAndFlush " + command);
 }

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 155

● Upstream Message Processing
Upstream message processing is implemented by the channelRead0 API of
StringTcpServer. If no session exists, create a session.
If the child device information does not exist, the session cannot be created
and the connection is rejected.
 @Override
 protected void channelRead0(ChannelHandlerContext ctx, String s) throws Exception {
 Channel incoming = ctx.channel();
 log.info("channelRead0" + incoming.remoteAddress() + " msg :" + s);

 // Create a session for the first message.
// Create a session for the first message.
 Session session = simpleGateway.getSessionByChannel(incoming.id().asLongText());
 if (session == null) {
 String nodeId = s;
 session = simpleGateway.createSession(nodeId, incoming);

 // The session fails to create and the connection is rejected.
 if (session == null) {
 log.info("close channel");
 ctx.close();
 }
 }

If the session exists, the message is forwarded.
else {
 // Call reportSubDeviceProperties to report properties of the child device.
 DeviceMessage deviceMessage = new DeviceMessage(s);
 deviceMessage.setDeviceId(session.getDeviceId());
 simpleGateway.reportSubDeviceMessage(deviceMessage, null);

 }

For more information about the gateway, view the source code. The demo is
open-source and can be extended as required. For example, you can modify
the persistence mode, add message format conversion during forwarding, and
support other device access protocols.

● Using iot-gateway-demo

a. Register a gateway with the platform.
b. Modify the main function of StringTcpServer by replacing the

constructor parameters, and run this class.
 simpleGateway = new SimpleGateway(new SubDevicesFilePersistence(),
 "ssl://iot-acc.cn-north-4.myhuaweicloud.com:8883",
 "5e06bfee334dd4f33759f5b3_demo", "mysecret");

c. After the gateway is displayed as Online on the platform, add a child
device.

A log similar to the following is displayed on the gateway:

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 156

2020-02-11 09:42:17 INFO SubDevicesFilePersistence:75 - add subdev: ffff
d. Run the TcpDevice class. After the connection is established, enter the

nodeId of the child device.

e. Check whether the child device is online on the platform.

f. Enable the child device to report messages.

Logs similar to the following show that messages are reported.

g. View the messages traced.
Click Message Trace on the gateway details page. Send data from the
child device to the platform, and view the messages after a while.

4.2.3 IoT Device SDK (C)
The IoT Device SDK (C) provides abundant demo code for devices to communicate
with the platform and implement device, gateway, and Over-The-Air (OTA)
services. For details on the integration guide, see IoT Device SDK (C)
Development Guide.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 157

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c

4.2.4 IoT Device SDK (C#)
The IoT Device SDK (C#) provides abundant demo code for devices to
communicate with the platform and implement advanced services such as device,
gateway, and Over-The-Air (OTA) services. For details about the integration guide,
see IoT Device SDK (C#) Development Guide.

4.2.5 IoT Device SDK (Android)
The IoT Device SDK (Android) provides abundant demo code for devices to
communicate with the platform and implement advanced services such as device,
gateway, and Over-The-Air (OTA) services. For details on the integration guide, see
IoT Device SDK (Android) Development Guide.

4.2.6 IoT Device SDK Tiny (C)
The IoT Device SDK Tiny is lightweight interconnection middleware suitable for
devices that have WAN capabilities, low power consumption, and limited storage
and computing resources. You only need to call APIs to enable these devices to
access the platform, report data, and receive commands. For details, see Huawei
LiteOS SDK Development Guide.

NO TE

The IoT Device SDK Tiny can run on devices that do not run Linux OS, and can also be
integrated into modules. However, it does not provide gateway services.

4.3 Using MQTT Demos for Access

4.3.1 MQTT

Introduction
Message Queuing Telemetry Transport (MQTT) is a publish/subscribe messaging
protocol that transports messages between clients and a server. It is suitable for
remote sensors and control devices (such as smart street lamps) that have limited
computing capabilities and work in low-bandwidth, unreliable networks through
persistent connections. To learn more about the MQTT syntax and interfaces, click
here.

MQTTS is a variant of MQTT that uses TLS encryption. MQTTS devices
communicate with the platform using encrypted data transmission.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 158

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-csharp
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/LiteOS/LiteOS_Lab/blob/iot_link/README.md
https://github.com/LiteOS/LiteOS_Lab/blob/iot_link/README.md
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/

Service Flow
MQTT devices communicate with the platform without data encryption. For
security purposes, MQTTS access is recommended.

You are advised to use the IoT Device SDK to connect devices to the platform
over MQTTS.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 159

1. Create a product by using the IoTDA console or calling the API Creating a
Product.

2. Register a device by using the IoTDA console or calling the API Creating a
Device.

3. The registered device can report messages and properties, receive commands,
properties, and messages, perform OTA upgrades, and report data using
custom topics. For details about preset topics of the platform, see Topic
Definition.

NO TE

You can use MQTT.fx to debug access using the native MQTT protocol. For details, see
Connecting MQTT Devices.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 160

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/en-us/qs-iothub/iot_05_0006.html

Constraints
Item Constraint

Supported MQTT version 3.1.1

Differences from the standard
MQTT protocol

● QoS 0 and QoS 1 are supported.
● Custom topics are supported.
● QoS 2 is not supported.
● will and retain msg are not

supported.

Security level supported by MQTTS TCP channel + TLS (TLS v1, TLS v1.1, and
TLS v1.2)

Maximum number of MQTT
connection requests allowed for an
account per second

No limit

Maximum number of MQTT
connections allowed for a device
per minute

1

Maximum throughput of an MQTT
connection per second, including
directly connected devices and
gateways

3 KB/s

Maximum length of a message
reported by an MQTT device (A
message with the length greater
than this value is rejected.)

1 MB

Recommended heartbeat interval
for MQTT connections

Range: 30s to 1200s; recommended: 120s

Topic customization Not supported

Message publishing and
subscription

A device can only publish and subscribe
to messages of its own topics.

Maximum number of subscriptions
per subscription request

No limit

Communication Between MQTT Devices and the Platform
The platform communicates with MQTT devices through topics, and they
exchange messages, properties, and commands using preset topics. You can also
create custom topics for connected devices to meet specific requirements.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 161

Data
Type

Message
Type

Description

Upstr
eam
data

Reporting
device
properties

Devices report property data in the format defined in the
product model.

Reporting
device
messages

If a device cannot report data in the format defined in
the product model, the device can report data to the
platform using the device message reporting API. The
platform forwards the messages reported by devices to
an application or other HUAWEI CLOUD services for
storage and processing.

Batch
reporting
device
properties

A gateway reports property data of multiple devices to
the platform.

Reporting
device
events

Devices report event data in the format defined in the
product model.

Down
strea
m
data

Delivering
platform
messages

The platform delivers data in a custom format to devices.

Setting
device
properties

A product model defines the properties that the platform
can configure for devices. The platform or application
can modify the properties of a specific device.

Querying
device
properties

The platform or application can query real-time property
data of a specific device.

Delivering
platform
commands

The platform or application delivers commands in the
format defined in the product model to devices.

Delivering
platform
events

The platform or application delivers events in the format
defined in the product model to devices.

Preset Topics

The following table lists the preset topics of the platform.

Category Function Topic Publ
isher

Subsc
riber

Device
message

Reporting
a Device
Message

$oc/devices/{device_id}/sys/
messages/up

Devi
ce

Platfo
rm

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 162

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3016.html

Category Function Topic Publ
isher

Subsc
riber

related
topics

Delivering
a Device
Message

$oc/devices/{device_id}/sys/
messages/down

Platf
orm

Devic
e

Device
command
related
topics

Delivering
a Device
Command

$oc/devices/{device_id}/sys/
commands/request_id={request_id}

Platf
orm

Devic
e

Returning
a
Command
Response

$oc/devices/{device_id}/sys/
commands/response/
request_id={request_id}

Devi
ce

Platfo
rm

Device
property
related
topics

Reporting
Device
Property
Data

$oc/devices/{device_id}/sys/
properties/report

Devi
ce

Platfo
rm

Reporting
Property
Data by a
Gateway

$oc/devices/{device_id}/sys/
gateway/sub_devices/properties/
report

Devi
ce

Platfo
rm

Setting
Device
Properties

$oc/devices/{device_id}/sys/
properties/set/
request_id={request_id}

Platf
orm

Devic
e

Returning
a Response
to Property
Settings

$oc/devices/{device_id}/sys/
properties/set/response/
request_id={request_id}

Devi
ce

Platfo
rm

Querying
Device
Properties

$oc/devices/{device_id}/sys/
properties/get/
request_id={request_id}

Platf
orm

Devic
e

Returning
a Response
to a
Property
Query (The
response
will not
affect
device
properties
or
shadows.)

$oc/devices/{device_id}/sys/
properties/get/response/
request_id={request_id}

Devi
ce

Platfo
rm

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 163

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3017.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3017.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3017.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3011.html

Category Function Topic Publ
isher

Subsc
riber

Obtaining
Device
Shadow
Data from
the
Platform

$oc/devices/{device_id}/sys/
shadow/get/request_id={request_id}

Devi
ce

Platfo
rm

Returning
a Response
to a
Request for
Obtaining
Device
Shadow
Data

$oc/devices/{device_id}/sys/
shadow/get/response/
request_id={request_id}

Platf
orm

Devic
e

Device
event
related
topics

Reporting
a Device
Event

$oc/devices/{device_id}/sys/
events/up

Devi
ce

Platfo
rm

Delivering
an Event

$oc/devices/{device_id}/sys/events/
down

Platf
orm

Devic
e

You can create custom topics on the console to report personalized data. For
details, see Custom Topics.

TLS Support for MQTT
TLS is recommended for secure transmission between devices and the platform.
Currently, TLS V1.0, V1.1, and V1.2 are supported. TLS V1.0 and V1.1 will soon be
deprecated. Therefore, TLS V1.2 is recommended. The platform only supports the
following cipher suites for TLS connections:

● TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
● TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
● TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
● TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
● TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
● TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
● TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
● TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

4.3.2 MQTT.fx
This section uses MQTT.fx as an example to describe how to connect devices to
the platform using the native MQTT protocol. MQTT.fx is a widely used MQTT
client that makes it easy to verify whether devices can interact with the platform
to publish or subscribe to messages.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 164

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3012.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3029.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3029.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3029.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3028.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3028.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_02_9992.html

Prerequisites
● You have registered a HUAWEI CLOUD account.
● You have completed real-name authentication on HUAWEI CLOUD.
● You have subscribed to the IoTDA service.

Obtaining Device Access Information

Perform the following procedure to obtain device access information on the IoTDA
console:

Step 1 Log in to the IoTDA console.

Step 2 Click Overview in the navigation pane, view the device access information, and
record the domain names and ports.

NO TE

For devices that cannot be connected to the platform using a domain name, run the ping
Domain name command in the CLI to obtain the corresponding IP address. Then you can
connect the devices to the platform using the IP address. The IP address is variable and
needs to be set using a configuration item.

----End

Creating a Product and Registering a Device

Step 1 (Optional) Create a product that uses MQTT. If an MQTT product already exists,
skip this step.

1. Choose Products in the navigation pane and click Create Product in the
upper right corner.

2. Set the parameters as prompted and click Create.

Set Basic Info

Resource
Space

The platform automatically allocates the created product to
the default resource space. If you want to allocate the
product to another resource space, select the resource space
from the drop-down list. If a resource space does not exist,
create it first.

Product
Name

Customize the product name. The value can contain letters,
numbers, underscores (_), and hyphens (-).

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 165

https://reg.huaweicloud.com/registerui/public/custom/register.html?locale=en-us#/register
https://account.huaweicloud.com/usercenter/?locale=en-us#/accountindex/realNameAuth
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0006.html

Protocol Select MQTT.

Data Type Select JSON.

Manufactur
er

Customize the manufacturer name. The value can contain
letters, numbers, underscores (_), and hyphens (-).

Define Product Model

Product
Model

You are advised to use a product model preset on the
platform to experience device access.
This section uses WaterMeter as an example. You can also
select other product models.

Industry Select the industry to which the product model belongs.

Device Type If a product model preset on the platform is used, the device
type is automatically matched and does not need to be
manually specified.

Step 2 Register a device.

1. Choose Devices > All Devices, and click Individual Register in the upper
right corner.

2. Set the parameters as prompted and click OK.

Parameter Description

Resource
Space

Ensure that the device and the product created in 1 belong
to the same resource space.

Product Select the product created in 1.

Node ID This parameter specifies the unique physical identifier of the
device. The value can be customized and consists of letters
and numbers.

Device Name Customize the device name.

Authenticatio
n Type

Select Secret.

Secret Customize the secret used for device access. If the secret is
left blank, the platform automatically generates one.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 166

After the device is registered, the platform automatically generates a device
ID and secret. Save the device ID and secret for device access.

----End

Performing Connection Authentication
You can use the MQTT.fx tool to connect devices to the platform by referring to
Device Connection Authentication in the API Reference.

Step 1 Visit the MQTT.fx website and download and install the latest version of MQTT.fx.

Step 2 Go to the IoTDA client ID generator page, enter the device ID and secret
generated after registering a device to generate connection information
(including ClientId, Username, and Password).

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 167

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3009.html
http://mqttfx.jensd.de/index.php/download
https://iot-tool.obs-website.cn-north-4.myhuaweicloud.com/

Para
met
er

Man
dator
y

Type Description

Clien
tId

Yes String(
256)

The value of this parameter consists of a device ID,
device type, password signature type, and timestamp,
which are separated by underscores (_).
● Device ID: A device ID uniquely identifies a device

and is generated when the device is registered with
the platform. The value usually consists of a device's
product ID and node ID which are separated by an
underscore (_).

● Device type: The value is fixed at 0, indicating a
device ID.

● Password signature type: The length is 1 byte, and
the value can be 0 or 1.
– 0 indicates that the timestamp is not verified

using the HMAC-SHA256 algorithm.
– 1 indicates that the timestamp is verified using

the HMAC-SHA256 algorithm.
● Timestamp: The UTC time when the device

connects to the platform. The format is
"YYYYMMDDHH". For example, if the UTC time is
2018/7/24 17:56:20, the timestamp is 2018072417.

User
nam
e

Yes String(
256)

Device ID.

Pass
word

Yes String(
256)

Device secret encrypted using the HMAC-SHA256
algorithm based on the timestamp.
The device secret is returned by the platform upon
successful device registration.

Each device performs authentication using the MQTT CONNECT message, which
must contain all information of the clientId. After receiving a CONNECT message,

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 168

the platform checks the authentication type and password digest algorithm of the
device.

The generated client ID is in the format "Device ID_0_0_Timestamp". By default,
the timestamp is not verified.

● If the timestamp is verified using the HMAC-SHA256 algorithm, the platform
checks whether the message timestamp is consistent with the platform time
and then checks whether the password is correct.

● If the timestamp is not verified using the HMAC-SHA256 algorithm, the
timestamp must also be contained in the CONNECT message, but the
platform does not check whether the time is correct. In this case, only the
password is checked.

If the authentication fails, the platform returns an error message and
automatically disconnects the MQTT connections.

Step 3 Open the MQTT.fx tool and click the setting icon.

Step 4 Configure authentication parameters and click Apply.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 169

Parameter Description

Broker Address Enter the device connection address (domain name)
obtained from the IoTDA console. If the device cannot
be connected using a domain name, enter the IP
address obtained in 2.

Broker Port The default value is 1883.

Client ID Device ClientId obtained in 2.

User Name DeviceId obtained in 2.

Password Encrypted device secret obtained in 2.

If you choose secure access, set Broker Port to 8883, download the certificate,
and load the Java certificate in .pem format.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 170

https://developer.obs.cn-north-4.myhuaweicloud.com:443/cert/v2/certificate.zip

Step 5 Click Connect. If the device authentication is successful, the device is displayed
online on the platform.

----End

Reporting Data
You can use the MQTT.fx tool to report data to the platform by referring to
Reporting Device Properties in the API Reference.

If the device reports data through the MQTT channel, the data needs to be sent to
a specific topic in the format $oc/devices/{device_id}/sys/properties/report. For
devices that each has a different secret, specify device_id as the device ID
returned upon successful device registration.

Step 1 Enter the API address in the format of "$oc/devices/{device_id}/sys/properties/
report", for example, $oc/devices/5e4e2e92ac-164aefa8fouquan1/sys/
properties/report.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 171

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html

Step 2 Enter the data to report.

Request parameters

Field Manda
tory

Type Description

services Yes List<ServicePro
perty>

Service data list. (For details, see the
ServiceProperty structure in the
following table.)

ServiceProperty structure

Field Manda
tory

Type Description

service_id Yes String Service ID.

propertie
s

Yes Object Service properties, which are defined in
the product model associated with the
device.

eventTim
e

No String Indicates the UTC time when the device
collects data. The format is
yyyyMMddTHHmmssZ, for example,
20161219T114920Z.
If this parameter is not carried in the
reported data or is in incorrect format, the
time when the platform receives the data
is used.

Example request

{
 "services": [{
 "service_id": "Connectivity",
 "properties": {
 "dailyActivityTime": 57

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 172

 },
 "event_time": "20151212T121212Z"
 },
 {
 "service_id": "Battery",
 "properties": {
 "batteryLevel": 80
 },
 "event_time": "20151212T121212Z"
 }
]
}

Step 3 Click Publish. Then you can check whether the device successfully reports data on
the platform.

----End

Advanced Experience

After using MQTT.fx to connect a simulated MQTT device to the platform, you
may understand how the MQTT device interacts with the platform through open
APIs over MQTTS.

To better experience the IoTDA service, develop real-world applications and
devices and connect them to the platform. For details, see IoTDA Developer
Guide.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 173

https://support.huaweicloud.com/en-us/devg-iothub/iot_02_9994.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_9994.html

4.3.3 Java Demo

Introduction
This section uses Java as an example to describe how to connect devices to the
platform over MQTTS/MQTT and how to report data and deliver commands
using platform APIs. For details about device access in other languages, see
Obtaining Resources.

Prerequisites
● You have installed IntelliJ IDEA by following the instructions provided in

Installing IntelliJ IDEA.
● You have obtained the device access address from the IoTDA console. For

details, see Platform Connection Information.
● You have created a product and device on the IoTDA console. For details, see

Creating a Product, Registering an Individual Device, or Registering a
Batch of Devices.

Preparations
Installing IntelliJ IDEA

1. Go to the IntelliJ IDEA website to download and install a desired version.
The following uses 64-bit IntelliJ IDEA 2019.2.3 Ultimate as an example.

2. After the download is complete, run the installation file and install IntelliJ
IDEA as prompted.

Importing Sample Code

Step 1 Download the Java demo.

Step 2 Open the IDEA developer tool and click Import Project.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 174

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3002.html
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0054.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0032.html
https://www.jetbrains.com/idea/
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(java).zip

Step 3 Select the downloaded Java demo and click Next.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 175

Step 4 Import the sample code.

----End

Establishing a Connection
Before you connect a device or gateway to the platform, establish a connection
between the device or gateway and the platform by providing the device or
gateway information.

1. Before establishing a connection, modify the following parameters:
// MQTT interconnection address of the platform
static String serverIp = "iot-mqtts.cn-north-4.myhuaweicloud.com";
// Device ID and secret obtained during device registration (Replace them with the actual values.)
static String deviceId = "722cb****************";
static String secret = "123456789";

– serverIp indicates the device interconnection address of the platform. To
obtain this address, see Platform Interconnection Information. (After
obtaining the domain name, run the ping Domain name command in the
CLI to obtain the corresponding IP address.)

– deviceId and secret indicate the device ID and secret, which can be
obtained after the device is registered.

2. Use MqttClient to set up a connection. The recommended heartbeat interval
for MQTT connections is 120 seconds. For details, see Constraints.
MqttConnectOptions options = new MqttConnectOptions();
options.setCleanSession(false);
options.setKeepAliveInterval(120); // Set the heartbeat interval from 30 to 1200 seconds.
options.setConnectionTimeout(5000);
options.setAutomaticReconnect(true);
options.setUserName(deviceId);
options.setPassword(getPassword().toCharArray());
client = new MqttAsyncClient(url, getClientId());
client.setCallback(callback);

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 176

https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html

Port 1883 is a non-encrypted MQTT access port, and port 8883 is an
encrypted MQTTS access port (that uses SSL to load a certificate).
if (isSSL) {
 url = "ssl://" + serverIp + ":" + 8883; // MQTTS connection
} else {
 url = "tcp://" + serverIp + ":" + 1883; // MQTT connection
}

To establish an MQTTS connection, load the SSL certificate of the server and
add the SocketFactory parameter. The DigiCertGlobalRootCA.jks file stored
in the resources directory of the demo is a certificate for verifying the
platform identity. It is used for login authentication when the device connects
to the platform. You can download the certificate file using the link provided
in Certificates.
options.setSocketFactory(getOptionSocketFactory(MqttDemo.class.getClassLoader().getResource("Digi
CertGlobalRootCA.jks").getPath()));

3. Call client.connect(options, null, new IMqttActionListener()) to initiate a
connection. The MqttConnectOptions object is passed.
client.connect(options, null, new IMqttActionListener()

4. The password passed by calling options.setPassword() is encrypted during
creation of the MqttConnectOptions object. getPassword() is used to obtain
the encrypted password.
public static String getPassword() {
 return sha256_mac(secret, getTimeStamp());
}
/* Call the SHA256 algorithm for hash calculation. */
public static String sha256_mac(String message, String tStamp) {
 String passWord = null;
 try {
 Mac sha256_HMAC = Mac.getInstance("HmacSHA256");
 SecretKeySpec secret_key = new SecretKeySpec(tStamp.getBytes(), "HmacSHA256");
 sha256_HMAC.init(secret_key);byte[] bytes = sha256_HMAC.doFinal(message.getBytes());
 passWord = byteArrayToHexString(bytes);
 }catch (Exception e) {
 LOGGER.info("Error HmacSHA256 ===========" + e.getMessage());
 }
 return passWord;

5. After the connection is established, the device becomes online.

If the connection fails, the onFailure function executes backoff
reconnection. The example code is as follows:
@Override
public void onFailure(IMqttToken iMqttToken, Throwable throwable) {
 System.out.println("Mqtt connect fail.");

 // Backoff reconnection
 int lowBound = (int) (defaultBackoff * 0.8);
 int highBound = (int) (defaultBackoff * 1.2);
 long randomBackOff = random.nextInt(highBound - lowBound);
 long backOffWithJitter = (int) (Math.pow(2.0, (double) retryTimes)) * (randomBackOff +
lowBound);
 long waitTImeUntilNextRetry = (int) (minBackoff + backOffWithJitter) > maxBackoff ?
maxBackoff : (minBackoff + backOffWithJitter);
 System.out.println("---- " + waitTImeUntilNextRetry);
 try {
 Thread.sleep(waitTImeUntilNextRetry);
 } catch (InterruptedException e) {
 System.out.println("sleep failed, the reason is" + e.getMessage().toString());

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 177

 }
 retryTimes++;
 MqttDemo.this.connect(true);
}

Subscribing to a Topic for Receiving Commands
Only devices that subscribe to a specific topic can receive messages about the
topic released by the MQTT broker. Learn about preset topics of the platform in
Topic Definition. For details about the API information, see Delivering a
Command.

// Subscribe to a topic for receiving commands.
client.subscribe(getCmdRequestTopic(), qosLevel, null, new IMqttActionListener();

getCmdRequestTopic() is used to obtain the topic for receiving commands from
the platform and subscribe to the topic.
public static String getCmdRequestTopic() {
 return "$oc/devices/" + deviceId + "/sys/commands/#";
}

Reporting Properties
Devices can report their properties to the platform. For details, see Reporting
Device Properties.

// ReportJSON data. service_id must be the same as that defined in the product model.
String jsonMsg = "{\"services\": [{\"service_id\": \"Temperature\",\"properties\": {\"value\": 57}},{\"service_id
\": \"Battery\",\"properties\": {\"level\": 80}}]}";
MqttMessage message = new MqttMessage(jsonMsg.getBytes());
client.publish(getRreportTopic(), message, qosLevel, new IMqttActionListener();

The message body jsonMsg is assembled in JSON format, and service_id must be
the same as that defined in the product model. properties indicates a device
property, and 57 indicates the property value. event_time indicates the UTC time
when the device collects data. If this parameter is not specified, the system time is
used by default.

After a device or gateway is connected to the platform, you can call
MqttClient.publish(String topic,MqttMessage message) to report device
properties to the platform.

getRreportTopic() is used to obtain the topic for reporting data.
public static String getRreportTopic() {
 return "$oc/devices/" + deviceId + "/sys/properties/report";
}

Viewing Reported Data
After the main method is called, you can view the reported device property data
on the device details page. For details about the API information, see Reporting
Device Properties.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 178

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html

NO TE

If no latest data is displayed on the device details page, modify the services and properties
in the product model to ensure that the reported services and properties are the same as
those defined in the product model. Alternatively, go to the Products > Model Definition
page and delete all services.

Related Resources
You can refer to the MQTT API Reference to connect MQTT devices to the
platform. You can also use MQTT.fx to experience device access and verify
whether devices can interact with the platform and publish or subscribe to
messages.

4.3.4 Python Demo

Introduction
This section uses Python as an example to describe how to connect devices to the
platform over MQTTS/MQTT and how to report data and deliver commands
using platform APIs. For details about device access in other languages, see
Obtaining Resources.

Prerequisites
● You have installed Python by following the instructions provided in Installing

Python.
● You have installed a development tool (for example, PyCharm) by following

the instructions provided in Installing PyCharm.
● You have obtained the device access address from the IoTDA console. For

details, see Platform Connection Information.
● You have created a product and device on the IoTDA console. For details, see

Creating a Product, Registering an Individual Device, or Registering a
Batch of Devices.

Preparations
● Installing Python

a. Go to the Python website to download and install a desired version.
(This procedure uses Windows OS as an example to describe how to
install Python 3.8.2.)

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 179

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3002.html
https://support.huaweicloud.com/en-us/qs-iothub/iot_05_0006.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3002.html
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0054.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0032.html
https://www.python.org/downloads/windows/

b. After the download is complete, run the .exe file to install Python.
c. Select Add python 3.8 to PATH (if it is not selected, you need to

manually configure environment variables), click Customize installation,
and install Python as prompted.

d. Check whether Python is installed.
Press Win+r, enter cmd, and press Enter to open the CLI. In the CLI,
enter python –V and press Enter. If the Python version is displayed, the
installation is successful.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 180

● Installing PyCharm (If you have already installed PyCharm, skip this step.)

a. Visit the PyCharm website, select a version, and click Download.

The professional edition is recommended.
b. Run the .exe file and install PyCharm as prompted.

Importing Sample Code

Step 1 Download the QuickStart (Python).

Step 2 Run PyCharm, click Open, and select the sample code downloaded.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 181

https://www.jetbrains.com/pycharm/download/#section=windows
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(python).zip

Step 3 Import the sample code.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 182

Description of the directories:

● IoT_device_demo: MQTT demo files

message_sample.py: Demo for devices to send and receive messages

command_sample.py: Demo for devices to respond to commands delivered by
the platform

properties_sample.py: Demo for reporting properties

● IoT_device/client: Used for paho-mqtt encapsulation

IoT_client_config.py: Client configurations, such as the device ID and secret.

IoT_client.py: MQTT-related function configurations, such as connection,
subscription, release, and response.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 183

● IoT_device/Utils: Tool methods, such as obtaining the timestamp and
encrypting a secret

● IoT_device/resources: Stores certificates.
● IoT_device/request: Encapsulates device properties, such as commands,

messages, and properties.

Step 4 (Optional) Install the paho-mqtt library, which is a third-party library that uses the
MQTT protocol in Python. If the paho-mqtt library has already been installed, skip
this step. You can install paho-mqtt using either of the following methods:
● Method 1: Use the pip tool to install paho-mqtt in the CLI. (The tool is already

provided when installing Python.)
In the CLI, enter pip install paho-mqtt and press Enter. If the message
Successfully installed paho-mqtt is displayed, the installation is successful. If
a message is displayed indicating that the pip command is not an internal or
external command, check the Python environment variables. See the figure
below.

● Method 2: Install paho-mqtt using PyCharm.

a. Open PyCharm, choose File > Setting > Project Interpreter, and click the
plus icon (+) on the right side to search for paho-mqtt.

b. Click Install Package in the lower left corner.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 184

----End

Establishing a Connection

Before you connect a device or gateway to the platform, establish a connection
between the device or gateway and the platform by providing the device or
gateway information.

1. Before establishing a connection, modify the following parameters. The
IoTClientConfig class is used to configure client information.
Client configurations
client_cfg = IoTClientConfig(server_ip='iot-mqtts.cn-north-4.myhuaweicloud.com',
device_id='5e85a55f60b7b804c51ce15c_py123', secret='123456789', is_ssl=True)
Create a device.
iot_client = IotClient(client_cfg)

– server_ip: Indicates the device interconnection address of the platform.
To obtain this address, see Platform Interconnection Information. (After
obtaining the domain name, run the ping Domain name command in the
CLI to obtain the corresponding IP address.)

– device_id and secret: Obtain the values after the device is registered.
– is_ssl: True means to establish an MQTTS connection and False means to

establish an MQTT connection.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 185

https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html

2. Call the connect method to initiate a connection.
iot_client.connect()

If the connection is successful, the following information is displayed:
 -----------------Connection successful !!!

If the connection fails, the retreat_reconnection function executes backoff
reconnection. The example code is as follows:
Backoff reconnection
def retreat_reconnection(self):
 print("---- Backoff reconnection")
 global retryTimes
 minBackoff = 1
 maxBackoff = 30
 defaultBackoff = 1
 low_bound = (int)(defaultBackoff * 0.8)
 high_bound = (int)(defaultBackoff * 1.2)
 random_backoff = random.randint(0, high_bound - low_bound)
 backoff_with_jitter = math.pow(2.0, retryTimes) * (random_backoff + low_bound)
 wait_time_until_next_retry = min(minBackoff + backoff_with_jitter, maxBackoff)
 print("the next retry time is ", wait_time_until_next_retry, " seconds")
 retryTimes += 1
 time.sleep(wait_time_until_next_retry)
 self.connect()

Subscribing to a Topic
Only devices that subscribe to a specific topic can receive messages about the
topic released by the MQTT broker. Learn about preset topics of the platform in
Topic Definition.

The message_sample.py file provides functions such as subscribing to topics,
unsubscribing from topics, and reporting device messages.

To subscribe to a topic for receiving commands, do as follows:

 iot_client.subscribe(r'$oc/devices/' + str(self.__device_id) + r'/sys/commands/#')

If the subscription is successful, information similar to the following is displayed.
(topic indicates a custom topic, for example, topic_1.)

 ------You have subscribed: topic

Responding to Command Delivery
The command_sample.py file provides the function of responding to commands
delivered by the platform. For details about the API information, see Delivering a
Command.

Responding to commands delivered by the platform
def command_callback(request_id, command):
 # If the value of result_code is 0, the command is delivered . If the value is 1, the command fails to be
delivered.
 iot_client.respond_command(request_id, result_code=0)
iot_client.set_command_callback(command_callback)

Reporting Properties
Devices can report their properties to the platform. For details, see Reporting
Device Properties.

The properties_sample.py file provides the functions of reporting device
properties, responding to platform settings, and querying device properties.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 186

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html

In the following code, the device reports properties to the platform every 10
seconds. service_property indicates a device property object. For details, see the
services_propertis.py file.

Reporting properties periodically
while True:
 # Set properties based on the product model.
 service_property = ServicesProperties()
 service_property.add_service_property(service_id="Battery", property='batteryLevel', value=1)
 iot_client.report_properties(service_properties=service_property.service_property, qos=1)
 time.sleep(10)

If the reporting is successful, the reported device properties are displayed on the
device details page.

NO TE

If no latest data is displayed on the device details page, modify the services and properties
in the product model to ensure that the reported services and properties are the same as
those defined in the product model. Alternatively, go to the Products > Model Definition
page and delete all services.

Reporting Messages
Message reporting refers to the process in which a device reports messages to the
platform. The message_sample.py file provides the message reporting function.

Sending a message to the platform using the default topic
iot_client.publish_message('raw message: Hello Huawei cloud IoT')

If the message is reported, the following information is displayed:

 Publish success---mid = 1

4.3.5 Android Demo

Overview
This section uses Android as an example to describe how to connect a device to
the IoT platform over MQTTS or MQTT and how to use platform APIs to report
data and deliver commands. For details on other programming languages, see
Device Development Resources.

Prerequisites
● You have installed Android Studio. If not, install Android Studio by following

the instructions provided on the Android website and then install the JDK.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 187

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3002.html
https://developer.android.google.cn/studio/#downloads

● You have obtained the device access addresses from the IoTDA console. For
details, see Platform Connection Information.

● You have created a product and device on the IoTDA console. For details, see
Creating a Product, Registering an Individual Device, or Registering a
Batch of Devices.

Preparations
● Install Android Studio.

Go to the Android website to download and install a desired version. The
following uses Android Studio 3.5 running on 64-bit Windows 10 as an
example.

● Install the JDK. You can also use the built-in JDK of the IDE.

a. Go to the Oracle website to download a desired version. The following
uses JDK 8 for Windows x64 as an example.

b. After the download is complete, run the installation file and install the
JDK as prompted.

Importing Sample Code

Step 1 Download the sample code quickStart(Android).

Step 2 Run Android Studio, click Open, and select the sample code downloaded.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 188

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0054.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0032.html
https://developer.android.google.cn/studio/#downloads
https://www.oracle.com/java/technologies/javase-downloads.html
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/mqttdemo(android).zip

Step 3 Import the sample code.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 189

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 190

Description of the directories:

● manifests: configuration file of the Android project
● java: Java code of the project

MainActivity: demo UI class
ConnectUtils: MQTT connection auxiliary class

● asset: native file of the project
DigiCertGlobalRootCA.bks: certificate used by the device to verify the
platform identity. It is used for login authentication when the device connects
to the platform.

● res: project resource file (image, layout, and character string)
● gradle: global Gradle build script of the project
● libs: third-party JAR packages used in the project

org.eclipse.paho.android.service-1.1.0.jar: component for Android to start
the background service component to publish and subscribe to messages
org.eclipse.paho.client.mqttv3-1.2.0.jar: MQTT java client component

Step 4 (Optional) Understand the key project configurations in the demo. (By default,
you do not need to modify the configurations.)
● AndroidManifest.xml: Add the following information to support the MQTT

service.
<service android:name="org.eclipse.paho.android.service.MqttService" />

● build.gradle: Add dependencies and import the JAR packages required for the
two MQTT connections in the libs directory. (You can also add the JAR
package to the website for reference.)

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 191

implementation files('libs/org.eclipse.paho.android.service-1.1.0.jar')
implementation files('libs/org.eclipse.paho.client.mqttv3-1.2.0.jar')

----End

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 192

UI Display

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 193

1. The MainActivity class provides UI display. Enter the device ID and secret,
which are obtained after the device is registered on the IoTDA console or by
calling the API Creating a Device.

2. In the example, enter the domain name for device access. (The domain name
must match and be used together with the corresponding certificate file
during SSL-encrypted access.)
private final static String IOT_PLATFORM_URL = "iot-mqtts.cn-north-4.myhuaweicloud.com";

3. Select SSL encryption or no encryption when establishing a connection on the
device side and set the QoS mode to 0 or 1. Currently, QoS2 is not supported.
For details, see Constraints.
checkbox_mqtt_connet_ssl.setOnCheckedChangeListener(new
CompoundButton.OnCheckedChangeListener() {
 @Override
 public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {
 if (isChecked) {
 isSSL = true;
 checkbox_mqtt_connet_ssl.setText ("SSL encryption");
 } else {
 isSSL = false;
 checkbox_mqtt_connet_ssl.setText ("no SSL encryption");
 }
 }
})

Establishing a Connection
To connect a device or gateway to the platform, upload the device information to
bind the device or gateway to the platform.

1. Call the MainActivity class to establish an MQTT or MQTTS connection. By
default, MQTT uses port 1883, and MQTTS uses port 8883 (a certificate must
be loaded).
if (isSSL) {
 editText_mqtt_log.append("Starting to establish an MQTTS connection" + "\n");
 serverUrl = "ssl://" + IOT_PLATFORM_URL + ":8883";
} else {
 editText_mqtt_log.append("Starting to establish an MQTT connection" + "\n");
 serverUrl = "tcp://" + IOT_PLATFORM_URL + ":1883";
}

2. Call the getMqttsCerificate method in the ConnectUtils class to load an SSL
certificate. This step is required only if an MQTTS connection is established.
The DigiCertGlobalRootCA.bks file is used to verify the platform identity
when the device connects to the platform. You can download the certificate
file using the link provided in Certificates.
SSLContext sslContext = SSLContext.getInstance("SSL");
KeyStore keyStore = KeyStore.getInstance("bks");
The keyStore.load(context.getAssets().open("DigiCertGlobalRootCA.bks"), null);// Load the certificate
in the libs directory.
TrustManagerFactory trustManagerFactory = TrustManagerFactory.getInstance("X509");
trustManagerFactory.init(keyStore);
TrustManager[] trustManagers = trustManagerFactory.getTrustManagers();
sslContext.init(null, trustManagers, new SecureRandom());
sslSocketFactory = sslContext.getSocketFactory();

3. Call the intitMqttConnectOptions method in the MainActivity class to
initialize MqttConnectOptions. The recommended heartbeat interval for
MQTT connections is 120 seconds. For details, see Constraints.
mqttAndroidClient = new MqttAndroidClient(mContext, serverUrl, clientId);
private MqttConnectOptions intitMqttConnectOptions(String currentDate) {
 String password =
ConnectUtils.sha256_HMAC(editText_mqtt_device_connect_password.getText().toString(),

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 194

currentDate);
 MqttConnectOptions mqttConnectOptions = new MqttConnectOptions();
 mqttConnectOptions.setAutomaticReconnect(true);
 mqttConnectOptions.setCleanSession(true);
 mqttConnectOptions.setKeepAliveInterval(120);
 mqttConnectOptions.setConnectionTimeout(30);
 mqttConnectOptions.setUserName(editText_mqtt_device_connect_deviceId.getText().toString());
 mqttConnectOptions.setPassword(password.toCharArray());
 return mqttConnectOptions;
}

4. Call the connect method in the MainActivity class to set up a connection and
the setCallback method to process the message returned after the
connection is set up.
mqttAndroidClient.connect(mqttConnectOptions, null, new IMqttActionListener()
mqttAndroidClient.setCallback(new MqttCallBack4IoTHub());

If the connection fails, the onFailure function in initMqttConnects executes
backoff reconnection. Sample code:

@Override
public void onFailure(IMqttToken asyncActionToken, Throwable exception) {
 exception.printStackTrace();
 Log.e(TAG, "Fail to connect to: " + exception.getMessage());
 editText_mqtt_log.append("Failed to set up the connection: "+ exception.getMessage() + "\n");

 / /Backoff reconnection
 int lowBound = (int) (defaultBackoff * 0.8);
 int highBound = (int) (defaultBackoff * 1.2);
 long randomBackOff = random.nextInt(highBound - lowBound);
 long backOffWithJitter = (int) (Math.pow(2.0, (double) retryTimes)) * (randomBackOff + lowBound);
 long waitTImeUntilNextRetry = (int) (minBackoff + backOffWithJitter) > maxBackoff ? maxBackoff :
(minBackoff + backOffWithJitter);
 try {
 Thread.sleep(waitTImeUntilNextRetry);
 } catch (InterruptedException e) {
 System.out.println("sleep failed, the reason is" + e.getMessage().toString());
 }
 retryTimes++;
 MainActivity.this.initMqttConnects();
}

Subscribing to a Topic
Only devices that subscribe to a specific topic can receive messages about the
topic released by the broker. Topic Definition describes preset topics of the
platform.

The MainActivity class provides the methods for delivering subscription
commands to topics, subscribing to topics, and unsubscribing from topics.

String mqtt_sub_topic_command_json = String.format("$oc/devices/%s/sys/commands/#",
editText_mqtt_device_connect_deviceId.getText().toString());
mqttAndroidClient.subscribe(getSubscriptionTopic(), qos, null, new IMqttActionListener()
mqttAndroidClient.unsubscribe(getSubscriptionTopic(), null, new IMqttActionListener()

If the connection is established, you can subscribe to the topic using a callback
function.

mqttAndroidClient.connect(mqttConnectOptions, null, new IMqttActionListener() {
 @Overridepublic void onSuccess(IMqttToken asyncActionToken) {

 subscribeToTopic();
}

After the connection is established, the following information is displayed in the
log area of the application page:

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 195

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3004.html

Reporting Properties

A device reports its properties to the platform. For details on the API, see
Reporting Device Properties.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 196

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html

The MainActivity class implements the property reporting topic and property
reporting.

String mqtt_report_topic_json = String.format("$oc/devices/%s/sys/properties/report",
editText_mqtt_device_connect_deviceId.getText().toString());
MqttMessage mqttMessage = new MqttMessage();
mqttMessage.setPayload(publishMessage.getBytes());
mqttAndroidClient.publish(publishTopic, mqttMessage);

If the reporting is successful, the reported device properties are displayed on the
device details page.

NO TE

If no latest data is displayed on the device details page, modify the services and properties
in the product model to ensure that the reported services and properties are the same as
those defined in the product model. Alternatively, go to the Products > Model Definition
page and delete all services.

Receiving Commands
The MainActivity class provides the methods for receiving commands delivered by
the platform. After an MQTT connection is established, you can deliver commands
on the device details page of the IoTDA console or by using the demo on the
application side. For example, deliver a command carrying the parameter name
command and parameter value 5. After the command is delivered, a result is
received using the MQTT callback function.

private final class MqttCallBack4IoTHub implements MqttCallbackExtended {

 @Overridepublic void messageArrived(String topic, MqttMessage message) throws Exception {
 Log.i(TAG, "Incoming message: " + new String(message.getPayload(), StandardCharsets.UTF_8));
 editText_mqtt_log.append("MQTT receives the delivered command: " + message + "\n")
 }

On the device details page, you can view the command delivery status. In this
example, timeout is displayed because this demo does not return a response to
the platform.

If the property reporting and command receiving are successful, the following
information is displayed in the log area of the application:

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 197

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/device/all-device
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 198

4.3.6 C Demo

Overview
This section uses C as an example to describe how to connect a device to the IoT
platform over MQTTS or MQTT and how to use platform APIs to report data and
deliver commands. For details on other programming languages, see Device
Development Resources.

Prerequisites
● You have installed the Linux operating system (OS) is used and GCC (4.8 or

later).
● You have obtained OpenSSL (required in MQTTS scenarios) and Paho library

dependencies.
● You have obtained the device access addresses from the IoTDA console. For

details, see Platform Connection Information.
● You have created a product and device on the IoTDA console. For details, see

Creating a Product, Registering an Individual Device, or Registering a
Batch of Devices.

Preparations
● Compile the OpenSSL library.

a. Visit the OpenSSL website (https://www.openssl.org/source/), download
the latest OpenSSL version (for example, openssl-1.1.1d.tar.gz), upload it
to the Linux compiler (for example, in the directory /home/test), and run
the following command to decompress the package:
tar -zxvf openssl-1.1.1d.tar.gz

b. Generate a makefile.
Run the following command to access the OpenSSL source code
directory:
cd openssl-1.1.1d

Run the following configuration command:
./config shared --prefix=/home/test/openssl --openssldir=/home/test/openssl/ssl

In this command, prefix is the installation directory, openssldir is the
configuration file directory, and shared is used to generate a dynamic-
link library (.so library).
If an exception occurs during the compilation, add no-asm to the
configuration command (indicating that the assembly code is not used).
./config no-asm shared --prefix=/home/test/openssl --openssldir=/home/
test/openssl/ssl

c. Generate library files.
Run the following command in the OpenSSL source code directory:
make depend

Run the following command for compilation:
make

Install OpenSSL.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 199

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3002.html
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0054.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0032.html
https://www.openssl.org/source/

make install

Find the lib directory in home/test/openssl under the OpenSSL
installation directory. The library files libcrypto.so.1.1, libssl.so.1.1,
libcrypto.so and libssl.so are generated.
Copy these files to the lib folder of the demo and copy the content in /
home/test/openssl/include/openssl to include/openssl of the demo.

Note: Some compilation tools are 32-bit. If these tools are used on a 64-
bit Linux computer, delete -m64 from the makefile before the
compilation.

● Compile the Eclipse Paho library file.

a. Visit https://github.com/eclipse/paho.mqtt.c to download the source
code paho.mqtt.c.

b. Decompress the package and upload it to the Linux compiler.
c. Modify the makefile.

i. Run the following command to edit the makefile:
vim Makefile

ii. Display the number of rows.
:set nu

iii. Add the following two lines (customized OpenSSL header files and
library files) after line 129:
CFLAGS += -I/home/test/openssl/include
LDFLAGS += -L/home/test/openssl/lib -lrt

iv. Change the addresses in lines 195, 197, 199, and 201 to the
corresponding addresses.

d. Start the compilation.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 200

https://github.com/eclipse/paho.mqtt.c

i. Run the following command:
make clean

ii. Run the following command:
make

e. After the compilation is complete, you can view the libraries that are
compiled in the build/output directory.

f. Copy the Paho library file.
Currently, only libpaho-mqtt3as is used in the SDK. Copy the libpaho-
mqtt3as.so and libpaho-mqtt3as.so.1 files to the lib folder of the demo.
Go back to the Paho source code directory, and copy MQTTAsync.h,
MQTTClient.h, MQTTClientPersistence.h, MQTTProperties.h,
MQTTReasonCodes.h, and MQTTSubscribeOpts.h in the src directory to
the include/base directory of the demo.

Importing Sample Code

Step 1 Download the sample code quickStart(C).

Step 2 Copy the code to the Linux running environment. The following figure shows the
code file hierarchy.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 201

https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(c).zip

Description of the directories:

● src: source code directory
mqtt_c_demo: core source code of the demo
util/string_util.c: tool resource file

● conf: certificate directory
rootcert.pem: certificate used by the device to verify the platform identity. It
is used for login authentication when the device connects to the platform.

● include: header files
base: dependent Paho header files
openssl: dependent OpenSSL header files
util: header files of the dependent tool resources

● lib: dependent library file
libcrypto.so*/libssl.so*: OpenSSL library file
libpaho-mqtt3as.so*: Paho library file

● Makefile: Makefile

----End

Establishing a Connection

To connect a device or gateway to the platform, upload the device information to
bind the device or gateway to the platform.

1. Set parameters.
char *uri = "ssl://iot-mqtts.cn-north-4.myhuaweicloud.com:8883";
int port = 8883;
char *username = "5ebac693352cfb02c567ec88_test2345"; //deviceId
//char *username = "test6789";
char *password = "602d6cc77d87271be8f462f52d27d818";

Note: MQTTS uses port 8883 for access. If MQTT is used for access, the URL is
tcp://iot-mqtts.cn-north-4.myhuaweicloud.com:1883 and the port is 1883.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 202

2. Start the connection.
– Run the make command to perform compilation. Delete -m64 from the

makefile in a 32-bit OS.
– Run export LD_LIBRARY_PATH=./lib/ to load the library file.
– Run ./MQTT_Demo.o.

//connect
int ret = mqtt_connect();
if (ret != 0) {
 printf("connect failed, result %d\n", ret);
}

3. If the connection is successful, the message "connect success" is displayed.
The device is also displayed as Online on the console.

If the connection fails, the mqtt_connect_failure function executes
backoff reconnection. Sample code:
void mqtt_connect_failure(void *context, MQTTAsync_failureData *response) {
 retryTimes++;
 printf("connect failed: messageId %d, code %d, message %s\n", response->token, response->code,
response->message);
 / /Backoff reconnection
 int lowBound = defaultBackoff * 0.8;
 int highBound = defaultBackoff * 1.2;
 int randomBackOff = rand() % (highBound - lowBound + 1);
 long backOffWithJitter = (int)(pow(2.0, (double)retryTimes) - 1) * (randomBackOff + lowBound);
 long waitTImeUntilNextRetry = (int)(minBackoff + backOffWithJitter) > maxBackoff ? (minBackoff +
backOffWithJitter) : maxBackoff;

 TimeSleep(waitTImeUntilNextRetry);

 //connect
 int ret = mqtt_connect();
 if (ret != 0) {
 printf("connect failed, result %d\n", ret);
 }
}

Subscribing to a Topic
Only devices that subscribe to a specific topic can receive messages about the
topic released by the broker. Topic Definition describes preset topics of the
platform.

Subscribe to a topic.

//subcribe
char *cmd_topic = combine_strings(3, "$oc/devices/", username, "/sys/commands/#");
ret = mqtt_subscribe(cmd_topic);
free(cmd_topic);

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 203

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3004.html

cmd_topic = NULL;
if (ret < 0) {
 printf("subscribe topic error, result %d\n", ret);
}

If the subscription is successful, the message "subscribe success" is displayed in the
demo.

Reporting Properties

Devices can report their properties to the platform. For details, see Reporting
Device Properties.

//publish data
char *payload = "{\"services\":[{\"service_id\":\"parameter\",\"properties\":{\"Load\":\"123\",\"ImbA_strVal\":
\"456\"}}]}";
char *report_topic = combine_strings(3, "$oc/devices/", username, "/sys/properties/report");
ret = mqtt_publish(report_topic, payload);
free(report_topic);
report_topic = NULL;
if (ret < 0) {
 printf("publish data error, result %d\n", ret);
}

If the property reporting is successful, the message "publish success" is displayed
in the demo.

The reported properties are displayed on the device details page.

NO TE

If no latest data is displayed on the device details page, modify the services and properties
in the product model to ensure that the reported services and properties are the same as
those defined in the product model. Alternatively, go to the Products > Model Definition
page and delete all services.

Receiving Commands

After subscribing to a command topic, you can deliver a synchronous command on
the console. For details, see Synchronous Command Delivery to MQTT Devices.

If the command delivery is successful, the command received is displayed in the
demo:

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 204

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/device/all-device
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0046.html#section3

The code for receiving commands in the demo is as follows:

//receive message from the server
int mqtt_message_arrive(void *context, char *topicName, int topicLen, MQTTAsync_message *message) {
 printf("mqtt_message_arrive() success, the topic is %s, the payload is %s \n", topicName, message-
>payload);
 return 1; //can not return 0 here, otherwise the message won't update or something wrong would happen
}

4.3.7 C# Demo

Overview
This section uses C# as an example to describe how to connect a device to the IoT
platform over MQTTS or MQTT and how to use platform APIs to report data and
deliver commands. For details on other programming languages, see Device
Development Resources.

Prerequisites
● You have installed Microsoft Visual Studio. If not, follow the instructions

provided in Install Microsoft Visual Studio.
● You have obtained the device access addresses from the IoTDA console. For

details, see Platform Connection Information.
● You have created a product and device on the IoTDA console. For details, see

Creating a Product, Registering an Individual Device, or Registering a
Batch of Devices.

Preparations
● Go to the Microsoft website to download and install Microsoft Visual Studio

of a desired version. (This document uses Windows 64-bit, Microsoft Visual
Studio 2017, and .NET Framework 4.5.1 as examples.)

● After the download is complete, run the installation file and install Microsoft
Visual Studio as prompted.

Importing Sample Code

Step 1 Download the sample code quickStart(C#).

Step 2 Run Microsoft Visual Studio 2017, click Open Project/Solution, and select the
sample downloaded.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 205

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3002.html
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0054.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0032.html
https://visualstudio.microsoft.com/zh-hans/
https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(cSharp).zip

Step 3 Import the sample code.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 206

Description of the directories:

● App.config: server address and device information configuration file
● C#: C# code of the project

EncryptUtil.cs: auxiliary class for device key encryption
FrmMqttDemo.cs: window UI
Program.cs: entry for starting the demo

● dll: third-party libraries used in the project
MQTTnet v3.0.11 is a high-performance .NET open-source library based on
MQTT communications. It supports both MQTT servers and clients. The
reference library file contains MQTTnet.dll.
MQTTnet.Extensions.ManagedClient: v3.0.11 is an extended library that
uses MQTTnet to provide additional functions for the managed MQTT client.

Step 4 Set the project parameters in the demo.
● App.config: Set the server address, device ID, and device secret. When the

demo is started, the information is automatically written to the demo main
page.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 207

<add key="serverUri" value="serveruri"/>
<add key="deviceId" value="deviceid"/>
<add key="deviceSecret" value="secret"/>
<add key="PortIsSsl" value="8883"/>
<add key="PortNotSsl" value="1883"/>

----End

UI Display

1. The FrmMqttDemo class provides a UI. By default, the FrmMqttDemo class
automatically obtains the server address, device ID, and device secret from the
App.config file after startup. Set the parameters based on the actual device
information.
– Server address: indicates the domain name. For details on how to obtain

the domain name, see Platform Connection Information.
– Device ID and secret: obtained after the device is registered on the

IoTDA console or the API Creating a Device is called.
2. In this example, enter the server address. (The server address must match and

be used together with the corresponding certificate file during SSL-encrypted
access.)
<add key="serverUri" value="iot-mqtts.cn-north-4.myhuaweicloud.com
"/>;

3. Select SSL encryption or no encryption when establishing a connection on the
device side and set the QoS mode to 0 or 1. Currently, QoS2 is not supported.
For details, see Constraints.

Establishing a Connection
To connect a device or gateway to the platform, upload the device information to
bind the device or gateway to the platform.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 208

https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0046.html

1. The FrmMqttDemo class provides methods for establish MQTT or MQTTS
connections. By default, MQTT uses port 1883, and MQTTS uses port 8883. (In
the case of MQTTS scenarios, you must load the
DigiCertGlobalRootCA.crt.pem certificate for verifying the platform identity.
The certificate is used for login authentication when the device connects to
the platform. You can download the certificate file from Obtaining
Resources.) Call the ManagedMqttClientOptionsBuilder class to set the
initial KeepAlivePeriod. The recommended heartbeat interval for MQTT
connections is 120 seconds. For details, see Constraints.
int portIsSsl = int.Parse(ConfigurationManager.AppSettings["PortIsSsl"]);
int portNotSsl = int.Parse(ConfigurationManager.AppSettings["PortNotSsl"]);

if (client == null)
{
 client = new MqttFactory().CreateManagedMqttClient();
}

string timestamp = DateTime.Now.ToString("yyyyMMddHH");
string clientID = txtDeviceId.Text + "_0_0_" + timestamp;

// Encrypt passwords using HMAC SHA256.
string secret = string.Empty;
if (!string.IsNullOrEmpty(txtDeviceSecret.Text))
{
 secret = EncryptUtil.HmacSHA256(txtDeviceSecret.Text, timestamp);
}

// Check whether the connection is secure.
if (!cbSSLConnect.Checked)
{
 options = new ManagedMqttClientOptionsBuilder()
 .WithAutoReconnectDelay(TimeSpan.FromSeconds(RECONNECT_TIME))
 .WithClientOptions(new MqttClientOptionsBuilder()
 .WithTcpServer(txtServerUri.Text, portNotSsl)
 .WithCommunicationTimeout(TimeSpan.FromSeconds(DEFAULT_CONNECT_TIMEOUT))
 .WithCredentials(txtDeviceId.Text, secret)
 .WithClientId(clientID)
 .WithKeepAlivePeriod(TimeSpan.FromSeconds(DEFAULT_KEEPLIVE))
 .WithCleanSession(false)
 .WithProtocolVersion(MqttProtocolVersion.V311)
 .Build())
 .Build();
}
else
{
 string caCertPath = Environment.CurrentDirectory + @"\certificate\rootcert.pem";
 X509Certificate2 crt = new X509Certificate2(caCertPath);

 options = new ManagedMqttClientOptionsBuilder()
 .WithAutoReconnectDelay(TimeSpan.FromSeconds(RECONNECT_TIME))
 .WithClientOptions(new MqttClientOptionsBuilder()
 .WithTcpServer(txtServerUri.Text, portIsSsl)
 .WithCommunicationTimeout(TimeSpan.FromSeconds(DEFAULT_CONNECT_TIMEOUT))
 .WithCredentials(txtDeviceId.Text, secret)
 .WithClientId(clientID)
 .WithKeepAlivePeriod(TimeSpan.FromSeconds(DEFAULT_KEEPLIVE))
 .WithCleanSession(false)
 .WithTls(new MqttClientOptionsBuilderTlsParameters()
 {
 AllowUntrustedCertificates = true,
 UseTls = true,
 Certificates = new List<X509Certificate> { crt },
 CertificateValidationHandler = delegate { return true; },
 IgnoreCertificateChainErrors = false,
 IgnoreCertificateRevocationErrors = false
 })
 .WithProtocolVersion(MqttProtocolVersion.V311)

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 209

 .Build())
 .Build();
}

2. Call the StartAsync method in the FrmMqttDemo class to set up a
connection. After the connection is set up, the OnMqttClientConnected is
called to print connection success logs.
Invoke((new Action(() =>
{
 ShowLogs($"{"try to connect to server " + txtServerUri.Text}{Environment.NewLine}");
})));

if (client.IsStarted)
{
 await client.StopAsync();
}

// Register an event.
client.ApplicationMessageProcessedHandler = new
ApplicationMessageProcessedHandlerDelegate(new
Action<ApplicationMessageProcessedEventArgs>(ApplicationMessageProcessedHandlerMethod)); //
Called when a message is published.

client.ApplicationMessageReceivedHandler = new
MqttApplicationMessageReceivedHandlerDelegate(new
Action<MqttApplicationMessageReceivedEventArgs>(MqttApplicationMessageReceived)); // Called
when a command is delivered.

client.ConnectedHandler = new MqttClientConnectedHandlerDelegate(new
Action<MqttClientConnectedEventArgs>(OnMqttClientConnected)); // Called when a connection is set
up.

Callback function when the client.DisconnectedHandler = new
MqttClientDisconnectedHandlerDelegate(new
Action<MqttClientDisconnectedEventArgs>(OnMqttClientDisconnected)); // Called when a connection
is released.

// Connect to the platform.
await client.StartAsync(options);

If the connection fails, the OnMqttClientDisconnected function executes
backoff reconnection. Sample code:
private void OnMqttClientDisconnected(MqttClientDisconnectedEventArgs e)
{
 try {
 Invoke((new Action(() =>
 {
 ShowLogs("mqtt server is disconnected" + Environment.NewLine);

 txtSubTopic.Enabled = true;
 btnConnect.Enabled = true;
 btnDisconnect.Enabled = false;
 btnPublish.Enabled = false;
 btnSubscribe.Enabled = false;
 })));

 if (cbReconnect.Checked)
 {
 Invoke((new Action(() =>
 {
 ShowLogs("reconnect is starting" + Environment.NewLine);
 })));

 // Backoff reconnection
 int lowBound = (int)(defaultBackoff * 0.8);
 int highBound = (int)(defaultBackoff * 1.2);
 long randomBackOff = random.Next(highBound - lowBound);
 long backOffWithJitter = (int)(Math.Pow(2.0, retryTimes)) * (randomBackOff + lowBound);
 long waitTImeUtilNextRetry = (int)(minBackoff + backOffWithJitter) > maxBackoff ? maxBackoff :

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 210

(minBackoff + backOffWithJitter);

 Invoke((new Action(() =>
 {
 ShowLogs("next retry time: " + waitTImeUtilNextRetry + Environment.NewLine);
 })));

 Thread.Sleep((int)waitTImeUtilNextRetry);

 retryTimes++;

 Task.Run(async () => { await ConnectMqttServerAsync(); });
 }
 }
 catch (Exception ex)
 {
 Invoke((new Action(() =>
 {
 ShowLogs("mqtt demo error: " + ex.Message + Environment.NewLine);
 })));
 }
}

Subscribing to a Topic
Only devices that subscribe to a specific topic can receive messages about the
topic released by the broker. Topic Definition describes preset topics of the
platform.

The FrmMqttDemo class provides the method for delivering subscription
commands to topics.

List<MqttTopicFilter> listTopic = new List<MqttTopicFilter>();

var topicFilterBulderPreTopic = new MqttTopicFilterBuilder().WithTopic(topic).Build();
listTopic.Add(topicFilterBulderPreTopic);

// Subscribe to a topic.
client.SubscribeAsync(listTopic.ToArray()).Wait();

After the connection is established and a topic is subscribed, the following
information is displayed in the log area on the home page of the demo:

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 211

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3004.html

Receiving Commands

The FrmMqttDemo class provides the method for receiving commands delivered
by the platform. After an MQTT connection is established and a topic is
subscribed, you can deliver a command on the device details page of the IoTDA
console or by using the demo on the application side. After the command is
delivered, the MQTT callback function receives the command delivered by the
platform.

private void MqttApplicationMessageReceived(MqttApplicationMessageReceivedEventArgs e)
{
 Invoke((new Action(() =>
 {
 ShowLogs($"received message is {Encoding.UTF8.GetString(e.ApplicationMessage.Payload)}
{Environment.NewLine}");

 string msg = "{\"result_code\": 0,\"response_name\": \"COMMAND_RESPONSE\",\"paras\": {\"result\":
\"success\"}}";

 string topic = "$oc/devices/" + txtDeviceId.Text + "/sys/commands/response/request_id=" +
e.ApplicationMessage.Topic.Split('=')[1];

 ShowLogs($"{"response message msg = " + msg}{Environment.NewLine}");

 var appMsg = new MqttApplicationMessage();
 appMsg.Payload = Encoding.UTF8.GetBytes(msg);
 appMsg.Topic = topic;
 appMsg.QualityOfServiceLevel = int.Parse(cbOosSelect.SelectedValue.ToString()) == 0 ?
MqttQualityOfServiceLevel.AtMostOnce : MqttQualityOfServiceLevel.AtLeastOnce;
 appMsg.Retain = false;

 // Return the upstream response.
 client.PublishAsync(appMsg).Wait();
 })));
}

For example, deliver a command carrying the parameter name smokeDetector:
SILENCE and parameter value 50.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 212

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

After the command is delivered, the following information is displayed on the
demo page:

Publishing a Topic
Publishing a topic means that a device proactively reports its properties or
messages to the platform. For details, see the API Reporting Device Properties.

The FrmMqttDemo class implements the property reporting topic and property
reporting.

var appMsg = new MqttApplicationMessage();
appMsg.Payload = Encoding.UTF8.GetBytes(inputString);
appMsg.Topic = topic;
appMsg.QualityOfServiceLevel = int.Parse(cbOosSelect.SelectedValue.ToString()) == 0 ?
MqttQualityOfServiceLevel.AtMostOnce : MqttQualityOfServiceLevel.AtLeastOnce;
appMsg.Retain = false;

// Return the upstream response.
client.PublishAsync(appMsg).Wait();

After a topic is published, the following information is displayed on the demo
page:

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 213

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html

If the reporting is successful, the reported device properties are displayed on the
device details page.

NO TE

If no latest data is displayed on the device details page, modify the services and properties
in the product model to ensure that the reported services and properties are the same as
those defined in the product model. Alternatively, go to the Products > Model Definition
page and delete all services.

4.3.8 Node.js Demo

Overview

This section uses Node.js as an example to describe how to connect a device to
the IoT platform over MQTTS or MQTT and how to use platform APIs to report
data and deliver commands. For details on other programming languages, see
Device Development Resources.

Prerequisites
● You have installed Node.js by following the instructions provided in Install

Node.js.

● You have obtained the device access addresses from the IoTDA console. For
details, see Platform Connection Information.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 214

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/device/all-device
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3002.html
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

● You have created a product and device on the IoTDA console. For details, see
Creating a Product, Registering an Individual Device, or Registering a
Batch of Devices.

Preparations
1. Go to the Node.js website to download and install a desired version. This

document uses Windows 64-bit and Node.js v12.18.0 (npm 6.14.4) as an
example.

2. After the download is complete, run the installation file and install Node.js as
prompted.

3. Verify that the installation is successful.
Press Win+r, enter cmd, and press Enter. The command-line interface (CLI) is
displayed.
Enter node –v and press Enter. The Node.js version is displayed. Enter npm –
v. If any version information is displayed, the installation is successful.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 215

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0054.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0032.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0032.html
https://nodejs.org/en/download/

Importing Sample Code

Step 1 Download the sample code quickStart(Node.js) and decompress the package.

Step 2 Press Win+r, enter cmd, and press Enter to access the CLI. Run the following
commands to install the global module:

npm install mqtt -g: This command is used to install the MQTT protocol module.

npm install crypto-js -g: This command is used to install the device secret
encryption algorithm module.

npm install fs -g: This command is used to load the platform certificate.

Step 3 Find the directory where the file is decompressed.

Code directory:

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 216

https://developer.obs.cn-north-4.myhuaweicloud.com:443/manage/south/quickStart/quickStart(nodejs).zip

● DigiCertGlobalRootCA.crt.pem: platform certificate file
● MqttDemo.js: Node.js source code for MQTT/MQTTS connection to the

platform, property reporting, and command delivery.

Step 4 Set the project parameters in the demo. In MqttDemo.js, set the server address,
device ID, and device secret for connecting to the device registered on the console
when the demo is started.
● Server address: indicates the domain name. For details on how to obtain the

server address, see Platform Connection Information. The server address
must match and be used together with the corresponding certificate file
during SSL-encrypted access.

● Device ID and secret: obtained after the device is registered on the IoTDA
console or the API Creating a Device is called.

var TRUSTED_CA = fs.readFileSync("DigiCertGlobalRootCA.crt.pem");// Obtain a certificate.

// MQTT interconnection address of the platform
var serverUrl = "iot-mqtts.cn-north-4.myhuaweicloud.com";
var deviceId = "****";// Enter the ID of the device registered with the platform.
var secret = "****";// Enter the secret of the device registered with the platform.
var timestamp = dateFormat("YYYYmmddHH", new Date());

var propertiesReportJson = {'services':[{'properties':{'alarm':1,'temperature':12.670784,'humidity':
18.37673,'smokeConcentration':19.97906},'service_id':'smokeDetector','event_time':null}]};
var responseReqJson = {'result_code': 0,'response_name': 'COMMAND_RESPONSE','paras': {'result': 'success'}};

Step 5 Select different options from mqtt.connect(options) to determine whether to
perform SSL encryption during connection establishment on the device. You are
advised to use the default MQTTS secure connection.
// Secure MQTTS connection
var options = {
 host: serverUrl,
 port: 8883,
 clientId: getClientId(deviceId),
 username: deviceId,
 password:HmacSHA256(secret, timestamp).toString(),
 ca: TRUSTED_CA,
 protocol: 'mqtts',
 rejectUnauthorized: false,
 keepalive: 120,
 reconnectPeriod: 10000,
 connectTimeout: 30000
}

// MQTT connection is insecure and is not recommended.
var option = {
 host: serverUrl,
 port: 1883,
 clientId: getClientId(deviceId),
 username: deviceId,
 password: HmacSHA256(secret, timestamp).toString(),
 keepalive: 120,
 reconnectPeriod: 10000,
 connectTimeout: 30000
 //protocol: 'mqtts'
 //rejectUnauthorized: false
}

// By default, options is used for secure connection.
var client = mqtt.connect(options);

----End

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 217

https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0046.html

Starting the Demo

To connect a device or gateway to the platform, upload the device information to
bind the device or gateway to the platform.

1. This demo provides methods such as establishing an MQTT or MQTTS
connection. By default, MQTT uses port 1883, and MQTTS uses port 8883. (In
the case of MQTTS connections, you must load the certificate for verifying the
platform identity. The certificate is used for login authentication when the
device connects to the platform.) Call the mqtt.connect(options) method to
establish an MQTT connection.
var client = mqtt.connect(options);

client.on('connect', function () {
 log("connect to mqtt server success, deviceId is " + deviceId);
 // Subscribe to a topic.
 subScribeTopic();
 // Publish a message.
 publishMessage();
})

// Respond to the command.
client.on('message', function (topic, message) {
 log('received message is ' + message.toString());

 var jsonMsg = responseReq;
 client.publish(getResponseTopic(topic.toString().split("=")[1]), jsonMsg);
 log('responsed message is ' + jsonMsg);
})

Find the Node.js demo source code directory, modify key project parameters,
and start the demo.

Before the demo is started, the device is in the offline state.

After the demo is started, the device status changes to online.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 218

If the connection fails, the reconnect function executes backoff
reconnection. Sample code:
client.on('reconnect', () => {

 log("reconnect is starting");

 // Backoff reconnection
 var lowBound = Number(defaultBackoff)*Number(0.8);
 var highBound = Number(defaultBackoff)*Number(1.2);

 var randomBackOff = parseInt(Math.random()*(highBound-lowBound+1),10);

 var backOffWithJitter = (Math.pow(2.0, retryTimes)) * (randomBackOff + lowBound);

 var waitTImeUtilNextRetry = (minBackoff + backOffWithJitter) > maxBackoff ? maxBackoff :
(minBackoff + backOffWithJitter);

 client.options.reconnectPeriod = waitTImeUtilNextRetry;

 log("next retry time: " + waitTImeUtilNextRetry);

 retryTimes++;
})

2. Only devices that subscribe to a specific topic can receive messages about the
topic released by the broker. Topic Definition describes preset topics of the
platform. This demo calls the subScribeTopic method to subscribe to a topic.
After the subscription is successful, wait for the platform to deliver a
command.
// Subscribe to a topic for receiving commands.
function subScribeTopic() {
 client.subscribe(getCmdRequestTopic(), function (err) {
 if (err) {
 log("subscribe error:" + err);
 } else {
 log("topic : " + getCmdRequestTopic() + " is subscribed success");
 }
 })
}

3. Publishing a topic means that a device proactively reports its properties or
messages to the platform. For details, see the API Reporting Device
Properties. After the connection is successful, call the publishMessage
method to report properties.
// ReportJSON data. serviceId must be the same as that defined in the product model.
function publishMessage() {
 var jsonMsg = propertiesReport;
 log("publish message topic is " + getReportTopic());
 log("publish message is " + jsonMsg);
 client.publish(getReportTopic(), jsonMsg);
 log("publish message successful");
}

Reported properties in the JSON format:
var propertiesReportJson = {'services':[{'properties':{'alarm':1,'temperature':12.670784,'humidity':
18.37673,'smokeConcentration':19.97906},'service_id':'smokeDetector','event_time':null}]};

The following figure shows the CLI.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 219

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3010.html

If the properties are reported, the following information is displayed on the
IoTDA console:

NO TE

If no latest data is displayed on the device details page, modify the services and
properties in the product model to ensure that the reported services and properties are
the same as those defined in the product model. Alternatively, go to the Products >
Model Definition page and delete all services.

Receiving Commands
The demo provides the method for receiving commands delivered by the platform.
After an MQTT connection is established and a topic is subscribed, you can deliver
a command on the device details page of the IoTDA console or by using the
demo on the application side. After the command is delivered, the MQTT
callback function receives the command delivered by the platform.

For example, deliver a command carrying the parameter name smokeDetector:
SILENCE and parameter value 50.

After the command is delivered, the demo receives a 50 message. The following
figure shows the command execution page.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 220

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

4.4 Using Huawei-Certified Modules for Access

Overview
Certified modules are pre-integrated with the IoT Device SDK Tiny. They have
passed Huawei test, and comply with Huawei's AT command specifications. The
following benefits are available for using Huawei-certified modules:

● Device manufacturers do not need to concern about how to connect to the
HUAWEI CLOUD IoT platform on the MCU (for example, how to set the secret
encryption algorithm and clientID composition mode during MQTT
connection setup). To connect their devices to the platform, they only need to
invoke AT commands, accelerating device interconnection and commissioning.

● The MCU does not need to integrate the MQTT protocol stack or IoT Device
SDK Tiny, greatly reducing MCU resource consumption.

● Huawei releases certified modules on HUAWEI CLOUD Marketplace so that
device manufacturers and service providers can purchase these certified
modules to quickly connect to HUAWEI CLOUD IoT.

The following figure shows how a certificated module is used to connect a device
to the platform.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 221

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_1401.html

Recommended Modules

Table 4-1 Certificated modules with pre-integrated Huawei SDKs

Module Manufacturer Model

4G Cat1 module Fibocom L610

China Mobile IoT ML302

4G Cat4 module Quectel EC20CEFASG

Quectel EC20CEHDLG

Neoway N720

NB-IoT module China Mobile IoT M5319-A

NO TE

● The LTE Cat4 module applies to the scenarios where the service data transmission rate
ranges from 50 Mbit/s to 150 Mbit/s. The LTE Cat1 module applies to the scenarios
where the service data transmission rate ranges from 5 Mbit/s to 10 Mbit/s.

● If you cannot find a required module in the preceding list, submit a service ticket to
describe your service scenario and requirements.

Table 4-2 Modules that are not integrated with Huawei SDKs but have passed
Huawei test

Module Manufacturer Model

NB-IoT module Quectel BC39

BC95

BC35

BC26

BC28

Neoway N27

N25

N21

DWnet TPB41

TPB23

Yuchen Technology CFB-608

Lierda NB86-G

4G Cat4 module Yuge CLM920_NC5

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 222

https://console.huaweicloud.com/ticket/?region=cn-north-4&locale=en-us#/ticketindex/createIndex

Module Manufacturer Model

CLM920_NC3

Quectel EC20

4G Cat1 module Neoway N58

Quectel EC200S

2G/3G/4G module Quectel M25

ZigBee intelligent
module

SHUNCOM SZ05

5G module Huawei MH5000

LoRa module Neoway LR70

WINEXT M100C

Prerequisites
● The SIM card data service has been enabled, and the module can access the

Internet.
● You have subscribed to the IoTDA service.

Development Process
The figure below shows the process for a manufacturer to develop a device.

● Purchase a HUAWEI CLOUD certificated module.
● Create a product and device on the IoTDA console.
● Run AT commands to connect the MCU to the HUAWEI CLOUD IoT platform

and to receive data from and send data to the platform.
● Manage devices on the IoTDA console.

Purchasing a Certificated Module

Step 1 Visit HUAWEI CLOUD Marketplace.

Step 2 Purchase the required module. For details on available modules, see Table 4-1.

----End

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 223

Connecting Hardware
Insert a 4G card into the SIM card slot. Ensure that the notch of the card faces
inwards and the chip faces upwards. (This document uses the L610 module as an
example.)

Installing the USB Driver
● Install the USB driver.

a. Run the installation file and perform the installation as prompted.

NO TE

The USB driver version varies according to the device manufacturer. Contact the
device manufacturer to obtain the required driver.

b. After the driver is installed, connect the USB port of the development
board to the PC and power on the PC. You can view the serial port
devices in the device manager.

● Use a serial port tool to debug AT commands.

a. Run the installation file and perform the installation as prompted.

NO TE

The version of the serial port tool varies according to the device manufacturer.
Contact the device manufacturer to obtain a serial port tool that meets the
requirements.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 224

b. Open the serial port tool, select an AT serial port enumerated in 2, set
the baud rate to 115200, and click Open Port.

NO TE

Ensure that the settings are correct. Otherwise, the AT command cannot be
parsed or an error will occur during parsing.

c. Run the AT+COPS? command. Click Send Command. If OK is returned,
the network registration is successful. Otherwise, check the settings and
hardware cable connections.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 225

NO TE

If the last digit of +COPS: 0,0,"CHN-CT",7 in the returned message is not 7, the
network is faulty. Replace the SIM card or check whether the SIM card can access
the Internet.

Creating a Product and Device

Step 1 Create a product that uses MQTT by following the instructions provided in
Creating a Product.

Step 2 Register a device.

NO TE

After the device is registered, keep the device ID and secret properly. The secret cannot be
retrieved. If you forget the secret, click Reset Secret on the device details page to obtain a
new one.

Step 3 Access the IoTDA console to obtain the MQTT/MQTTS device connection address.
If MQTT is used, the port is 1883. If MQTTS is used, the port is 8883.

----End

Connecting to the Platform
The module provides AT commands in two encoding modes to connect to
HUAWEI CLOUD: ASCII and hexstring. ASCII indicates the original encoding mode,
and hexstring indicates the hexadecimal encoding mode.

● Using the ASCII mode

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 226

https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0054.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0031.html
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

a. Connect to the platform. Send the command AT
+HMCON=bs,lifetime,"serverip","serverport","deviceID","passwd",cod
ec, for example, AT+HMCON=0,300,"iot-mqtts.cn-
north-4.myhuaweicloud.com","8883","deviceID","passwd",0. If
+HMCON OK is received, the device is connected to the platform.

The parameters in the preceding command are described as follows:

▪ bsmode: whether device provisioning is used. Set this parameter to
0. The value 0 means that the device is directly connected to the
platform, and 1 means that the device is connected to the platform
through device provisioning.

▪ lifetime: MQTT heartbeat time. The default value is 300.

▪ serverip: MQTT/MQTTS connection address. For details, see
Platform Connection Information. If the device is connected to the
platform through device provisioning, set this parameter to the
address provisioned by the device. For details, see Device
Provisioning.

▪ serverport: port for device access. If MQTT is used, the port is 1883.
If MQTTS is used, the port is 8883. If device provisioning is used, the
service provisioning port is used.

▪ deviceID: device ID returned for the registered device. For details, see
2.

▪ passwd: secret set during device registration. For details on how to
obtain the secret, see 2. If the certificate mode is used, you can leave
this parameter unspecified. However, you must set the public key and
private key certificates of the device in advance.

▪ codec: data transmission mode. Set this parameter to 0 or 1. The
value 0 indicates the ASCII mode, and 1 indicates the hexstring
mode. If the ASCII mode is used, the data mode is len,ascii_payload,
for example, 2,"ab". If the hextring mode is used, the value is
2,"6162".

b. Subscribe to a custom topic. Send the AT+HMSUB=qos,topic command,
for example, AT+HMSUB=0,"$oc/devices/device_id/user/mytopic". If
+HMSUB OK is received, the subscription is successful.

The parameters in the preceding command are described as follows:

▪ qos: QoS of the topic. The default value is 0.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 227

▪ topic: a new custom topic. For details, see Adding a Custom Topic.
Set the device operation permission to Subscribe and replace
deviceID with the actual device ID.

c. Report a message. Send the AT+HMPUB=qos,topic,payload_len,payload
command, for example,
AT+HMPUB=0,"$oc/devices/device_id/user/mytopic",16,"{\"test\":
\"hello\"}". If +HMPUB OK is received, the reporting is successful.

NO TE

The payload is in ASCII mode. The string must start and end with double
quotation marks (""), and the special characters in the string must be escaped.

The parameters in the preceding command are described as follows:

▪ qos: QoS defined in MQTT. The recommended value is 0.

▪ topic: a new custom topic. For details, see Adding a Custom Topic.
Set the device operation permission to Publish and replace deviceID
with the actual device ID.

▪ payload_len: length of the reported message, excluding the slash (\).

▪ payload: reported message.

d. Report a property. Send the AT+HMPUB=qos,topic,payload_len,payload
command, for example,
AT+HMPUB=0,"$oc/devices/device_id/sys/properties/report",
82,"{\"services\":[{\"service_id\":\"Clock\",\"properties\":{\"card_no\":
\"3028\",\"use_type\":1}}]}". If +HMPUB OK is received, the reporting is
successful. You can view the reported property values on the device
details page.

NO TE

Before reporting properties, customize a product model or use the preconfigured
product model. For details, see Developing a Product Model Online and
Preconfigured Product Models.

▪ qos: QoS defined in MQTT. The recommended value is 0.

▪ topic: topic preconfigured on the platform. For more topics, see
Topic Definition. Replace deviceID with the actual device ID.

▪ payload_len: length of the reported property, excluding the slash (\).

▪ payload: reported property.

e. Deliver a command. On the Commands tab page of the device details
page of the IoTDA console, click Deliver Command on the right of
Synchronous Command Delivery. Select the command to deliver and
the command value. After the delivery is successful, the device receives
+HMREC:topic,payload_len,payload, for example, +HMREC: "$oc/
devices/device_id/sys/commands/request_id={request_id}{"paras":
{"value":
1},"service_id":"SmokeDetectorControl","command_name":"QUITSILE
NCE"}",86,{"paras":{"value":

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 228

https://support.huaweicloud.com/en-us/usermanual-iothub/iot_02_9992.html#section3
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_02_9992.html#section3
https://support.huaweicloud.com/en-us/devg-iothub/iot_02_0005.html
https://support.huaweicloud.com/en-us/devg-iothub/iot_01_0053.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3004.html

1},"service_id":"SmokeDetectorControl","command_name":"QUITSILE
NCE"}.

The parameters in the preceding command are described as follows:

▪ qos: QoS defined in MQTT. The recommended value is 0.

▪ topic: topic preconfigured on the platform. For more topics, see
Topic Definition. Replace deviceID with the actual device ID.
{request_id} is used to uniquely identify the request. If this
parameter is carried in a message sent by a device, ensure that the
parameter value is unique on the device by using an incremental
number or UUID. If this parameter is carried in a message received
by a device, the parameter value needs to be also carried in the
response message sent to the platform.

▪ payload_len: length of the delivered command, excluding the slash
(\).

▪ payload: delivered command.

f. Unsubscribe from the custom topic. Send the AT+HMUNS="topic"
command, for example, AT+HMUNS="$oc/devices/deviceID/user/
mytopic". If +HMUNS OK is received, the unsubscription is successful.
In the preceding command, topic is the custom topic added in 2. Replace
deviceID with the actual device ID.

g. Disconnect the device from the platform by sending the AT+HMDIS
command.

h. Set the server or client certificate.

▪ To set a CA certificate, run AT+HMPKS=type,para1,
[para2],"Certificate", for example, AT+HMPKS=0,1360.

▪ To set a client certificate, run AT+HMPKS=type,para1,
[para2],"Certificate", for example, AT+HMPKS=1,1022.

▪ To set a private key certificate, run AT+HMPKS=type,para1,
[para2],"Certificate", for example, AT+HMPKS=1,1732.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 229

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3004.html

NO TE

● type: The value can be 0, 1, or 2, indicating a CA certificate, client certificate,
and private key certificate, respectively. All the certificates are transmitted
using para1. If a password is available, the password is transmitted through
para2.

● para1/[para2]: The para1 parameter specifies the certificate. If it is left
blank, the certificate is to be deleted. The para2 parameter specifies the
password of the private certificate. It is valid only when the private certificate
is set and the certificate is transmitted in the PEM format.

● Certificate: character length of the certificate content.

● Using the hexstring mode

a. Connect to the platform by sending the command AT
+HMCON=bs,lifetime,"serverip","serverport","deviceID","passwd",cod
ec, for example, AT+HMCON=0,300,"iot-mqtts.cn-
north-4.myhuaweicloud.com","8883","deviceID","passwd",0. If
+HMCON OK is received, the device is connected to the platform.
For details on the parameters, see 1.

b. Subscribe to a custom topic by sending the AT+HMSUB=qos,topic
command, for example, AT+HMSUB=0,"$oc/devices/device_id/user/
mytopic. If +HMSUB OK is received, the subscription is successful.
For details on the parameters, see 2.

c. Report a message by sending the AT
+HMPUB=qos,topic,payload_len,payload command, for example, AT
+HMPUB=0,"$oc/devices/device_id/user/mytopic",
16,7b2274657374223a2268656c6c6f227d.
Note: The payload is in hexadecimal data format and can be a
hexadecimal character string without double quotation marks at the
beginning or end.
For details on the parameters, see 3.

d. Deliver a command. On the Commands tab page of the device details
page of the IoTDA console, click Deliver Command on the right of
Synchronous Command Delivery. Select the command to deliver and
the command value. After the command is delivered, the device receives
the +HMREC,topic,payload_len,payload command, for example,
+HMREC: "$oc/devices/device_id/sys/commands/request_id={request_id}",
102,7B227061726173223A7B2276616C7565223A22313233343536373839
3071617A77737865646372667674676279686E756A6D696B6F6C70227D2
C22736572766963655F6964223A224E42444F4F52222C22636F6D6D616E
645F6E616D65223A2273656E64227D
For details on the parameters, see 5.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 230

e. Unsubscribe from the custom topic by sending the AT+HMUNS="topic"
command, for example, AT+HMUNS="$oc/devices/device_id/user/
mytopic". If +HMUNS OK is received, the cancellation is successful.
For details on the parameters, see 6.

f. Disconnect the device from the platform by sending the AT+HMDIS
command.

Device Management
The platform supports batch device management, remote control and
monitoring, OTA upgrades, and flexible data forwarding to other HUAWEI
CLOUD services.

IoT Device Access
Developer Guide 4 Development on the Device Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 231

https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0030.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0030.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0027.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0022.html

5 Development on the Application Side

5.1 API

5.2 Subscription and Push

5.3 Java Demo

5.4 Debugging Using Postman

5.1 API
The IoT platform provides a variety of APIs to make application development
easier and more efficient. You can call these open APIs to quickly integrate
platform functions, such as product, device, subscription, and rule management,
as well as device command delivery.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 232

1. An application must get authenticated by Identity and Access Management
(IAM) and obtain a token. For details on how to obtain a token, see
Debugging the API Used to Obtain the Token for an IAM User.

2. The application can implement functions such as product management,
device management, command/property/message delivery, subscription, and
push message receipt. For details on the functions, see the following
description, as well as API JAVA Demo or Debugging Using Postman.

API Introduction
API Group Scenario

Subscriptio
n
Manageme
nt

Applications subscribe to resources provided by the platform. If
the subscribed resources change, the platform notifies the
applications of the change.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 233

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01201.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01201.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01201.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01201.html

API Group Scenario

Tag
Manageme
nt

Applications bind tags to or unbind tags from resources.
Currently, only devices support tags.

Batch Task Applications perform batch operations on devices connected to
the platform.
● Software and firmware can be upgraded in batches, and

devices can be created, deleted, frozen, or unfrozen in
batches.

● Up to 10 unfinished tasks of the same type is allowed for a
single user. After the maximum number is reached, new tasks
cannot be created.

Device CA
Certificate
Manageme
nt

Applications manage device CA certificates, including uploading,
verifying, and querying certificates. The platform supports device
access authentication using certificates.

Device
Group
Manageme
nt

Applications manage device groups, including managing device
group information and devices in a device group.

Device
Message

Applications transparently transmit messages to devices.

Product
Manageme
nt

Applications manage product models that have been imported to
the platform. (A product model defines the capabilities or
features of all devices under a product.)

Device
Manageme
nt

Applications manage basic device information and device data.

Device
Shadow

Applications manage the device shadow, which is a file used to
store and retrieve the status of a device.
● Each device has only one device shadow, which is uniquely

identified by the device ID.
● The device shadow saves only the latest data reported by the

device and the desired data set by an application.
● You can use the device shadow to query and set the device

status regardless of whether the device is online.

Device
Command

Applications deliver commands defined in the product model to
devices through the platform.

Device
Property

Applications deliver properties defined in the product model to
devices through the platform.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 234

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0009.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0009.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0009.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0028.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0053.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0053.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0053.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0053.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0058.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0058.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0080.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0080.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0080.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0079.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0079.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0038.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0038.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0034.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0034.html

API Group Scenario

Data
forwarding
and Device
Linkage

Applications set rules to implement service linkage or forward
data to other HUAWEI CLOUD services. Device linkage and data
forwarding rules are available.
● Device linkage: You can set trigger conditions and actions.

When the preset triggering conditions are met, the
corresponding actions are triggered, such as delivering
commands, sending notifications, reporting alarms, and
clearing alarms.

● Data forwarding: You can set forwarding data, set forwarding
targets, and start rules. Data can be forwarded to Data
Ingestion Service (DIS), Distributed Message Service (DMS)
for Kafka, Object Storage Service (OBS), ROMA Connect,
third-party application (HTTP push), and AMQP message
queue.

5.2 Subscription and Push

5.2.1 Overview
A device can connect to and communicate with the platform. The device reports
data to the platform using custom topics or product models. After the
subscription/push configuration on the console is complete, the platform pushes
messages about device lifecycle changes, reported device properties, reported
device messages, device message status changes, device status changes, and batch
task status changes to the application.

The platform supports two subscription modes: HTTP/HTTPS and AMQP.

● HTTP/HTTPS subscription/push: An application calls the platform APIs
Creating a Rule Trigger Condition, Creating a Rule Action, and Modifying
a Rule Trigger Condition to configure and activate rules. The platform
pushes the changed device service details and management details to the
application with a specified URL. (Service details include device lifecycle
management, device data reporting, device message status, and device status.
Management details include software/firmware upgrade status and result.)

● AMQP subscription/push: Data can be forwarded without interconnecting with
other HUAWEI CLOUD services. An application calls the platform APIs
Creating a Rule Trigger Condition, Creating a Rule Action, and Modifying
a Rule Trigger Condition to configure and activate rules. After a connection
is established between the AMQP client and the platform, the platform
pushes the changes to a specified AMQP message queue based on the type of
data subscribed. For details, see 5.2.3 AMQP Subscription/Push.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 235

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01306.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01306.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0082.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0082.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html

Subscription/
Push

Application Scenario Advantages
and
Disadvantage
s

Restrictions

HTTP/HTTPS
subscription/
push

An application functions as
the server and passively
receives messages from the
platform.

Data cannot
be obtained
proactively.

-

AMQP
subscription/
push

An application functions as
the client and proactively pulls
messages from the platform
or passively receives messages
from the platform by means
of listening.

Data can be
obtained
proactively.

For details,
see
Connection
Specificatio
ns.

5.2.2 HTTP/HTTPS Subscription/Push

Overview
Subscription: An application calls the platform APIs Creating a Rule Trigger
Condition, Creating a Rule Action, and Modifying a Rule Trigger Condition to
configure and activate rules, in order to obtain changed device service details and
management details. (Service details include device lifecycle management, device
data reporting, device message status, and device status. Management details
include software/firmware upgrade status and result.) The URL of the application,
also called the callback URL, must be specified during subscription. Click here to
see what is a callback URL?

Push: After a subscription is successful, the platform pushes the corresponding
change to a specified callback URL based on the type of data subscribed. (For
details on the pushed content, see Transferring Data.) If an application does not
subscribe to a specific type of data notification, the platform does not push the
data to the application even if the data has changed. The platform pushes data, in
JSON format, using HTTP or HTTPS. HTTPS requires authentication and is more
secure. Therefore, HTTPS is recommended.

The figure below shows the subscription and push process.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 236

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/en-us/iothub_faq/iot_faq_00101.html
https://support.huaweicloud.com/en-us/iothub_faq/iot_faq_00101.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01200.html

Before pushing HTTPS messages to an application, the platform must verify the
application authenticity. Therefore, the application CA certificate must be loaded
to the platform. (You can use a commissioning certificate during commissioning
and replace it with a commercial certificate during commercial use to avoid
security risks.)

Push mechanism: After receiving a push message from the platform, the
application returns a 200 OK message. If the application does not respond within
15 seconds or returns a 501, 502, 503, or 504 message, the message delivery fails.
The platform caches the message for 10 minutes. Then the platform retries to
push the message to each failed application in polling mode. If the retry also fails
and the message cache time elapses, the platform does not attempt delivery
again. If the platform fails to send a push message 10 consecutive times within
the message cache time, the platform sets the callback URL to invalid and checks
the validity of all failed URLs in polling mode. If a URL is confirmed to be valid,
the platform resets the URL to valid. You can log in to the IoTDA console, choose
Resource Spaces in the navigation pane, click View in the row of a resource
space, and view the URL status on the Subscription/Push tab page.

Subscribing to Data
After connecting to IoTDA, an application calls an API to subscribe to data.

● For details on how to configure HTTP or HTTPS subscriptions on the console,
see Configuring HTTP/HTTPS Subscription and Loading the CA Certificate.

● For details on how to subscribe to data through APIs, see Calling APIs,
Creating a Rule Trigger Condition, Creating a Rule Action, and Modifying
a Rule Trigger Condition.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 237

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0090.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html

Format of Pushed Data

For details on the format of data pushed by the platform to applications after
data subscription is created, see Transferring Data.

Loading the CA Certificate

If HTTPS is used, you must load the push certificate by following the instructions
provided in this section. Then create a subscription task on the console by
following the instructions provided in Configuring HTTP/HTTPS Subscription.

● If the application cancels the subscription and then re-subscribes the data
again (with the URL unchanged), the CA certificate must be loaded to the
platform again.

● If a subscription type (URL) is added, you must load the CA certificate
corresponding to the URL to the platform. Even if the CA certificate used by
the new URL is the same as that used by the original URL, the CA certificate
must be loaded again.

Step 1 Log in to the IoTDA console.

Step 2 In the navigation pane, click Resource Spaces. On the page displayed, click View
in the row of a resource space to access its details.

Step 3 On the Subscription/Push tab page, click Configure Certificate, set the
parameters based on the data below, and click OK to load the certificate.

Parameter Description

CA
Certificate

A CA certificate from the application can be applied for and
purchased in advance.
NOTE

You can prepare a commissioning certificate during commissioning. For
security reasons, you are advised to replace the commissioning certificate
with a commercial certificate during commercial use.

Domain/IP
and Port

Specify the domain name or IP address and port used by the
platform to push messages to the application. Set this parameter
to the domain name or IP address and port in the URL of the API
Creating a Rule Action, for example, api.huawei.com:9001 and
172.0.1.2:8080.

Check
Common
Name

Specify whether the common name of the CA certificate is to be
verified to see whether the loaded certificate matches the applied
certificate. It is recommended that the common name be verified.

Common
Name

This parameter is displayed when Check Common Name is
enabled. Obtain the name of the CA certificate from the certificate
applicant.

SNI
Support

If multiple servers use the same IP address and port, select SNI
Supported, and set Common Name to the domain name of the
server that is required to receive push messages. Then the specified
server sends its device certificate to the platform. This parameter is
not selected by default.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 238

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01200.html
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01302.html

Parameter Description

Use Device
Certificate

Retain the default value Disable.

----End

Creating an X.509 Commissioning Certificate

A commissioning certificate, or a self-signed certificate, is used for authentication
when the client accesses the server through HTTPS. When the platform uses
HTTPS to push data to an application, the platform authenticates the application.
This section uses the Windows operating system as an example to describe how to
use OpenSSL to make a commissioning certificate. The generated certificate is in
PEM format and the suffix is .cer.

The table below lists common certificate storage formats.

Storage
Format

Description

DER Binary code. The suffix is .der, .cer, or .crt.

PEM Base64 code. The suffix is .pem, .cer, or .crt.

JKS Java certificate storage format. The suffix is .jks.

NO TE

The commissioning certificate is used only for commissioning. During commercial use, you
must apply for certificates from a trusted CA. Otherwise, security risks may occur.

Step 1 Visit https://slproweb.com/products/Win32OpenSSL.html to download and
install OpenSSL.

Step 2 Open the CLI as user admin.

Step 3 Run cd c:\openssl\bin (replace c:\openssl\bin with the actual OpenSSL
installation directory) to access the OpenSSL view.

Step 4 Generate the private key file ca_private.key of the CA root certificate.
openssl genrsa -passout pass:123456 -aes256 -out ca_private.key 2048

● aes256: encryption algorithm
● passout pass: private key password
● 2048: key length

Step 5 Use the private key file of the CA root certificate to generate the file ca.csr.
openssl req -passin pass:123456 -new -key ca_private.key -out ca.csr -subj "/C=CN/ST=GD/L=SZ/O=Huawei/
OU=IoT/CN=CA"

Modify the following information based on actual conditions:

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 239

https://slproweb.com/products/Win32OpenSSL.html

● C: country, for example, CN
● ST: region, for example, GD
● L: city, for example, SZ
● O: organization, for example, Huawei
● OU: organization unit, for example, IoT
● CN: common name (the organization name of the CA), for example, CA

Step 6 Create the CA root certificate ca.cer.
openssl x509 -req -passin pass:123456 -in ca.csr -out ca.cer -signkey ca_private.key -CAcreateserial -days
3650

Modify the following information based on actual conditions:

● passin pass: The value must be the same as the private key password set in 4.
● days: validity period of the certificate.

Step 7 Generate the private key file for the application.
openssl genrsa -passout pass:123456 -aes256 -out server_private.key 2048

Step 8 Generate the .csr file for the application.
openssl req -passin pass:123456 -new -key server_private.key -out server.csr -subj "/C=CN/ST=GD/L=SZ/
O=Huawei/OU=IoT/CN=appserver.iot.com"

Modify the following information based on actual conditions:

● C: country, for example, CN
● ST: region, for example, GD
● L: city, for example, SZ
● O: organization, for example, Huawei
● OU: organization unit, for example, IoT
● CN: common name. Enter the domain name or IP address of the application.

Step 9 Use the CA private key file ca_private.key to sign the file server.csr and generate
the server certificate file server.cer.
openssl x509 -req -passin pass:123456 -in server.csr -out server.cer -sha256 -CA ca.cer -CAkey ca_private.key
-CAserial ca.srl -CAcreateserial -days 3650

Step 10 (Optional) If you need a .crt or .pem certificate, proceed this step. The following
uses the conversion from server.cer to server.crt as an example. To convert the
ca.cer certificate, replace server in the command with ca.
openssl x509 -inform PEM -in server.cer -out server.crt

Step 11 In the bin folder of the OpenSSL installation directory, obtain the CA certificate
(ca.cer/ca.crt/ca.pem), application server certificate (server.cer/server.crt/
server.pem), and private key file (server_private.key). The CA certificate is loaded
to the platform, and the application server certificate and private key file are
loaded to the application.

----End

Configuring HTTP/HTTPS Subscription
This section describes how to configure HTTP or HTTPS subscription on the
console.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 240

Step 1 Log in to the IoTDA console.

Step 2 In the navigation pane, choose Rules > Data Forwarding, and click Create Rule
in the upper right corner.

Step 3 Set the parameters based on the table below and click Create Rule.

Parameter Description

Rule Name Specify the name of a rule to create.

Description Describe the rule.

Data Source ● Device: Device information, such as device addition, deletion,
and update, will be forwarded. When Data Source is set to
Device, quick configuration is not supported.

● Device property: A property value reported by a device in a
resource space will be forwarded. Click Quick Configuration
on the right and select the product, property, and service
data to forward.

● Device message: A message reported by a device in a
resource space will be forwarded. Click Quick Configuration
on the right and select data of a specified topic to forward.
Select the product to which the topic belongs and enter the
topic name. You can use a custom topic on the product
details page or a preset topic.

● Device message status: The status of device messages
exchanged between the device and platform will be
forwarded. For details on the device message status, see
Message Status. When Data Source is set to Device
message status, quick configuration is not supported.

● Device status: The status change of a directly connected
device in a resource space will be forwarded. Click Quick
Configuration on the right to forward information about
devices whose status is Online, Offline, or Abnormal to
other services. For details on the status of devices directly
connected to the IoT platform, see Device Status.

● Batch task: The batch task status will be forwarded. When
Data Source is set to Batch Task, quick configuration is not
supported.

Trigger After the data source is selected, the platform automatically
matches the trigger event.

Resource
Space

You can select a single resource space or all resource spaces. If
All resource spaces is selected, quick configuration is not
supported.

Step 4 Under Set Forwarding Target, click Add. On the displayed page, set the
parameters based on the table below and click OK.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 241

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_02_9992.html#section3
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0046.html#section2
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0065.html#section0

Parameter Description

Forwarding
Target

Select Third-party application (HTTP push).

Push URL Specify the domain name or IP address and port used by the
platform to push messages to the application. for example,
api.huawei.com:9001 and 172.0.1.2:8080.
NOTE

Ensure that the URL is the same as the domain name/IP address
entered in Loading the CA Certificate.

Step 5 After the rule is defined, click Start Rule to start forwarding data to the HTTP or
HTTPS message queue.

----End

FAQs
The following lists the frequently asked questions about the subscription and push
service. For more questions, click here.
● How Do I Obtain Certificates?
● How Do I Obtain the Callback URL When Calling the Subscription API?
● Can a Domain Name Be Used in a Callback URL?
● What Should I Do If an Error Code 503 Is Displayed?
● Why Does an Application Receive Multiple Push Messages After a Device

Reports a Piece of Data?

● Why Is the Callback URL Invalid During the Subscription API Call?
● How Can I Obtain the subscriptionId Needed in Calling the API for

Deleting a Subscription?

APIs
Creating a Rule Action

Creating a Rule Trigger Condition

Modifying a Rule Trigger Condition

Forwarding Data

5.2.3 AMQP Subscription/Push

5.2.3.1 Overview
Subscription: AMQP is short for Advanced Message Queuing Protocol. You can
create a subscription task on the IoTDA console. You can call platform APIs
Creating a Rule Trigger Condition, Creating a Rule Action, and Modifying a
Rule Trigger Condition to configure and activate rules for obtaining changed
device service details and management details. (Service details include device

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 242

https://support.huaweicloud.com/en-us/iothub_faq/iot_faq_00234.html
https://support.huaweicloud.com/en-us/iothub_faq/iot_faq_000249.html
https://support.huaweicloud.com/en-us/iothub_faq/iot_faq_00101.html
https://support.huaweicloud.com/en-us/iothub_faq/iot_faq_00077.html
https://support.huaweicloud.com/en-us/iothub_faq/iot_faq_00065.html
https://support.huaweicloud.com/en-us/iothub_faq/iot_faq_00070.html
https://support.huaweicloud.com/en-us/iothub_faq/iot_faq_00070.html
https://support.huaweicloud.com/en-us/iothub_faq/iot_faq_00070.html
https://support.huaweicloud.com/en-us/iothub_faq/iot_faq_00064.html
https://support.huaweicloud.com/en-us/iothub_faq/iot_faq_00064.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01200.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html

lifecycle management, device data reporting, device message status, and device
status. Management details include software/firmware upgrade status and result.)
The AMQP message channel must be specified during subscription creation.

Push: After a subscription is created, the platform pushes the corresponding
change to the specified AMQP message queue based on the type of data
subscribed. If an application does not subscribe to a specific type of data
notification, the platform does not push the data to the application even if the
data has changed. You can use the AMQP client to establish a connection with the
platform to receive data. The figure below shows the subscription and push
process.

Push mechanism: After receiving a message from the platform, the application
returns a response. (The automatic response mode is recommended.) If the
application does not pull data after the connection is established, data will be
stacked on the server. When the maximum cache duration (one day) is reached,
the platform clears the data. If the application does not respond in time after
receiving the message and the persistent connection is interrupted, the
corresponding data will be pushed again in the next connection established.

Subscribing to Data
After connecting to IoTDA, an application calls an API to subscribe to data.

● For details on how to configure subscriptions on the console, see 5.2.3.2
Configuring AMQP Server Subscription.

● For details on how to subscribe to data through APIs, see Calling APIs,
Creating a Rule Trigger Condition, Creating a Rule Action, and Modifying
a Rule Trigger Condition.

Format of Pushed Data
For details on the format of data pushed by the platform to applications after
data subscription is created, see Transferring Data.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 243

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0090.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01200.html

APIs
Creating a Rule Action

Creating a Rule Trigger Condition

Modifying a Rule Trigger Condition

Transferring Data

Creating an AMQP Queue

Querying the AMQP List

Querying an AMQP Queue

Generating an Access Credential

5.2.3.2 Configuring AMQP Server Subscription
This topic describes how to set and manage AMQP server subscription on the IoT
platform.

Step 1 Log in to the IoTDA console.

Step 2 In the navigation pane, choose Rules > Data Forwarding, and click Create Rule
in the upper right corner.

Step 3 Set the parameters based on the table below and click Create Rule.

Parameter Description

Rule Name Specify the name of a rule to create.

Description Describe the rule.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 244

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01200.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0103.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0102.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0104.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0111.html
https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

Parameter Description

Data Source ● Device: Device information, such as device addition, deletion,
and update, will be forwarded. When Data Source is set to
Device, quick configuration is not supported.

● Device property: A property value reported by a device in a
resource space will be forwarded. Click Quick Configuration
on the right and select the product, property, and service
data to forward.

● Device message: A message reported by a device in a
resource space will be forwarded. Click Quick Configuration
on the right and select data of a specified topic to forward.
Select the product to which the topic belongs and enter the
topic name. You can use a custom topic on the product
details page or a preset topic.

● Device message status: The status of device messages
exchanged between the device and platform will be
forwarded. For details on the device message status, see
Message Status. When Data Source is set to Device
message status, quick configuration is not supported.

● Device status: The status change of a directly connected
device in a resource space will be forwarded. Click Quick
Configuration on the right to forward information about
devices whose status is Online, Offline, or Abnormal to
other services. For details on the status of devices directly
connected to the IoT platform, see Device Status.

● Batch task: The batch task status will be forwarded. When
Data Source is set to Batch Task, quick configuration is not
supported.

Trigger After the data source is selected, the platform automatically
matches the trigger event.

Resource
Space

You can select a single resource space or all resource spaces. If
All resource spaces is selected, quick configuration is not
supported.

Step 4 Under Set Forwarding Target, click Add. On the displayed page, set the
parameters based on the table below and click OK.

Parameter Description

Forwarding
Target

Select AMQP message queue.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 245

https://support.huaweicloud.com/en-us/usermanual-iothub/iot_02_9992.html#section3
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0046.html#section2
https://support.huaweicloud.com/en-us/usermanual-iothub/iot_01_0065.html#section0

Parameter Description

Message Queue Click Select to select a message queue.
● If no message queue is available, create one. The queue

name must be unique and can contain a maximum of 128
characters that consist of letters, numbers, underscores (_),
hyphens (-), and vertical bars (|). Other characters such as
the slash (/) are not allowed.

● To delete a message queue, click Delete on the right of
the message queue.
NOTE

A subscribed queue cannot be deleted.

Step 5 After the rule is defined, click Enable Rule to start forwarding data to the AMQP
message queue.

----End

5.2.3.3 AMQP Client Access

After configuring and activating rules by calling the platform APIs Creating a Rule
Trigger Condition, Creating a Rule Action, and Modifying a Rule Trigger
Condition, connect the AMQP client to the IoT platform. Then run the AMQP
client on your server to receive subscribed-to messages.

Protocol Version

For details on AMQP, see AMQP.

The IoT platform supports only AMQP 1.0.

Connection Establishment and Authentication
1. The AMQP client establishes a TCP connection with the platform and

performs TLS handshake verification.

NO TE

To ensure security, the AMQP client must use TLS1.2 or a later version for encryption.
Non-encrypted TCP transmission is not supported.

2. The client requests to set up a connection.
3. The client sends a request to the platform to establish a receiver link (a

unidirectional channel for the platform to push data to the client).
The receiver link must be set up within 15 seconds after the connection is set
up on the client. Otherwise, the platform will close the connection.
After the receiver link is set up, the client is connected to the platform.

NO TE

Only one receiver link can be created for a connection, and sender links cannot be
created. Therefore, the platform can push messages to the client, but the client cannot
send messages to the platform.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 246

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_01309.html
https://www.amqp.org/?spm=a2c4g.11186623.2.16.4954719fdfh8Qf

Connection Configuration Parameters
The table below describes the connection address and connection authentication
parameters for the AMQP client to connect to the platform.

● AMQP access domain name: amqps://${UUCID}.iot-amqps.cn-
north-4.myhuaweicloud.com

● Connection string: amqps://${UUCID}.iot-amqps.cn-
north-4.myhuaweicloud.com :5671?
amqp.vhost=default&amqp.idleTimeout=8000&amqp.saslMechanisms=PLAIN

Parameter Description

UUCID Short for unique user connect ID, which is automatically
generated for each account. You can view the UUCID on
the Overview page of the IoTDA console.

amqp.vhost Currently, AMQP uses the default host. Only the default
host is supported.

amqp.saslMech
anisms

Connection authentication mode. Currently, PLAIN-SASL is
supported.

idle-time-out Heartbeat interval, in milliseconds. If the heartbeat
interval expires and no frame is transmitted on the
connection, the platform closes the connection.

● Port: 5671
● Client identity authentication parameters

username = "accessKey=${accessKey}|timestamp=1599116822987|"
password = "${accessCode}"

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 247

https://console.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

Parameter Mandato
ry or
Optional

Description

accessKey Mandator
y

An accessKey can be used to establish a
maximum of 32 concurrent connections. When
establishing a connection for the first time, preset
the parameter by following the instructions
provided in Obtaining the AMQP Access
Credential.

timestamp Mandator
y

Indicates the current time. The value is a 13-digit
timestamp, accurate to milliseconds.
The server verifies the client timestamp. There is a
5-minute difference between the client
timestamp and server timestamp.

accessCode Mandator
y

The value can contain a maximum of 256
characters. When establishing a connection for
the first time, preset the parameter by following
the instructions provided in Resources. If the
accessCode is lost, you can call the API
Generating an Access Token or follow the
instructions provided in Obtaining the AMQP
Access Credential to reset the accessCode.

Obtaining the AMQP Access Credential

If an application uses AMQP to access the platform for data transfer, preset an
access credential. You can call the API Generating an Access Credential or use
the console to preset an access credential. The procedure for using the console to
generate an access credential is as follows:

1. In the navigation pane, click IoTDA Instances. On the page displayed, click
Details under Basic Edition to access the details.

2. Click Preset Access Credential to preset the accessCode and accessKey.

NO TE

If you already have an access credential, the accessKey cannot be used after you
preset the access credential again.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 248

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0111.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0111.html

Connection Specifications

Key Documentation

Maximum number of queues that can
be connected to a connection

10

Maximum number of queues for a
user

100

Maximum number of connections for
a tenant

32

Maximum number of cached messages
for an IoTDA instance

9,000

Maximum number of concurrent
connections

1,000

Cache duration of a message (days) 1

Receiving Push Messages

After the receiver link between the client and platform is established, the client
can proactively pull data or register a listener to enable the platform to push data.
The proactive mode is recommended, because the client can pull data based on its
own capability.

5.2.3.4 Java SDK Access Example

An AMQP-compliant JMS client connects to the IoT platform and receives
subscribed messages from the platform.

Requirements for the Development Environment

JDK 1.8 or later has been installed.

Obtaining the Java SDK

The AMQP SDK is an open-source SDK. If you use Java, you are advised to use the
Apache Qpid JMS client. Visit Qpid JMS 0.50.0 to download the client and view
the instructions for use.

Adding a Maven Dependency
<!-- amqp 1.0 qpid client -->
 <dependency>
 <groupId>org.apache.qpid</groupId>
 <artifactId>qpid-jms-client</artifactId>
 <version>0.50.0</version>
 </dependency>

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 249

https://qpid.apache.org/releases/qpid-jms-0.47.0/index.html

Code Samples
You can click here to obtain the Java SDK access example. For details on the
parameters involved in the demo, see 5.2.3.3 AMQP Client Access.

package com.huawei.iot.amqp.jms;

import org.apache.qpid.jms.JmsConnection;
import org.apache.qpid.jms.JmsConnectionFactory;
import org.apache.qpid.jms.JmsConnectionListener;
import org.apache.qpid.jms.message.JmsInboundMessageDispatch;
import org.apache.qpid.jms.transports.TransportOptions;
import org.apache.qpid.jms.transports.TransportSupport;

import javax.jms.*;
import javax.naming.Context;
import javax.naming.InitialContext;
import java.net.URI;
import java.util.Hashtable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

public class HwIotAmqpJavaClientDemo{
 // Asynchronous thread pool. You can adjust the parameters based on service features or use other
asynchronous processing modes.
 private final static ExecutorService executorService = new
ThreadPoolExecutor(Runtime.getRuntime().availableProcessors(),
 Runtime.getRuntime().availableProcessors() * 2, 60,
 TimeUnit.SECONDS, new LinkedBlockingQueue<>(5000));

 public static void main(String[] args) throws Exception{
 // accessKey for the access credential.
 String accessKey = "${yourAccessKey}";
 long timeStamp = System.currentTimeMillis();
 // Method to assemble userName. For details, see AMQP Client Access.
 String userName = "accessKey=" + accessKey + "|timestamp=" + timeStamp;
 // accessCode for the access credential.
 String password = "${yourAccessCode}";
 // Assemble the connection URL according to the qpid-jms specifications.
 String connectionUrl = "amqps://${UUCID}.iot-amqps.cn-north-4.myhuaweicloud.com:5671?
amqp.vhost=default&amqp.idleTimeout=8000&amqp.saslMechanisms=PLAIN";
 Hashtable<String, String> hashtable = new Hashtable<>();
 hashtable.put("connectionfactory.HwConnectionURL", connectionUrl);
 // Queue name. You can use DefaultQueue.
 String queueName = "${yourQueue}";
 hashtable.put("queue.HwQueueName", queueName);
 hashtable.put(Context.INITIAL_CONTEXT_FACTORY,
"org.apache.qpid.jms.jndi.JmsInitialContextFactory");
 Context context = new InitialContext(hashtable);
 JmsConnectionFactory cf = (JmsConnectionFactory) context.lookup("HwConnectionURL");
 // Multiple queues can be created for one connection. Match queue.HwQueueName with
queue.HwQueueName.
 Destination queue = (Destination) context.lookup("HwQueueName");

 // Trust the server.
 TransportOptions to = new TransportOptions(); to.setTrustAll(true);
 cf.setSslContext(TransportSupport.createJdkSslContext(to));

 // Create a connection.
 Connection connection = cf.createConnection(userName, password);
 ((JmsConnection) connection).addConnectionListener(myJmsConnectionListener);
 // Create a session.
 // Session.CLIENT_ACKNOWLEDGE: After receiving a message, manually call message.acknowledge().
 // Session.AUTO_ACKNOWLEDGE: The SDK automatically responds with an ACK message.
(recommended processing)
 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 connection.start();

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 250

https://developer.obs.cn-north-4.myhuaweicloud.com/manage/amqp/HwIotAmqpJavaClientDemo.zip

 // Create a receiver link.
 MessageConsumer consumer = session.createConsumer(queue);
 // Messages can be processed in either of the following ways:
 // 1. Proactively pull data (recommended processing). For details, see receiveMessage(consumer).
 // 2. Add a listener. For details, see consumer.setMessageListener(messageListener). The server
proactively pushes data to the client at an acceptable data rate.
 receiveMessage(consumer);
 // consumer.setMessageListener(messageListener);
 }

 private static void receiveMessage(MessageConsumer consumer) throws JMSException{
 while (true){
 try{
 // It is recommended that received messages be processed asynchronously. Ensure that the
receiveMessage function does not contain time-consuming logic.
 Message message = consumer.receive(); processMessage(message);
 } catch (Exception e) {
 System.out.println("receiveMessage hand an exception: " + e.getMessage());
 e.printStackTrace();
 }
 }

 }

 private static MessageListener messageListener = new MessageListener(){
 @Override
 public void onMessage(Message message){
 try {
 // It is recommended that received messages be processed asynchronously. Ensure that the
onMessage function does not contain time-consuming logic.
 // If the service processing takes a long time and blocks the thread, the normal callback after the
SDK receives the message may be affected.
 executorService.submit(() -> processMessage(message));
 } catch (Exception e){
 System.out.println("submit task occurs exception: " + e.getMessage());
 e.printStackTrace();
 }
 }
 };

 /**
 * Service logic for processing the received messages
 */
 private static void processMessage(Message message) {
 try {
 String body = message.getBody(String.class); String content = new String(body);
 System.out.println("receive an message, the content is " + content);
 } catch (Exception e){
 System.out.println("processMessage occurs error: " + e.getMessage());
 e.printStackTrace();
 }
 }

 private static JmsConnectionListener myJmsConnectionListener = new JmsConnectionListener(){
 /**
 * Connection established.
 */
 @Override
 public void onConnectionEstablished(URI remoteURI){
 System.out.println("onConnectionEstablished, remoteUri:" + remoteURI);
 }

 /**
 * The connection fails after the maximum number of retries is reached.
 */
 @Override
 public void onConnectionFailure(Throwable error){
 System.out.println("onConnectionFailure, " + error.getMessage());
 }

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 251

 /**
 * Connection interrupted.
 */
 @Override
 public void onConnectionInterrupted(URI remoteURI){
 System.out.println("onConnectionInterrupted, remoteUri:" + remoteURI);
 }

 /**
 * Automatic reconnection.
 */
 @Override
 public void onConnectionRestored(URI remoteURI){
 System.out.println("onConnectionRestored, remoteUri:" + remoteURI);
 }

 @Override
 public void onInboundMessage(JmsInboundMessageDispatch envelope){
 System.out.println("onInboundMessage, " + envelope);
 }

 @Override
 public void onSessionClosed(Session session, Throwable cause){
 System.out.println("onSessionClosed, session=" + session + ", cause =" + cause);
 }

 @Override
 public void onConsumerClosed(MessageConsumer consumer, Throwable cause){
 System.out.println("MessageConsumer, consumer=" + consumer + ", cause =" + cause);
 }

 @Override
 public void onProducerClosed(MessageProducer producer, Throwable cause){
 System.out.println("MessageProducer, producer=" + producer + ", cause =" + cause);
 }
 };
}

5.2.3.5 Node.js SDK Access Example

This topic describes how to use a Node.js AMQP SDK to connect to the HUAWEI
CLOUD IoT platform and receive subscribed messages from the platform.

Development Environment

Node.js 8.0.0 or later is used.

Downloading the SDK

For the AMQP SDK using Node.js, rhea is recommended. Visit rhea to download
the repository and view the user guide.

Adding Dependencies

Add the following dependencies to the package.json file:

"dependencies": {
 "rhea": "^1.0.12"
 }

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 252

https://github.com/amqp/rhea

Sample Code
You can click here to obtain the SDK access example. For details on the
parameters involved in the demo, see 5.2.3.3 AMQP Client Access.

const container = require('rhea');
// Obtain the timestamp.
var timestamp = Math.round(new Date() / 1000);

// Set up a connection.
var connection = container.connect({
 // Access domain name. For details, see AMQP Client Access.
 'host': '${UUCID}.iot-amqps.cn-north-4.myhuaweicloud.com',
 'port': 5671,
 'transport': 'tls',
 'reconnect': true,
 'idle_time_out': 8000,
 // Method to assemble username. For details, see AMQP Client Access.
 'username': 'accessKey=${yourAccessKey}|timestamp=' + timestamp + '|',
 // accessCode. For details, see AMQP Client Access.
 'password': '${yourAccessCode}',
 'saslMechannisms': 'PLAIN',
 'rejectUnauthorized': false,
 'hostname': 'default',
});

// Create a Receiver connection. You can use DefaultQueue.
var receiver = connection.open_receiver('${yourQueue}');

// Callback function for receiving messages pushed from the cloud
container.on('message', function (context) {
 var msg = context.message;
 var content = msg.body;
 console.log(content);
 // Send an ACK message. Note that the callback function should not contain time-consuming logic.
 context.delivery.accept();
 });

5.3 Java Demo
This topic describes how to use the sample code (Java) for calling APIs. For details
on these APIs, see API Reference on the Application Side.

(Optional) Preparing the Java Development Environment
If you have prepared the Java development environment, skip this section.

This section describes how to install the JDK 1.8 and Eclipse in the Windows
operating system. If you use another development environment, deploy the two
tools based on project situations.

Step 1 Download JDK 1.8 (for example, jdk-8u161-windows-x64.exe) from the Java JDK
website, and double-click it to install it.

Step 2 Configure Java environment variables.

1. Right-click Computer and choose Properties.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 253

https://iotda-document.obs.cn-north-4.myhuaweicloud.com:443/HwIotAmqpClient.zip
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0001.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

2. Select Advanced system settings.

3. In the System Properties dialog box, choose Advanced > Environment
Variables.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 254

4. Configure the system variables. Configure the following three variables:
JAVA_HOME, Path, and CLASSPATH (where the variable names are case-
insensitive). If a variable name already exits, click Edit. If a variable name
does not exist, click New to create one. Generally, the Path variable exists,
and the JAVA_HOME and CLASSPATH variables need to be added.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 255

JAVA_HOME indicates the JDK installation path and is set to C:\ProgramFiles
\Java\jdk1.8.0_45. This path contains the lib and bin files.

Path enables the system to recognize a Java command in any path. If the
Path variable exists, add a path at the end of the variable value.
Configuration example: ;C:\Program Files\Java\jdk1.8.0_45\bin;C:\Program
Files\Java\jdk1.8.0_45\jre\bin

Separate two paths using a semicolon (;).

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 256

CLASSPATH specifies the path of loaded Java classes (class or lib). Java
commands can be identified only if they are contained in the class path.
Configuration example: .;%JAVA_HOME%\lib\dt.jar;%JAVA_HOME%\lib
\tools.jar
Note: The path starts with a dot (.), indicating the current path.

5. Choose Start > Run, enter cmd, and run the following commands: Java -
version, java, and javac. If the commands can be run, the environment
variables are set.

Step 3 Download the Eclipse installation package from the IDEA website and
decompress it to the local directory.

----End

Importing the Demo Project
This section describes how to call APIs based on the Java sample code. Do not use
the sample code for commercial use. For details on these APIs, see API Reference
on the Application Side.

Step 1 Download and decompress the API demo in Java.

Step 2 Open IDEA, click Import Project, select pom.xml in the decompressed demo
folder, and click OK.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 257

https://www.jetbrains.com/
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0001.html
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/north/Java/ApiDemo/javaApiDemo2.zip

Step 3 Choose File > Setting > Build, Execution, Deployment > Build Tools > Maven,
set User setting file to the path of the settings.xml file of Maven, and set Local
repository to the path of the local Maven repository.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 258

----End

Obtaining a Token

Before accessing platform APIs, an application must call the API Obtaining the
Token of an IAM User for authentication. After the authentication is successful,
HUAWEI CLOUD returns the authentication token X-Subject-Token to the
application.

This section describes how to call the authentication API based on the Java code
sample of the API.

Step 1 In IDEA, choose JavaApiDemo > src > main > java > com.huawei,.util >
Constants.java, and then change the values of TOKEN_BASE_URL and
IOTDM_BASE_URL.

Parameters are described as follows:

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 259

https://support.huaweicloud.com/en-us/api-iam/iam_30_0001.html
https://support.huaweicloud.com/en-us/api-iam/iam_30_0001.html

● TOKEN_BASE_URL: Enter the address for interconnecting with IAM, that is,
the IAM endpoint, which can be obtained from IAM Regions and Endpoints.

● IOTDM_BASE_URL: Enter the address for interconnecting with IoTDA, that is,
the IoTDA endpoint, which can be obtained from IoTDA Regions and
Endpoints.

NO TE

The endpoints vary depending on the region. Obtain the endpoints based on project
conditions. For example, if you have subscribed to IoTDA in CN North-Beijing 4, obtain
the endpoint of CN North-Beijing 4 from IoTDA Regions and Endpoints.

Step 2 In the imported sample code, choose JavaApiDemo > src > main > java >
com.huawei.demo.auth > Authentication.java.

Change the account information to your own account information, right-click
Authentication.java, and choose Run Authentication.main() to run the code.

Step 3 View the response log on the console. If a token is obtained, the authentication is
successful.

Keep the token secure. It will be used when you call other APIs.

If no correct response is obtained, check whether the global constants are
modified correctly or whether a network fault occurs.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 260

https://developer.huaweicloud.com/en-us/endpoint?IAM
https://developer.huaweicloud.com/en-us/endpoint?IoTDA
https://developer.huaweicloud.com/en-us/endpoint?IoTDA
https://developer.huaweicloud.com/en-us/endpoint?IoTDA

Note: For each attempt to obtain a new token, the system preferentially retrieves
the existing token stored in the file. If the token has expired, the system deletes
the token.text file and obtains a new one.

----End

Device Registration (Token Authentication)
Before connecting a device to the platform, an application must call the API
Creating a Device. Each device connecting to the platform carries the device ID to
complete access authentication. For details, see API Reference.

This section describes how to call the API based on the Java sample code of the
API.

Step 1 In IDEA, choose JavaApiDemo > src > main > java > com.huawei.demo.device >
CreateDevice.java.

Modify parameters such as nodeId, timeout, secret, deviceName, and productId.
For details on the parameter description, see the API Creating a Device.

Add the obtained token to the X-Auth-Token request header.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 261

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0003.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0046.html

Step 2 In IDEA, right-click CreateDevice.java and choose Run CreateDevice.main() to
run the code.

Step 3 View the response log on the console. If all types of subscriptions obtain the
response "201" as well as deviceId, the subscription is successful.

----End

Device Query (Token Authentication)
Applications can call the API Querying a Device to query details about a device
registered with the platform.

This section describes how to call the API based on the Java code sample of the
API.

Step 1 In IDEA, choose JavaApiDemo > src > main > java > com.huawei.demo.device >
QueryDeviceList.java, and then modify the corresponding parameters.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 262

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0055.html

Step 2 Right-click QueryDeviceList and choose Run QueryDeviceList.main() to run the
code.

Step 3 View the response log on the console. If deviceId is obtained, the query is
successful.

----End

Device Registration (AK/SK Authentication)
In addition to token authentication, AK/SK authentication is supported for calling
platform APIs. This section describes how to call the AK/SK authentication API
based on the sample code (Java) for calling APIs.

Step 1 In IDEA, choose JavaApiDemo > src > main > java > com.huawei.demo.device >
CreateDeviceByAK.java, modify the corresponding parameters, and call the
SignUtil.signRequest() method to sign the request.

Step 2 In IDEA, choose JavaApiDemo > src > main > java > com.huawei.demo.apig >
SignUtil.java, and modify the AK/SK in the signRequest() method. For details,
see Obtaining an AK/SK.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 263

https://support.huaweicloud.com/en-us/devg-apisign/api-sign-provide.html#api-sign-provide__section5742192219435

Step 3 In IDEA, right-click CreateDeviceByAK.java and choose Run
CreateDeviceByAK.main() to run the code.

Step 4 View the response log on the console. If all types of subscriptions obtain the
response "201" as well as deviceId, the subscription is successful.

----End

Device Query (AK/SK Authentication)
Applications can call the API Querying a Device to query details about a device
registered with the platform.

This section describes how to call the API based on the Java code sample of the
API.

Step 1 In IDEA, choose JavaApiDemo > src > main > java > com.huawei.demo.device >
QueryDeviceListByAK.java, modify the corresponding parameters, sign the
request, and replace the AK/SK in the signature method. For details, see
Obtaining an AK/SK.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 264

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0055.html
https://support.huaweicloud.com/en-us/devg-apisign/api-sign-provide.html#api-sign-provide__section5742192219435

Step 2 Right-click QueryDeviceListByAK and choose Run QueryDeviceListByAK.main()
to run the code.

Step 3 View the response log on the console. If deviceId is obtained, the query is
successful.

----End

Development of Other APIs
For details on how to develop other APIs, see API Reference.

Performing Single-Step Debugging
To intuitively view requests sent by applications and responses from the platform,
use the breakpoint debugging method of IDEA.

Step 1 Set breakpoints in the code where HTTP or HTTPS messages are sent. For
example, set three breakpoints for the execute method in the sample code
HttpsUtil.java. (Set the breakpoints based on your actual code.)

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 265

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0003.html

Step 2 Right-click the class to debug, for example, CreateDevice.java, and choose Debug
> CreateDevice.main().

Step 3 After the program stops running at the breakpoint, click Step Over to perform
single-step debugging. You can view the content of the variables in the Variables
window, such as the request and response.

Step 4 Expand the request variable in the Variables window to view the content.

1. When the request variable is selected, the URL of the request sent by the
application is displayed in the uri area, and the content of the request is
displayed in the entity area.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 266

2. The token is carried in headerGroup.

Step 5 Expand the response variable in the Variables window to view the content.

In the sample code, all classes other than Authentication.java call the
Authentication API in the first step. Therefore, if you want to obtain a new token
during single-step debugging on a class other than Authentication.java, view the
variable content when the program reaches the breakpoint for the second time.

----End

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 267

5.4 Debugging Using Postman

Overview

Postman is a visual editing tool for building and testing API requests. It provides
an easy-to-use UI to send HTTP requests, including GET, PUT, POST, and DELETE
requests, and modify parameters in HTTP requests. Postman also returns response
to your requests.

To fully understand APIs, read API Reference on the Application Side in advance.
The Postman Collection is already available, in which the structure of API call
requests are ready for use.

This topic uses Postman as an example to describe how to debug the following
APIs to connect an application to the IoT platform using HTTPS:

● Obtaining the Token of an IAM User
● Listing Projects Accessible to an IAM User
● Creating a Product
● Querying a Product
● Creating a Device
● Querying a Device

Prerequisites
● You have installed Postman. If Postman is not installed, install it by following

the instructions provided in Installing and Configuring Postman.
● You have downloaded the Collection.
● You have developed a product model and codec on the IoTDA console.

Installing and Configuring Postman

Step 1 Install Postman.

1. Visit the Postman website to download and install Postman. (Postman 7.17.0
is used as an example.)

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 268

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0001.html
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/Collection_environment_of_postman_V5.zip
https://www.getpostman.com/apps

NO TE

– Postman requires the .NET Framework 4.5 component. If you do not have this
component, click .NET Framework 4.5 to download and install it.

– To ensure successful API calls, you are advised to download Postman 7.17.0.

2. Enter the email address, username, and password to register Postman.

Step 2 Import the Postman environment variables.

1. Click in the upper right corner. The MANAGE ENVIRONMENTS window
is displayed.

2. Click Import to import the IoTDA.postman_environment.json file (obtained
after the Collection package is decompressed).

3. Click Manage Environments and select the imported IoTDA environment.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 269

https://www.microsoft.com/en-us/download/details.aspx?id=42642
https://developer.obs.cn-north-4.myhuaweicloud.com/manage/tool/Collection_environment_of_postman_V5.zip

4. Change the values of IAMEndpoint, IOTDAEndpoint, IAMUserName,
IAMPassword, IAMDoaminId, and region.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 270

NO TE

– IAMEndpoint: Obtain the IAM endpoint from IAM Regions and Endpoints.
– IOTDAEndpoint: Obtain the IAM endpoint from IoT Platform Endpoints.
– If you have subscribed to IoTDA in CN North-Beijing4, change the IAM user name,

login password, and account name by following the instructions provided in My
Credentials.

5. Return to the home page and set the environment variable to the imported
IoTDA.

Step 3 Upload the API call (V5 version).postman_collection.json file.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 271

https://developer.huaweicloud.com/en-us/endpoint?IAM
https://developer.huaweicloud.com/en-us/endpoint?IoTDA
https://console.huaweicloud.com/iam/?agencyId=7c10e4f5f39e4860870661bfd7e54257®ion=cn-north-4&locale=en-us#/mine/apiCredential
https://console.huaweicloud.com/iam/?agencyId=7c10e4f5f39e4860870661bfd7e54257®ion=cn-north-4&locale=en-us#/mine/apiCredential

After the file is uploaded, the dialog box shown in the following figure is
displayed.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 272

----End

Debugging the API Used to Obtain the Token for an IAM User
Before accessing platform APIs, an application must call the API Obtaining the
Token for an IAM User for authentication. After the authentication is successful,
HUAWEI CLOUD returns the authentication token X-Subject-Token to the
application.

To call this API, the application constructs an HTTP request. An example request is
as follows:

POST https://iam.cn-north-4.myhuaweicloud.com/v3/auth/tokens
Content-Type: application/json

{

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 273

 "auth": {
 "identity": {
 "methods": [
 "password"
],
 "password": {
 "user": {
 "name": "username",
 "password": "********",
 "domain": {
 "name": "domainname"
 }
 }
 }
 },
 "scope": {
 "project": {
 "name": "xxxxxxxx"
 }
 }
 }
}

Note: username indicates the IAM user name, password indicates the password
for logging in to HUAWEI CLOUD, domainname indicates the account name, and
projectname indicates the project name. You can obtain them from the My
Credentials page.

Debug the API by following the instructions provided in Obtaining a User Token
Through Password Authentication.

Step 1 Configure the HTTP method, URL, and headers of the API.

Step 2 Configure the body of the API.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 274

https://console.huaweicloud.com/iam/?locale=en-us#/mine/apiCredential
https://console.huaweicloud.com/iam/?locale=en-us#/mine/apiCredential
https://support.huaweicloud.com/en-us/api-iam/iam_30_0001.html
https://support.huaweicloud.com/en-us/api-iam/iam_30_0001.html

Step 3 Click Send. The returned code and response are displayed in the lower part of the
page.

Step 4 Use the returned X-Subject-Token value in the header field to update X-Auth-
Token in the IoTDA environment so that it can be used in other API calls. If the
token expires, the Authentication API must be called again to obtain a new
token.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 275

The X-Auth-Token parameter is automatically updated in Postman. You do not
need to manually update it.

----End

Debugging the API Listing Projects Accessible to an IAM User
Before accessing platform APIs, the application must call the API Listing Projects
Accessible to an IAM User to obtain the project ID of the user.

To call this API, the application constructs an HTTP request. An example request is
as follows:

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 276

GET https://iam.cn-north-4.myhuaweicloud.com/v3/auth/projects
Content-Type: application/json
X-Auth-Token: ********

Debug the API by following the instructions provided in Listing Projects
Accessible to an IAM User.

Step 1 Configure the HTTP method, URL, and headers of the API.

Step 2 Click Send. The returned code and response are displayed in the lower part of the
page.

Step 3 The returned body contains a list of projects. Search for the item whose name is
the same as the value of region in the IoTDA environment, and use the id value
to update project_id in the IoTDA environment so that it can be used in other API
calls.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 277

https://support.huaweicloud.com/en-us/api-iam/iam_06_0003.html
https://support.huaweicloud.com/en-us/api-iam/iam_06_0003.html

In this example, the project_id parameter is automatically updated in Postman.
You do not need to manually update it.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 278

----End

Debugging the API Used to Create a Product

Before connecting a device to the platform, an application must call the API
Creating a Product. The product created will be used during device registration.

To call this API, the application constructs an HTTP request. An example request is
as follows:

POST https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/{project_id}/products
Content-Type: application/json
X-Auth-Token: ********

{
 "name" : "Thermometer",
 "device_type" : "Thermometer",
 "protocol_type" : "MQTT",
 "data_format" : "binary",
 "manufacturer_name" : "ABC",
 "industry" : "smartCity",
 "description" : "this is a thermometer produced by Huawei",
 "service_capabilities" : [{
 "service_type" : "temperature",
 "service_id" : "temperature",
 "description" : "temperature",
 "properties" : [{
 "unit" : "centigrade",
 "min" : "1",
 "method" : "R",
 "max" : "100",
 "data_type" : "decimal",
 "description" : "force",
 "step" : 0.1,
 "enum_list" : ["string"],
 "required" : true,
 "property_name" : "temperature",
 "max_length" : 100
 }],
 "commands" : [{
 "command_name" : "reboot",
 "responses" : [{
 "response_name" : "ACK",
 "paras" : [{
 "unit" : "km/h",
 "min" : "1",
 "max" : "100",
 "para_name" : "force",
 "data_type" : "string",
 "description" : "force",
 "step" : 0.1,

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 279

 "enum_list" : ["string"],
 "required" : false,
 "max_length" : 100
 }]
 }],
 "paras" : [{
 "unit" : "km/h",
 "min" : "1",
 "max" : "100",
 "para_name" : "force",
 "data_type" : "string",
 "description" : "force",
 "step" : 0.1,
 "enum_list" : ["string"],
 "required" : false,
 "max_length" : 100
 }]
 }],
 "option" : "Mandatory"
 }],
 "app_id" : "jeQDJQZltU8iKgFFoW060F5SGZka"
}

Debug the API by following the instructions provided in Creating a Product.

Note: Only the parameters used in the debugging example are described in the
following steps.

Step 1 Configure the HTTP method, URL, and headers of the API.

Step 2 Configure the body of the API.

Step 3 Click Send. The returned code and response are displayed in the lower part of the
page.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 280

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0050.html

Step 4 Use the returned product_id value to update the product_id parameter in the
IoTDA environment so that it can be used in other API calls.

Note: The product_id parameter is automatically updated in Postman. You do not
need to manually update it.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 281

----End

Debugging the API Querying a Product
An application can call the API Querying a Product to query details about a
product.

To call this API, the application constructs an HTTP request. An example request is
as follows:

GET https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/{project_id}/products/{product_id}
Content-Type: application/json
X-Auth-Token: ********

Debug the API by following the instructions provided in Querying a Product.

Note: Only the parameters used in the debugging example are described in the
following steps.

Step 1 Configure the HTTP method, URL, and headers of the API.

Step 2 Click Send. The returned code and response are displayed in the lower part of the
page.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 282

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0052.html

----End

Debugging the API Creating a Device

Before connecting a device to the platform, an application must call the API
Registering a Device. Then, the device can use the unique identification code to
get authenticated and connect to the platform.

To call this API, the application constructs an HTTP request. An example request is
as follows:

POST https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/{project_id}/devices
Content-Type: application/json
X-Auth-Token: ********

{
 "node_id" : "ABC123456789",
 "device_name" : "dianadevice",
 "product_id" : "b640f4c203b7910fc3cbd446ed437cbd",
 "auth_info" : {
 "auth_type" : "SECRET",
 "secure_access" : true,
 "fingerprint" : "dc0f1016f495157344ac5f1296335cff725ef22f",
 "secret" : "3b935a250c50dc2c6d481d048cefdc3c",
 "timeout" : 300
 },
 "description" : "watermeter device"
}

Debug the API by following the instructions provided in Creating a Device.

Note: Only the parameters used in the debugging example are described in the
following steps.

Step 1 Configure the HTTP method, URL, and headers of the API.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 283

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0046.html

Step 2 Configure the body of the API.

Step 3 Click Send. The returned code and response are displayed in the lower part of the
page.

Step 4 Use the returned device_id value to update the device_id parameter in the IoTDA
environment so that it can be used in other API calls.

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 284

Note: The device_id parameter is automatically updated in Postman. You do not
need to manually update it.

----End

Debugging the API Querying a Device
An application can call the API Querying a Device to query details about a device
registered with the platform.

To call this API, the application constructs an HTTP request. An example request is
as follows:

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 285

GET https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/{project_id}/devices/{device_id}
Content-Type: application/json
X-Auth-Token: ********

Debug the API by following the instructions provided in Querying a Device.

Note: Only the parameters used in the debugging example are described in the
following steps.

Step 1 Configure the HTTP method, URL, and headers of the API.

Step 2 Click Send. The returned code and response are displayed in the lower part of the
page.

----End

IoT Device Access
Developer Guide 5 Development on the Application Side

Issue 01 (2020-12-01) Copyright © Huawei Technologies Co., Ltd. 286

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0055.html

	Contents
	1 Before You Start
	2 Obtaining Resources
	3 Product Development
	3.1 Product Development Guide
	3.2 Creating a Product
	3.3 Developing a Product Model
	3.3.1 Definition
	3.3.2 Developing a Product Model Online
	3.3.3 Developing a Product Model Offline
	3.3.4 Exporting and Importing Product Models

	3.4 Developing a Codec
	3.4.1 Definition
	3.4.2 Graphical Development
	3.4.3 Developing a Codec Using JavaScript
	3.4.4 Offline Codec Development
	3.4.5 Downloading and Uploading a Codec

	3.5 Online Debugging

	4 Development on the Device Side
	4.1 Device Access Guide
	4.2 Using IoT Device SDKs for Access
	4.2.1 Introduction to IoT Device SDKs
	4.2.2 IoT Device SDK (Java)
	4.2.3 IoT Device SDK (C)
	4.2.4 IoT Device SDK (C#)
	4.2.5 IoT Device SDK (Android)
	4.2.6 IoT Device SDK Tiny (C)

	4.3 Using MQTT Demos for Access
	4.3.1 MQTT
	4.3.2 MQTT.fx
	4.3.3 Java Demo
	4.3.4 Python Demo
	4.3.5 Android Demo
	4.3.6 C Demo
	4.3.7 C# Demo
	4.3.8 Node.js Demo

	4.4 Using Huawei-Certified Modules for Access

	5 Development on the Application Side
	5.1 API
	5.2 Subscription and Push
	5.2.1 Overview
	5.2.2 HTTP/HTTPS Subscription/Push
	5.2.3 AMQP Subscription/Push
	5.2.3.1 Overview
	5.2.3.2 Configuring AMQP Server Subscription
	5.2.3.3 AMQP Client Access
	5.2.3.4 Java SDK Access Example
	5.2.3.5 Node.js SDK Access Example

	5.3 Java Demo
	5.4 Debugging Using Postman

