iE33 Ultrasound System

User Manual

4535 616 23901 Rev A April 2012

© 2012 Koninklijke Philips Electronics N.V. All rights reserved. Published in USA.

Manufactured by Philips Ultrasound

22100 Bothell-Everett Highway Bothell, WA 98021-8431 USA

Telephone: +1 425-487-7000 or 800-426-2670

Fax: +1 425-485-6080

www.healthcare.philips.com/ultrasound

This Medical Device meets the provisions of the transposition of the Medical Device Directive 93/42/EEC within the country of origin of the Notified Body concerned with the device.

European Union Representative

Philips Medical Systems Nederland B.V. Quality & Regulatory Affairs Veenpluis 4-6 5684PC Best The Netherlands

WARNING

United States federal law restricts this device to sale by or on the order of a physician.

This document and the information contained in it is proprietary and confidential information of Philips Healthcare ("Philips") and may not be reproduced, copied in whole or in part, adapted, modified, disclosed to others, or disseminated without the prior written permission of the Philips Legal Department. This document is intended to be used by customers and is licensed to them as part of their Philips equipment purchase. Use of this document by unauthorized persons is strictly prohibited.

Philips provides this document without warranty of any kind, implied or expressed, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Philips has taken care to ensure the accuracy of this document. However, Philips assumes no liability for errors or omissions and reserves the right to make changes without further notice to any products herein to improve reliability, function, or design. Philips may make improvements or changes in the products or programs described in this document at any time.

Unauthorized copying of this document, in addition to infringing copyright, might reduce the ability of Philips to provide accurate and current information to users.

This product may contain remanufactured parts equivalent to new in performance, or parts that have had incidental use. Philips Ultrasound products may be manufactured under or operate in accordance with one or more of the following United States patents and corresponding patents in other countries: U.S. Patent Numbers 5,315,999; 5,345,426; 5,398,689; 5,469,851; 5,505,205; 5,577,505; 5,735,281; 5,846,200; 5,891,040; 5,993,390; 5,997,479; 6,126,602; 6,380,766; 6,436,045; 6,283,919; 6,231,510; 6,755,786; 6,761,689; 6,709,394. Other patent applications are pending in various countries.

"Chroma," "Color Power Angio," "HDI," "QLAB," "SonoCT," "SONOS," "xMATRIX," and "XRES" are trademarks of Koninklijke Philips Electronics N.V. Non-Philips product names may be trademarks of their respective owners.

Contents

ı	Read This First	I 5
	Intended Audience	15
	Intended Use	15
	Warnings	16
	Warning Symbols	17
	User Information Components	17
	Product Conventions	18
	User Information Conventions	20
	Upgrades and Updates	21
	Customer Comments	21
	Supplies and Accessories	22
	Customer Service	23
	Recycling, Reuse, and Disposal	23
2	Safety	27
	Basic Safety	27
	Electrical Safety	28
	Defibrillators	3 I
	Fire Safety	32
	Mechanical Safety	32
	Equipment Protection	33
	Product Compatibility	34
	Symbols	35
	Biological Safety	44
	FDA Medical Alert on Latex	46
	ALARA Education Program	47
	Output Display	52
	Control Effects	56

Related Guidance Documents	59
Acoustic Output and Measurement	59
Acoustic Output Tables	63
Acoustic Measurement Precision and Uncertainty	63
Operator Safety	64
Repetitive Strain Injury	64
Foot Switch Warning	65
Philips Transducers	65
Glutaraldehyde Exposure	65
Infection Control	66
Electromagnetic Compatibility	67
ECG Signal	69
Electrostatic Discharge Precautions	69
Electromagnetic Emissions	70
Approved Cables for Electromagnetic Compliance	71
Approved Transducers for Electromagnetic Compliance	73
Approved Accessories for Electromagnetic Compliance	73
Electromagnetic Immunity	75
Electromagnetic Interference	78
Recommended Separation Distance	80
Avoiding Electromagnetic Interference	82
Use Restrictions Due to Interference	83
System Overview	85
System Capabilities	85
Measurements	85
Transducer Types	86
Image Acquisition and Review	86
Patient Data Protection	86
System Options	87
Imaging Options	87

3

	Voice Control Option	88
	Connectivity Options	88
	Clinical/Analysis Options	88
	QLAB Advanced Quantification Software Options	89
	Data Security	89
	Technical Administration Option	90
	System Components	90
	Video Monitor	92
	Control Module	92
	Voice Control Headset	94
	Voice Annotation Microphone	94
	On/Off (Power) Control	94
	Data Storage	95
	Peripherals	97
	Transducer Receptacles and Cable Management	99
	Physio (ECG) Receptacles	100
	Rear Panel and Power Switch	102
	Wheel Brakes and Steering Locks	103
4	Preparing the System	105
	Connecting Devices	105
	External Printers	106
	Connecting an External Printer	107
	Connecting the Foot Switch	109
	External VCRs	110
	Connecting an External VCR	111
	Configuring Print Functions	111
	Connecting an External Color Monitor	113
	Connecting the System to a Network	113
	Moving the System	114
	Preparing and Moving	115

	Positioning the System in Confined Spaces	118
	Setting Up After Moving	119
	Transporting the System	122
5	Using the System	125
	Turning the System On and Off	125
	Setting the System Time and Date	127
	Using the Brakes and Steering Locks	128
	Monitor Adjustments	130
	Positioning the Monitor	130
	Changing the Monitor Tint	131
	Changing the Default Monitor Brightness	131
	Adjusting for Ambient Light	132
	Automatic Display Dimming	132
	System Controls	132
	Control Panel	133
	Positioning the Control Module	134
	Touch Screen Layout	136
	Touch Screen Brightness Controls	139
	Touch Screen Controls	140
	Touch Screen Knob Displays	144
	Using the Retractable Keyboard	145
	Status Icons	146
	Voice Control	148
	Voice Control Icons	150
	Turning Headsets On and Off	151
	Pairing Headsets	151
	Configuring Headsets	153
	Muting the Headset	154
	Enabling Voice Control	154
	Voice Profiles	154

	Creating a Voice Profile	155
	Training Voice Profiles	156
	Deleting Voice Profiles	158
	Background Noise	158
	Communication Problems	158
	Troubleshooting Voice Controls	159
	Using Voice Commands	159
	Using the Keyword Feature	160
	Specifying Keyword Default Settings	161
	Voice Annotation Commands	161
	Using Voice Annotation	162
Sy	stem Security	162
	Logging On to the System	162
	Logging Off of the System	163
	Changing Your Password	163
En	nergency Studies	I 64
	Temporary ID	I 64
	Starting Emergency Studies	165
lm	aging Display	166
Se	tting the Auto Freeze Function	169
Tr	ansducer Receptacles and Cable Management	169
	Connecting Transducers	170
	Selecting a Transducer	173
EC	CG Feature	173
D١	/D, CD, and USB Devices	173
	Media Compatibility	174
	DVD Drive	174
	Loading and Ejecting a Disc	175
	Erasing a DVD	175
	USB Devices	176

)	Customizing the System	179
	Presets	.179
	Setting the Default Transducer and Preset	.180
	Clinical Options and Tissue Specific Presets	.180
	Quick Save Presets	.180
	Creating Quick Save Presets	.181
	Deleting Quick Save Presets	.181
	Copying Quick Save Presets to Removable Media	.182
	Loading Quick Save Presets from Removable Media	.183
	System Setups	.183
	Changing Setups	.184
	Hiding the Doppler Velocity Minus Sign	.184
	Options	185
	Installing Temporary Options	.185
	Purchasing Options	.186
	Performing an Exam	187
	New Patient Exams	.187
	Entering Patient Data	.188
	Starting Emergency Studies	.188
	Selecting in the Worklist	.189
	Searching in the Worklist	.190
	Selecting a Transducer	.190
	Imaging Modes	.191
	Using 2D Mode	.191
	Annotation	.192
	Adding Labels Using Annot	.192
	Adding Labels Using the Keyboard	.193
	Adding an Image Title	.194
	Displaying Body Markers	.194
	Recording	.195

	Using the VCR	195
	Using the DVD Recorder	196
	Printing	197
	Printing in Live Imaging	198
	Review	199
	Starting Review	199
	Navigating Thumbnails and Images	199
	Acquiring Images and Loops	200
	Measurement and Analysis	201
	Measuring 2D Distance	202
	Obtaining a Typical Labeled Measurement	202
	Obtaining a Calculation Result	203
	Ending an Exam	204
8	Transducers	205
	Selecting a Transducer	205
	Setting the Default Transducer and Preset	206
	Clinical Options and Transducers	206
	Indications for Use and Supporting Transducers	208
	xMatrix Array Transducers	210
	X3-I Description	210
	X5-I Description	211
	X7-2 Description	211
	Compact Transducer Adapter	211
	Using the Compact Adapter	212
	Transducer Maintenance	213
	Acoustic Artifacts	214
	Acoustic Artifacts in 3D Imaging	217
	Transducer Covers	218
	Ergonomic Grip	219
	Installing the Ergonomic Grip	219

	Cleaning the Ergonomic Grip	220
	Transducer Storage	220
	Storage for Transport	220
	Daily and Long-Term Storage	221
9	Intraoperative Transducers	223
	Operators of Intraoperative Transducers	223
	Intended Uses for Intraoperative Transducers	223
	Patient Safety During Intraoperative Studies	224
	Patient-Contact Parts	225
	Preventing Intraoperative Transducer Problems	225
	L15-7io Description	226
	Preparing Transducers for Intraoperative Use	227
	Disposable Drapes	228
	Accessories for Intraoperative Transducers	228
	Electrical Safety and Intraoperative Transducers	228
	Leakage Current Testing for Intraoperative Transducers	229
	Testing Intraoperative Transducer Leakage Current (Source)	234
	Testing Intraoperative Transducer Leakage Current (Sink)	234
10	Transesophageal Transducers	237
	Operators of TEE Transducers	238
	Patient Safety During TEE Studies	238
	Patient-Contact Parts	243
	Preventing TEE Transducer Problems	244
	Electrical Safety and TEE Transducers	246
	Leakage Current and TEE Transducers	246
	Reducing Risks of Using TEE Transducers	246
	TEE Deflection Control Basics	247
	Connecting an S7-2omni, S7-3t, S8-3t, or X7-2t Transducer	248
	Connecting a T6H or T6207 Transducer	249
	S7-20mni TFF Transducer Description	250

X7-2t TEE Transducer Description	252
Using S7-2omni and X7-2t Transducers	254
S7-2omni and X7-2t Deflection Controls	256
Manipulating the S7-20mni and the X7-2t Tip	258
Rotating the S7-20mni and the X7-2t Image Plane	260
Calibrating the TEE Transducer	261
S7-3t TEE Transducer Description	262
Using the S7-3t TEE Transducer	264
Patient Selection for the S7-3t TEE Transducer	266
S7-3t TEE Controls	266
Manipulating the S7-3t TEE Tip	269
S7-3t TEE Array Rotation	270
Rotating the S7-3t TEE Array	271
S8-3t TEE Transducer Description	273
Using the S8-3t Transducer	
Patient Selection for the S8-3t TEE Transducer	275
Handling the S8-3t Transducer	276
S8-3t Controls	276
Manipulating the S8-3t Tip	278
S8-3t Array Rotation	279
Rotating the S8-3t Array	280
Checking the TEE Transducer	281
TEE Transducer Inspection	282
TEE Transducer Controls Inspection	282
Special Considerations for TEE Studies	282
Patient Selection for TEE Transducer Use	283
Preparing Patients for TEE Studies	284
TEE Study Guidelines	285
Tip Fold-Over	286
Recognizing Tip Fold-Over	286

	Correcting Tip Fold-Over	286
	Preventing Tip Fold-Over	287
	TEE Temperature Sensing	288
	Ensuring Safe TEE Temperatures	288
	Manual Auto-Cool Feature	288
	Using the Temperature Display	289
	Patient Temperature	290
	Entering Patient Temperature	291
	Resuming Imaging After Auto-Cool	291
	Patient Care After a TEE Study	292
	TEE Accessories and Supplies	292
	Bite Guards	292
	TEE Transducer Covers	293
	Tip Protectors	293
	Disposable Drapes	293
	TEE Leakage Current Test	294
	TEE Test Background	294
	Testing TEE Transducer Leakage Current	297
	TEE Transducer References	298
П	Transducer Care	299
	Transducer Care Safety	299
	Latex Product Alert	300
	Transmissible Spongiform Encephalopathy	300
	Acoustic Coupling Medium	301
	Choosing a Disinfectant	301
	General Cleaning for All Transducers	302
	Cleaning a Transducer	303
	Disinfecting Transducers Using a Wipe or Spray Method	303
	Cleaning and Disinfecting Cables and Connectors	306
	Disinfection of Transducers by Immersion (High-Level Disinfection)	309

	Disinfecting Transducers by Immersion	310
	Disinfecting TEE Transducers by Immersion	311
	Disinfecting TEE Transducers in an Automated Disinfector	315
	Sterilizing Transducers	318
	Disinfectants Compatibility	320
	Disinfectant Types	321
	Factors Affecting Disinfectant Efficiency	321
	Disinfectants and Cleaning Solutions Compatibility Table	322
	Gels Compatibility	329
12	System Maintenance	331
	Cleaning and Maintaining the System	331
	Cleaning the System and ECG Equipment	331
	Disinfectants for System Surfaces	333
	Disinfecting System Surfaces	333
	System Control Panel Maintenance	334
	Cleaning the Trackball	334
	Air Filter Cleaning	335
	Cleaning System Air Filters	335
	Specifying and Resetting the Air Filter Maintenance Status	337
	Transducer Maintenance	338
	Printer Maintenance	338
	VCR and DVD Recorder Maintenance	339
	Troubleshooting	340
	Error Messages	341
	Test Patterns	342
	Transferring the Test Patterns	342
	Using the Test Patterns	342
	Testing the System	343
	For Assistance	344
13	Specifications	345

Safety and Regulatory Requirements	348
Index	351

1 Read This First

This manual is intended to assist you with the safe and effective operation of your Philips product. Before attempting to operate the product, read this manual and strictly observe all warnings and cautions. Pay special attention to the information in the "Safety" section.

The user information for your Philips product describes the most extensive configuration of the product, with the maximum number of options and accessories. Some functions described may be unavailable on your product's configuration.

Intended Audience

Before you use your user information, you need to be familiar with ultrasound techniques. Sonography training and clinical procedures are not included here.

This document is intended for sonographers, physicians, and biomedical engineers who operate and maintain your Philips product.

Intended Use

This product is intended to be installed, used, and operated only in accordance with the safety procedures and operating instructions given in the product user information, and only for the purposes for which it was designed. For indications for use, see "Indications for Use and Supporting Transducers" on page 208. However, nothing stated in the user information reduces your responsibility for sound clinical judgment and best clinical procedure.

Installation, use, and operation of this product is subject to the law in the jurisdictions in which the product is used. Install, use, and operate the product only in such ways that do not conflict with applicable laws or regulations, which have the force of law.

Use of the product for purposes other than those intended and expressly stated by Philips, as well as incorrect use or operation, may relieve Philips or its agents from all or some responsibility for resultant noncompliance, damage, or injury.

٠,			_	N	 	_
w	w.	^	v	NI	N	-

System users are responsible for image quality and diagnosis.

Warnings

Before using the system, read these warnings and the "Safety" section.

WARNINGS

- Do not remove the protective covers on the system; hazardous voltages are present inside. Cabinet panels must be in place while the system is in use. All internal adjustments and replacements must be made by a qualified Philips Ultrasound field service engineer.
- To avoid electrical shock, use only supplied power cords and connect only to properly grounded wall (wall/mains) outlets.
- Do not operate the system in the presence of flammable anesthetics or other flammable gases or liquids. Explosion can result.
- Medical equipment must be installed and put into service according to the special electromagnetic compatibility (EMC) guidelines provided in the "Safety" section.
- The use of portable and mobile radio-frequency (RF) communications equipment can affect the operation of medical equipment.

Warning Symbols

The system may use the following warning symbols. For additional symbols used on the system, see the "Safety" section.

Symbol	Description
<u></u>	Identifies a safety note. May also indicate that there is an impending loss of data that must be acknowledged.
8	Warning: Indicates that there is a possibility of a system malfunction that might prevent the use of the ultrasound system.
4	Dangerous voltages: Appears adjacent to high-voltage terminals, indicating the presence of voltages greater than 1,000 Vac (600 Vac in the United States).
	Identifies ESD (electrostatic-discharge) sensitivity of a connector that is not tested as specified in IEC 60601-1-2. Do not touch exposed connector pins. Touching exposed pins can cause electrostatic discharge, which can damage the product.
(i	Indicates that the user should see the instructions for use for safety information.

User Information Components

The user information provided with your product includes the following components:

- Compact Disc (CD): Includes all of the user information, except the Operating Notes. The instructions for using the CD are included with the CD.
- **Operating Notes**: Contains information that clarifies certain product responses that might be misunderstood or cause user difficulty.
- *User Manual*: Provided with the product and included on the CD. The *User Manual* introduces you to features and concepts, helps you set up your

- system, and includes important safety information. This manual also includes procedures for basic operation. For detailed operating instructions, see the Help.
- Help: Available on the system in some languages and included on the CD, the Help contains comprehensive instructions for using the system. The Help also provides reference information and descriptions of all controls and display elements. To display the Help, press Help on the system keyboard.
- Voice Control Quick Guide: Provided with the system and included on the CD, the Voice Control Quick Guide contains procedures for using the voice control option and lists all commands used for voice control and voice annotation.
- Acoustic Output Tables: Included on the CD, it contains information about acoustic output and patient-applied part temperatures.
- Medical Ultrasound Safety: Included on the CD, it contains information
 on bioeffects and biophysics, prudent use, and implementing ALARA (as
 low as reasonably achievable).
- Shared Roles for System and Data Security: Included on the CD, it
 contains guidelines to help you understand how the security of your Philips
 product could be compromised and information on Philips' efforts to help
 you prevent security breaches.
- User Information Update about media compatibility: Included on the CD, it contains current information on media that are compatible with your system.

Product Conventions

Your Philips product uses certain conventions throughout the interface to make it easy for you to learn and use:

• Two unlabeled buttons, referred to as "Select controls," are used with the trackball. Those controls, located on either side of the trackball, operate

- somewhat similarly to PC mouse buttons. Both Select controls function identically.
- Tabs along the top of the monitor display let you choose additional sets of setup options.
- To type text into a text field, click in the field and use the keyboard.
- To display a list, click the down arrow . To scroll through a list, click the arrows at either end of the scroll bar or drag the scroll box up or down.
- Controls on the control panel include buttons, knobs, slide controls, and a trackball. Press a button to activate or deactivate its function. Turn a knob to change the selected setting. Press a knob-button to activate its function, or turn it to change the selected setting. Move a slide control to change its setting. Roll the trackball in the direction that you want to move an object. The current trackball function is displayed in the trackball select menu at the bottom of the display.
- Controls on the touch screens include buttons and knobs. To use a touch screen button, simply touch it. To use a touch screen knob, adjust the corresponding knob below the knob display (located in the bottom one or two rows of the touch screens). If two knob displays are available for the knob, you must first touch the knob display you want to adjust.
- Many touch screens contain two pages of controls. Touch Next and Previous to display these pages.
- Controls on the touch screens use several methods to indicate their status. Buttons that are either on or off have an indicator in the upper corner that lights when it is on. Buttons that select a setting generally display the active setting either within the button or on the monitor display. An arrow in the lower right corner of a button indicates that the button displays or hides a group of related buttons. Where only one button in a group can be selected at a time, the selected button is indicated by a gold outline or background. For more information, see "Touch Screen Controls" on page 140.

User Information Conventions

The user information for your product uses the following typographical conventions to assist you in finding and understanding information:

- All procedures are numbered, and all subprocedures are lettered. You must complete steps in the sequence they are presented to ensure success.
- Bulleted lists indicate general information about a particular function or procedure. They do not imply a sequential procedure.
- Control names and menu items or titles are spelled as they are on the system, and they appear in bold text. The only exceptions are the trackball and the buttons adjacent to it, which are unlabeled.
- Symbols appear as they appear on the system.
- The *pointer* is the cursor used to select elements on the display. Use the **Pointer** control to display the pointer.
- Point means to position the tip of the pointer or cursor on an item on the display.
- Click or select means to move the pointer or cursor to an object and press one of the unlabeled Select controls located on either side of the trackball.
- Double-click means to quickly click twice to select an object or text.
- Drag means to place the pointer over an object and then press and hold
 one of the Select buttons while moving the trackball. Use this method to
 move an object on the display.
- Touch means to press a button on the touch screens, located above the control panel.
- Selecting means to specify an image or thumbnail to be exported or deleted.
 To select an image, either click on the thumbnail or the thumbnail number.
- Highlighting means to mark an image you want to reject during a protocol
 exam or an image you want to post-process. To highlight an image, click
 inside the image (but not on the number).

- The left side of the system is to your left as you stand in front of the system, facing the system. The front of the system is nearest to you as you operate it.
- Transducers and pencil probes both are referred to as transducers, unless the distinction is important to the meaning of the text.

Information that is essential for the safe and effective use of your product appears throughout your user information as follows:

WARNING _

Warnings highlight information vital to the safety of you, the operator, and the patient.

CAUTION

Cautions highlight ways that you could damage the product and consequently void your warranty or service contract or ways that you could lose patient or system data.

NOTE

Notes bring your attention to important information that will help you operate the product more effectively.

Upgrades and Updates

Philips is committed to innovation and continued improvement. Upgrades may be announced that consist of hardware or software improvements. Updated user information will accompany those upgrades.

Customer Comments

If you have questions about the user information, or you discover an error in the user information, in the USA, please call Philips at 800-722-9377; outside the USA, please call your local customer service representative.

Supplies and Accessories

To order ECG trunk cables, lead sets, and electrodes; transducer covers; bite guards; biopsy guides; and other supplies and accessories, contact CIVCO Medical Solutions:

CIVCO Medical Solutions

102 First Street South, Kalona, IA 52247-9589

Telephone: 800-445-6741 (USA and Canada), +1 319-656-4447 (International)

Fax: 877-329-2482 (USA and Canada), +1 319-656-4451 (International)

E-mail: info@civco.com Internet: www.civco.com

To order the items listed in the following table, see the referenced section and then contact your Philips representative.

System Accessories

ltem	Additional Information	
Cables	See "Approved Cables for Electromagnetic Compliance" on page 71	
DVD recorder	See "Approved Accessories for Electromagnetic Compliance" on page 73	
Foot switch	Contact your Philips representative.	
Printers	See "External Printers" on page 106	
Removable media	See "Media Compatibility" on page 174	
Transducers	See "Clinical Options and Transducers" on page 206	
VCR	See "Approved Accessories for Electromagnetic Compliance" on page 73	

Customer Service

Customer service representatives are available worldwide to answer questions and to provide maintenance and service. Please contact your local Philips representative for assistance. You can also contact the following office for referral to a customer service representative, or visit the Philips Healthcare "Contact Us" website:

www.healthcare.philips.com/main/about/officelocator/index.wpd

Philips Ultrasound Headquarters 22100 Bothell-Everett Highway, Bothell, WA 98021-8431, USA 800-722-9377

Recycling, Reuse, and Disposal

Philips is concerned with helping protect the natural environment and helping ensure continued safe and effective use of this system through proper support, maintenance, and training. Philips designs and manufactures equipment in compliance with relevant guidelines for environmental protection. As long as the equipment is properly operated and maintained, it presents no risk to the environment. However, the equipment may contain materials that could be harmful to the environment if disposed of incorrectly. Use of such materials is essential for the implementation of certain functions and for meeting certain statutory and other requirements.

The European Union Directive on Waste Electrical and Electronic Equipment (WEEE) requires producers of electrical and electronic equipment to provide reuse and treatment information for each product. This information is provided in a Philips Healthcare Recycling Passport. Such recycling passports for Philips Ultrasound systems are available on this website:

www.healthcare.philips.com/main/about/sustainability/recycling/ultrasound.wpd

Recycling, reuse, and disposal information in this document is directed mainly at the entity with legal authority over the equipment. Operators are usually uninvolved in disposal, except in the case of certain batteries.

Passing Your System to Another User

If you pass this system to another user who will use the system for its intended purpose, then pass it on in its complete state. Particularly, ensure that all the product-support documentation, including all instructions for use, are passed on to the new user. Make the new user aware of the support services that Philips Healthcare provides for installing, commissioning, and maintaining the system, and for comprehensive operator training. Existing users must remember that passing on medical electrical equipment to new users may present serious technical, medical, privacy, and legal risks. The original user may remain liable, even if the equipment is given away.

Philips strongly advises you to seek advice from your local Philips representative before agreeing to pass on any equipment.

After you pass the system to a new user, you might still receive important safety-related information, such as bulletins and field change orders. In many jurisdictions the original owner has a clear duty to communicate such safety-related information to new users. If you are unable or unprepared to do this, inform Philips Healthcare about the new user, so that Philips Healthcare can provide the new user with safety-related information.

Final Disposal of Your System

Final disposal is when you dispose of the system in such a way that it can no longer be used for its intended purposes.

WARNING

Do not dispose of this system (or any parts of it) with industrial or domestic waste. The system may contain materials such as lead, tungsten, or oil, or other hazardous substances that can cause serious environmental pollution. The system also contains privacy-sensitive information, which should be properly removed (scrubbed). Philips advises you to contact your Philips service organization before disposing of this system.

Philips Healthcare gives support for the following:

- Recovery of useful parts
- Recycling of useful materials by competent disposal companies
- Safe and effective disposal of equipment

For advice and information, contact your Philips service organization, or see the following website:

www.philips.com/about/sustainability/recycling/productrecyclingservices/index.page

Perchlorate Material

In this system, perchlorate material is present in lithium coin cells or batteries. Special handling may apply to those items. For more information, see this website:

www.dtsc.ca.gov/hazardouswaste/perchlorate

2 Safety

Please read this information before using your ultrasound system. It applies to the ultrasound system, transducers, recording devices, and any optional equipment. This section covers general safety information only. Safety information that applies only to a specific task is included in the procedure for that task.

This device is intended for use by, or by the order of, and under the supervision of a licensed physician qualified to direct the use of the device.

A WARNING describes precautions necessary to prevent injury or loss of life.

A CAUTION describes precautions necessary to protect the equipment and patient or system data.

Basic Safety

WARNINGS

- Do not use the system for any application until you have read, understood, and know all the safety information, safety procedures, and emergency procedures contained in this "Safety" section. Operating the system without a proper awareness of safe use could lead to fatal or other serious personal injury.
- Do not use this system for any application until you are sure that the system's periodic maintenance is current. If any part of the system is known or suspected to be defective or incorrectly adjusted, do not use the system until it is repaired. Operating the system with defective or incorrectly adjusted components could expose you and the patient to safety hazards.
- Do not use the system for any application until you are adequately and properly trained on its safe and effective operation. If you are unsure of your ability to operate the system safely and effectively, do not use it.

- Operation of the system without proper and adequate training could lead to fatal or other serious personal injury.
- Do not operate the system with patients unless you have an adequate understanding of its capabilities and functions. Using the system without such understanding may compromise the system's effectiveness and the safety of the patient, you, and others.
- Never attempt to remove, modify, override, or frustrate any safety device on the system. Interfering with safety devices could lead to fatal or other serious personal injury.
- Use the system only for its intended purposes. Do not use the system with any product that Philips does not recognize as compatible with the system.
 Operation of the product for unintended purposes, or with incompatible products, could lead to fatal or other serious injury.

Electrical Safety

This equipment has been verified by a recognized third-party testing agency as a Class I device with Type BF and Type CF isolated patient-applied parts, and Type B non-isolated patient-applied parts. (The safety standards met by this system are included in the "Specifications" section.) For maximum safety observe these warnings and cautions:

WARNINGS

- Shock hazards may exist if this system, including all externally mounted recording and monitoring devices, is not properly grounded. Protection against electrical shock is provided by grounding the chassis with a three-wire cable and plug. The system must be plugged into a grounded outlet. The grounding wire must not be removed or defeated.
- To avoid the risk of electrical shock, never connect the system power cord to a power strip or an extension cord. When using the power cord, always connect it directly to a grounded wall outlet.
- Use only Type CF transducers for invasive procedures. Type B and BF transducers are insufficiently electrically isolated for invasive use.

- Do not remove the protective covers on the system; hazardous voltages are present inside. Cabinet panels must be in place while the system is in use. All internal adjustments and replacements must be made by a qualified Philips Ultrasound field service engineer.
- Do not operate this system in the presence of flammable gases or anesthetics. Explosion can result. The system is not compliant in AP/APG environments as defined by IEC 60601-1.
- To avoid risk of electrical shock hazards, always inspect the transducer before use: Check the face, housing, and cable before use. Do not use if the face is cracked, chipped, or torn; the housing is damaged; or the cable is abraded.
- To avoid risk of electrical shock hazards, always turn off the system and disconnect it from the wall outlet before cleaning the system.
- All patient-contact devices, such as transducers, pencil probes, and ECG leads not specifically indicated as defibrillation-proof must be removed from patient contact before application of a high-voltage defibrillation pulse. See "Defibrillators" on page 31.
- During transesophageal echocardiographic (TEE) procedures, either remove the TEE transducer from the patient or disconnect the TEE transducer from the system immediately following image acquisition.
- Ultrasound equipment in normal operation, as with other medical electronic diagnostic equipment, uses high-frequency electrical signals that can interfere with pacemaker operation. Though the possibility of interference is slight, be alert to this potential hazard and stop system operation immediately if you note interference with a pacemaker.
- When using additional peripheral equipment powered from an electrical source other than the ultrasound system, the combination is considered to be a medical system. It is your responsibility to comply with IEC 60601-1-1 and test the system to those requirements. If you have questions, contact your Philips representative.
- Do not use nonmedical peripherals, such as report printers, within 1.5 m
 (5 ft) of a patient, unless the nonmedical peripherals receive power from
 an isolated power outlet on the Philips ultrasound system, or from an
 isolation transformer that meets medical safety standards, as defined by
 standard IEC 60601-1-1.

- The system and patient-applied parts meet the standard IEC 60601-1.
 Applied voltages exceeding the standard, although unlikely, may result in electrical shock to the patient or operator.
- Connection of optional devices not supplied by Philips Ultrasound could result in electrical shock. When such optional devices are connected to your ultrasound system, ensure that the total system earth leakage current does not exceed 500 µA, or in the United States, 300 µA.
- To avoid risk of electrical shock, do not use any transducer that has been immersed beyond the specified cleaning or disinfection level.
- To avoid risks of electrical shock and fire hazards, inspect the system power cord and plug regularly. Ensure that they are not damaged in any way.
- Operating the system with physio input signals that are below the specified minimum levels may cause inaccurate results. See the "Specifications" section.
- Electrosurgical units (ESUs) and other devices intentionally introduce radio frequency electromagnetic fields or currents into patients. Because imaging ultrasound frequencies are coincidentally in the radio frequency range, ultrasound transducer circuits are susceptible to radio frequency interference. While an ESU is in use, severe noise interferes with the black-and-white image and completely obliterates the color image. Concurrent failures in an ESU or other device and in the outer layer of the TEE transducer shaft can cause electrosurgical currents to return along the transducer conductors. This could burn the patient, and the ultrasound system and the transducer could also be damaged. Be aware that a disposable transducer cover provides no protective electrical insulation at ESU frequencies.
- To avoid risk of a burn hazard, do not use transducers with high-frequency surgical equipment. A burn hazard may result from a defect in the high-frequency surgical neutral electrode connection.
- Using cables, transducers, and accessories other than those specified for use with the system may result in increased emissions from, or decreased immunity of, the system.

CAUTIONS

 Although your system has been manufactured in compliance with existing EMI/EMC requirements, use of this system in the presence of an electromagnetic field can cause momentary degradation of the ultrasound image. When interference is present or intermittent, use caution when continuing to use the system. If interference occurs often, review the environment in which the system is being used, to identify possible sources of radiated emissions. These emissions could be from other electrical devices used within the same room or an adjacent room. Communication devices such as cellular phones and pagers can cause these emissions. The existence of radio, TV, or microwave transmission equipment located nearby can cause emissions. In cases where EMI is causing disturbances, it may be necessary to relocate your system.

For information on electromagnetic emissions and immunity as it applies
to the system, see "Electromagnetic Compatibility" on page 67. Ensure that
the operating environment of your system meets the conditions specified
in the referenced information. Operating the system in an environment that
does not meet those conditions may degrade system performance.

Defibrillators

Observe the following warnings when a defibrillation is required while using the ultrasound system.

WARNINGS

- Before defibrillation, always remove all patient-applied parts from the patient.
- Before defibrillation, always disconnect invasive transducers from the system.
- A disposable transducer cover provides no protective electrical insulation against defibrillation.
- A small hole in the outer layer of the transducer opens a conductive path
 to grounded metal parts of the transducer. The secondary arcing that could
 occur during defibrillation could cause patient burns. The risk of burns is
 reduced, but not eliminated, by using an ungrounded defibrillator.

Use defibrillators that do not have grounded patient circuits. To determine whether a defibrillator patient circuit is grounded, see the defibrillator service guide, or consult a biomedical engineer.

Fire Safety

WARNING

On electrical or chemical fires, use only extinguishers that are specifically labeled for those purposes. Using water or other liquids on an electrical fire can lead to fatal or other serious personal injury. Before attempting to fight a fire, if it is safe to do so, attempt to isolate the product from electrical and other supplies, to reduce the risk of electrical shock.

Use of electrical products in an environment for which they were not designed can lead to fire or explosion. Fire regulations for the type of medical area being used should be fully applied, observed, and enforced. Fire extinguishers should be available for both electrical and nonelectrical fires.

Mechanical Safety

A list of precautions related to mechanical safety follows; observe these precautions when using the system:

WARNINGS

- Be aware of the wheels on the system cart, especially when moving the system. The system could cause injury to you or others if it rolls over feet or into shins. Use caution when going up or down ramps.
- When attempting to overcome an obstacle, do not push the system from either side with excessive force, which could cause the system to tip over.
- Position external hardcopy devices away from the system. Ensure that they
 are secure. Do not stack them on the system.
- When positioning the monitor, move it carefully to avoid pinching hands or extremities against other objects, such as a bed rail.
- Never park the system on an incline.
- The brakes are intended as a convenience. To increase cart security, use wheel chocks when the system is parked.
- If system operation is abnormal after you move or transport the system, contact Philips Ultrasound Customer Service immediately. System

- components are installed securely and can withstand considerable shock, but excessive shock can cause a system failure.
- Before moving the system, ensure that the keyboard is retracted, the control
 panel is centered, and the monitor is locked (see "Positioning the Control
 Module" on page 134 and "Preparing and Moving" on page 115). When
 extended, the keyboard might be damaged if it hits another object, and the
 video monitor could swing out during transport, causing injury or equipment
 damage.

CAUTIONS

- Before moving the system, ensure that the system is secured for transport.
 On some systems, that may include ensuring that the monitor is latched, to prevent monitor damage during transport.
- Ensure that the cables for all patient-applied parts are secure before moving the system. Use the cable management system to ensure that transducer cables are protected from damage.
- Do not roll the system over transducer cables or power cables.

Equipment Protection

Follow these precautions to protect your system:

CAUTIONS

- Excessive bending or twisting of cables on patient-applied parts may cause failure or intermittent operation of the system. Do not roll the system over cables, which may damage them.
- Improper cleaning or sterilization of a patient-applied part may cause permanent damage. For cleaning and disinfection instructions, see the "Transducer Care" section.
- Do not submerge the transducer connector in solution. The cables and transducer bodies are liquid-tight, but the connectors are not.

- Do not use solvents, such as thinner or acetone, or abrasive cleaners on the system, transducers, or any hardcopy device.
- For optimal performance, connect your ultrasound system to a circuit dedicated solely for the system. Do not connect life-support devices to the same circuit as the ultrasound system.
- If systems, transducers, and peripherals have been in an environment below 10°C (50°F), allow them to reach room temperature before connecting or turning them on. Philips recommends allowing 24 hours for complete normalization. Otherwise, condensation inside the devices could cause damage. If the device was only briefly exposed to temperatures below 10°C (50°F), then the time required for the device to return to room temperature could be significantly less than 24 hours.
- To avoid damaging the flat-panel display in the monitor, do not store the system where the ambient temperature exceeds 65°C (149°F).

Product Compatibility

Do not use your system in combination with other products or components, unless Philips expressly recognizes those other products or components as compatible. For information about such products and components, contact your Philips representative.

Changes and additions to the system should be made only by Philips or by third parties expressly authorized by Philips to do so. Such changes and additions must comply with all applicable laws and regulations that have the force of law within the jurisdictions concerned, and best engineering practices.

WARNING

System changes and additions that are made without the appropriate training or by using unapproved spare parts may void the Philips warranty. As with all complex technical products, maintenance by unqualified persons or using unapproved spare parts carries serious risks of system damage and personal injury.

Symbols

The International Electrotechnical Commission (IEC) has established a set of symbols for medical electronic equipment that classify a connection or warn of potential hazards. Of those symbols, the following may be used on your Philips product and its accessories and packaging.

★	Isolated patient connection (Type BF applied part).
- ★	Defibrillation-proof patient connection (Type BF applied part).
六	Non-isolated patient connection (Type B applied part).
	Isolated patient connection for applied part intended for intraoperative use, including direct cardiac application and contact with major vessels (Type CF applied part).
1	Defibrillation-proof patient connection (Type CF applied part).
	Identifies ESD (electrostatic-discharge) sensitivity of a connector that is not tested as specified in IEC 60601-1-2. Do not touch exposed connector pins. Touching exposed pins can cause electrostatic discharge, which can damage the product.
Ф	Identifies an On/Off control.

10	On a two-position power switch, represents On (I) and Off (O).
<u>/</u>	Identifies a safety note. May also indicate that there is an impending loss of data that must be acknowledged.
(i	Indicates that the user should see the instructions for use for safety information.
\Diamond	Identifies equipotential ground.
<u></u>	Identifies earth ground.
	Identifies protective earth ground.
((·•))	Nonionizing electromagnetic radiation. Indicates that interference may occur in the vicinity of equipment marked with this symbol.
C€ 0086 ①	The radio component contained in this device is compliant to Council Directive 1999/5/EC (Radio Equipment and Telecommunications Terminal Equipment Directive).

C € ₀₀₅₀	Indicates conformance with European Council Directive 93/42/EEC.
0	Class 2 radio equipment identifier per Directive 1999/5/EC. European Union member states may apply restrictions on putting this device into service or placing it on the market. This device is intended to be connected to the Publicly Available Interfaces for use throughout the European Economic Area.
IPX1	Indicates that the device is protected against the effects of vertically falling water. This degree of protection can apply to transducers or foot-operated devices.
IPX4	Indicates that the device is protected against the effects of splashing liquids. This degree of protection can apply to foot-operated devices.
IPX7	Indicates that the device is protected against the effects of immersion. This degree of protection can apply to transducers and foot-operated devices.
IPX8	Indicates that the device is protected against the effects of immersion for up to 60 minutes. This degree of protection can apply to foot-operated devices.

	Indicates the need for separate collection for electrical and electronic equipment in compliance with the Waste Electrical and Electronic Equipment (WEEE) Directive. When accompanied by (Pb) or (Hg), components of the device may contain lead or mercury, respectively, which must be recycled or disposed of in accordance with local, state, or federal laws. The backlight lamps in an LCD system monitor contain mercury.
23	Do not throw away. Dispose of in accordance with local, state, or federal laws.
2	Do not reuse.
Ω	Use-by date.
GMDN	Global Medical Device Nomenclature Code.
	Indicates a possible crushing hazard to hands.
	Warns that the system should not be used stacked with other equipment. If the system is used stacked with or adjacent to other equipment, verify normal operation before use.
1	Indicates the temperature range (noncondensing) for transport and storage. (Does not apply to media.)

	Indicates the atmospheric pressure range for transport and storage.
	Indicates the relative humidity range (noncondensing) for transport and storage.
\sim	Indicates that a connector receives alternating current.
	Identifies fuse boxes or their locations. For continued protection from fire and shock, replace fuses only with fuses of the same type and rating.
سا	Identifies the date of manufacture.
	Identifies the legal manufacturer.
<u> </u>	This side up: Points toward the side of the shipping crate that should be kept facing up.
*	Indicates that the device should be kept dry.
Ţ	Indicates that the device is fragile; handle with care.
	Do not use if damaged.
(3)	Warns of system over-balance due to external force. (Do not push on the monitor or the transducer holders to move the system.)

类	Keep away from sunlight.
NON STERILE	Non-sterile.
STERILE EO	Sterilized using ethylene oxide.
REF	Catalog number.
LOT	Batch code.
SN	Serial number.
UPN	Universal part number.
The following symbols mapackaging:	ay also be used on the system and its accessories and
	Connection for a pencil probe

The following symbols may also be used	d on the system and its accessories and
packaging:	

	Connection for a pencil probe
)))	Connection for a pencil probe
	Connection for a transducer

1	Connection for ECG leads
-	Connection for ECG leads
	Print remote output
⊕	Input port for audio left/right, VHS/S-VHS, microphone, CD, or DVD
→	Output port for audio left/right, VHS/S-VHS, video patient monitor, black-and-white printer, or interlaced RGB output port
\rightarrow	Input port
\Leftrightarrow	VGA or parallel output port
	DVI video output receptacle
•	USB input/output port

″ o⁴	FireWire (IEEE 1394) input/output port
 	Ethernet connection
10101	RS-232 serial port
<u>•</u>	System microphone
AUX POWER ISOLATE OUTPUT	Isolated auxiliary power provided for connection of Philips-approved remote accessories.
>	Foot switch
	Indicates the atmospheric pressure range for transport and storage.
	SVGA connectionTwo video receptacles provide DVI-D digital video for flat-panel monitors.
\rightarrow	S-Video connection

	B/W Composite video output connection
-	Color composite video output connection
	Video print trigger connection
C -	Russian approval (GOST)
	Identifies the port for the PercuNav tool connection unit.
⊕ 🗟	Identifies the port for the PercuNav field generator.
5	Chinese Environmentally Friendly Use Period symbol.
CUL US E173637	UL (Underwriters Laboratories) classification symbol.
C US	CSA (CSA International) classification symbol.
≪ ¹ • ✓ △	Indicates a possible pinch hazard when positioning the monitor.

The following symbols may be used inside the system:

4	Dangerous voltages: Appears adjacent to high-voltage terminals, indicating the presence of voltages greater than 1,000 Vac (600 Vac in the United States).
\Diamond	Identifies equipotential ground.

Biological Safety

This section contains information about biological safety and a discussion of the prudent use of the system.

A list of precautions related to biological safety follows; observe these precautions when using the system. For more information refer to *Medical Ultrasound Safety* on your user information CD.

WARNINGS .

- Do not use the system if an error message on the video display indicates that a hazardous condition exists. Note the error code, turn off power to the system, and call your customer service representative.
- Do not use a system that exhibits erratic or inconsistent image updating.
 Discontinuities in the scanning sequence indicate a hardware failure that must be corrected before use.
- Perform ultrasound procedures prudently. Use the ALARA (as low as reasonably achievable) principle.
- Use only acoustic standoffs that have been approved by Philips Ultrasound.
 For information on ordering approved accessories, see "Supplies and Accessories" on page 22.
- Transducer covers may contain natural rubber latex. Those covers may cause allergic reactions in some individuals. See "FDA Medical Alert on Latex" on page 46.
- In contrast studies using a high-MI acoustic field, capillary rupture, due to microbubble expansion within a capillary in an acoustic field, can cause

- extravasation. References: (1) Skyba, D.M., Price, R.J., Linka, A.Z., Skalak, T.C., Kaul, S. "Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue." *Circulation*, 1998; 98:290-293. (2) van Der Wouw, P.A., Brauns, A.C., Bailey, S.E., Powers, J.E., Wilde, A.A. "Premature ventricular contractions during triggered imaging with ultrasound contrast." *Journal of the American Society of Echocardiography*, 2000;13(4):288-94.
- Preventricular contractions can be caused by the oscillations of microbubbles when a high-MI acoustic field is triggered in the heart at the end of systole. In a very sick patient with certain risk factors, theoretically, this could lead to ventricular fibrillation. Reference: van Der Wouw, P.A., Brauns, A.C., Bailey, S.E., Powers, J.E., Wilde, A.A. "Premature ventricular contractions during triggered imaging with ultrasound contrast." *Journal of the American Society of Echocardiography*, 2000;13(4):288-94.
- If a sterile transducer cover becomes compromised during an intraoperative application involving a patient with transmissible spongiform encephalopathy, such as Creutzfeldt-Jakob disease, follow the guidelines of the U.S. Centers for Disease Control and this document from the World Health Organization: WHO/CDS/ APH/2000/3, WHO Infection Control Guidelines for Transmissible Spongiform Encephalopathies. The transducers for your system cannot be decontaminated using a heat process.
- If the system becomes contaminated internally with bodily fluids carrying pathogens, you must immediately notify your Philips service representative. Components inside the system cannot be disinfected. In that case, the system must be disposed of as biohazardous material in accordance with local or federal laws.
- The backlight lamps in the system displays contain mercury and must be recycled or disposed of according to local, state, or federal laws.
- Select the correct application when starting an exam, and remain in that
 application throughout the exam. Some applications are for parts of the
 body that require lower limits for acoustic output. One example is an
 ophthalmic application activated by selecting an orbital transcranial Doppler
 preset; when performing an ophthalmic exam, use only an ophthalmic preset.

FDA Medical Alert on Latex

March 29, 1991, Allergic Reactions to Latex-Containing Medical Devices

Because of reports of severe allergic reactions to medical devices containing latex (natural rubber), the FDA is advising health care professionals to identify their latex sensitive patients and be prepared to treat allergic reactions promptly. Patient reactions to latex have ranged from contact urticaria to systemic anaphylaxis. Latex is a component of many medical devices, including surgical and examination gloves, catheters, intubation tubes, anesthesia masks, and dental dams.

Reports to the FDA of allergic reactions to latex-containing medical devices have increased lately. One brand of latex cuffed enema tips was recently recalled after several patients died as a result of anaphylactoid reactions during barium enema procedures. More reports of latex sensitivity have also been found in the medical literature. Repeated exposure to latex both in medical devices and in other consumer products may be part of the reason that the prevalence of latex sensitivity appears to be increasing. For example, it has been reported that 6% to 7% of surgical personnel and 18% to 40% of spina bifida patients are latex sensitive.

Proteins in the latex itself appear to be the primary source of the allergic reactions. Although it is not now known how much protein is likely to cause severe reactions, the FDA is working with manufacturers of latex-containing medical devices to make protein levels in their products as low as possible.

FDA's recommendations to health professionals in regard to this problem are as follows:

- When taking general histories of patients, include questions about latex sensitivity. For surgical and radiology patients, spina bifida patients and health care workers, this recommendation is especially important. Questions about itching, rash or wheezing after wearing latex gloves or inflating a toy balloon may be useful. Patients with positive histories should have their charts flagged.
- If latex sensitivity is suspected, consider using devices made with alternative materials, such as plastic. For example, a health professional could wear a

non-latex glove over the latex glove if the patient is sensitive. If both the health professional and the patient are sensitive, a latex middle glove could be used. (Latex gloves labeled "Hypoallergenic" may not always prevent adverse reactions.)

- Whenever latex-containing medical devices are used, especially when the latex comes in contact with mucous membranes, be alert to the possibility of an allergic reaction.
- If an allergic reaction does occur and latex is suspected, advise the patient of a possible latex sensitivity and consider an immunologic evaluation.
- Advise the patient to tell health professionals and emergency personnel about any known latex sensitivity before undergoing medical procedures.
 Consider advising patients with severe latex sensitivity to wear a medical identification bracelet.

The FDA is asking health professionals to report incidents of adverse reactions to latex or other materials used in medical devices. (See the October 1990 FDA Drug Bulletin.) To report an incident, call the FDA Problem Reporting Program, operated through the U.S. Pharmacopoeia toll-free number: 800-638-6725. (In Maryland, call collect 301-881-0256.)

For a single copy of a reference list on latex sensitivity, write to: LATEX, FDA, HFZ-220, Rockville, MD 20857.

NOTE

The ultrasound system and transducers described in this document do not contain natural rubber latex that contacts humans. Natural rubber latex is not used on any Philips ultrasound transducer. It also is not used on Philips ECG cables for the products described in this document.

ALARA Education Program

The guiding principle for the use of diagnostic ultrasound is defined by the "as low as reasonably achievable" (ALARA) principle. The decision as to what is reasonable has been left to the judgment and insight of qualified personnel. No set of rules can be formulated that would be sufficiently complete to dictate the correct response to every circumstance. By keeping ultrasound exposure as low

as possible, while obtaining diagnostic images, users can minimize ultrasonic bioeffects.

Since the threshold for diagnostic ultrasound bioeffects is undetermined, it is the sonographer's responsibility to control total energy transmitted into the patient. The sonographer must reconcile exposure time with diagnostic image quality. To ensure diagnostic image quality and limit exposure time, an ultrasound system provides controls that can be manipulated during the exam to optimize the results of the exam.

The ability of the user to abide by the ALARA principle is important. Advances in diagnostic ultrasound, not only in the technology but in the applications of that technology, have resulted in the need for more and better information to guide the user. The output display indices are designed to provide that important information.

There are a number of variables which affect the way in which the output display indices can be used to implement the ALARA principle. These variables include index values, body size, location of the bone relative to the focal point, attenuation in the body, and ultrasound exposure time. Exposure time is an especially useful variable, because it is controlled by the user. The ability to limit the index values over time supports the ALARA principle.

Applying ALARA

The system imaging mode used depends upon the information needed. 2D and M-mode imaging provide anatomical information, while Doppler, Color Power Angio (CPA), and Color imaging provide information about blood flow. A scanned mode, like 2D or Color, disperses or scatters the ultrasonic energy over an area, while an unscanned mode, like M-mode or Doppler, concentrates ultrasonic energy. Understanding the nature of the imaging mode being used allows the sonographer to apply the ALARA principle with informed judgment. Additionally, the transducer frequency, system setup values, scanning techniques, and operator experience allow the sonographer to meet the definition of the ALARA principle.

The decision as to the amount of acoustic output is, in the final analysis, up to the system operator. This decision must be based on the following factors: type of patient, type of exam, patient history, ease or difficulty of obtaining diagnostically useful information, and the potential localized heating of the patient due to transducer surface temperatures. Prudent use of the system occurs when patient exposure is limited to the lowest index reading for the shortest amount of time necessary to achieve acceptable diagnostic results.

Although a high index reading does not mean that a bioeffect is actually occurring, a high index reading should be taken seriously. Every effort should be made to reduce the possible effects of a high index reading. Limiting exposure time is an effective way to accomplish this goal.

There are several system controls that the operator can use to adjust the image quality and limit the acoustic intensity. These controls are related to the techniques that an operator might use to implement ALARA. These controls can be divided into three categories: direct, indirect, and receiver controls.

Acoustic Output Limits

This ultrasound system maintains acoustic output below the appropriate limits for each application, as listed here. The significant difference in magnitude emphasizes the need to select the correct application and remain in that application, so the correct application limits are in use for the appropriate application.

Limits for Non-Ophthalmic Applications

- $I_{\text{spta.3}} \leq 720 \text{ mW/cm}^2$
- MI ≤ 1.9
- TI ≤ 6.0

Limits for Ophthalmic Applications

- $I_{\text{spta.3}} \leq 50 \text{ mW/cm}^2$
- MI ≤ 0.23
- TI ≤ I.0

Direct Controls

Application selection and the output-power control directly affect acoustic intensity. There are different ranges of allowable intensity or output based on your selection. Selecting the correct range of acoustic intensity for the application

is one of the first things that occurs in any exam. For example, peripheral vascular intensity levels are not recommended for fetal exams. Some systems automatically select the proper range for a particular application, while others require manual selection. Ultimately, the user has the responsibility for proper clinical use. The ultrasound system provides both automatic (default) settings and manual (user-selectable) settings.

Output power has direct impact on acoustic intensity. Once the application has been established, the power control can be used to increase or decrease the intensity output. The power control allows you to select intensity levels less than the established maximum. Prudent use dictates that you select the lowest output intensity that is consistent with good image quality.

Indirect Controls

The indirect controls are those that have an indirect effect on acoustic intensity. These controls affect imaging mode, pulse repetition frequency, focus depth, pulse length, and transducer selection.

The choice of imaging mode determines the nature of the ultrasound beam. 2D is a scanning mode; Doppler is a stationary or unscanned mode. A stationary ultrasound beam concentrates energy in a single location. A moving or scanned ultrasound beam disperses the energy over an area and the beam is concentrated on the same area for a fraction of the time as that of an unscanned mode.

Pulse repetition frequency or rate refers to the number of ultrasound bursts of energy over a specific period of time. The higher the pulse repetition frequency, the more pulses of energy in a period of time. Several controls affect pulse repetition frequency: focal depth, display depth, sample volume depth, flow optimization, scale, number of focal zones, and sector-width controls.

Focus of the ultrasound beam affects the image resolution. To maintain or increase resolution at a different focus requires a variation in output over the focal zone. This variation of output is a function of system optimization. Different exams require different focal depths. Setting the focus at the proper depth improves the resolution of the structure of interest.

Pulse length is the time during which the ultrasonic burst is turned on. The longer the pulse, the greater the time-average intensity value. The greater the

time-average intensity, the greater the likelihood of temperature increase and cavitation. Pulse length, burst length, or pulse duration is the output pulse duration in PW Doppler. Increasing the Doppler sample-volume size increases the pulse length.

Transducer selection indirectly affects intensity. Tissue attenuation changes with frequency. The higher the transducer operating frequency, the greater the attenuation of the ultrasonic energy. A higher transducer operating frequency requires more output intensity to scan at a deeper depth. To scan deeper at the same output intensity, a lower transducer frequency is required. Using more gain and output beyond a point, without corresponding increases in image quality, can mean that a lower frequency transducer is needed.

Receiver Controls

Receiver controls are used by the operator to improve image quality. These controls have no effect on output. Receiver controls only affect how the ultrasound echo is received. These controls include gain, TGC, dynamic range, and image processing. The important thing to remember, relative to output, is that receiver controls should be optimized before output is increased. For example, before increasing output, optimize gain to improve image quality.

An Example of Applying the ALARA Principle

An ultrasound scan of a patient's liver begins with selecting the appropriate transducer frequency. After selecting the transducer and the application, which are based on patient anatomy, adjustments to output power should be made to ensure that the lowest possible setting is used to acquire an image. After the image is acquired, adjusting the focus of the transducer, and then increasing the receiver gain to produce a uniform representation of the tissue follows. If an adequate image can be obtained with the increase in gain, then a decrease in output should be made. Only after making these adjustments should you increase output to the next level.

Having acquired the 2D display of the liver, Color can be used to localize blood flow. As with the 2D image display, gain and image processing controls must be optimized before increasing output.

Having localized the blood flow, use the Doppler controls to position the sample volume over the vessel. Before increasing output, adjust velocity range or scale and Doppler gain to obtain an optimal Doppler trace. Only if maximum Doppler gain does not create an acceptable image do you increase output.

In summary: Select the correct transducer frequency and application for the job; start with a low output level; and optimize the image by using focus, receiver gain, and other imaging controls. If the image is not diagnostically useful at this point, then increase output.

Additional Considerations

Ensure that scanning time is kept to a minimum, and ensure that only medically required scanning is performed. Never compromise quality by rushing through an exam. A poor exam may require a follow-up, which ultimately increases exposure time. Diagnostic ultrasound is an important tool in medicine, and like any tool, it should be used efficiently and effectively.

Output Display

The system output display comprises two basic indices: a mechanical index and a thermal index. The thermal index further consists of the following indices: soft tissue (TIS), bone (TIB), and cranial bone (TIC). One of these three thermal indices will be displayed at all times. Which one depends upon the system preset or user choice, depending upon the application at hand.

The mechanical index is continuously displayed over the range of 0.0 to 1.9, in increments of 0.1 for all applications except contrast, where the minimum increment is 0.01.

The thermal index comprises three indices, and only one of these is displayed at any one time. Each transducer application has a default selection that is appropriate for that combination. The TIB, TIS, or TIC is continuously displayed over the range of 0.0 to maximum output, based on the transducer and application, in increments of 0.1. For the location of the output display, see "Imaging Display" on page 166.

The application-specific nature of the default setting is also an important factor of index behavior. A default setting is a system control state that is preset by the manufacturer or the operator. The system has default index settings for the transducer application. The default settings are invoked automatically by the ultrasound system when power is turned on, when new patient data is entered into the system database, or when an application change occurs.

The decision as to which of the three thermal indices to display should be based on the following criteria:

- Appropriate index for the application: TIS is used for imaging soft tissue,
 TIB for a focus at or near bone, and TIC for imaging through bone near the
 surface, as in a cranial exam.
- Mitigating factors that might create artificially high or low thermal index readings: location of fluid or bone, or blood flow. For example, is there a highly attenuating tissue path so that the actual potential for local zone heating is less than the thermal index displays?
- Scanned modes versus unscanned modes of operation affect the thermal index. For scanned modes, heating tends to be near the surface; for unscanned modes, the potential for heating tends to be deeper in the focal zone.
- Always limit ultrasound exposure time. Do not rush the exam. Ensure that
 the indices are kept to a minimum and that exposure time is limited without
 compromising diagnostic sensitivity.

Mechanical Index (MI) Display

Mechanical bioeffects are threshold phenomena that occur when a certain level of output is exceeded. The threshold level varies, however, with the type of tissue. The potential for mechanical bioeffects varies with peak rarefactional pressure and ultrasound frequency. The MI accounts for these two factors. The higher the MI value, the greater the likelihood of mechanical bioeffects occurring. There is no specific MI value that means that a mechanical effect is actually occurring. The MI should be used as a guide for implementing the ALARA principle.

Thermal Index (TI) Displays

The TI informs the user about the conditions that exist that might lead to an increase in temperature at the surface of the body, within the body tissue, or at the point of focus of the ultrasound beam on bone. That is, the TI informs the user of the potential for temperature rise in body tissue. It is an estimate of temperature increase in body tissue with specific properties. The actual amount of any temperature rise is influenced by factors such as tissue type, vascularity, mode of operation, and others. The TI should be used as a guide for implementing the ALARA principle.

The bone thermal index (TIB) informs the user about potential heating at or near the focus after the ultrasound beam has passed through soft tissue or fluid; for example, at or near second- or third-trimester fetal bone.

The cranial bone thermal index (TIC) informs the user about the potential heating of bone at or near the surface; for example, cranial bone.

The soft tissue thermal index (TIS) informs the user about the potential for heating within soft homogeneous tissue.

You can choose to display TIS, TIC, or TIB. (For details on changing the TI display, see the system Help.) On systems with transcranial applications, TIC is displayed when you select a transcranial preset.

Mechanical and Thermal Indices Display Precision and Accuracy

The MI and TI precision is 0.1 unit on the system.

The MI and TI display accuracy estimates for the system are given in *Acoustic Output Tables*, on your user information CD. Those accuracy estimates are based on the variability range of transducers and systems, inherent acoustic output modeling errors, and measurement variability, as discussed in this section.

The displayed values should be interpreted as relative information to help the system operator achieve the ALARA principle through prudent use of the system. The values should not be interpreted as actual physical values in interrogated tissue or organs. The initial data that is used to support the output display is derived from laboratory measurements based on the American Institute of

Ultrasound in Medicine (AIUM) measurement standard. The measurements are then put into algorithms for calculating the displayed output values.

Many of the assumptions used in the process of measurement and calculation are conservative in nature. Overestimation of actual *in situ* intensity exposure, for the vast majority of tissue paths, is built into the measurement and calculation process. For example:

- The measured water tank values are derated using a conservative, industry standard, attenuation coefficient of 0.3 dB/cm-MHz.
- Conservative values for tissue characteristics were selected for use in the TI models. Conservative values for tissue or bone absorption rates, blood perfusion rates, blood heat capacity, and tissue thermal conductivity were selected.
- Steady State temperature rise is assumed in the industry standard TI models, and the assumption is made that the ultrasound transducer is held steady in one position long enough for steady state to be reached.

A number of factors are considered when estimating the accuracy of the displayed values: hardware variations, estimation algorithm accuracy, and measurement variability. Variability among transducers and systems is a significant factor. Transducer variability results from piezoelectric crystal efficiencies, process-related impedance differences, and sensitive lens-focusing parameter variations. Differences in system pulser voltage control and efficiencies is also a contributor to variability. There are inherent uncertainties in the algorithms used to estimate acoustic output values over the range of possible system operating conditions and pulser voltages. Inaccuracies in laboratory measurements are related to, among others, differences in hydrophone calibration and performance, positioning, alignment, and digitization tolerances, and variability among test operators.

The conservative assumptions of the output estimation algorithms of linear propagation, at all depths, through a 0.3 dB/cm-MHz attenuative medium is not considered in the accuracy estimate for the display. Neither linear propagation, nor uniform attenuation at the 0.3 dB/cm-MHz rate, occur in water tank measurements or in most tissue paths in the body. In the body, different tissues and organs have dissimilar attenuation characteristics. In water, there is almost

no attenuation. In the body, and in particular, in water tank measurements, nonlinear propagation and saturation losses occur as pulser voltages increase.

Therefore, the display accuracy estimates are based on the variability range of transducers and systems, inherent acoustic output modeling errors, and measurement variability. Display accuracy estimates are not based on errors in, or caused by measuring according to, the AIUM measurement standards, or the effects of nonlinear loss on the measured values.

Control Effects

Controls Affecting the Indices

As various system controls are adjusted, the TI and MI values may change. This will be most apparent as the output power control is adjusted; but other system controls affect the on-screen output values.

Power

The output power control affects the system acoustic output. Two real-time output values are on the display: TI and MI. They change as the system responds to power-control adjustments.

In combined modes, such as simultaneous Color, 2D, and PW Doppler, the individual modes each add to the total TI. One mode will be the dominant contributor to this total. The displayed MI will be from the mode with the largest MI value.

2D Controls

- Sector Width: Narrowing the sector angle may increase frame rate. This
 action will increase the TI. Pulser voltage may be automatically adjusted
 down with software controls to keep the TI below the system maximums.
 A decrease in pulser voltage will decrease MI.
- **Zoom:** Increasing the zoom magnification by pressing **Zoom** may increase frame rate. This action will increase the TI. The number of focal zones may

- also increase automatically to improve resolution. This action may change the MI, because the peak MI can occur at a different depth.
- Number of Focal Zones: More focal zones may change both the TI and MI by changing frame rate or focal depth automatically. Lower frame rates decrease the TI. MI displayed will correspond to the zone with the largest MI value.
- Focus: Changing the focal depth will change MI. Generally, higher MI values will occur when the focal depth is near the natural focus of the transducer.

Color and Power Controls

- Color Opt: Increasing the color sensitivity with the color opt control may increase the Tl. More time is spent scanning the color image. Color pulses are the dominant pulse type in this mode.
- Color Sector Width: Narrower color sector width will increase color frame rate and the TI will increase. The system may automatically decrease pulser voltage to stay below the system maximum. A decrease in pulser voltage will decrease the MI. If PW Doppler is also enabled, then PW Doppler will remain the dominant mode and the TI change will be small.
- Color Sector Depth: Deeper color sector depth may automatically decrease color frame rate or select a new color focal zone or color pulse length. The TI will change due to the combination of these effects. Generally, the TI will decrease with increased color sector depth. MI will correspond to the MI of the dominant pulse type which is a color pulse. However, if PW Doppler is also enabled then PW Doppler will remain the dominant mode and the TI change will be small.
- Scale: Using the scale control to increase the color velocity range may increase the TI. The system may automatically adjust pulser voltage to stay below the system maximums. A decrease in pulser voltage will also decrease MI.
- Sector Width: A narrower 2D sector width in Color imaging will increase color frame rate. The TI will increase. MI will change little, if at all. If PW Doppler is also enabled, then PW Doppler will remain the dominant mode and the TI change will be small.

M-Mode and Doppler Controls

- **Simultaneous and Update Methods:** Use of combination modes affects both the TI and MI through the combination of pulse types. During simultaneous mode, the TI is additive. During Duplex, the TI will display the dominant pulse type. The displayed MI will be from the mode with the largest MI value.
- Sample Volume Depth: When Doppler sample volume depth is decreased, the Doppler pulse repetition frequency (PRF) may automatically increase. An increase in PRF will increase the TI. The system may also automatically decrease the pulser voltage to remain below the system maximum. A decrease in pulser voltage will decrease MI.

Other Control Effects

- Imaging Mode Controls: When a new imaging mode is selected, both the TI and MI may change to default settings. Each mode has a corresponding pulse repetition frequency and maximum intensity point. In combined or simultaneous modes, the TI is the sum of the contribution from the modes enabled, and the displayed MI is the largest of the MI values associated with each mode and focal zone enabled. The system will return to the previously selected state if a mode is turned off and then reselected.
- Transducer: Each transducer type has unique specifications for contact area, beam shape, and center frequency. Defaults are initialized when you select a transducer. Factory defaults vary with transducer, application, and selected mode. Defaults have been chosen below the FDA limits for intended use.
- **2D Depth:** An increase in 2D depth will automatically decrease the 2D frame rate. This will decrease the TI. The system may also automatically choose a deeper 2D focal depth. A change of focal depth may change the MI. The MI displayed is that of the zone with the largest MI value.
- Application: Acoustic output defaults are set when you select an application. Factory defaults vary with transducer, application, and mode.
 Defaults have been chosen below the FDA limits for intended use.

Related Guidance Documents

For more information about ultrasonic bioeffects and related topics, see the following:

- "Bioeffects and Safety of Diagnostic Ultrasound." AIUM Report, January 28, 1993.
- "American Institute of Ultrasound in Medicine Bioeffects Consensus Report."
 Journal of Ultrasound in Medicine, Vol. 27, Issue 4, April 2008.
- Acoustic Output Measurement Standard for Diagnostic Ultrasound Equipment. (AIUM, NEMA, 2004)
- Second Edition of the AIUM Medical Ultrasound Safety brochure, 2009. (A copy of this document is provided with each system.)
- Information for Manufacturers Seeking Marketing Clearance of Diagnostic Ultrasound Systems and Transducers. FDA, September 2008.
- Standard for Real-Time Display of Thermal and Mechanical Acoustic Output Indices on Diagnostic Ultrasound Equipment. (AIUM, NEMA, 2004)
- WFUMB. "Symposium on Safety of Ultrasound in Medicine: Conclusions and Recommendations on Thermal and Non-Thermal Mechanisms for Biological Effects of Ultrasound." *Ultrasound in Medicine and Biology*, 1998: Vol. 24, Supplement 1.

Acoustic Output and Measurement

Since the initial use of diagnostic ultrasound, the possible human bioeffects from ultrasound exposure have been studied by various scientific and medical institutions. In October 1987, the American Institute of Ultrasound in Medicine (AIUM) ratified a report prepared by its Bioeffects Committee ("Bioeffects Considerations for the Safety of Diagnostic Ultrasound." *Journal of Ultrasound in Medicine*, Vol. 7, No. 9 Supplement, September 1988), sometimes referred to as the Stowe Report, which reviewed available data on possible effects of ultrasound exposure. Another report, "Bioeffects and Safety of Diagnostic Ultrasound," dated January 28, 1993, provides more-current information.

The acoustic output for this system has been measured and calculated in accordance with the "Acoustic Output Measurement Standard for Diagnostic

Ultrasound Equipment" (Revision 3, AIUM, NEMA, 2004), the "Standard for Real-Time Display of Thermal and Mechanical Acoustic Output Indices on Diagnostic Ultrasound Equipment" (Revision 2, AIUM, NEMA, 2004), and the September 2008 FDA document "Information for Manufacturers Seeking Marketing Clearance of Diagnostic Ultrasound Systems and Transducers."

In Situ, Derated, and Water Value Intensities

All intensity parameters are measured in water. Since water absorbs very little acoustic energy, these water measurements represent a worst case value. Biological tissue does absorb acoustic energy. The true value of the intensity at any point depends on the amount and type of tissue and the frequency of the ultrasound that passes through the tissue. The intensity value in the tissue, *In Situ*, has been estimated by using the following formula:

```
In Situ = Water [e^{-0.23alf}]
```

Where:

```
In Situ = In Situ intensity value
```

Water = Water value intensity

e = 2.7183

a = Attenuation factor

Tissue = a(dB/cm-MHz)

Amniotic = 0.006

Fluid

Brain = 0.53

Heart = 0.66

Kidney = 0.79

Liver = 0.43

Muscle = 0.55

I = Skin line to measurement depth (cm)

f = Center frequency of the transducer/system/mode combination (MHz)

Since the ultrasonic path during an examination is likely to pass through varying lengths and types of tissue, it is difficult to estimate the true *in situ* intensity. An attenuation factor of 0.3 is used for general reporting purposes; therefore, the *In Situ* value which is commonly reported uses the formula:

In Situ derated = Water $[e^{-0.069lf}]$

Since this value is not the true in situ intensity, the term "derated" is used.

Mathematical derating of water based measurements using the 0.3 dB/cm-MHz coefficient, may yield lower acoustic exposure values than would be measured in a homogenous 0.3 dB/cm-MHz tissue. This is true because nonlinearly propagating acoustic energy waveforms experience more distortion, saturation, and absorption in water than in tissue, where attenuation present all along the tissue path will dampen the buildup of nonlinear effects.

The maximum derated and the maximum water values do not always occur at the same operating conditions; therefore, the reported maximum water and derated values may not be related by the *in situ* (derated) formula. For example: A multi-zone array transducer that has maximum water value intensities in its deepest zone may have its largest derated intensity in one of its shallowest focal zones.

Conclusions Regarding Tissue Models and Equipment Survey

Tissue models are necessary to estimate attenuation and acoustic exposure levels in situ from measurements of acoustic output made in water. Presently, available models may be limited in their accuracy because of varying tissue paths during diagnostic ultrasound exposures and uncertainties in acoustical properties of soft tissues. No single tissue model is adequate for predicting exposures in all situations from measurements made in water, and continued improvement and verification of these models is necessary for making exposure assessments for specific applications.

A homogeneous tissue model with an attenuation coefficient of 0.3 dB/cm-MHz throughout the beam path is commonly used when estimating exposure levels. The model is conservative in that it overestimates the *in situ* acoustic exposure when the path between the transducer and the site of interest is composed entirely of soft tissue, because the attenuation coefficient of soft tissue is generally higher than 0.3 dB/cm-MHz. When the path contains significant amounts of fluid, as in many first- and second-trimester pregnancies scanned transabdominally, this model may underestimate the *in situ* acoustical exposure. The amount of underestimation depends on each specific situation. For example, when the beam path is longer than 3 cm and the propagation medium is predominantly fluid (conditions that may exist during transabdominal OB scans), a more accurate value for the derating term is 0.1 dB/cm-MHz.

Fixed-path tissue models, in which soft tissue thickness is held constant, sometimes are used to estimate *in situ* acoustical exposures when the beam path is longer than 3 cm and consists largely of fluid. When this model is used to estimate maximum exposure to the fetus during transabdominal scans, a value of I dB/MHz may be used during all trimesters.

The maximum acoustic output levels of diagnostic ultrasound devices extend over a broad range of values:

- A survey of 1990-equipment models yielded mechanical index (MI) values between 0.1 and 1 at their highest output settings. Maximum MI values of approximately 2 are known to occur for currently available equipment. Maximum MI values are similar for real-time 2D, M-mode, PW Doppler, and Color flow imaging.
- Computed estimates of upper limits to temperature elevations during transabdominal scans were obtained in a survey of 1988 and 1990 PW Doppler equipment. The vast majority of models yielded upper limits less than 1°C and 4°C for exposures of first-trimester fetal tissue and second-trimester fetal bone, respectively. The largest values obtained were approximately 1.5°C for first-trimester fetal tissue and 7°C for second-trimester fetal bone. Estimated maximum temperature elevations given here are for a "fixed-path" tissue model and are for devices having lspta (derated) values greater than 500 mW/cm². The temperature elevations for fetal bone and tissue were computed based on calculation procedures

given in Sections 4.3.2.1 through 4.3.2.6 in "Bioeffects and Safety of Diagnostic Ultrasound" (AIUM Report, January 28, 1993).

Acoustic Output Tables

Acoustic output tables are in Acoustic Output Tables, on your user information CD.

Acoustic Measurement Precision and Uncertainty

All table entries have been obtained at the same operating conditions that give rise to the maximum index value in the first column of the tables. Measurement precision and uncertainty for power, pressure, intensity, and center frequency are listed in the following tables.

NOTE

Per Section 6.4 of the Output Display Standard, measurement precision on the following quantities is determined by making repeated measurements and stating the standard deviation as a percentage.

Acoustic Measurement Precision

Quantity	Precision (Percentage Standard Deviation)
Pr is the underated peak rarefactional pressure measured in megapascals(MPa).	Pr: 5.4%
Wo is the ultrasonic power in milliwatts (mW).	6.2%
f _c is the center frequency in megahertz (MHz) (NEMA UD-2 definition).	<1%
PII.3 is the derated spatial-peak pulse intensity integral in joules per square centimeter (J/cm ²).	P11.3: 3.2%

Acoustic Measurement Uncertainty

Quantity	Measurement Uncertainty (Percentage, 95% Confidence Value)
Pr is the underated peak rarefactional pressure measured in megapascals (MPa).	Pr: ±11.3%
Wo is the ultrasonic power in milliwatts (mW).	±10%
f _c is the center frequency in megahertz (MHz) (NEMA UD-2 definition).	±4.7%
PII.3 is the derated spatial-peak pulse intensity integral in joules per square centimeter (J/cm ²).	PII.3: +18% to -23%

Operator Safety

The following issues and situations can affect operator safety when you are using an ultrasound system.

Repetitive Strain Injury

Repetitive ultrasound scanning has been associated with carpal tunnel syndrome (CTS) and related musculoskeletal problems. Some investigators have looked at a large population of sonographers with different types of equipment. An article, with feedback from a smaller geographical area, makes the following recommendations:

- Maintain your joints in optimum positions with a balanced posture while scanning.
- Allow frequent breaks to give soft tissue a chance to recuperate from awkward positions and repetitive movement.
- Avoid gripping the transducer with excessive force.

Repetitive Strain References

Pike, I., et al. "Prevalence of Musculoskeletal Disorders and Related Work and Personal Factors Among Diagnostic Medical Sonographers." *Journal of Diagnostic Medical Sonographers*, Vol. 13, No. 5: 219-227, September 1997.

Necas, M. "Musculoskeletal Symptomatology and Repetitive Strain Injuries in Diagnostic Medical Sonographer." *Journal of Diagnostic Medical Sonographers*, 266-227, November/December 1996.

Foot Switch Warning

WARNING

The foot switch is not intended for use in wet locations, such as emergency rooms and operating theaters.

Philips Transducers

Use only transducers that are approved by Philips for use with your Philips ultrasound system. See "Clinical Options and Transducers" on page 206 for a list of the transducers that are compatible with your ultrasound system.

In the United States, the FDA 510(k) regulatory clearance for use of the product is applicable only when Philips-manufactured transducers are connected to the system.

Glutaraldehyde Exposure

The United States Occupational Safety and Health Administration (OSHA) has issued a regulation covering levels of acceptable glutaraldehyde exposure in the working environment. Philips does not sell glutaraldehyde-based disinfectants with its products, but this type of disinfectant is recommended for the disinfection of transducers used in TEE, intraoperative, endocavity, and biopsy procedures.

To reduce the presence of glutaraldehyde fumes in the air, be sure to use a covered or ventilated soaking basin. Such systems are commercially available.

The most-current information about disinfection products and Philips transducers can be found on the Philips Transducer Care website:

www.healthcare.philips.com/us/products/ultrasound/transducers/transducer_care/

Infection Control

Issues related to infection control affect the operator and the patient. Follow the infection-control procedures established in your facility for the protection of both the staff and the patient.

Handling Contaminated Transducers

The primary area of concern is the handling of transducers that have contacted infected patients. Always wear gloves when you handle transducers used in TEE, endocavity, intraoperative, and biopsy procedures that have not been previously disinfected.

For information on cleaning and disinfecting transducers, see the "Transducer Care" section.

Removing Blood and Infectious Material from the System

CAUTION

Do not wipe the transducer housing joint, strain relief, or cable with isopropyl alcohol. Isopropyl alcohol can damage these parts of the transducer. This damage is not covered by the warranty or your service contract. Also, do not use isopropyl alcohol on TEE transducers (except for their handles).

Use a gauze pad moistened with soap and water to remove blood on the system and the transducer connectors and cables. Then dry the equipment with a soft cloth to prevent corrosion. You can use a 70% solution of isopropyl alcohol on the system and only on certain parts of some transducers. Additional cleaning agents are available for transducers. For more information, see the "Transducer Care" section.

For more information about removing blood and other infectious material from the system, see "Disinfecting System Surfaces" on page 333.

ECG Cables and Lead Sets

For information on cleaning ECG cables and lead sets, see "Cleaning the System and ECG Equipment" on page 331.

Disposable Drape

If you believe contamination of the system might occur during an exam, Philips recommends that you take universal precautions and cover the system with a disposable drape. Consult your facility's rules regarding equipment use in the presence of infectious disease.

CAUTION

Position the disposable drape so that it does not block the vents on the system, the monitors, or the peripherals.

Electromagnetic Compatibility

Electromagnetic compatibility (EMC) is defined as the ability of a product, a device, or a system to function satisfactorily in the presence of the electromagnetic phenomena that exists in the location of the product, the device, or the system being used; and, in addition, to not introduce intolerable electromagnetic disturbances to anything in that same environment.

Electromagnetic immunity is the ability of a product, a device, or a system to function satisfactorily in the presence of electromagnetic interference (EMI).

Electromagnetic emissions is the ability of a product, a device, or a system to introduce intolerable electromagnetic disturbances into the use environment.

Your system has been manufactured in compliance with existing electromagnetic compatibility requirements. Use of this system in the presence of an electromagnetic field can cause momentary degradation of the ultrasound image. If this occurs often, review the environment in which the system is being used to identify possible sources of radiated emissions. These emissions could be from other electrical devices used within the same room or an adjacent room, or from portable and mobile RF communications equipment such as cellular phones and pagers, or from the existence of radio, TV, or microwave transmission

equipment located nearby. In cases where electromagnetic interference (EMI) is causing disturbances, it may be necessary to relocate your system.

The system complies with International Standard CISPR 11 for radiated and conducted electromagnetic disturbances. Compliance with this standard allows the system to be used in all establishments, including domestic establishments and those directly connected to the public low-voltage power supply network that supplies buildings used for domestic purposes.

WARNING

Using cables, transducers, or accessories other than those specified for use with the system may result in increased emissions or decreased immunity of the system.

CAUTION

Medical equipment has special precautions regarding EMC and needs to be installed and put into service according to the EMC information provided in the system's accompanying documents.

This section includes information on electromagnetic emissions and immunity as it applies to the system. Ensure that the operating environment of your system meets the conditions specified in the referenced information. Operating the system in an environment that does not meet these conditions may degrade system performance.

The information and warnings contained in this and other sections should be observed when installing and using the system to ensure its EMC.

NOTE

See the other electrical-safety warnings and cautions in this section.

If the system is operated within the electromagnetic environment described in "Electromagnetic Immunity" on page 75, the system will remain safe and will provide the following essential performance:

- Imaging
- Doppler audio and spectral display
- Measurements

- Acoustic output
- ECG triggering
- Recording and playback on a VCR or DVD recorder
- Printing using system printers
- Patient information
- Date and time information

ECG Signal

WARNING

Operation of your system with ECG signals below 0.25 mV may cause inaccurate results.

The amplitude of the electrocardiogram (ECG) signal is critical for reliable frame triggering. Frame triggering should be used only when a clean, noise-free ECG waveform is observed on the ECG display. The ECG signal should be at least 0.25 mV to ensure reliable triggering when the system is used in the presence of the electromagnetic phenomena described in this section and elsewhere in your system user information.

Electrostatic Discharge Precautions

Electrostatic discharge (ESD), commonly referred to as a static shock, is a naturally occurring phenomenon that results in the flow of an electrical charge from a higher charged object or person to a lower charged object or person. ESD is most prevalent during conditions of low humidity, which can be caused by heating or air-conditioning. During low humidity conditions, electrical charges naturally build up on individuals and objects and can create static discharges.

The following cautions can help to reduce ESD effect:

CAUTIONS

- Do not touch transducer connector pins or the system's transducer receptacle.
- Handle the transducer by the metal connector shell.
- Make contact with a metal surface of the system before connecting a transducer to the system.
- The following precautions can help to reduce ESD: anti-static spray on carpets; anti-static spray on linoleum; anti-static mats; or a ground wire connection between the system and the patient table or bed.
- On connectors labeled with the ESD sensitivity symbol \triangle , do not touch the connector pins, and always observe the preceding ESD precautions when handling or connecting transducers.

NOTE

Electrostatic discharges (ESDs) may cause the ECG heart rate display to increase by 10% to 15% for a few seconds after the discharge. However, the ECG heart rate display will return to normal within 4 seconds.

Electromagnetic Emissions

The system is intended for use in the electromagnetic environment specified in the table. The customer or the user of the system should ensure that it is used in such an environment.

Electromagnetic Emissions: Environment Guidance

Emissions Test	Compliance	Electromagnetic Environment Guidance	
RF emissions, CISPR II	Group I	The system uses RF energy only for its internal function. Therefore, its RF emissions are very low and are not likely to cause any interference in nearby electronic equipment.	
RF emissions, CISPR 11	Class B	The system is suitable for use in all establishments, including domestic establishments and those directly connected to the public low-voltage power supply network that supplies buildings used for domestic purposes.	
Harmonic emissions, IEC 61000-3-2	Class B		
Voltage fluctuations/flicker emissions, IEC 61000-3-3	Complies		

Approved Cables for Electromagnetic Compliance

Cables connected to the system may affect its emissions. Use only the cable types and lengths listed here.

WARNING .

Using cables, transducers, and accessories other than those specified for use with the system may result in increased emissions from, or decreased immunity of, the system.

iE33 Approved Cables

Cable	Туре	Length	Philips Part Number
Adult and pediatric ECG three-lead patient trunk cable (for AAMI and IEC leadsets)	-	2.7 m (9 ft) with leadset	453561227251
Adult ECG leadset, nondisposable (AAMI)	-	-	453561233291
Adult ECG leadset, nondisposable (IEC)	-	-	MI6I3A
Pediatric ECG leadset, nondisposable (AAMI)	-	-	M1609A
Pediatric ECG leadset, nondisposable (IEC)	-	-	MI619A
Pediatric ECG leadset, disposable (AAMI)	-	-	453561210001
Pediatric ECG leadset, disposable (IEC)	-	-	453561210121
Aux input	Shielded	<3 m (<9.8 ft)	-
Composite video	Shielded coaxial	Any	_
LAN	Twisted pair	Any	_
RS-232 interface	Shielded	2 m (6.5 ft)	-
USB	Shielded	Any	_

Approved Transducers for Electromagnetic Compliance

The imaging transducers used with the system may affect its emissions. The transducers listed in "Clinical Options and Transducers" on page 206, when used with the system, have been tested to comply with the Group I, Class B emissions, as required by International Standard CISPR II. Use only those transducers.

WARNING _

Using cables, transducers, and accessories other than those specified for use with the system may result in increased emissions from, or decreased immunity of, the system.

Approved Accessories for Electromagnetic Compliance

Accessories used with the system may affect its emissions. The accessories listed here, when used with the system, have been tested to comply with the Group I, Class B emissions as required by International Standard CISPR II. Use only the accessories listed here.

When connecting other accessories to the system, such as a remote video monitor or computer, it is the user's responsibility to ensure the electromagnetic compatibility of the system. Use only CISPR 11 or CISPR 22, Class B-compliant devices, unless otherwise noted.

WARNING .

Using cables, transducers, and accessories other than those specified for use with the system may result in increased emissions from, or decreased immunity of, the system.

CAUTION _

Use only Class-B USB storage devices with the system. Some plastic-cased unshielded USB devices may cause RF emissions that exceed Class-B limits. See the device's documentation to determine whether it is Class-B compliant.

Approved Accessories

Accessory	Manufacturer	Model Number
Ultrasonic imaging transducer	Philips	Use only the transducers listed in "Clinical Options and Transducers" on page 206.
VCR	Mitsubishi	HS-MD3000UA (NTSC) HS-MD3000EA (PAL)
DVD recorder	Sony	DVO-1000
Black and white printers	Sony	UP-D895MD UP-D897MD
Color printers	Sony	UP-D21MD UP-D23MD
	Mitsubishi	CP-30DW
Large-format multi-image color printer	Sony	UP-D55MD
Black and white LaserJet report printers	Hewlett-Packard	P2015 1300 1320
Color LaserJet printers	Hewlett-Packard	2550L 3600 2605

Accessory	Manufacturer	Model Number
Deskjet printers Hewlett-Packard		5650
		5940
		6122
		6940
Officejet printers	Hewlett-Packard	J5780 All-in-One
		K550 Officejet Pro

Electromagnetic Immunity

The system is intended for use in the electromagnetic environment specified here. The customer or the user of the system should ensure that it is used in such an environment.

NOTES

- The guidelines specified here may not apply in all situations. Electromagnetic
 propagation is affected by absorption and reflection from structures, objects,
 and people.
- U_T is the AC power voltage before application of the test level.
- At 80 MHz and 800 MHz, the separation distance for the higher frequency range applies.

Electromagnetic Immunity: Environment Guidance

Immunity Test	IEC 60601 Test Level	Compliance Level	Electromagnetic Environment Guidance
Electrostatic discharge (ESD), IEC 61000-4-2	± 6 kV contact, ± 8 kV air	Same as IEC 60601 test level	Floors should be wood, concrete, or ceramic tile. If floors are covered with synthetic material, the relative humidity should be at least 30%.
	± 2 kV for power supply lines, ± 8-18 kV for input/output lines	Same as IEC 60601 test level	Mains power quality should be that of a typical commercial or hospital environment.
Surge, IEC 61000-4-5	± I kV differential mode,	Same as IEC 60601 test level	Mains power quality should be that of a typical commercial or hospital environment.
	±2 kV common mode		

Immunity Test	IEC 60601 Test Level	Compliance Level	Electromagnetic Environment Guidance
Voltage dips, short interruptions, and voltage variations on power supply input lines, IEC 61000-4-11	Drop out <40 msec	Same as IEC 60601 test level	Mains power quality should be that of a typical commercial or hospital environment. If you require continued operation during power mains interruptions, Philips recommends that the system be powered from an uninterruptible power supply or a battery.
Power frequency (50/60 Hz) magnetic field, IEC 61000-4-8	3 A/m	Same as IEC 60691 test level	Power frequency magnetic fields should be at levels characteristic of a typical location in a typical commercial or hospital environment.
Conducted RF, IEC 61000-4-6	3 VRMS I 50 kHz to 80 MHz	3.0 V	For recommended separation distances, see "Recommended Separation Distance" on page 80.
Radiated RF, IEC 61000-4-3	3 V/m 80 MHz to 2.5 GHz	3 V/m	For recommended separation distances, see "Recommended Separation Distance" on page 80.

Cables, transducers, and accessories connected to the system may affect its immunity to the electromagnetic phenomena listed in the preceding table. Use only approved accessories, cables, and transducers to minimize the chance of performance degradation of the system due to those types of electromagnetic phenomena.

CAUTION

If the system is connected to other customer-supplied equipment, such as a local area network (LAN) or a remote printer, Philips cannot guarantee that the remote equipment will work correctly in the presence of electromagnetic phenomena.

Although most remote devices comply with their applicable standards for immunity, those device requirements may not be as stringent as those required for medical equipment. It is the responsibility of the installer and the user of this remote customer-supplied equipment to ensure that it functions properly in the electromagnetic environment where the system is installed. Philips suggests that the installer or the user of such a system consult with experts in the field of electromagnetic compatibility and safety for guidance to ensure the safe and effective use of the created system.

Electromagnetic Interference

Electromagnetic interference may appear in many ways on the system and depends on the mode the equipment is operating in, the imaging control settings, the type of transducer being used, the type of electromagnetic phenomena, and the intensity level of the phenomena.

CAUTION

When interference is present or intermittent, use caution when continuing to use the system.

NOTES

- Electromagnetic phenomena are not always present and may be transitory in nature. It may be extremely difficult to identify the source of the interference.
- The following table describes a few typical interferences seen in imaging systems. It is impossible to describe all manifestations of interference, because it depends on many parameters of the transmitting device, such as the type of modulation used by the signal carrier, the source type, and the transmitted level. It is also possible for the interference to degrade the imaging system's performance and not be visible in the image. If the

diagnostic results are suspicious, other means should be used to confirm the diagnosis.

Typical Interference on Ultrasonic Imaging Systems

Imaging Mode	ESD ^I	RF ²	Power Line ³
2D or 3D	Change of operating mode, system settings, or system reset. Brief flashes in the displayed or recorded image.	For sector imaging transducers, white radial bands or flashes in the center lines of the image. For linear imaging transducers, white vertical bands, sometimes more pronounced on the sides of the image.	White dots, dashes, or diagonal lines near the center of the image.
Color	Change of operating mode, system settings, or system reset. Brief flashes in the displayed or recorded image.	Color flashes, radial or vertical bands, increase in background noise, or changes in image color.	Color flashes, dots, dashes, or changes in the color noise level.
Doppler	Change of operating mode, system settings, or system reset. Brief flashes in the displayed or recorded image.	Horizontal lines in the spectral display or tones, abnormal noise in the audio, or both.	Vertical lines in the spectral display, "popping" noise in the audio, or both.

Imaging Mode	ESD ^I	RF ²	Power Line ³
M-mode	Change of operating mode, system settings, or system reset. Brief flashes in the displayed or recorded image.	image background noise or white	White dots, dashes, diagonal lines, or increase in image background noise.

- Electrostatic discharge (ESD) caused by discharging of electric charge buildup on insulated surfaces or persons.
- Radio frequency (RF) energy from RF transmitting equipment such as portable phones, handheld radios, wireless devices, commercial radio and TV stations, and so on.
- Conducted interference on power lines or connected cables caused by other equipment, such as switching power supplies, electrical controls, and natural phenomena such as lightning.

Recommended Separation Distance

The following table provides recommended separation distances, which are guidelines on the distances that any RF transmitting equipment should be kept away from the ultrasound system to reduce the risk of interference with the system. Portable and mobile RF communications equipment should be used no closer to any part of the system, including cables, than the recommended separation distance calculated from the equation applicable to the frequency of the transmitter. Field strengths from fixed RF transmitters, as determined by an electromagnetic site survey, should be less than the compliance level in each frequency range as noted in the table. Interference may occur in the vicinity of equipment marked with the following symbol:

Field strengths from fixed transmitters, such as base stations for radio (cellular/cordless) telephones and land mobile radios, amateur radio, AM and FM radio broadcast, and TV broadcast, cannot be predicted theoretically with

accuracy. To assess the electromagnetic environment due to fixed RF transmitters, an electromagnetic site survey should be considered. If the measured field strength in the location in which the system is used exceeds the applicable RF compliance level in the table, the system should be observed to verify normal operation. If abnormal performance is observed, additional measures may be necessary, such as reorienting or relocating the system.

NOTES

- For transmitters rated at a maximum output power not listed in the following table, the recommended separation distance *d* in meters (m) can be estimated using the equation applicable to the frequency of the transmitter, where *P* is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer.
- At 80 MHz and 800 MHz, the higher frequency range applies.
- The recommended separation distance guidelines in the following table may not apply to all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects, and people.

The information provided here, in conjunction with "Electromagnetic Interference" on page 78, provides guidance on conducted and radiated interference from portable and fixed RF transmitting equipment.

Recommended Separation Distances by Transmitter Frequency

Rated Maximum Output Power of Transmitter (Watts)	150 kHz to 80 MHz $d = \frac{3.5\sqrt{P}}{V}$	80 to 800 MHz $d = \frac{3.5\sqrt{P}}{E}$	800 MHz to 2.5 GHz $d = \frac{7.0\sqrt{P}}{E}$
0.01	0.12 m (4.7 in)	0.12 m (4.7 in)	0.24 m (9.5 in)
0.1	0.38 m (15 in)	0.38 m (15 in)	0.76 m (30 in)
1	1.2 m (3.9 ft)	1.2 m (3.9 ft)	2.4 m (7.9 ft)
10	3.8 m (12.5 ft)	3.8 m (12.5 ft)	7.6 m (25 ft)
100	12 m (39.4 ft)	12 m (39.4 ft)	24 m (78.7 ft)

The conducted RF test level is 3 V, and the system has a compliance level of 0.08 V. For the system, this means that the imaging system is extremely sensitive to RF interference in the transducer passband. For example, for a 5-MHz imaging transducer, the frequency range of interference from a 3-V/m field may be from 2 to 10 MHz and manifest itself as described in "Electromagnetic Interference" on page 78.

The 0.08-V level is where the interference becomes acceptable to some clinical specialists.

Sensitivity to interference is dependent on operating mode and imaging control settings. The order of increasing sensitivity to interference as a function of operating mode is 2D mode, 3D mode, M-mode, Color mode, PW Doppler mode, and CW Doppler mode. The system is more sensitive to interference in the CW Doppler or PW Doppler operating modes, but the probability of interference is lower than in 2D mode or Color mode, because the susceptible frequency range is lower. Therefore, you are more likely to see interference in 2D or Color modes.

As an example, if a portable transmitter has maximum radiated power of 1 W and an operating frequency of 156 MHz, it should only be operated at distances greater than 1.2 m (3.9 ft) from the system. Likewise, a 0.01-W Bluetooth wireless LAN device operating at 2.4 GHz should be placed no closer than 0.24 m (9.5 in) from any part of the system.

Avoiding Electromagnetic Interference

A medical device can either generate or receive electromagnetic interference. The EMC standards describe tests for both emitted and received interference. Emission tests deal with interference generated by the device being tested. Philips ultrasound systems do not generate interference based on the tests described in the referenced standards.

An ultrasound system is designed to receive signals at radio frequencies and is therefore susceptible to interference generated by RF energy sources. Examples of other sources of interference are medical devices, information technology products, and radio and television transmission towers. Tracing the source of radiated interference can be a difficult task. Customers should consider the following in an attempt to locate the source:

- Is the interference intermittent or constant?
- Does the interference show up only with one transducer or with several transducers?
- Do two different transducers operating at the same frequency have the same problem?
- Is the interference present if the system is moved to a different location in the facility?
- Can the EMC coupling path be attenuated? For example, placement of a transducer or printer close to an ECG cable can increase electromagnetic interference. Moving the cable or other medical equipment away from the location of the transducer or printer can result in reduced electromagnetic interference.

The answers to these questions will help determine if the problem resides with the system or the scanning environment. After you answer the questions, contact your Philips service representative.

Use Restrictions Due to Interference

The physician needs to determine if an artifact caused by radiated interference will have a negative impact on image quality and the subsequent diagnosis.

3 System Overview

Use this section to acquaint yourself with the ultrasound system and its components.

System Capabilities

The iE33 Ultrasound System is a high-resolution system intended for cardiac imaging and analysis. The cart is ergonomically designed to be both highly mobile and adjustable for a range of users and operating conditions. You can use it for 2D, Live 3D Echo, M-mode, Doppler, and Color imaging. You can also perform Duplex, Triplex, and Live xPlane imaging. Stress echocardiography is standard on the system, and QLAB Advanced Quantification Software plug-ins are available as options. The system supports a wide range of transducers. The system provides measurement tools, analysis options, and DICOM network capabilities.

Measurements

The system provides tools and controls for measuring distance, area, and volume. In calculations, the following application-specific tools are available:

- Aliasing Velocity
- Backup
- Continuous Trace
- Distance
- Ellipse
- End Measure
- Erase Caliper
- Heart Rate
- Hip Tools

- Time/Slope
- Volume
- Volume Flow
- % Reduction

After you perform measurements, the system makes the pertinent calculations and organizes the measurements, calculations, and patient information into a patient report.

For information, see the Help. To display the Help, press **Help** on the keyboard.

Transducer Types

Available transducers include curved, sector, linear, compact linear, transesophageal, endocavity, intraoperative, CW, 3D, and for Live xPlane and 3D imaging, xMATRIX transducers. Applications for specific transducers are listed in "Clinical Options and Transducers" on page 206.

Image Acquisition and Review

You can acquire and review single images and Philips Cineloop sequences. Images and Cineloop sequences can be stored on digital versatile discs (DVD RW) or sent over a network to an archive server or a printer.

Stress Echo capabilities also make use of the ability to acquire and review image loops. Stress Echo protocols of up to eight stages are used to assess cardiac wall motion at various heart rates.

Peripheral devices are available for recording images and exams. You can add a VCR to the system and connect a black-and-white image printer or a color image printer. You can also connect a report printer.

Patient Data Protection

The data security feature, if enabled on your system, limits access to previously stored patient data and images. To gain access to such data, you must first log on to the system using a password. When you are finished using the system, you

can log off manually, or you can simply shut down the system, which logs you off automatically. The system stores a record of each user logon.

This data protection feature can be used to help meet the requirements of the U.S. Health Insurance Portability and Accountability Act (HIPAA), which became effective April 2003.

For more information on protecting patient data, see "System Security" on page 162.

System Options

In addition to the standard features available in the system, other features are available as purchasable options. The types of options available include clinical options, QLAB Advanced Quantification Software, protocols, imaging capabilities, voice control, and connectivity capabilities. A foot switch is available as an option.

Imaging Options

Once purchased, the imaging options listed here are available as supported by the current transducer and application:

- 2D iSCAN Intelligent Optimization
- Auto Doppler Optimization
- Doppler iSCAN Intelligent Optimization
- Live 3D and xPlane (xMATRIX transducers)
- Live 3D Echo
- Panoramic Imaging
- Physio
- SonoCT Real-time Compound Imaging
- Tissue Doppler Imaging (TDI)
- Voice Control
- XRES Image Processing

Voice Control Option

The voice control option allows you to operate the system using voice commands transmitted through a wireless headset. You can also use voice control to add text annotation to images. The voice control option can recognize commands in English, French, Italian, German, and Spanish.

Connectivity Options

The following features are standard:

- Image and waveform export to removable media
- Printing to DICOM printers
- Printing to local printers
- Printing report pages

In addition to those standard features, the Basic Connectivity purchasable option includes the following features:

- Image and waveform export to network storage servers
- DICOM worklist
- DICOM storage commit (SC)
- DICOM Structured Reporting
- DICOM Query/Retrieve
- Digital Navigation Link (DNL)

Clinical/Analysis Options

Clinical options are available on the system as separate purchasable options. Clinical options include corresponding analysis packages. The following clinical options and their corresponding applications are available:

Clinical/Analysis Options

	Pediatric Echo/CHD	Adult Cardiology	Vascular	TCD
Full Cardiovascular	Yes	Yes	Yes	
Full Cardiac	Yes	Yes		
Adult Cardiovascular		Yes	Yes	
TCD				Yes

QLAB Advanced Quantification Software Options

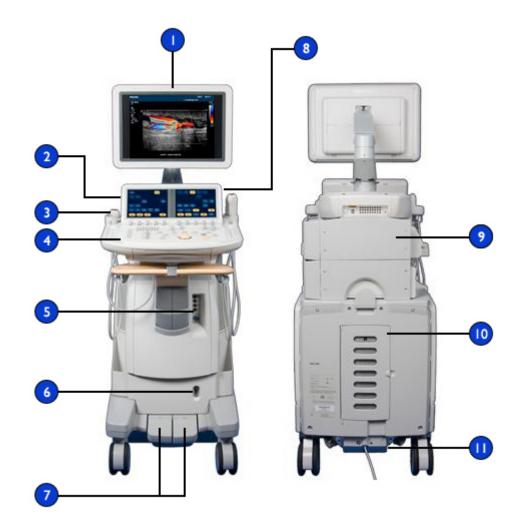
The following QLAB plug-ins are supported for use on your ultrasound system:

- Cardiac Motion/Mechanics Quantification (CMQ)
- Cardiac Motion Quantification Stress (CMQ-Stress)
- Cardiac 3D Quantification (Cardiac 3DQ)
- Cardiac 3D Quantification Advanced (Cardiac 3DQA)
- Mitral Valve Quantification (MVQ)
- Strain Quantification (SQ)
- Region of Interest Quantification (ROI)
- Intima Media Thickness (IMT)

Data Security

A data security feature is available to help maintain the confidentiality of archived patient files. With this option, access to patient exam files is restricted to authorized personnel through user ID and password protection. For more information, see "Patient Data Protection" on page 86.

Technical Administration Option


The system includes many diagnostic capabilities as standard features, such as error handling and remote access for diagnosing the system. The technical administration option adds the following capabilities:

- Advanced tests and other diagnostic tools
- Automatic monitoring and logging of system operating parameters and usage; warnings when operating limits are exceeded
- Enhanced capabilities for self diagnosis
- Enhanced error handling and notification
- Preventive maintenance logging and notification
- Reporting of system and component configuration
- Secure technical administration interface

System Components

The system is housed in an ergonomic cart. The cart is adjustable to accommodate a wide range of operator heights and operating positions. Adjustable components can be locked in place so the cart can be safely moved. The major components include the monitor, control module, On/Off switch, DVD RW drive, peripheral bay, transducer receptacles, ECG/physio receptacles, foot pedals, foot switch receptacle, and rear-panel power switch and audio/video receptacles.

System Components

ī	Monitor
2	On/Off switch
3	Transducer receptacles

4	Control module
5	ECG/physio receptacles
6	Foot switch receptacle
7	Brake/steering
8	DVD RW drive
9	Peripheral bay
10	Rear panel (USB ports, audio, video, and network receptacles)
П	Power switch

Video Monitor

The system video monitor consists of a 51-cm (20-in) flat-panel display on an articulated mounting arm. The monitor is adjustable to accommodate different operating positions and operator heights. The monitor can also be locked in position for moving the system (see "Moving the System" on page 114).

Control Module

The control module includes three main components: the control panel, the touch screens, and the keyboard. For more information on the control module, refer to "System Controls" on page 132.

The control panel contains the main imaging controls. These controls include buttons, knobs, TGC and LGC slide controls, and a trackball. The control module also allows you to select transducers, enter patient data, review and annotate images, perform measurements and calculations, and change setups.

The touch screens, located above the control panel, display controls used to select applications and imaging modes, as well as controls that are specific to the current operating mode. Touch screen controls include buttons and knob displays.

Control Module Components

ī	Control Panel
2	Touch screens
3	Keyboard
4	Trackball
5	LCG slide controls
6	TCG slide controls

You can adjust the position of the control module vertically and side-to-side. You can also swivel the control module.

Beneath the control panel is a retractable keyboard. The keyboard is used to enter patient data, comments, and text annotation on images. A light above the keyboard is switched on when the keyboard is pulled out.

Voice Control Headset

The optional voice control feature allows you to operate the system when the control module is out of reach or you need both hands for scanning. You can also use voice control to add text annotation to images. Voice control uses a wireless headset to send your voice commands to the system.

Voice Annotation Microphone

The voice annotation microphone allows you to record comments on a videotape or DVD. The microphone is in the monitor housing.

On/Off (Power) Control

The **On/Off** switch is to the left of the DVD RW drive on the front of the system, above the control module. When the system is off, pushing this control brings the system into a fully operational state. Pushing this control again turns off the system.

On/Off Control

Data Storage

You can store exam data and images onto removable media. Removable media includes USB storage devices and the DVD RW drive, which is located above the control panel. The system hard drive is located inside the system.

DVD RW Drive

USB Port Location

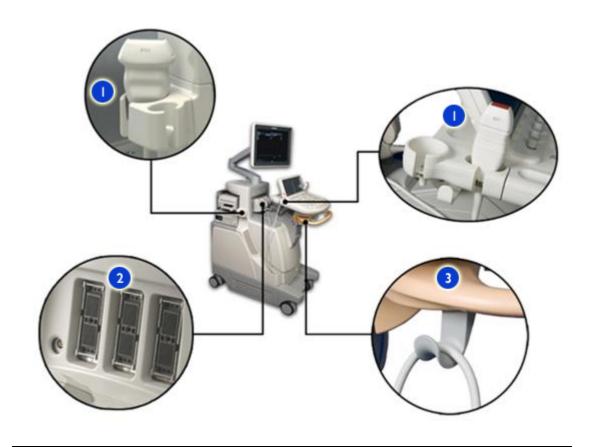
Ī	USB ports
2	Network connection

Peripherals

The peripheral bays at the back of the system provide space for up to three peripheral devices. Those devices can be any combination of the following devices:

a black-and-white printer, a color printer, and a DVR or VCR. The third peripheral bay replaces the TEE transducer tray, so you can have either a third peripheral device or a TEE transducer tray, but not both. The devices can be installed in the peripheral bay for access from either the right or left side of the system.

Peripheral Bays

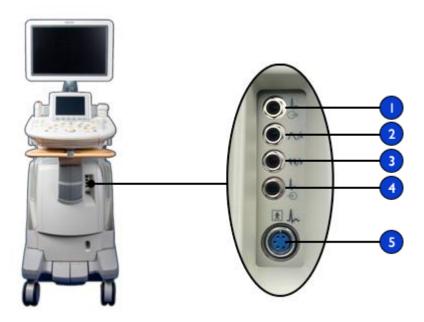

ī	Third peripheral tray
2	Printer
3	DVR or VCR

Transducer Receptacles and Cable Management

The system includes three receptacles for array transducers and one receptacle for a pulsed- or continuous-wave Doppler probe. All four receptacles can be occupied at the same time, but only one transducer can be active at a time. When a transducer is not in use, store it in one of the transducer holders on the control module.

When a transducer is not in use, store it in one of the transducer holders on the control module. Always use the cable management system to prevent cables from being stepped on or run over by the cart wheels.

Transducer Receptacles, Holders, and Cable Management

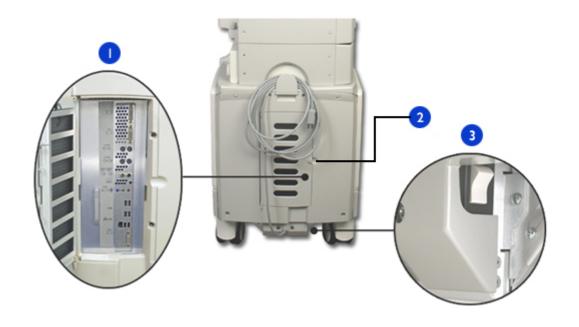

- I Transducer holders
- 2 Array-transducer and pencil-probe receptacles
- 3 Cable hangers

Physio (ECG) Receptacles

For physio support, your system includes input receptacles for both high-level and low-level ECG, pulse, phono, and auxiliary signals. Also, there is an analog

output receptacle for external monitoring devices. Additionally, there is a receptacle for ECG/TTL-compatible trigger output signals. The ECG receptacles are on the front panel of the system below the control module.

ECG and Physio Receptacles

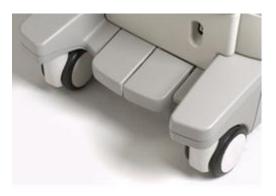


I Analog output
2 Pulse/Aux I input
3 Phono/Aux 2 input
4 High-level ECG input
5 Low-level ECG input

Rear Panel and Power Switch

The rear panel of the system contains the receptacles for the peripheral devices, network devices, and power cords. Also located on the rear panel is the power switch.

Rear Panel


ī	Audio, video, and network receptacles
2	Pull door to open
3	Power switch

Wheel Brakes and Steering Locks

The front wheels include brakes that you can engage to help keep the system in place during use. When you release the brakes, you can engage steering locks on the front wheels to aid in steering while moving the system. The brakes and steering locks are operated using one or two foot pedals at the lower front of the cart.

For more information, see "Using the Brakes and Steering Locks" on page 128.

One-Pedal System

4 Preparing the System

The information and procedures in this section will help you prepare the system for use. Preparations include connecting transducers and external devices, locking articulated components for moving, and ensuring that system operating requirements are met.

Connecting Devices

In addition to the devices installed in the system cart, the system supports external devices. These devices include printers, a VCR, a foot switch, and a color monitor.

The system also supports a DVD recorder. This recorder is considered an external device, even when it is installed on the system. The DVD recorder can be installed before the system is shipped, or can be installed in the field by your Philips representative.

WARNINGS .

- When using additional peripheral equipment powered from an electrical source other than the ultrasound system, the combination is considered to be a medical system. It is your responsibility to comply with IEC 60601-1-1 and test the system to those requirements. For more information on peripheral devices, see the "Safety" section of the *User Manual*. If you have questions, contact your Philips representative.
- Do not use nonmedical peripherals, such as report printers, within 1.5 m (5 ft) of a patient, unless the nonmedical peripherals receive power from an isolation transformer that meets medical safety standards, as defined by standard IEC 60601-1-1.
- Philips ultrasound systems are tested to the requirements of IEC 60601-1, with on-cart peripherals that are powered by the built-in isolation transformer. The system peripherals meet general electrical safety usage requirements, but not necessarily medical device standards.

 Off-cart devices connecting to the ultrasound system must comply with the applicable IEC or national standards, such as IEC 60601-1, IEC 60950, or the equivalent.

CAUTIONS

- Using accessories, transducers, peripherals, or cables not supplied with the
 ultrasound system or recommended by Philips can affect the system in the
 form of increased emissions or decreased immunity to external EMI/EMC
 occurrences.
- If systems, transducers, and peripherals have been in an environment below 10°C (50°F), allow them to reach room temperature before connecting or turning them on. Philips recommends allowing 24 hours for complete normalization. Otherwise, condensation inside the devices could cause damage. If the device was only briefly exposed to temperatures below 10°C (50°F), then the time required for the device to return to room temperature could be significantly less than 24 hours.

NOTE _____

Any device that is not purchased from Philips or a Philips-authorized agent is not covered under a Philips service agreement or warranty.

External Printers

You can connect different external printers to your system.

WARNING

Images printed on a report printer are intended only for reference and should not be used for diagnostic purposes.

NOTES

- Use only the printers listed here with your ultrasound system.
- The system uses the HP Universal Print Driver and the Epson Universal Print Driver, which support additional printers not listed here. For the

supported printers, see the manufacturer's website and search for "universal print driver."

- Color image printers
 - Sony UP-21MD
 - Sony UP-D23MD
- Black-and-white image printer
 - Sony UP-D895MD
- Black-and-white report printers
 - HP Laserlet 1300
- Color report printers
 - HP Color Laserlet 2550L
 - Color Deskjet 5650

NOTES

- Use only the printers listed here with your ultrasound system.
- On some systems, the report printer must be connected to one of the two USB ports that are located in the printer bay.
- To print the entire screen image on a video printer, select the Full Screen (1680 x 1050) Local Printing Area option under Peripherals in the setups. To slightly enlarge the ultrasound image on the video printer, select Video Out (1024 x 768).

Connecting an External Printer

WARNINGS

- When using additional peripheral equipment powered from an electrical source other than the ultrasound system, the combination is considered to be a medical system. It is your responsibility to comply with IEC 60601-1-1 and test the system to those requirements. If you have questions, contact your Philips representative.
- Do not use nonmedical peripherals, such as report printers, within 1.5 m
 (5 ft) of a patient, unless the nonmedical peripherals receive power from

an isolation transformer that meets medical safety standards, as defined by standard IEC 60601-1-1.

- 1. Turn off the system and unplug the power cord from the power source.
- 2. Connect a standard USB cable between the USB port on the printer and a USB port on the system.
 - If your system has two USB ports on the back of the system behind the DVD drive, you can connect the printer cable to one of those ports or one of the USB ports on the lower rear of the system.
 - If your system has one USB port on the back of the system behind the DVD drive, you must connect the printer to one of the two ports on the USB hub located above the top peripheral bay.
- 3. Connect the printer's power cord into the back of the printer, and plug the other end into an appropriate power source (see "Warnings" on page 16).
- 4. Plug the system's power cord into an appropriate power source.
- 5. Turn on the printer, and then turn on the system. The system installs the printer drivers automatically.
- 6. After the system installs the new printer drivers, restart the system.

USB Port Location

On systems with a USB hub, connect a printer only to a USB port on the hub.

USB ports

Connecting the Foot Switch

The foot switch is available as an option.

- I. Turn off the system
- 2. Insert the connector on the foot switch cable into the receptacle on the front of the system.
- 3. Secure the connector to the system by hand-tightening the retaining screws on the connector.

Foot Switch Receptacle

External VCRs

You can connect the Mitsubishi HS-MD3000UA (NTSC) or HS-MD3000EA (PAL) VCR to your ultrasound system as an external device. If your system has an internal VCR installed, an external VCR provides only recording from the system, and cannot support playback or be controlled from the system.

The system supports VCR control through the system control module only if this VCR is installed on the system using the Philips installation kit for that model. (For availability of this kit, contact your Philips representative.) If you connect this VCR without the installation kit or connect any other VCR, you must control it from the front panel controls on the VCR.

Connecting an External VCR

- 1. Turn off the system and unplug the power cord from the power source.
- Connect the audio cables between the Audio In on the VCR and the VCR
 Audio output on the ultrasound system.
- 3. Connect the audio cable between the **Audio** Out on the VCR and the VCR **Audio** input On the ultrasound system.
- 4. Connect an S-Video cable between the **S-Video** input on the VCR and the **S-Video** output on the ultrasound system. (This connector is available only if an internal VCR is not installed.)
- 5. Connect an S-Video cable between the **S-Video Out** on the VCR and the right **S-Video** input ① on the system; the left **S-Video** input is not functional.
- 6. Connect the 25-pin control cable from the system to **RS-232C** on the VCR.
- 7. Connect the VCR's power cord into the back of the VCR, and plug the other end into an appropriate power source.
- 8. Turn on the VCR, and then turn on the ultrasound system.

Configuring Print Functions

In the setups, you can associate a set of printers with each of the print controls. You cannot print to a printer unless it has been selected. A maximum of two DICOM printers, two local printers, and one report printer can be selected among the three lists. Both **Print** and **Acquire** can print to local and network printers; **Alt Print** can print only to local printers; and **Report** can print only to the local report printer. You can also change other printing parameters.

NOTE

During a study, **Print/Network** setups cannot be changed after you acquire an image.

I. Press the **Setup** key.

- 2. In the setups, click **Print/Network**.
- 3. Click the **Device Selection** tab, and then click **Printer**.
 - To specify which printers receive images when you press Acquire on a frozen image, select the printer from the Association to Acquire Key while Frozen list.
 - To associate the **Print** and **Alt Print** controls to a specific printer, select Control Panel or Touch Screen in the menus under Association to **Control Panel Print Key of Touch Screen Alt Print.**
- 4. To modify the printer settings, select the printer, click **Edit**, and do any of the following:
 - To set the number of copies to be printed each time you use a print control, select the current setting and enter a number for Number of Copies.
 - Make additional configuration changes, such as Film Orientation or Film Display Format, as needed. If necessary, to revert to the default settings stored in the system, click Reset Defaults.

NOTE

The Advanced control is for configuring the printer properties, which are unique to each type and model of printer.

- 5. To apply and save your changes, click **OK**.
- 6. Click the **Printer/Capture** tab.
- 7. Do any the following:
 - To change the area printed, make selections for Acquire Key while Frozen and Control Panel Print Key for Print Format.
 - To send report data to a computer or workstation, select To Report **Server** for **Send Report**. Otherwise, select **To Report Printer**.
- 8. To exit the setups, click **Done**.

Connecting an External Color Monitor

You can connect a compatible external color monitor to the **AUX** receptacle on the rear panel of the system. This receptacle provides standard DVI-D digital output. You also can connect an external analog monitor to the **COMP VIDEO** receptacle, or for better image quality, to the **S-VIDEO** receptacle. A digital monitor connected to the DVI-D receptacle provides the best-quality image. The power cord for the external monitor plugs directly into a wall socket.

For analog monitors and video projectors requiring RGB video, a DVI-to-RGB converter is required. The Extron model DVI-RGB 100 converter has been tested with the system and verified to provide high-quality output that is compatible with many monitors and projectors.

The DVI-D output includes the entire screen. The aspect ratio of the screen is 16:10 (WSXGA+). To display this properly, select the 16:10 or 16:9 mode on the monitor or projector, if available. Also, you may be able to adjust the horizontal and vertical image size controls to create the correct aspect ratio. You can best judge the aspect ratio by displaying the circle test pattern on the system.

Connecting the System to a Network

To use connectivity features, the system must be connected to a network. The network receptacle on the system supports (10/100/1000 Mb/s) Ethernet LAN. The system is configured for network connectivity by a Philips field service engineer or your network administrator.

For information on changing the network configuration for the system, see "System Administration" in the *Help*. To display the *Help*, press **Help** on the keyboard. To close the Help, press **Help** again.

- I. Turn off system power.
- 2. Connect one end of the provided network connection cable to the wall receptacle for your network.

- 3. Connect the other end of the cable to the network receptacle **b** on the system.
- 4. Turn on the system.

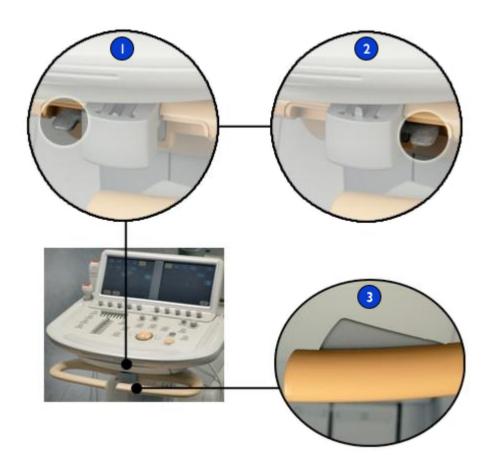
Moving the System

Observe the following warnings and cautions before moving the system.

WARNINGS

- Be aware of the wheels, especially when moving the system. The system could cause injury to you or others if it rolls over feet or into shins. Exercise caution when going up or down ramps.
- When attempting to overcome an obstacle, do not push the system from either side with excessive force, which could cause the system to tip over.
- Position external hardcopy devices away from the system. Ensure that they
 are secure. Do not stack them on the system.
- When positioning the articulated monitor, move it carefully to avoid pinching hands or extremities against other objects, such as a bed rail.
- Never park the system on an incline.
- The brakes are intended as a convenience. To increase cart security, use wheel chocks when the system is parked.
- Before moving the system, ensure that the keyboard is retracted, the control
 panel is centered, and the monitor is locked. When extended, the keyboard
 might be damaged if it hits another object, and the video monitor could
 swing out during transport, causing injury or equipment damage.
- To avoid injury, Philips recommends against lifting the system cart.

CAUTIONS


- Before moving the system, ensure that the brakes are completely released (by fully lifting the brake pedal). Otherwise, the engaged brake pad can damage the rubber casters on the wheels.
- Ensure that the cables for all patient-applied parts are secure before moving the system. Use the cable management system to ensure that transducer cables are protected from damage.
- Do not roll the system over transducer cables or power cables.
- When transporting the system in a vehicle, avoid exposing the monitor to direct sunlight and do not let the inside temperature of the vehicle exceed 65°C (149°F). Either of these conditions can permanently damage the monitor.

Preparing and Moving

Follow this procedure to move a system.

- I. Press **On/Off** to turn off the system.
- 2. When the system shuts down, set **Power** to off O.
- 3. Disconnect all external cables, including those to power, network, telephone, and external devices. Secure all cables, transducers, and accessories so that they do not interfere with the wheels.
- 4. Retract the keyboard.
- 5. Squeeze the release lever on the front handle and use the handles to move the control module to its lowest position.

Control Module Locks

Ī	Unlocked position
2	Locked position
3	Release lever

- 6. Turn the locking lever beneath the control module to the right.
- 7. Grip the module by the sides, and center the module so that it latches.

8. Lock the monitor arm by pressing the articulating sections of the arm together.

- 9. Release the wheel brakes and set the steering locks by using the appropriate step:
 - On a one-pedal system, lift the foot pedal up fully.
 - On a two-pedal system, press the right foot pedal down fully.

WARNING _

Do not move the system with the steering locked and wheels pointing in the direction you are moving the system. To avoid system instability while moving it, engage the steering lock only after you have moved the system a short distance in the intended direction. This means that when you push the system by using the front handles, the wheels are locked under the system, not protruding out from under the back of the system.

10. Move the cart using the front handles.

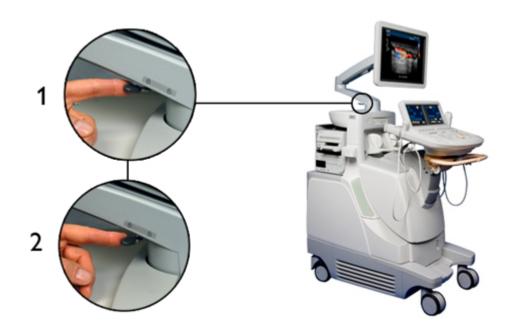
Positioning the System in Confined Spaces

Follow this procedure when positioning the system in a confined space.

- 1. Release the steering locks and wheel brakes by using the appropriate step:
 - On a one-pedal system, press the pedal to its middle position.
 - On a two-pedal system, Press the right foot pedal halfway down.
- 2. Move the system in any direction using the front handle.
- 3. When the system is in position, set the wheel brakes by using the appropriate step:
 - On a one-pedal system, press the foot pedal down fully.
 - On a two-pedal system, press the left foot pedal down fully.

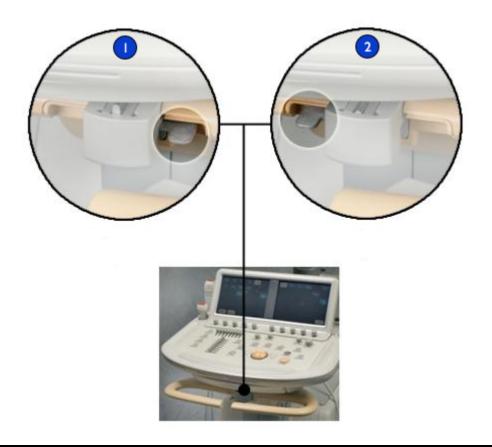
One-Pedal System

Two-Pedal System


Setting Up After Moving

CAUTION .

If the system behaves abnormally after moving, contact your Philips representative immediately. The components are installed securely and can withstand considerable shock; however, excessive shock can cause a system failure.


- 1. With the system in position and the brakes set, connect the power, network, modem and other cables from the system to the appropriate wall receptacles.
- 2. Unlock the monitor by moving the release lever to the unlocked position, and then position the monitor.

Unlocking the Monitor

3. Unlock the control module by turning the locking lever below the module to the left.

Control Module Locks

- I Locked
- 2 Unlocked
- 4. Squeeze the release lever on the front handle and position the control module to the desired position.
- 5. Set **Power** to on
- 6. Press **On/Off** to turn on the system.

Power Switches

Ι	On/Off switch
2	Rear of the system
3	Power switch

Transporting the System

Tie points are built into the system for anchoring it during transport in a vehicle. The system can be safely transported in a van if it is properly strapped down using the tie points.

I. Prepare the system as described in "Moving the System" on page 114.

- 2. Remove all transducers, cables, and accessories that are not attached to the system.
- 3. Using a lift gate or a secured ramp, load the system into the vehicle.
- 4. When the system is in position, set the wheel brakes by using the appropriate step:
 - On a one-pedal system, press the foot pedal down fully.
 - On a two-pedal system, press the left foot pedal down fully.
- 5. Place wheel chocks on the wheels to prevent the system from rolling.
- 6. Attach tie-down straps to the tie points on the lower rear of the system and to the handles. Secure the straps to anchor points in the vehicle.

Tie Points on the System

5 Using the System

The topics that follow will help you understand and use the features of the system.

Turning the System On and Off

The system can be set to two different power modes: off and on. When set to off, the system consumes no power. To achieve a balance between convenience and energy efficiency, follow these recommendations:

- If the system will not be used for longer than overnight, power off the system: Press the On/Off switch to turn the system off. Then, when the monitor goes off, set the power switch on the back of the system to off
- To turn on the system, set the power switch on the back of the system to on , and then press the On/Off switch next to the DVD drive.

NOTES

- Never turn off the system while files are being transferred. File corruption or loss may result.
- Stop VCR activity (such as playback or rewind) before turning the system
 off.
- Stop DVR activity before turning off the system.
- Always use the procedures listed here for turning off the system, if
 possible. Turning off the system in any other way will result in longer
 initialization time when the system is turned on again, and may cause
 other problems.
- After you press the On/Off switch, as the system shuts down, the display blanks for a few seconds, returns briefly, and then blanks permanently. Turning off the Power switch on the back of the system or unplugging the system before that shutdown sequence is complete can corrupt the hard drives. To ensure that the system is fully shut down, wait until the

- light next to the On/Off switch blinks or is off and the fans are silent. A good practice is to wait 5 seconds in front of a black screen before setting the Power switch to off.
- Always end exams before turning off the system. If you turn off the system with an exam open, the exam is paused, not closed.

On/Off Power Switches

I	On/Off switch
2	Rear of the system
3	Power switch

Setting the System Time and Date

The system includes a clock/calendar function, which maintains accurate time and date even when the system is turned off and disconnected from power. The system uses the clock/calendar function to display the time and date on the imaging display, and to provide a time stamp on patient studies and acquired images. The system automatically adjusts the date for leap years but does not automatically update for daylight saving time.

NOTES

- The system time and date cannot be set when a study is active. It is
 recommended that you check the system time and date periodically before
 a study, and set the correct time and date, if necessary.
- If you change the system date while a study is paused, existing results for date-dependent calculations in the paused study are not recalculated by the system at any time.
- When you enter invalid characters in the time and date setups on the
 Header tab of System Settings, some characters are displayed and then
 erased, but others are not displayed at all. An invalid date may be displayed
 in the setups but not entered when you close the setups. After changing a
 date and exiting the setups, always check the date on the imaging display.
- 1. Press the **Setup** key. By default, **System Settings** is selected and the **Header** tab is displayed.
- 2. In **Set Time**, select a **Format** (12 hours or 24 hours), double-click the hours or minutes in the **Time** box to select it, and then use the number keys to enter the correct setting. Repeat to set the other component of the time. Select **Am** or **Pm**, if necessary.
- 3. In **Set Date**, select a **Format**, double-click the year, month, or day in the **Date** box to select it, and then use the number keys to enter the correct setting. Repeat to set the other components of the date.
- 4. Click Done.

Using the Brakes and Steering Locks

All four wheels swivel to aid in maneuvering the system. You can engage steering locks to make steering easier when moving the cart. Brakes help keep the cart stationary while in use. The brakes and the steering locks are designed so that they cannot be engaged simultaneously.

Your system may have either a single foot pedal or two foot pedals at the lower front of the cart. Operate the brakes and the steering locks using the foot pedal or pedals using the appropriate procedure.

WARNINGS


- Never park the system on an incline.
- The brakes are intended as a convenience. To increase cart security, use wheel chocks when the system is parked.

On a One-Pedal System

Do any of the following:

- To engage the steering locks and release the brakes, lift the pedal fully.
- To release both the steering locks and the brakes, move the pedal to its middle position.
- To engage the brakes and release the steering locks, press the pedal fully.

Single Foot Pedal for Brakes and Steering Locks

Steering locks ON, wheel brakes OFF

Wheel brakes and steering locks OFF

Wheel brakes ON, steering locks OFF

On a Two-Pedal System

Do any of the following:

- To engage the steering locks and release the brakes, press the right pedal fully.
- To engage the brakes and release the steering locks, press the left pedal fully.
- To release both the steering locks and the brakes, press the higher pedal halfway down so that both pedals are even.

Two-Pedal System for Brakes and Steering Locks

Monitor Adjustments

The monitor is mounted on an articulated arm that permits it to be positioned vertically and in an arc from side to side. The monitor arm can also be locked for moving the system. You can adjust the brightness of the monitor image to compensate for ambient light. You can also change the default brightness setting for the monitor.

Positioning the Monitor

You can adjust the position of the monitor to suit different operating positions and operator heights.

CAUTION _

To avoid damaging the flat-panel display in the monitor, do not operate it in direct sunlight. Also, do not operate or store the system where the ambient temperature exceeds 61°C (141.8°F).

- I. Release the monitor from its locked transport position.
- 2. Grasp the monitor firmly and do one of the following:
 - Tilt the monitor up and down
 - Swivel the monitor left and right

Move the monitor side to side

Changing the Monitor Tint

In the setups, you can change the tint of the system display. The **Monitor Tint** setting affects only the appearance of images on the monitor; it does not affect saved or exported images. Three settings are available:

- **sRGB** provides the maximum dynamic range and most-balanced tint. Use it to match the look of the system display to a review station display that is set to the sRGB standard.
- I is balanced toward a blue tint, making the display look more like the display on a SONOS or HDI 5000 system.
- 2 is balanced toward a brown tint, making the display look more like the display on the 43-cm (17-in) analog monitor of an iU22 or iE33 system.
- I. Press the **Setup** key.
- 2. With **System Settings** selected, click the **Display** tab.
- 3. Select the appropriate **Monitor Tint** setting. Philips recommends the **sRGB** setting for routine use.
- Click Done.

NOTE

Rendered 3D volumes are particularly susceptible to changes in display tint. Some clinicians prefer the following settings for optimal viewing of 3D volumes: set **Monitor Tint** to **I** or **2** and set **Monitor** (brightness) to **I**.

Changing the Default Monitor Brightness

You can change the default brightness of the monitor image in the setups. The system uses this default value to set monitor brightness each time the system is turned on.

I. Press the **Setup** key.

- 2. With **System Settings** selected, click the **Display** tab.
- 3. Select a setting for **Default Monitor Brightness** from **I** (darkest) to **6** (lightest).
- 4. Click Done.

Adjusting for Ambient Light

The **Monitor** control on the **Image** touch screen allows you to adjust monitor brightness to compensate for changes in ambient light. Use this control to temporarily change the monitor brightness. When you cycle power, the system resets monitor brightness to the default value (see "Changing the Default Monitor Brightness" on page 131).

For maximum dynamic range, set **Monitor** to **3**. To match the look of the system display to earlier iE33 systems with the 43-cm (17-inch) monitor, set **Monitor** to **2**.

- 1. Touch Image on the left touch screen.
- 2. Turn **Monitor** to select a setting from **I** (darkest) to **6** (lightest).

Automatic Display Dimming

To preserve monitor life and prevent burned-in display artifacts, the system automatically dims the display after more than 2 hours of operation with no control changes. The system restores full brightness as soon as you use any system control.

System Controls

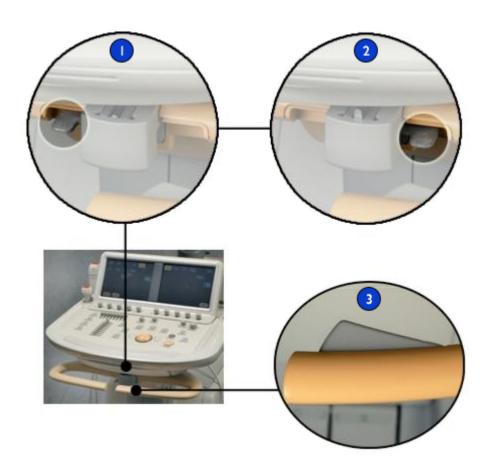
System controls are located on the control panel, the touch screen, and the keyboard.

Control Panel

The control panel contains the main imaging controls. These controls include buttons, knobs, TGC and LGC slide controls, and a trackball. The control module also allows you to select transducers, enter patient data, review and annotate images, perform measurements and calculations, and change setups.

The touch screens, located above the control panel, display controls used to select applications and imaging modes, as well as controls that are specific to the current operating mode. The type of controls on the touch screens include buttons and knob displays.

Control Panel



Positioning the Control Module

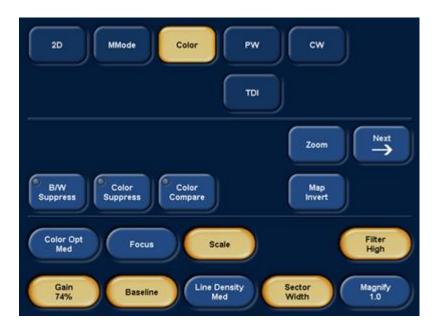
You can swivel the control module, move it side-to-side, and move it up and down to improve ergonomics.

- 1. Push the locking lever under the control module to the left to unlock the control module, and then do one of the following:
 - Use the handles to swivel the control module.
 - Grip the sides of the control module to move it side-to-side.
- 2. Squeeze the release lever on the front handle and use the handles to move the control module up or down.

Control Module Locks

- I Unlocked position
- 2 Locked position
- 3 Release lever

Touch Screen Layout


The controls on the right and left touch screens are organized by function.

Right Touch Screen Controls

The right touch screen is divided into three areas, each containing a specific type of imaging controls (see figure):

- Imaging mode controls: Use these controls to switch between imaging
 modes, such as 2D and PW Doppler. These controls are in the top two
 rows of the right touch screen. When selected, each imaging mode control
 displays a set of related controls in the bottom four rows of the left touch
 screen.
- Imaging feature controls: Use these controls to optimize the image with features such as SonoCT imaging and XRES processing. These controls are in the middle two rows of the right touch screen.
- Imaging feature knob displays: Use these controls to set imaging functions such as magnification or focus. These controls are in the bottom two rows of the right touch screen. For more information on knob displays, see "Touch Screen Knob Displays" on page 144.

Right Touch Screen Layout

I Imaging mode controls
Imaging feature controls
Imaging feature knob controls

Left Touch Screen Controls

The left touch screen is divided into three areas, each containing a different type of control, but all three are related to applications available on the system (see figure):

 Application selection controls: Use these controls to switch between applications, such as ECG, loop acquisition, and QLAB software. These controls are in the top two rows of the left touch screen. When selected,

- each application control displays a set of related controls in the bottom four rows of the left touch screen.
- Application controls: Use these controls to change settings for the selected application. For example, after you touch Image, you can use L/R Invert or U/D Invert to change the orientation of the image. These controls are in the middle three or four rows, depending on whether there is a row of knob displays.
- Application knob displays: Use these controls to set imaging functions such as loop type or format. These controls are in the bottom row of the left touch screen, when present. For some applications, there are no knob displays.

Left Touch Screen Layout

I Application selection controls
 2 Application controls
 3 Application knob controls

Touch Screen Brightness Controls

The touch screen brightness control on the top of each touch screen allows you to adjust the touch screen display brightness to compensate for changes in ambient light.

Touch Screen Brightness Controls

Touch Screen Controls

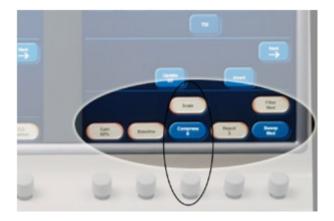
The touch screens above the control panel provide controls that change function according to the current mode or function. The touch screens can contain various types of controls, depending on the function the control is to perform.

Types of Touch Screen Controls

For this type of button	Do this
2D 2D	Touch to turn on a mode and display a corresponding set of mode controls. Mode buttons are displayed on the top two rows of the right touch screen. Certain combinations of mode buttons can be on at the same time. Touching a mode button when it is on turns the mode off. When the mode button in this example is active, controls associated with 2D mode are displayed, and the system is in 2D mode.
Physio	Touch to turn on an application. Application buttons are displayed on the top two rows of the left touch screen. Touching an application button when it is on does nothing. When the button in this example is active, ECG and other physio controls are displayed.
IVSs IVSs	Touch to perform a measurement. For information on controls used only in measurements and analysis, see Analysis Touch Screen Labels.

For this type of button	Do this
Next —	Touch Next or Previous to display the next or previous page of controls associated with the current mode. For most touch screens, there are two pages of buttons.
Invert	Touch to perform or update a function. Touching the button in this example inverts the Doppler scale.
XRes XRes	Touch to turn a function on or off. The indicator in the upper corner is lit when the function is on. In this example, the control turns XRES imaging on or off.

For this type of button	Do this
D1 D2	Touch to activate one button in a group of related buttons. The light ring around the button indicates an active state. Only one of the buttons in the group can be active at one time. In this example, DI (dual image I) is inactive, and the other button in the group, D2 , is active. (For another type of control, the light ring indicates a standby state. See the next control type, below.)
Zoom Zoom Zoom	Touch to switch between one of three states: inactive, standby, and active. Standby mode is indicated by a light ring around the control. In this example, touching the inactive control (top) displays a zoom box on the image, touching the standby control (middle) magnifies the image, and touching the active control (bottom) turns the zoom function off.
Focus Range	Touch to assign the function of this knob display to the knob below it. For information on knob displays, see "Touch Screen Knob Displays" on page 144
Layout Multi-image Full Res	Touch to change the value displayed on the button. Repeatedly touching this type of button cycles through the range of available values. Do not confuse these buttons with knob displays, which also display a value but are not intended to function as a button.


Touch Screen Knob Displays

Knob displays appear on the bottom two rows of the touch screens. Each knob display corresponds to a knob below it on the control panel. Like touch screen buttons, knob displays assume different functions based on the current imaging mode.

In many cases, two knob displays share one knob. Only one of the two knob display can be active at any time. Touch one of the knob display to make it active. The active knob display is gold, and the inactive one is blue. If only one knob display appears above a knob, you do not need to touch the knob display before using the knob.

Turn the knob below a knob display to change the value for that function. For most functions, the value appears on the knob display. In a few instances, however, the value appears on the monitor display instead of on the knob display. One example of this is the **Baseline** knob display.

Knob Displays

Using the Retractable Keyboard

Beneath the control panel is a retractable keyboard. You can use the keyboard to enter patient data, exam comments, image annotation, and your logon password. The keyboard also includes function keys that access various features, such as setups and Help.

CAUTION

To help avoid pinching your fingers between the keyboard and the cart handle, do not put your hand in front of the keyboard when you are pulling out the keyboard.

- I. Pull out the keyboard. The keyboard illuminates after you pull it out completely.
- 2. Push the keyboard in completely when you are finished.

Status Icons

The icons at the bottom of the display let you control certain features and check the status of tasks. Status indicators include color combinations; graphic overlays, such as symbols and colored dots; lack of an overlay; and a non-displaying icon.

Icon	Description
ISCAN ISCAN	 Indicates the status of the iSCAN Intelligent Optimization option: No change (as shown): iSCAN optimization is available. Green (for 3 seconds): iSCAN is optimizing the image.
	The iSCAN indicator is always present, even if iSCAN is not enabled in a Tissue Specific preset.
	Indicates the status of the media drive (DVD, CD, or USB storage device):
	No dot: Available
	Green dot: Writing data
	 Yellow dot: USB and DVD drives are empty; media is write-protected and the USB drive is empty; the DVD drive is malfunctioning and the USB drive is empty Red dot: Failed
	Click the icon to open the Media Status dialog box. You can cancel, pause, or resume any data transfer job listed.

Description lcon Indicates the presence of a remote services session. An exclamation point (as shown) in the lower right corner indicates that the patient name and ID are visible to the remote user. When the icon does not include the exclamation point, it indicates that the patient name and ID are not visible to the remote user. Click the icon to end the remote desktop session. Indicates the status of a local or network printer: No dot: Available Green dot: Active printing Yellow dot: Printer not on the network Red dot: Failed Click the icon to open the **Printer Status** dialog box. You can cancel, pause, or resume any print job listed. Indicates the status of a network communication: No dot: No activity Green dot: Active communication Yellow dot: System or printer not on the network Red dot: Failed Click the icon to open the **Network Status** dialog box. You can cancel, pause, or resume any network job listed.

Icon	Description
<i>\$</i> n)	Indicates the basic feature status of the voice control option: Large X: Off No change (as shown): On Key overlay: On, with the keyword feature on ABC overlay: On, with the voice annotation feature on
	Indicates the headset status of the voice control option: • Yellow on black: Not ready, not connected, out of range • Gray on black (as shown): Ready and listening • Black on yellow: Did not recognize, did not execute • Black on green: Heard and executed
	Indicates, when displayed, that the microphone is enabled. When the icon is not displayed, the microphone is disabled.

Voice Control

Voice control uses a wireless headset to send your voice commands to the system. You can use voice control to operate the system when the control panel is out of reach or you need both hands for scanning. You can also use voice control to add text annotation to images. When this feature is active, you can still use the controls on the control panel.

The voice control option can recognize commands in English, French, Italian, German, and Spanish.

Using voice control, you can operate the system controls that are most commonly used during an exam. For knobs and some controls on the touch screens, you can direct the system to adjust the control up or down. You can include a relative control setting, which specifies an increment or multiplier, depending on the command you use it with. For example, "2D gain up 5" corresponds to an increase

of 5 clicks of the 2D knob, while "Move color box up 5" moves the color box up 50 pixels (5 \times 10, where 10 is the increment for this command).

When you first use voice control, try operating it without a voice profile. To do this, select **Guest** when enabling the feature. If you want to increase recognition accuracy, create a voice profile and train it to recognize your speech.

You can set voice control to listen only to commands that start with a keyword. The keyword feature reduces the possibility of erroneous commands caused by conversation or noise. When the keyword feature in voice control is on, you must start each full command with the word "Vox." For example, "Vox color." If you have created a user profile, you can set the default state of the keyword feature for your profile in the setups.

You can activate and deactivate voice control using one of the two voice control icons on the display. These icons also indicate the status of voice control and the keyword feature. For descriptions of these icons, see "Voice Control Icons" on page 150.

NOTES

- An AC adapter is included with your iCOMMAND headset and is intended only for use with the headset charging unit. Please check your local electrical device regulations prior to its use. For permanent use, Philips recommends that you obtain from your local wireless electronics dealer the Jabra FreeSpeak BT250v headset with Bluetooth v1.1 compliant technology that includes a charging unit compatible with local codes.
- Some system controls switch a function on and off or cycle through more than two states. For example, SonoCT switches between the on and off states of this feature, while Zoom cycles through Zoom standby, Zoom, and off. The voice commands that operate those system controls also switch between or cycle through states. The optional words for these voice commands, such as "on" or "off," are included as a convenience but do not change the action performed by these commands.
- The wireless headset emits radio waves in the ISM band at 2.4 GHz and complies with FCC regulations. It is your responsibility to determine the suitability of this wireless device in your environment.

Voice Control Icons

The state of voice control is indicated on the display by two icons. The first icon shows whether voice control and the keyword feature are on or off. The second icon shows whether or not the headset is connected. This icon also indicates when a command is recognized.

Icon	Description	
On/Off/Feature Icon		
3	Voice control is not active. Click to activate voice control.	
; 3'n)	Voice control is active, and the keyword feature is off. Click to deactivate voice control.	
511)	Voice control is active, and the keyword feature is on. Click to deactivate voice control.	
5 →)) ABC	Voice control is active, and the voice annotation feature is on. Click to deactivate voice control.	
Headset Status Icon		
	Voice control is not ready; headset is not connected.	
	Voice control is active and listening.	
	Voice control did not recognize a valid command and did nothing.	

Icon	Description
	Voice control recognized and performed a command.

Turning Headsets On and Off

When a headset is on, the indicator on the headset lights as described in the headset documentation. To locate the controls on the headset, see the headset documentation. A headset may emit tones when you turn it on or turn it off. For information about the tones, see the headset documentation.

NOTE

Always wear the headset on the ear closest to the system. Wearing it on the other ear reduces the range of the headset.

- 1. To turn a headset on, press and hold the Call Handling button on the headset until you hear a tone.
- 2. To turn a headset off, press and hold the Call Handling button again until you hear a tone.

Pairing Headsets

The system recognizes only headsets that have been *paired* to it in the setups. You can pair up to seven headsets to a system. Until you assign a name to a headset, it will be identified on the **Headset Config** tab only by the model number. In this list, voice control headsets used with the system are identified by one of two model designations: for Sony Ericsson headsets, the model designation starts with **HBH**; for Jabra headsets, the model designation starts with the name **Jabra**. Ignore other nearby Bluetooth devices that may appear in the list on the **Headset Config** tab.

When using multiple headsets in one location, it is important to give each headset a unique name and to label each headset with its name. To locate the controls on the headset, see the documentation provided with the headset.

NOTE

When a new headset is paired to the system, it may be necessary to pair the headset twice. After you have paired it once, click **Unpair** to unpair it, turn the headset off and on again into pair mode, and then pair it a second time.

- I. Press the **Setup** key.
- 2. Click Voice Control, and then click the Headset Config tab.
- 3. Wait until the message "Querying headsets" disappears from the bottom of the display, indicating that the system is finished querying headsets.
- 4. Ensure that the headset is off.
- Press and hold the Call Handling button on the headset until the indicator lights as described in the headset documentation. The headset is now in pair mode.
- 6. Click Refresh Current Status.
- Select the headset in the list:
 - For a Sony Ericsson headset, select the name that starts with HBH.
 - For a Jabra headset, select the name that starts with Jabra.
 - · For a Plantronics headset, select the name that starts with PLT.
- 8. Click Pair.
- 9. At the prompt, type the passkey (0000) and click **Next**. If 0000 does not work, use the passkey shown in the headset documentation.
- IQ. If the model number of the selected headset is listed under **Name**, rename the headset with a unique name by doing the following:
 - a. Click **Change Name**.
 - b. Type a unique name.
 - c. Click OK.
- II. Click Done.
- 12 Label the headset with the name you assigned to it in step 10.

Configuring Headsets

Once a headset has been paired to the system, you can configure the headset. Settings on the **Headset Config** tab allow you to delete or rename a headset and permit or prevent communications between a headset and the system. To locate the controls on the headset, see the documentation provided with the headset.

NOTE .

Other nearby Bluetooth devices may appear in the list on the **Headset Config** tab of the **Voice Control** setups. In this list, voice control headsets used with the system are identified by one of three designations: for Sony Ericsson headsets, the designation starts with **HBH**; for Jabra headsets, the designation starts with the name **Jabra**; and for Plantronics headsets, the designation starts with **PLT**.

- I. Ensure the headset is on.
- 2. Press the **Setup** key.
- 3. Click **Voice Control**, and then click the **Headset Config** tab.
- 4. Observe the message at the bottom of the display and wait until the system is finished querying headsets.
- 5. If your headset is not listed, perform the procedure in "Pairing Headsets" on page 151.
- 6. Select a headset and do one of the following:
 - To change the name of the headset, click Change Name, type a new name, and click OK.
 - To delete the selected headset from the list, click **Delete**, and when prompted, click **OK** to confirm the deletion.
 - To prevent the selected headset from communicating with the system, click **Unpair**.
 - To see any changes that are not reflected in the list, click Refresh Current Status.
- Click Done.

Muting the Headset

When you want to talk with someone during an exam, it is a good idea to mute the headset to avoid sending unintended commands. This is especially important when the keyword feature is disabled. To locate the controls on the headset, see the documentation provided with the headset.

Do one of the following to control the mute function on the system:

- Say "Go to sleep" to mute the headset.
- Say "Wake up" to unmute the headset.

Enabling Voice Control

Before you can use voice control for the first time after powering up the system, you must enable it.

- I. If the headset has been labeled, note the name or number on the label. Turn on the headset and put it on.
- 2. Click the voice control icon

NOTE

In some situations, you may need to press **Pointer** first, to activate the pointer.

- 3. For **User**, select your profile or select **Guest**, and then click **Next**.
- 4. For **Active Headsets**, select your headset and click **Next**.
- 5. When your headset rings, press the Call Handling button to connect to the system.

Voice Profiles

You can use voice control regardless of whether you have created and trained a voice profile. However, Philips recommends that you create and train a voice profile before using voice control. Training voice control to recognize your speech significantly improves recognition accuracy. Minimally training a voice profile requires only about 2 minutes.

Training a voice profile involves reading text into the system using a voice control headset. The system lets you choose from among a number of books of text to read. Once you start the process, the system listens to your speech to associate each written word with your pronunciation of it. As you read the text, the system displays recognized text in green and unrecognized text in red.

If the system does not recognize one or more words, you can re-read some or all of the text on the page. When the system recognizes your reading of all text on a page, it displays the next page of text. It is not necessary that every word be recognized by the system during training. If a few words are not recognized after re-reading, you can skip to the next page by clicking **Next**.

If you need to stop the training before you are finished, you can click **Suspend** to save your input, mark your place, and close the training window. When you open the training window for your voice profile again, the system displays the text page you were working in when you suspended training.

Select a quiet location in which to train a voice profile. When reading during training, speak in your normal tone of voice at your normal rate.

Creating a Voice Profile

Before you begin creating a profile, read "Voice Profiles" on page 154.

You can use voice control regardless of whether you have created and trained a voice profile. However, Philips recommends that you create and train a voice profile before using voice control. Training voice control to recognize your speech significantly improves recognition accuracy. Minimally training a voice profile requires only about 2 minutes.

NOTE

When naming profiles, do not include single quotes or other special characters.

1. If the headset has been labeled, note the name or number on the label. Turn on the headset and put it on.

- 2. Press the **Setup** key.
- 3. Click Voice Control. On the Voice Profiles tab, click New Voice Profile.
- 4. Type a unique user name for your profile. Click Next.
- 5. Select the language you will be using for giving voice commands. Click Next.
- 6. Select the headset you are using from the list. Click Next.

NOTE

If the headset has not been paired to your system, follow the prompts.

- 7. Acknowledge the communication between the system and the headset by pressing the Call Handling button on the headset.
- Click **Start** and read the paragraph in the dialog box. When you are done, click **Stop**. You have completed the creation of a new voice profile. For information regarding training the voice profile, see "Training Voice Profiles" on page 156.
- 9. Click Done.

Training Voice Profiles

You can use voice control regardless of whether you have created and trained a voice profile. However, Philips recommends that you create and train a voice profile before using voice control. Training voice control to recognize your speech significantly improves recognition accuracy. Minimally training a voice profile requires only about 2 minutes.

NOTE

After you have trained a voice profile to the minimum level, you can do further training at any time. Although additional training does improve recognition accuracy, the longer you train, the smaller the degree of improvement becomes.

- I. If the headset has been labeled, note the name or number on the label. Turn on the headset and put it on.
- 2. Press the **Setup** key.
- 3. Click Voice Control.

- 4. On the Voice Profiles tab, select the profile you want to train.
- 5. Click Training.
- 6. In the **Training Topics** dialog box, select a book you would like to read to train voice control. Click **OK**.
- 7. Click **Microphone** and begin reading the text. Ignore text color for now and continue reading to the end of the displayed text. If all text is recognized, the next page of text is displayed.
- 8. Any text not recognized is marked in red. When you have finished reading and the text background changes to yellow, do one of the following:
 - To reread the entire page, click Repeat and begin reading.
 - To reread starting at the first unrecognized text, drag the text cursor to the beginning of the first red text. Then click **Microphone** and read from that point to the end of the page.

NOTE _

If some text is still unrecognized after rereading it, click **Next** to display the next page.

Read at least until the prompt indicates that you have reached minimal training (2 minutes or more). To improve recognition accuracy, read further. If you need to stop the training temporarily before you are finished, click **Suspend**. When you resume training, the last uncompleted page will be displayed.

9. When you are finished reading, click **Start Processing** to apply the training to your profile.

NOTE

If **Start Processing** is not available, first click **Microphone**.

10. Click **Done** when the processing is complete.

Deleting Voice Profiles

You can delete voice profiles that are no longer needed. If you are not satisfied with the training you have done so far, you can delete that voice profile and start training a new profile from the beginning.

- I. Press the **Setup** key.
- 2. Click Voice Control.
- Select the profile that you want to delete, and then click **Delete Voice**Profile.
- 4. To delete other profiles, repeat step 3.
- 5. Click Done.

Background Noise

Background noise in the exam room can interfere with your use of voice control. Fans, patient monitors, voice paging, and even Doppler audio on the system can lower the accuracy of voice recognition. If you are going to be using voice control, it is helpful to reduce or eliminate noise by turning off loud equipment and by limiting the volume level of Doppler audio.

Communication Problems

The voice control feature uses Bluetooth wireless technology. This technology is also commonly used in cellular telephones and other wireless applications. To prevent other Bluetooth devices from sending unintended commands through voice control to the system, the system listens only to headsets that have been paired and connected to it.

On rare occasions, a nonstandard wireless device operating near the system may disrupt communications between the voice control headset and the system, but will not execute commands on the system.

If you cannot communicate with your system using the voice control headset, first perform the steps in "Troubleshooting Voice Controls" on page 159. If the

problem persists, move the ultrasound system to another room at least 30 m (100 feet) away and check communications again. Turning off all other wireless devices can help you locate the source of the interference.

Troubleshooting Voice Controls

If the error message "The system failed to communicate..." displays during the use of voice control, use the following procedure to correct the problem.

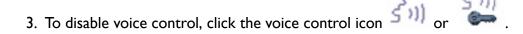
- I. Ensure headset is turned on.
- 2. Ensure headset is paired to system.
- 3. Refresh the **Active Headsets** list and select your headset again.

NOTE _

If the problem persists or is not covered here, contact your Philips Ultrasound customer support representative.

Using Voice Commands

You can use voice control regardless of whether you have created and trained a voice profile. However, Philips recommends that you create and train a voice profile before using voice control. Training voice control to recognize your speech significantly improves recognition accuracy. Minimally training a voice profile requires only about 2 minutes.


For a list of voice commands, see the Voice Control Quick Guide.

NOTE

Always wear the headset on the ear closest to the system. Wearing it on the other ear reduces the range of the headset.

- 1. If you have not used voice control since the system was powered up, perform the procedure in "Enabling Voice Control" on page 154.
- 2. Do any of the following to use voice control:

- Say a command. Most controls can be activated by more than one command. For example, to change the box size, you could say "Make" or "Make box" followed by "Wider" or "Taller" or "Larger," and so on.
- If voice control is set to use a keyword (indicated by full command with the word "Vox."
- To operate a button or key, say the name of the control. Some buttons have two possible commands; for example, "Freeze" and "Unfreeze."
- To operate a knob, say the name of the knob, followed by "Up" or "Down."
 You can also say "Decrease" or "Increase," followed by name of the knob.
 To state an increment of change, say a number (1-9). For example, to
 increase 2D gain, you can say "Increase 2D gain three" or "2D gain" followed
 by "Up three."
- To operate a touch screen control, say the name of the control. Controls on a touch screen page are available only when that page is displayed and the control itself is not gray (unavailable based on the current mode).
- To display the next or previous touch screen, say "Next" or "Previous."
- To click or select an object on the screen, say "Select."
- To repeat the last command, say "Repeat."
- To turn the keyword feature on or off, say "Keyword on" or "Vox keyword off."
- To turn on sleep mode, causing voice control to ignore commands, say "Go to sleep."
- To make voice control listen again, say "Wake up."

Using the Keyword Feature

When the keyword feature is on, voice control performs only commands that start with the keyword "Vox." Using this feature helps prevent erroneous

commands. In the setups, you can select whether the keyword feature will be on or off when you first activate voice control. Regardless of the default setting, you can turn the keyword feature on and off using a voice command.

- I. Ensure that voice control is active.
- 2. Do one of the following:
 - To turn the keyword feature on, say "Keyword on."
 - To turn the keyword feature off, say "Vox keyword off."

Specifying Keyword Default Settings

In the setups, you can select whether the keyword feature will be on or off when you first activate voice control.

- I. Press the **Setup** key.
- 2. Click Voice Control.
- 3. On the **Voice Profiles** tab, select the profile you want to set up.
- 4. Select or deselect **Use Keyword**.
- 5. Click Done.

Voice Annotation Commands

The voice control feature lets you add annotation to the screen from a list of terms. The list of terms that is displayed is dependent on which clinical option is selected.

For a full list of the terms, see the Voice Control Quick Guide.

The voice annotation feature is turned on and off with a voice command. "Erase all text" and "Erase last word" are the only other voice commands available when voice annotation is on.

NOTE

To simplify the annotation process, the keyword feature is not available when voice annotation is on.

Using Voice Annotation

NOTE

Always wear the headset on the ear closest to the system. Wearing it on the other ear reduces the range of the headset.

- I. Say "Annotate" or "Vox annotate."
- 2. Say the annotation term. For example, "Lateral." Remember that the keyword feature is not used in voice annotation.
- 3. To erase specific annotations, position the annotation cursor to the right of the term using the arrow keys, then press the **Backspace** key until it is erased. You can also say "Erase last word" to remove one word at a time.
- 4. To erase all annotations, say "Erase all text."
- 5. To turn off voice annotation, say "Annotate off" or "Stop." You can add "Stop" to the end of a command to save time.

System Security

The data security feature, if enabled on your system, limits access to previously stored patient data and images. To gain access to such data, you must first log on to the system using a password. When you are finished using the system, you can log off manually or simply shut down the system, which logs you off automatically.

The data security feature is set up by your system administrator. For information, see "System Administration" in the Help. To display the Help, press Help on the keyboard. To close the Help, press **Help** again.

Logging On to the System

When data security is enabled, you must log on to the system before you will be able to view or load patient files.

- at the bottom of the imaging display. I. Click the Log On icon
- 2. In the **Logon** dialog box, type your user name.
- 3. Press the **Tab** key and type your password. (If you forget your system password, contact your system administrator.)
- 4. Select **OK** to log on to the system and start the valid access period.

NOTE

Logging off of the system does not change the current patient, but it does deny further access to protected patient data.

Logging Off of the System

If you do not log off, the system will automatically log you off when you shut down the system or after the system has been inactive for the length of time shown in Auto Log Off on the User Settings tab of the Data Security setups.

- I. Click the Log Off icon
- at the bottom of the imaging display.
- 2. In the **LogOff** dialog box, click **Yes**.

Changing Your Password

If the data security feature is enabled on your system, you must log on to the system to gain access to patient data and images.

Once the system administrator has given you a password for the system, you can change it as needed. A password must be 6 to 10 characters long and can contain only letters and numbers; punctuation marks and symbols are not allowed.

NOTE

The **Auto Log Off** time shown on the **User Settings** display indicates how long the system can be inactive before you are logged off automatically. Only the system administrator can change this setting.

- I. Press the **Setup** key.
- 2. Click Data Security.
- 3. On the User Settings tab, click Change Password.
- 4. For **Old Password**, type your current password, and then press the **Tab** key.
- 5. For **New Password**, type the new password you want to use, and then press the **Tab** key.
- 6. For Confirm Password, type your new password again.
- 7. Click **OK**.
- 8. To exit setups, click **Done**.

Emergency Studies

If the system administrator has enabled the data security feature on your system, it is important to understand how to start a study in an emergency situation.

In an emergency, you can start a study without entering patient data. During an emergency study, the system provides a temporary ID for image acquisition and report editing. You should change the temporary ID to correct the patient data before you end the study. Otherwise, the temporary ID is the only identifier for that study.

Temporary ID

Use the temporary ID feature to start an exam quickly. This feature allows you to perform an exam without first entering patient data. When you select this feature, the system enters unique, temporary placeholders for the patient's last name and ID. Using the temporary ID feature allows you to perform an exam as you would normally.

To use the temporary ID feature, the **Burn Patient Information Into Images** option in the **Print/Network** setups must be deselected.

When you use the temporary ID workflow, images can be sent to a PACS or to a DICOM printer before entering actual patient data, if the system is configured to send or print images as you scan.

NOTES

- For an exam started with a temporary ID, edit patient data before ending the exam. After the exam is ended, you cannot change patient data.
- If you have configured a DICOM performed-procedure-step-server, PPS
 messages are sent for the temporary ID.
- If you have configured a PPS server, PPS discontinue messages are sent for the temporary ID if you are in send-as-you-scan mode or if you have enabled send-on-demand.
- When the patient data is changed, all images are automatically resent to any local printers that they were previously sent to.

Starting Emergency Studies

In an emergency, you can use the temporary ID feature to start an exam without first having to enter patient data.

You can create a temporary ID when starting a protocol, printing, acquiring an image, or saving a volume.

- Touch Protocol or press Patient Data, Acquire, or Print, and then click Temporary ID.
- 2. When the exam is finished, do either of the following:
 - To replace the temporary ID with patient data, press Patient Data, click Edit, and edit the emergency patient data (either manually or by selecting a Modality Worklist entry from the Worklist tab in the Patient Data form), and then click End Exam.
 - To end the exam and use the temporary ID, press **End Exam** and click **End Exam** in the **Temporary Patient Study** dialog box.

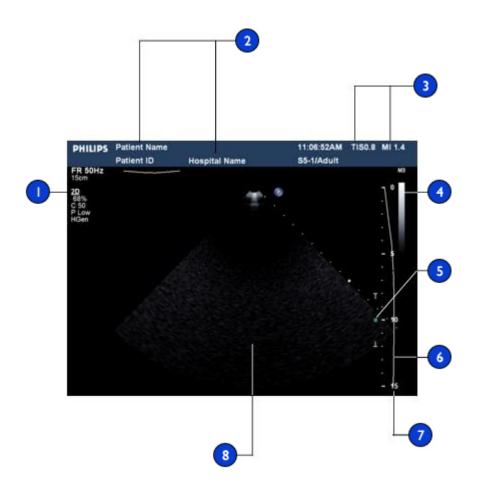
 To end the exam without using a temporary ID, press End Exam and click Cancel in the Temporary Patient Study dialog box.

WARNING

If you use a temporary ID that you will replace with patient information, avoid using Send on Demand and avoid sending images or clips after each print or capture. Otherwise, one of the following occurs, which may result in the need to destroy incorrectly labeled data: If the **Send Images/Clips After Each Print/Acquire** setting is selected, the system resends all images to archive servers and configured printers after updating the patient information; or if you use Send on Demand, the system marks all images as unsent, adds the new patient information, and will send them again, either at the end of the exam or when you use Send on Demand again. If data with incorrect patient information has been sent to a printer or server, destroy or remove that data.

Imaging Display

The imaging display contains an ultrasound image, study and image information, and indicators.


The image area is located approximately in the center of the imaging display. To the right of the image itself are a depth scale and a curve representing the TGC settings. To the right of the TGC curve is a list of values for the slide controls. A grayscale bar or color bar is displayed to the right of the TGC curve. A curve representing the LGC settings is displayed above the left side of the image area. In M-mode and Doppler, the sweeping display appears either below the 2D image or to the right of it, depending on the format you select.

Patient and exam data are displayed in the area directly above the ultrasound image. The system does not display patient data in this area until you start an exam. This area also includes the current time and date, the institution name, the selected transducer and clinical option, the thermal index (TI) setting and the TI and MI (mechanical index) values.

Image information is displayed to the left of the image. In modes such as Duplex or Triplex, additional image information is also displayed. Those additional parameter sets can be displayed below the initial set and to the right of the image.

Use the **Image Info** control to turn on or off the display of image information for the active imaging mode.

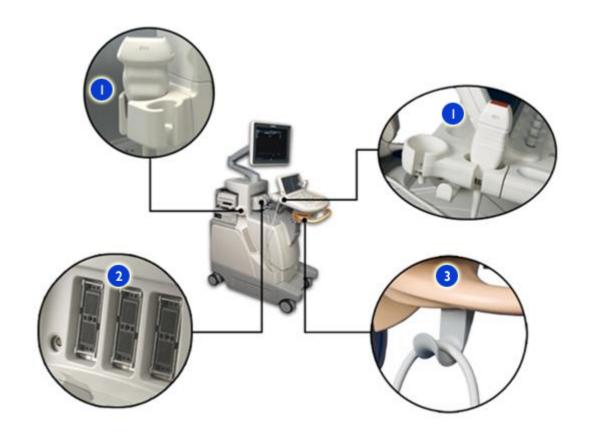
Imaging Display

- I 2D image parameters
- 2 Patient and exam information
- 3 TI and MI values

4	Grayscale or color bar
5	Focal indicator
6	TGC curve
7	Depth scale
8	Imaging area

Setting the Auto Freeze Function

The **Auto Freeze** function stops imaging and freezes the image, if a control is not manipulated within the **Wait** time that you specify. The default time is 5 minutes. After Auto Freeze has been invoked, press any control to restart imaging.

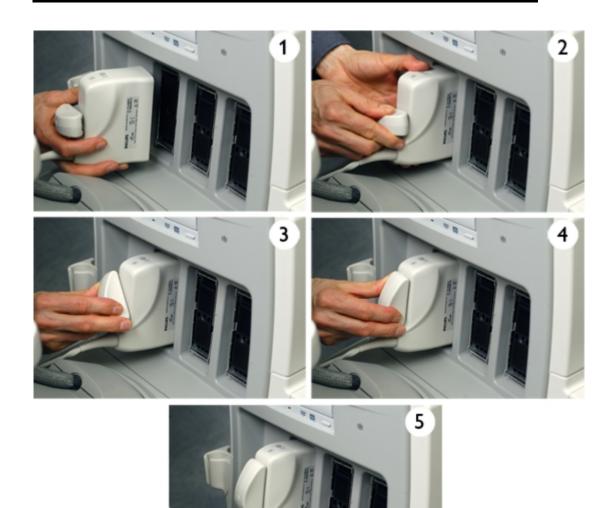

- I. Press the **Setup** key.
- 2. Click System Settings.
- 3. Click the **Display** tab.
- 4. Under **Auto Freeze**, select **On**, and then select the **Wait** time.
- Click **Done**.

Transducer Receptacles and Cable Management

The system includes three receptacles for array transducers and one receptacle for a pulsed- or continuous-wave Doppler probe. All four receptacles can be occupied at the same time, but only one transducer can be active at a time. When a transducer is not in use, store it in one of the transducer holders on the control module.

When a transducer is not in use, store it in one of the transducer holders on the control module. Always use the cable management system to prevent cables from being stepped on or run over by the cart wheels.

Transducer Receptacles, Holders, and Cable Management


- I Transducer holders
- 2 Array-transducer and pencil-probe receptacles
- 3 Cable hangers

Connecting Transducers

The system includes three receptacles for array transducers and one receptacle for a pulsed- or continuous-wave Doppler probe.

- 1. Turn the locking lever counter-clockwise.
- 2. Set the transducer in one of the transducer holders on either side of the control module.
- 3. Hang the transducer cable on the cable management bracket below the control module.
- 4. Insert the transducer connector into one of the three receptacles on the front of the system.
- 5. Turn the locking lever clockwise.

Connecting a Transducer

Selecting a Transducer

When the system is turned on, the system initializes the transducer that is connected to the leftmost connector, unless you have defined another transducer as the default transducer. If you have set a default transducer and it is connected, then the system initializes that transducer. For information on setting a default transducer, see "Setting the Default Transducer and Preset" on page 206.

You can select among the four connected transducers during system operation.

- I. Touch Preset/Transducer.
- 2. On the **Preset/Transducer** touch screen, touch a transducer button to select a transducer.
- 3. Touch the clinical option preset you want to use.

After you select the clinical option/preset, the system calibrates the transducer, enables the transducer for operation, and updates system status to reflect the transducer type and the preset you selected.

ECG Feature

The system can display three physio traces, each representing a physiological input. These inputs can include low-level ECG, high-level ECG, respiratory, pulse, phono, and auxiliary signals. (Low-level ECG comes from leads connected to the patient; high-level ECG comes from a patient monitor or other similar equipment.) Heart rate, derived from the ECG signal, is displayed on the screen whenever ECG is connected and displayed.

DVD, CD, and USB Devices

Removable media compatible with the system include DVD, CD, and USB storage devices. Use removable media to store and transfer patient files, including full studies, 3D data sets, and reports. Also, you can save, restore, and distribute setups data, including presets.

For additional information on specific applications of the DVD drive, see the *Help*. To display the Help, press **Help** on the keyboard.

For details about USB devices, see "USB Devices" on page 176.

Media Compatibility

CD media capacity is approximately 700 MB; single-layer DVD media capacity is approximately 4.7 GB. Rewritable media types (indicated by the RW suffix) can be erased and used again, but you cannot erase media that has the R suffix. Dual-layer DVD media is unsupported.

DVD and CD media are available in a number of types. Not all media types are fully compatible with the system DVD drive. To ensure consistent performance, use only high-quality DVD media in the system DVD drive. For more information, see the *User Information Update* about media compatibility on the *User Information* CD.

NOTE

For information regarding USB media, see "USB Devices" on page 176.

Multiple studies can be written to a disc, up to the limit of its capacity. This includes moving a single DVD or CD between different iU22 and iE33 ultrasound systems and writing studies from each system to the disc. To record multiple studies to a disc, you must end the exam you just recorded before removing the disc.

DVD Drive

The system includes a digital versatile disc (DVD) drive, located next to the On/Off switch. You can use this drive to store and transfer patient files, including full exams, 3D data sets, and reports. In addition, you can save, restore, and distribute setups data, including Quick Save presets and voice profiles.

You do not need to format a disc before storing data on it.

NOTE

To provide improved storage capabilities, the current system software writes data to CDs and DVDs in a different format. As a result, CDs and DVDs that were used on an iE33 system with any previous version of system software can be read on your system but cannot be used to store data.

Loading and Ejecting a Disc

Do one of the following:

- To open the drive tray, press the Eject button on the drive.
- To load a disc, place the disc into the tray and then press the Eject button on the drive, or gently push the tray in until it closes.
- To eject a disc, press the Eject button on the drive.

Erasing a DVD

Erasing a rewritable disc (DVD+PW, DVD-PW, or CD-PW) erases all of the data on it and prepares it for reuse. After a disc is erased, the entire capacity of the disc is once again available. You can also erase a write-once disc (DVD+R, DVD-R, or CD-R), but you will not be able to write files to the erased portion of the disc.

NOTE

If the system cannot erase the disc, use a computer to erase it. If the computer cannot erase the disc, it may be damaged.

- I. Press **Review**.
- 2. Load a disc into the drive and wait for it to become available.
- 3. In the **Review Exam** display, click **Erase**.
- 4. In the **Erase Disc** dialog box, click **OK** to erase the disc.
- 5. When the dialog box indicates that erasing is complete, click **OK**.

NOTE

If you receive an error message when exporting data to a DVD or when viewing exam data on a DVD, you may need to eject the DVD from the drive and re-insert it.

6. Click Close.

USB Devices

The system provides USB ports that can be used to connect USB storage devices. Such devices include USB memory devices and USB hard disk drives. Read the following information before using USB storage devices.

The system supports the following USB devices:

- Single-partition USB flash memory drives
- USB flash memory drives that do not use or contain any antivirus or other executable software
- USB hard disk devices that require 500 mA or less per USB port
- USB 2.0 compliant devices

There are a total of eight USB ports on the system and four are available for data storage; two are on the back of the DVD drive bay at the rear of the system and two are behind the rear panel (ports 3 and 4). Although there are six USB ports behind the rear panel, four are dedicated to peripheral use. You can connect up to four USB storage devices at one time but you cannot export to or import from multiple devices or types of devices simultaneously. You must select the device and then perform the action. USB devices, when inserted into a USB port, are automatically assigned a drive letter.

Many portable USB hard drives require additional power and therefore include two USB connectors on the cable. When connecting USB hard drives to the system, Philips recommends that you connect both USB connectors to the USB ports behind the rear panel.

WARNING

Connecting externally powered USB hard disk drives to the system involves electrical safety risks. If you connect such drives to the system, you must observe the electrical safety warnings in the "Safety" section. Philips recommends that you use only USB hard disk drives powered from the USB connector, or use USB flash memory devices.

CAUTIONS _

- When transferring data to or from a USB device, be sure the transfer is complete before removing the USB device. For USB devices that have an indicator, be sure the indicator is no longer flashing before removing the device.
- Ultrasound systems may become vulnerable to security breaches when they
 accept removable media. Removable USB storage devices may contain
 viruses. Philips recommends that you use the system to format USB storage
 devices before working with them.
- Philips does not recommend that you use USB storage devices for long-term storage. Follow your IT department's recommended practices for intended use of USB storage devices. For more information about security on the ultrasound system, see Shared Roles for System and Data Security, included on your User Information CD.
- Some USB flash memory drives are sold with "U3" smart technology installed. Having this application on the memory device should not interfere with the system. When these devices are plugged into a personal computer, they may launch utilities that could be confusing. The best way to avoid interference with these utilities is to format the USB device on your computer before plugging it into the system.
- Use only Class-B-compliant USB storage devices with the system. USB devices that are not Class-B compliant may cause RF emissions that exceed Class B limits. See the device's documentation to determine whether it is Class-B compliant.

NOTES

- Do not use USB hubs.
- Do not use USB storage devices that require additional power from an external source.
- Some offline viewers may not be able to load or view large images exported from the system to removable media.

6 Customizing the System

You can customize your system to increase efficiency and streamline your workflow. You can do the following:

- Create presets designed specifically for the exams you perform
- Change system settings to reflect your needs
- Add options to enhance your imaging abilities

Presets

A preset is a group of settings that optimizes the system for a specific type of exam. Presets establish many initial settings, such as gain value, color map, filter, and items on the **Annot** and **Analysis** touch screens.

When you turn on your system, the default preset is active. Before you begin an exam, be sure that the appropriate preset is active.

You can choose from several default presets. You cannot delete these default presets. However, they provide a starting point from which you can create your own presets. You can create and store up to 45 presets per transducer/application combination, depending on the number of buttons available on the **Preset/Transducer** touch screen. If you need to create more than 45 presets per transducer, you can save presets to a DVD or USB storage device and restore them when you need to use them.

In addition to the presets provided with the clinical options, the system lets you create and use custom presets. The available presets are determined by the selected transducer.

NOTE

Presets are available only if you purchased the corresponding application-package option.

Setting the Default Transducer and Preset

You can set a default transducer and Tissue Specific preset so that each time the system is turned on, that transducer and preset are initiated automatically. The system selects the default transducer regardless of which receptacle it is connected to. If the default transducer is not connected when the system is turned on, the system initiates the transducer connected to the left-most connector and the first available preset for that transducer.

- Touch Preset/Transducer.
- 2. Select the transducer and preset that you want as the default selections.
- 3. Touch **Set Default**. The system displays a message that confirms your selections.

Clinical Options and Tissue Specific Presets

Clinical options are broad areas of medical study. Within each clinical option, there are Philips Tissue Specific presets for specific areas of study. For example, within the Adult Cardiology clinical option, the Tissue Specific presets are Adult Echo, Contrast, Contrast Low MI, and Contrast LVO. The **Preset/Transducer** touch screen lists the available clinical option/Tissue Specific preset combinations for the selected transducer.

You specify how the system will be set up for operation by selecting a clinical option/Tissue Specific preset. The more specific you are about your intended use of the system, the more you can benefit from Tissue Specific Imaging.

Quick Save Presets

Quick Save presets provide a quick way to set imaging parameters to the values you prefer for a specific exam type. Using the Quick Save feature, you can define presets for any combination of clinical option, preset, and transducer. A Quick Save preset stores the primary imaging mode and settings that are active when you create the Quick Save preset.

Once you create a Quick Save preset, it appears on the **Preset/Transducer** touch screen when the associated transducer is selected. When you select the Quick Save preset, the system automatically invokes the settings in the preset. You can delete existing Quick Save presets, copy them onto a DVD or USB storage device, and load them into another iE33 system.

The number of Quick Save presets you can store for a transducer/application combination is limited only by the number of buttons available on the corresponding **Preset/Transducer** touch screen. The number of buttons available, in turn, is dependent on which application is selected and how many Tissue Specific presets that application includes.

Creating Quick Save Presets

You can create a new Quick Save preset that is based on an existing preset. You can do this even during an exam, while using the preset.

- I. Touch Preset/Transducer.
- 2. On the touch screen, select the transducer and the preset on which you want to base your Quick Save preset.
- 3. Adjust the system controls to create the settings for your preset. (You can select an imaging mode, an image orientation, the number of focal zones, and so on.)
- 4. Press the Quick Save key.
 - For the **Quick Save** label, type the name of the new preset. If you do not enter a name before saving a preset, the system assigns a name.
 - For Calculation Package, select a calculation package.
 - For Annotation/Body Marks, select the annotation and body mark you want as the defaults.
- 5. Click OK.

Deleting Quick Save Presets

You can delete any Quick Save preset on the system except the active preset.

- If a preset you want to delete is active, deactivate it by touching Preset/Transducer, and then selecting the associated transducer and a different preset.
- 2. Press the **Setup** key.
- 3. In the setups, click **Service**, and then click **Test & Utilities**.
- 4. Click Disk Maintenance.
- 5. To delete specific presets, do the following:
 - a. Select the presets you want to delete and click **Delete Presets**.
 - b. Click **Yes** on the **Delete Presets** dialog box.
 - c. Click Close.
 - d. Click **Done**.
- 6. To delete all presets, do the following:
 - a. Click All Presets, and click Delete Presets.
 - b. Click **Yes** on the **Delete Presets** dialog box.
 - c. Click Close.
 - d. Click Done.

Copying Quick Save Presets to Removable Media

You can copy Quick Save presets to a DVD or a USB storage device. This function is useful for archiving presets and for sharing presets among other iE33 systems. When you copy Quick Save presets, all available data is copied.

NOTE

If you receive an error message when exporting data to a DVD or when viewing exam data on a DVD, you may need to eject the DVD from the drive and re-insert it.

- I. Load a DVD into the DVD drive, or connect a USB device to a USB port on the system.
- 2. Press the **Setup** key.
- 3. In the setups, click Service, and then click System Management.
- 4. Click **Backup/Restore**.

- 5. From the **Select the Media** menu, select the removable media that you are using.
- 6. Click **Backup**.

NOTES

- The backup list shows the data that is backed up.
- If a dialog box indicates that the media is too full to complete the copy process, replace the media with a new one and click **Backup** again.
- 7. After the backup is complete, click **Close**.
- 8. Click Done.

Loading Quick Save Presets from Removable Media

- I. Load the DVD containing the data into the DVD drive, or connect the USB device containing the data to a USB port on the system.
- 2. Press the **Setup** key.
- 3. In the setups, click **Service**, and then click **System Management**.
- 4. Click **Backup/Restore**.
- 5. From the **Select the Media** menu, select the media type that you are using.
- 6. Deselect the data that you do not want to import.
- 7. After the import is complete, click **OK**.
- 8. Click **Close** to close the **Service** display. A displayed message might prompt you to restart the system.

System Setups

Setups are system parameters that you can change. By changing setups, you can customize the system to meet your operating preferences. Setups are organized into seven standard categories: System Settings, Analysis Config (configuration), Annotate, Print/Network, Audio/Video, Protocols, and Service. Additionally, two other categories appear only if the corresponding options are installed on the system. These optional categories are Voice Control

and **Data Security**. **About** is not actually a setup category; it is used to display information about the system software. Changes in setups take effect immediately and remain in effect until you change them again or load setups from a DVD.

NOTE

The institution name exported with DICOM data always reflects the name shown in the setups at the time the study ended. Philips recommends restarting the system after changing **Institution Name** in the setups.

Procedures for using setup options and descriptions of settings are included throughout the *Help*.

Changing Setups

- I. Press the **Setup** key.
- 2. Click a setup category on the left side of the setups display.
- 3. Click a sub-category tab at the top of the setups display.
- 4. Enter text or make selections necessary to set up your system.
- 5. Click Done.

Hiding the Doppler Velocity Minus Sign

You can choose to include only the numeric value of the Doppler velocity measurements. Doppler velocity is marked as negative (-) when the flow is moving away from the transducer. When reporting on the measurements, you may want only the value, not the direction of flow. When hidden, the negative sign does not appear on the displayed or printed patient reports; however, the sign is still part of the number and is visible when editing a patient report and is included in DICOM structured reports exported from the system.

The option to hide the doppler velocity minus sign is available in all calculation packages except **Adult Echo** and **Pediatric Echo**.

NOTE

When **Hide Doppler Velocity Minus Sign** is enabled, avoid using the Doppler velocity value displayed in the results and report for manual calculations. The

sign value, whether visible or not, affects any calculations performed with the reported value. The system includes the sign value in calculations.

To specify the display of the Doppler velocity minus sign:

- a. Press the **Setup** key.
- b. Select Analysis Config.
- c. Select the tab of the calculations package that you want to change, and then select **Tools & Results**.
- d. Under Hide Doppler Velocity Minus Sign, select On or Off.
- e. Click **Done**.

Options

In addition to the standard features available in the system, other features are available as purchasable licensed options. The types of options available include clinical options, protocols, imaging capabilities, QLAB Advanced Quantification Software plug-ins, and connectivity capabilities.

Installing Temporary Options

The system lets you temporarily install up to five licensed options. You can then evaluate these options for a fixed length of time, which is set by Philips. Before you can install temporary options, you must request and receive an activation key for each option you want to install. The installation process requires restarting the system, so be sure that the last exam has been closed before installing options.

- 1. Contact your Philips representative to obtain an activation key for each licensed option you want to evaluate.
- 2. Once you have received the activation keys, press **End Exam** to ensure that the last exam has been closed.
- 3. Press the **Setup** key.
- 4. Click Service.
- 5. Click **Options**.
- 6. Click Temporary Options.

- 7. For **Key**, type an activation key. Type each remaining key, one per line.
- 8. Click Submit.
- 9. Review the options installed, and then click **OK**.
- 10. Click Done.
- II. In the **System Restart** dialog box, click **OK** to restart the system.

Purchasing Options

To add licensed options to your system, you purchase them from your Philips representative. Once purchased, they are installed in your system by a Philips field service engineer.

7 Performing an Exam

This section guides you through procedures commonly used in performing patient exams with the system. These procedures include entering patient data; acquiring, annotating, and reviewing images; and making measurements and calculations.

New Patient Exams

WARNING .

Failing to end the current exam before starting a new exam can result in data being acquired and stored under the wrong patient name.

You start an exam by entering patient data into the system. There are three ways to enter patient data.

- If the worklist feature is not enabled or used on your system, you enter patient data into the **Patient Data** form.
- If your system is connected to a DICOM network with the modality worklist feature enabled, you can select an exam to load patient data instead of entering that information manually. See "Selecting in the Worklist" on page 189.
- If you want to start an exam without first entering patient data, you can
 use the Temporary ID feature.

The system uses a unique ID to identify each patient. You can enter an ID, or you can have the system create one automatically. Stored images and reports are stored based on the patient ID.

NOTE

If different patient files are created using the same patient name and the same patient ID number, the second patient file will adopt the date of birth (DOB) from the first patient files. To avoid this duplication, ensure that individual patient files are unique in either patient name or patient ID.

An accession number is an optional entry assigned to each patient file by an institution for internal information-management purposes.

The exam date is set by the system when you first acquire an image during the exam.

Entering Patient Data

If you are not using the worklist option, you start an exam by entering patient data into the system.

NOTE

You can clear all patient data from the **Patient Data** form by clicking **Clear Patient Data**. Do not use this control unless you want to delete all of the patient data you have entered into the form.

- 1. Ensure that the previous exam ended by pressing **End Exam** or by clicking **End Exam** on the **Patient Data** form.
- 2. Press Patient Data on the control panel or press the Patient Data key.
- 3. On the **Patient Data** form, type the patient information. (Press the **Tab** key to move the cursor from field to field.)
- 4. Click the **Study Info** tab.
- 5. For **Study Type**, select the study you will be performing. It is important to select the correct study type at this time. Selecting a study type after you have entered patient data and exited the **Patient Data** form does not update the report with the correct study type.
- 6. Enter the pertinent study information for the patient.
- 7. When you are finished, click **Close**.

Starting Emergency Studies

In an emergency, you can use the temporary ID feature to start an exam without first having to enter patient data.

You can create a temporary ID when starting a protocol, printing, acquiring an image, or saving a volume.

- Touch Protocol or press Patient Data, Acquire, or Print, and then click Temporary ID.
- 2. When the exam is finished, do either of the following:
 - To replace the temporary ID with patient data, press Patient Data, click Edit, and edit the emergency patient data (either manually or by selecting a Modality Worklist entry from the Worklist tab in the Patient Data form), and then click End Exam.
 - To end the exam and use the temporary ID, press End Exam and click End Exam in the Temporary Patient Study dialog box.
 - To end the exam without using a temporary ID, press **End Exam** and click **Cancel** in the **Temporary Patient Study** dialog box.

WARNING

If you use a temporary ID that you will replace with patient information, avoid using Send on Demand and avoid sending images or clips after each print or capture. Otherwise, one of the following occurs, which may result in the need to destroy incorrectly labeled data: If the **Send Images/Clips After Each Print/Acquire** setting is selected, the system resends all images to archive servers and configured printers after updating the patient information; or if you use Send on Demand, the system marks all images as unsent, adds the new patient information, and will send them again, either at the end of the exam or when you use Send on Demand again. If data with incorrect patient information has been sent to a printer or server, destroy or remove that data.

Selecting in the Worklist

- Press Patient Data.
- 2. On the **Patient Data** form, click the **Worklist** tab.
- 3. On the worklist, select the exam you want, and click **Close**. The system loads the patient information, and you are ready to begin an exam for that patient.

Searching in the Worklist

If necessary, you can search for a specific exam by using **Patient Search** on the **Patient Data** form.

- 1. Press Patient Data, then click the Worklist tab.
- 2. If the downloaded patient information in the worklist is not current, click **Update Worklist** to download the patient information from the server.
- 3. To search for a patient by exam date, click **Patient Search**.
- 4. To further specify the date criteria, do one of the following:
 - Select the Exam Date.
 - Select **Today**; select **±** (plus or minus), **+**, or **–**; and then select the number of days. Select **I**, **2**, **3**, **5**, or **7 Days**.
- Click Search.
- 6. Select the patient from the worklist.
- 7. Click Close.

Selecting a Transducer

When the system is turned on, the system initializes the transducer that is connected to the leftmost connector, unless you have defined another transducer as the default transducer. If you have set a default transducer and it is connected, then the system initializes that transducer. For information on setting a default transducer, see "Setting the Default Transducer and Preset" on page 206.

You can select among the four connected transducers during system operation.

- I. Touch Preset/Transducer.
- 2. On the **Preset/Transducer** touch screen, touch a transducer button to select a transducer.
- 3. Touch the clinical option preset you want to use.

After you select the clinical option/preset, the system calibrates the transducer, enables the transducer for operation, and updates system status to reflect the transducer type and the preset you selected.

Imaging Modes

Your ultrasound system offers a set of imaging modes to accommodate a variety of imaging applications. Some modes display a live grayscale image. Others are Doppler modes to evaluate the amplitude or the direction of the blood flow and the spectral information. Special modes are also available for Live 3D and Panoramic imaging.

NOTE

Some modes are available on your system only if the corresponding option has been purchased and installed.

Using 2D Mode

NOTE

With sector transducers, such as the S5-1, the top of the image does not correspond to the skin line.

- 1. Touch **2D** to start 2D imaging, if necessary. The ultrasound system turns on in 2D mode, unless a CW Doppler probe is the only transducer connected.
- 2. Optimize the image using any of the following methods:
 - To automatically optimize the TGC, dynamic range, and gain settings for the current image, press **iSCAN**.
 - To control the image brightness, adjust Gain.
 - To select the area where the image will be most clearly focused, adjust **Focus** and **Focus Range**.
 - To optimize the transmit and receive frequencies and penetration and resolution for the image, use **2D Opt**.
 - To compensate for signal attenuation, use the **TGC** and **LGC** controls.

- To enhance the visibility of soft tissue, use the Soft Echo Enhance touch screen control.
- To enhance the image without altering the image resolution, use XRES image processing.
- To enhance contrast resolution and reduce speckle when using an xMatrix transducer, use the **Elevation Comp** touch screen control.
- To compare an acquired (or review) image with a live image, use the Compare control.
- 3. Use additional controls on the right touch screen, as needed.
- 4. To enter another imaging mode, touch the control for that imaging mode.
- 5. To return to 2D-only imaging from any other imaging mode, touch **2D**.

Annotation

You can place text labels and arrows on an image to identify anatomical structures and locations. You can also annotate an image with a body marker graphic that indicates the part of the anatomy that you are scanning.

Adding Labels Using Annot

NOTE _

If you press Select, unfreeze the image, or change the imaging mode or settings that affect the trackball assignment, the Annotation application goes into standby mode. This is indicated on the **Annot** button by the indicator being turned off and a light ring around the button being turned on. To return to the Annotation application, touch **Annot** or any control on the **Annot** touch screen.

- I. Touch Annot.
- 2. Use the trackball to position the text cursor on the display, or touch **Home** to return it to the home location.

NOTE

You cannot move a label once you have added it to the display.

- 3. Do any of the following:
 - To add text, type the text that you want to appear on the display.
 - To display predefined labels, touch a label control to display its text.
 - To display an arrow, touch the Arrow control , position the arrow with the trackball, and then click to fix the position.
 - To erase the last word typed, touch Erase Last Word to erase words one at a time.
 - To erase all text, press the **Erase Text** key or touch **Erase All Text**.
 - To erase the last arrow, touch Erase Last Arrow.
 - To move the text cursor to the home position, touch Home.
 - To set a new home position, position the cursor and touch **Set Home** (on the next touch screen).
 - To use text replace, see Changing Labels Using Text Replace.
- 4. When finished, press **Select** or a different application control (located in the top two rows of the left touch screen).

Adding Labels Using the Keyboard

You can add labels using only the keyboard. You can manually format the annotation labels you add using the keyboard. Use spaces before and after the words you type to center the text or improve the word wrap format.

- I. Press the **Text Cursor** key.
- 2. Use the trackball to position the text cursor on the display.
- 3. Type the text that you want to add. You can use spaces before and after the words to center the text or improve the text flow.
- 4. To erase text, press the **Backspace** key.
- 5. When finished, press Select or press the **Text Cursor** key again to remove the text cursor.
- 6. To remove all text, press the **Erase Text** key. You can also touch **Annot** and then touch **Erase Last Word** or **Erase All Text**.

Adding an Image Title

You can add a title to the image display.

- I. Press the **Title Cursor** key.
- 2. Type the text that you want to add for the title.
- 3. To erase text, press the **Backspace** key.
- 4. When finished, press Select or press the **Title Cursor** key again.

Displaying Body Markers

NOTES

- During review, the **Body Marks** control and touch screen are available only when an image is displayed in **Full Res** layout.
- If you press Select, unfreeze the image, or change the imaging mode or settings that affect the trackball assignment, the Body Marker application goes into standby mode. This is indicated on the **Body Marks** button by the indicator being turned off and a light ring around the button being turned on. to return to the Body Marker application. To return to the Body Markers application, touch **Body Marks** or any control on the **Body Marks** touch screen.
- 1. Touch **Body Marks** to display the **Body Marks** touch screen for the current transducer and preset.
- 2. Touch a button to put the corresponding body marker on the display in the home location or to replace an existing body marker.
- Use the trackball to position the transducer scan plane indicator on the body marker. Turn Rotate Probe to change the orientation of the transducer scan plane indicator.
- 4. Do any of the following:
 - To move the marker, touch Move Body Mark, position the body marker using the trackball, and touch Move Body Mark again.
 - To remove a body marker, touch **Erase Body Mark**.

5. When finished, press Select or a different application control (located in the top two rows of the left touch screen).

Recording

You can record live imaging to a local VCR and simultaneously record comments. The installed VCR records and plays back standard S-VHS videocassettes. You can play back recordings on the system or on other VCRs. In addition, an optional DVD recorder can be used to record live imaging and play back the recording on the system.

NOTE

The microphone must be turned on (in the **Audio/Video** setups) before you can record comments.

Using the VCR

When the VCR is recording or is paused in record mode, a record or pause indicator appears at the top of the display.

NOTES

- During VCR or DVR playback, you can select quick text annotation labels
 by positioning the cursor on the display and selecting Text. Labels added
 during VCR/DVR playback are erased when VCR/DVR playback is stopped.
- During VCR review, the VCR may produce an error or cause the ultrasound system's display to turn green. If this occurs, turn the VCR off and then turn it back on.
- 1. To record or play a recording, touch **Video** on the left touch screen and use any of the following controls on either the **Video** touch screen or the VCR:
 - Play to play back the video at normal speed
 - Stop to stop the playback
 - Record to start recording

- Pause to temporarily halt the recording or playback
- Rewind to rewind the videotape
- Fast Forward to advance the videotape
- Eject to stop the current recording or playback mode and eject the videocassette
- 2. To search for a location on the tape, touch **Search/Set Counter**, type a number in the format shown in the **Search/Set Counter** dialog box, and click **Search Media**.
- 3. To remove the counter from the display, touch **Hide Counter**. To display the counter, touch **Hide Counter** again.
- 4. To turn on or off the microphone, press the **Mic** key. The microphone is on when appears on the display.

Using the DVD Recorder

NOTES

- Use only DVD+RW media in the DVD recorder.
- During VCR or DVD recorder playback, you can select quick text annotation labels by positioning the cursor on the display and selecting **Text**. Labels added during VCR or DVD recorder playback are erased when VCR or DVD recorder playback is stopped.
- Always format a new disc before using it with the DVD recorder. Also,
 Philips recommends reformatting a used disc before using it with the DVD recorder.
- I. To turn on the DVD recorder, ensure that **MAIN POWER** (on the rear panel) is set to [, and then press on the front panel.
- 2. To insert a disc, press **OPEN/CLOSE** (on the recorder front panel), place a disc in the tray, and press **OPEN/CLOSE** again.

- 3. To record or play a recording, touch **Video** on the left touch screen and use any of the following controls on either the **Video** touch screen or the DVD recorder:
 - Play to play back the video at normal speed
 - **Stop** to stop the playback
 - Record to start recording
 - Pause to temporarily halt the recording or playback
 - Rewind to rewind the recording
 - Fast Forward to advance the recording
 - **Eject** to stop the current recording mode and eject the media
- 4. To search for a location on the tape, touch **Search/Set Counter**, type a number in the format shown in the **Search/Set Counter** dialog box, and click **Search Media**.
- 5. To remove the counter from the display, touch **Hide Counter**. To display the counter, touch **Hide Counter** again.
- 6. To turn on or off the microphone, press the Mic key.

Printing

You can print single-frame images and reports to a local printer, usually installed in the system, or to DICOM printers on a network. The printer can be a color image printer, a black-and-white image printer, or a report printer.

Two print controls are available for printing images, **Print** and **Alt Print**. **Print** is on the control panel and **Alt Print** is on the touch screen. The **Acquire** control also has print capabilities associated with it. In the setups, you can assign each of these controls separately to one or more image printers. In addition, you can select whether **Print** and **Acquire** print the entire display or just the image area. **Print** and **Acquire** can print to local and network printers; **Alt**

Print can print only to local printers. **Alt Print** is not available while a loop is being acquired. Report printing is assigned to a single dedicated report printer.

NOTE

If you print a monochrome image while a Chroma map is selected, the system sends the image to the color printer. Also, if you export a monochrome image while a Chroma map is selected, the system sends the image as a color image. This is normal. To ensure that black-and-white images are sent to the black-and-white printer, set **Chroma** to **Off**.

Printing in Live Imaging

You can print live or frozen images during an exam. To print using the **Print** or **Acquire** controls, a printer must be assigned to these controls in setups. The **Print** control prints only to the local printers assigned to it. The **Acquire** control captures and stores a single-frame image, and sends it to the DICOM printers assigned to this control.

- 1. Display the live or frozen image you want to print.
- 2. Do one of the following:
 - Press Acquire on the system control panel.
 - Press **Print** on the system control panel.
 - Touch Alt Print on the touch screen.
 - Press **PRINT** on a printer that is connected to the system.

NOTE

If your print setting includes multiple images per page, the printer will not print an image until the total number is reached. For example, if you have a 2x2 format selected, the printer will not print the page until you have captured four images or, if the number captured is less than four, until the end of the exam.

Review

During or after an exam, you can use Review to examine and compare images acquired in the exam. You can also review multiple exams for one patient.

In Review, you can look at the images or cineloop sequences that you stored. You can view, send, print, and back up your stored images. You can also perform analysis on images in Review. Images that are in image memory can be stored on the ultrasound system hard drive, on removable media, or on DICOM-compatible devices on a network. You can display images within an exam in several layouts, and you can display images from different exams.

Starting Review

I. Press **Review** to enter Review mode.

The display that appears depends on whether an exam is active on the system.

NOTES

- If an exam is in progress, pressing Review opens the Review Exam display.
- If no exam is in progress, pressing Review opens the Patient Directory display.
- 2. To return to live imaging, press **Review** again.

Navigating Thumbnails and Images

In **Review**, you can view small images, called *thumbnails*. Thumbnails are located on the right side of the **Review Exam** display. From these thumbnails, you can also display one or more images in their original format. If an image represents a 3D data set, it opens in 3D review mode.

NOTE

When reviewing images of an exam loaded from the Patient Directory, thumbnails will not be available in some circumstances. For example, exams copied from

DVD to the hard drive may not have thumbnails if the images they contain are no longer in their native format.

- 1. Touch **Layout** on the left touch screen to select the layout you want to use to display images.
- 2. Do any of the following:
 - Press **Pointer**, if necessary, and then click or to move up or down through available thumbnails one or two images at a time.
 - Drag the scroll bar to move up or down through available thumbnails quickly.
 - Turn Page to move backward or forward through the available images, one page at a time.
 - To view a single thumbnail in its original format, double-click it. (If the image represents a 3D data set, it opens in 3D review mode.)
 - To view multiple thumbnails in their original format, select the thumbnails by clicking inside each one (not in its numbered box), then double-click one of them. If the images displayed do not fit on one page, turn Page to view them.
 - Touch Exit Thumbnail Review to return to the Review Exam display.

Acquiring Images and Loops

You can acquire and save a single frame or a cineloop sequence. The acquired frame or cineloop sequence is saved in the patient study, and a thumbnail of it is available in the live imaging display and the Review display. Images are automatically exported across the network either when you acquire or print an image, or when you end an exam, depending on your selection for **Send Images/Clips** on the **Printer/Capture** tab in the **Print/Network** setups.

Use the **Freeze** control to stop and start system image acquisition and update. Pressing **Freeze** results in the system entering cineloop pause and assigning the trackball to manual cineloop review (frame-by-frame).

Do one of the following:

- To acquire a single image, press Freeze and then press Acquire.
- To acquire a cineloop sequence, press Acquire in live imaging or while
 reviewing a cineloop sequence. Acquisition during live imaging saves
 prospective or retrospective frames, as specified in Live Capture Type in
 the setups. A prospective capture captures a specified acquired loop length.
 A retrospective capture captures a loop that ends when Acquire is pressed.
 Acquisition while reviewing a cineloop sequence saves all retrospective frames
 in the cineloop sequence.

NOTES

- During acquisition, a spinning hourglass icon displays at the bottom of the display. When the acquisition is complete, a thumbnail of the image is displayed.
- When an image is acquired, you will hear a beep to confirm that the loop or image was saved in the patient's study. Do not press **Review** until you hear the beep.
- If you press Acquire in a non-simultaneous mode while a live M-mode or Doppler trace is active, you acquire a cineloop sequence. If you press Acquire in a simultaneous mode, you acquire a single image.
- If you attempt to acquire a loop that was imported from media, only a frame
 of the loop is acquired and displayed in the appending exam.

Measurement and Analysis

A calculations package contains one or more collections that organize groups, measurements, and calculations into a coherent tool for diagnostic analysis.

Measurement tools provide measurements and derived calculations. Various methods are available for generating results. The two primary methods allow you to "measure then label" or "label then measure." Either way, the results can appear on the display, on printed pages, and in patient reports, where they are available for your analysis.

In the setups is an analysis configuration capability that allows you to create your own calc lists including collections, groups, measurements, and calculations. In

addition, the measurements and calculations can be associated with system and custom tables and equations.

The measurements and their derived calculations included with the calculations packages are based on medical references. See the "References" section in the *Help*.

NOTE _

Ensure that you follow current medical practices when identifying specific measurement points on an image.

Measuring 2D Distance

2D distance and trace or elliptical area and circumference measurements can be performed on MPR and volume images.

- 1. Obtain the image that you want to measure and press Freeze.
- 2. Press Caliper.
- 3. Use the trackball to position the first caliper in the 2D image.
- 4. Press Select to anchor the first caliper and display the second caliper.
- 5. Use the trackball to position the second caliper. The Results box displays the results.
- 6. Touch **End Measure**, or press Select or **Enter** to complete the measurement.

Obtaining a Typical Labeled Measurement

This general procedure describes how to measure by using a typical labeled measurement tool. Guided or complex tools require specialized procedures, found in the Help.

- 1. Obtain the image you want to measure and press **Freeze**.
- 2. Touch **Analysis**.
- 3. Touch a collection label to display group and measurement labels.

- 4. Touch a group label if a set of associated measurements are required. A group label opens to display multiple measurement labels.
- 5. Touch a measurement label and make the measurement. First, the caliper or trace tool appears on the display. Then, as you make the measurement, the results and derived calculations appear in the Results box and are simultaneously added to the patient report.
- 6. For each measurement label within a group, touch a label and make the measurement.
- 7. Touch **End Measure**. You can also press Select or **Enter** to complete the measurement.

NOTE

The measurement automatically completes if you unfreeze the image, change modes, or enter a report.

Obtaining a Calculation Result

Calculations are organized in collections for the applications included in the system. The system uses measurement values to make calculations and create a patient report. For more information regarding on using calculations, refer to Help on your system.

The calculations in the system are based on medical references, which are listed in the Help.

- 1. Obtain the image you want to measure and press **Freeze**.
- 2. Touch **Analysis** to display the collections, groups, and measurement controls on the touch screen.
- 3. Touch a collection control, a group control, and a measurement control.
- 4. Make the measurement.
- 5. Touch **End Measure** or press Select, if necessary, to complete the measurement. The measurement result appears below the measurement label.
- 6. To display the patient report, press **Report**. To edit the report, click **Edit Report**, make changes, and click **Close Report** to save your changes.

7. To close Analysis, touch Image or another control in the top portion of the left touch screen.

Ending an Exam

Each time you finish an exam, you must end the exam to save images, reports, and other exam data. You cannot end an exam while in the Patient Directory.

You will not be able to end the exam until the system has saved exam data for the current exam. (The system saves exam data when you acquire an image.) Ending an exam stores all exam data, clears the **Patient Data** form, and prepares for the next exam.

WARNING

Failing to end the current exam before starting a new exam can result in data being acquired and stored under the wrong patient name. If you power down the system without ending the exam, the system will pause the exam before shutting down.

When the exam is complete, do one of the following:

- Press End Exam.
- Click **End Exam** in the **Patient Data** display.

8 Transducers

The transducer that you select is the most important factor in image quality. Optimal imaging cannot be obtained without the correct transducer. The system is optimized for use based on your transducer selection.

The system limits patient contact temperature to 43 degrees Celsius, and acoustic output values to their respective U.S. Food and Drug Administration limits. A power-protection circuit protects against over-current conditions. If the power monitor protection circuit senses an over-current condition, then the drive voltage to the transducer is shut off immediately, preventing overheating of the transducer surface and limiting acoustic output. Validation of the power protection circuit is done under normal system operation.

WARNING

To limit potential harm when scanning neonatal, pediatric, and medicated patients, minimize the time spent imaging at temperatures above 41°C (106°F).

Selecting a Transducer

When the system is turned on, the system initializes the transducer that is connected to the leftmost connector, unless you have defined another transducer as the default transducer. If you have set a default transducer and it is connected, then the system initializes that transducer. For information on setting a default transducer, see "Setting the Default Transducer and Preset" on page 206.

You can select among the four connected transducers during system operation.

- Touch Preset/Transducer.
- 2. On the **Preset/Transducer** touch screen, touch a transducer button to select a transducer.
- 3. Touch the clinical option preset you want to use.

After you select the clinical option/preset, the system calibrates the transducer, enables the transducer for operation, and updates system status to reflect the transducer type and the preset you selected.

Setting the Default Transducer and Preset

You can set a default transducer and Tissue Specific preset so that each time the system is turned on, that transducer and preset are initiated automatically. The system selects the default transducer regardless of which receptacle it is connected to. If the default transducer is not connected when the system is turned on, the system initiates the transducer connected to the left-most connector and the first available preset for that transducer.

- Touch Preset/Transducer.
- 2. Select the transducer and preset that you want as the default selections.
- Touch Set Default. The system displays a message that confirms your selections.

Clinical Options and Transducers

A clinical option, available for one or more transducers, optimizes the system for a specific application.

The clinical options, or applications, for each transducer available for the system are listed here.

Use only transducers that are approved by Philips for use with your Philips ultrasound system. In the United States, the FDA 510(k) regulatory clearance for use of the product is applicable only when Philips-manufactured transducers are connected to the system.

The following table lists the transducers that are compatible with your ultrasound system.

System Transducers and Supported Clinical Options

Transducer	Clinical Options
C5-I	Abdominal, Vascular, Fetal Echo
C5-2	Abdominal, Fetal Echo
C8-5	Vascular
C9-4	Fetal Echo, Pediatric
L8-4	Vascular
L9-3	Contrast, Vascular
LII-3	Vascular
LI5-7io	Adult Echo, Vascular
S5-I	Abdominal, Adult Echo, Adult General, Contrast, Pediatric Echo, TCD, Renal
S7-2omni	Adult Echo, Contrast
S7-3t	Adult Echo, Pediatric Echo
S8-3	Adult Echo, Pediatric Echo
S8-3t	Adult Echo, Adult TEE, Pediatric Echo, Pediatric TEE
S12-4	Adult Echo, Pediatric Echo
T6207	Adult Echo, Pediatric Echo
Т6Н	Adult Echo, Contrast
X3-I	Adult Echo, Pediatric Echo, Contrast
X5-I	Adult Echo, Contrast, Pediatric Echo
X7-2	Adult Echo, Fetal Echo, Pediatric Echo
X7-2t	Adult Echo
D2cwc	Adult Echo

Transducer	Clinical Options
D5cwc	Vascular
D2tcd	TCD

Indications for Use and Supporting Transducers

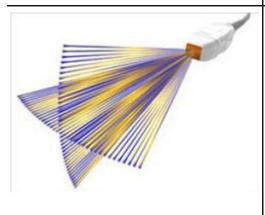
The following are the indications for use for this system and the transducers supporting each indication.

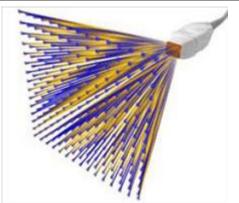
System Indications for Use and Supporting Transducers

Indication for Use	Supporting Transducers
Abdominal	C5-1, C5-2, C8-5, C9-4, L8-4, L9-3, S5-1
Adult Head	D2tcd, S5-I
Cardiac Adult	D2cwc, S5-1, S7-3t, S8-3, S8-3t, S12-4, X3-1, X5-1, X7-2
Cardiac Pediatric	D2cwc, S5-I, S7-3t, S8-3, S8-3t, S12-4, X3-I, X5-I, X7-2
Cerebral Vascular	C8-5, D2tcd, D5cwc, L8-4, L9-3, L11-3, L15-7io, S5-1
Fetal	C5-1, C5-2, C8-5, C9-4, X7-2

Indication for	
Use	Supporting Transducers
Intraoperative (Abdominal, Spine, Vascular, Neurological)	L15-7io
Intraoperative (Cardiac)	L15-7io, S12-4, X3-1, X5-1, X7-2
Musculoskeletal (Conventional)	L8-4, L9-3
Musculoskeletal (Superficial)	L8-4, L9-3, L15-7io
Neonatal Head	C8-5, D2tcd, S5-1
Ophthalmic	D2tcd, S5-I
Other: Fetal Echo	C5-2, X7-2
Pediatric	C5-1, C5-2, C8-5, C9-4, L8-4, L9-3, S12-4, X5-1, X7-2
Peripheral Vessel	C5-1, C5-2, C8-5, D5cwc, L8-4, L9-3, L11-3, L15-7io, S5-1
Small Organ (Breast, Thyroid, Testicle)	L8-4, L9-3, L15-7io
Transesophageal (Cardiac)	T6H, S7-20mni, S7-3t, S8-3t, X7-2t

xMatrix Array Transducers


xMatrix array transducer technology provides volume acquisitions of the beating heart with remarkable image quality. You can use these transducers to acquire two planes simultaneously from the same heartbeat. The system's multi-directional beam steering lets you select unlimited planes in all directions, so you can get the precise view you want, with no degradation in image quality.


The following xMatrix array transducers are available with this system:

- X3-I
- X5-1
- X7-2

Use Live xPlane imaging to simultaneously create two full-resolution planes.

Use Live Volume imaging to acquire and render full volume data at true real-time frame rates.

X3-1 Description

Features of the X3-1 transducer include:

- Operating range: I to 3 MHz
- Biopsy capable
- 2D xMATRIX phased array with 2,400 elements

2D, Live xPlane, Live 3D, Color Doppler with 2D, xPlane and 3D, XRES image processing, Tissue Harmonic Imaging, LVO

X5-1 Description

Features of the X5-1 transducer include:

- Operating range: 1.3 to 4.2 MHz.
- 2D xMATRIX phased array with 3,000 elements.
- 2D imaging provides a 90-degree field of view, while volumetric imaging is 90×90 degrees.
- 2D imaging modes with PW, CW, M-mode, Color M-Mode, Color, TDI, TDI PW and LVO, xPlane, xPlane Color, and xPlane LVO.
- 3D imaging modes with 3D Zoom, Live 3D grayscale, Live 3D color, Live 3D LVO, Full Volume grayscale, Full Volume Color, and Full Volume LVO.
 (All 3D imaging modes available with one-beat and multi-beat acquisition.)

X7-2 Description

Features of the X7-2 transducer include:

- Operating range: 2 to 7 MHz
- 2D matrix array with 2,500 elements
- 2D, Live xPlane, Live 3D, color Doppler and PW Doppler with 2D, xPlane and 3D, XRES image processing, and Tissue Harmonic Imaging

Compact Transducer Adapter

Use the Compact Adapter to connect compact transducers to the iE33 system. For more information, contact your Philips Ultrasound representative.

When using the Compact Adapter, you must first connect the adapter to the system, and then connect the transducer to the Compact Adapter.

Compact Transducer Adapter

Using the Compact Adapter

- 1. To connect the Compact Adapter and transducer to the system:
 - a. Turn the latch on the adapter to the unlocked position (horizontal).
 - b. Plug the Compact Adapter into the left transducer receptacle on the iE33 system, with the latch side facing out. (You can use the other transducer receptacles, but one additional receptacle will be blocked by the adapter if you do.)
 - c. Turn the latch on the adapter to the locked position (vertical) to lock the adapter to the system.
 - d. Orient the transducer connector so that the cord exits upward (as shown on the adapter), and then plug it into the adapter.

- e. Switch the lock latch to the right (as shown on the adapter) to lock the transducer into the adapter.
- 2. To remove the transducer from the adapter:
 - a. Switch the lock latch to the left to unlock the transducer from the adapter.
 - b. Pull the connector toward you.
- 3. To remove the adapter from the system:
 - a. Turn the adapter latch to its unlocked position (horizontal).
 - b. Pull the adapter toward you.

Transducer Maintenance

Transducers require proper care, cleaning, and handling. Reasonable care includes inspection, cleaning, and disinfection or sterilization, as necessary.

Inspect the transducer cable, case, and lens before each use. Check for cracks or other damage that jeopardizes the integrity of the transducer. Report any damage to your Philips Ultrasound customer service representative, and discontinue use of the transducer.

For all information on transducer cleaning and disinfection and the use of acoustic coupling gels, see the "Transducer Care" section.

CAUTION _

Some ultrasound coupling gels, as well as some solutions for precleaning, disinfecting, and sterilizing can damage a transducer. Before using a gel or solution on a transducer, see "Transducer Care". You can also call Philips at 800-722-9377 (North America), or call your local Philips Ultrasound representative (outside North America).

Information on compatible disinfectants is available on the Philips Ultrasound Transducer Care website:

www.healthcare.philips.com/us/products/ultrasound/transducers/transducer care/

If you encounter poor image quality or transducer problems, see "Troubleshooting" on page 340.

Acoustic Artifacts

The transducer adds its own signature to the echo information in the form of beam width effects, axial resolution limitations, and frequency characteristics. The control choices made by the sonographer that affect amplification, signal processing, and echo signal display can lead to significant differences in the displayed appearance of echo data. Following is a brief discussion of acoustic artifacts. An understanding of the physical basis for the production of signals displayed on ultrasound images is helpful in minimizing artifacts on images and interpreting the results of studies.

An artifact is an echo displayed in a different position than its corresponding reflector in the body. Artifacts can also be caused by intervening tissue properties. Artifacts can originate from external noise, reverberations, multi-path reflections, or misadjusted equipment. They can also come from the ultrasonic beam geometry and unusual changes in beam intensity. Artifacts and their manifestations are listed below, and following are some definitions of various artifacts.

- Added objects displayed as speckle, section thickness, reverberation, mirror image, comet tail, or ring down
- Missing objects due to poor resolution
- Incorrect object brightness due to shadowing or enhancement
- Incorrect object location due to refraction, multi-path reflections, side lobes, grating lobes, speed error, or range ambiguity
- Incorrect object size due to poor resolution, refraction, or speed error
- Incorrect object shape due to poor resolution, refraction, or speed error

Acoustic saturation occurs when received signals reach a system's high-amplitude limit. At that point the system becomes unable to distinguish or display signal intensities. At the point of saturation, increased input will not increase output.

Aliasing occurs when the detected Doppler frequency exceeds the Nyquist limit. It is characterized on the spectral display by the Doppler peaks going off the display, top or bottom, and then continuing on the other side of the baseline. On the Color display an immediate change in color from one Nyquist limit to the other is seen.

Comet tail is a form of reverberation artifact produced when two or more strong reflectors are close together and have a high propagation speed. In this case, sound does not travel directly to a reflector and back to the transducer; and a strong linear echo appears at the reflector and extends deeper than the reflector.

Enhancement is an increased relative amplitude of echoes caused by an intervening structure of low attenuation.

Focal enhancement, also known as **focal banding**, is the increased intensity in the focal region that appears as a brightening of the echoes on the display.

Mirror imaging artifact is most commonly seen around the diaphragm; this artifact results from sound reflecting off another reflector and back.

Mirroring is the appearance of artifacts on a spectral display when there is improper separation of forward and reverse signal processing channels. Consequently, strong signals from one channel mirror into the other.

Multi-path positioning and **refraction** artifacts describe the situation in which the paths to and from a reflector are different. The longer the sound takes traveling to or from a reflector, the greater the axial error in reflector positioning (increased range). Refraction and multi-path positioning errors are normally relatively small and contribute to general degradation of the image rather than to gross errors in object location.

Propagation speed errors occur when the assumed value for propagation speed by the ultrasound system is incorrect. If the actual speed is greater than that assumed, the calculated distance to a reflector is too small, and the reflector will be displayed too far from the transducer. Speed error can cause a structure to be displayed with incorrect size and shape.

Range ambiguity can occur when reflections are received after the next pulse is transmitted. In ultrasound imaging, it is assumed that for each pulse produced, all reflections are received before the next pulse is sent out. The ultrasound system calculates the distance to a reflector from the echo arrival time assuming that all echoes were generated by the last emitted pulse. The maximum depth

to be imaged unambiguously by the system determines its maximum pulse repetition frequency.

Reverberation is the continuing reception of a particular signal because of reverberation rather than reflection from a particular acoustic interface. This phenomenon is analogous to the effect created by mirrors positioned on opposite walls when an object, a head for instance, is placed between the mirrors. The image of the head is reflected back and forth infinitely between the two mirrors, creating the optical illusion of multiple heads. Reverberations are easily identifiable, because they are equally spaced on the display.

Scattering is the diffuse, low-amplitude sound waves that occur when acoustic energy reflects off tissue interfaces smaller than a wavelength. In diagnostic ultrasound, Doppler signals come primarily from acoustic energy back-scattered from red blood cells.

Shadowing is the reduction in echo amplitude from reflectors that lie behind a strongly reflecting or attenuating structure. This phenomenon occurs when scanning a lesion or structure with an attenuation rate higher than that of the surrounding tissue. The lesion causes a decrease in beam intensity, which results in decreased echo signals from the structures beyond the lesion. Consequently, a dark cloud behind the lesion image forms on the display. This cloud, or shadow, is useful as a diagnostic clue.

Side lobes (from single-element transducers) and **grating lobes** (from array transducers) cause objects that are not directly in front of the transducer to be displayed incorrectly in lateral position.

Speckle appears as tissue texture close to the transducer but does not correspond to scatterers in tissue. It is produced by ultrasound wave interference and results in general image degradation.

Spectral broadening is a display phenomenon that occurs when the number of energy-bearing Fourier frequency components increases at any given point in time. As a consequence, the spectral display is broadened. Spectral broadening can indicate the disturbed flow caused by a lesion, and therefore it is important diagnostically. However, broadening can also result from interaction between flow and sample volume size, in which case it is an artifact.

Speed of sound artifacts occur if the sound propagation path to a reflector is partially through bone, and the speed of sound is greater than in the average soft tissue. Echo position registration artifacts will be produced. Reflectors appear closer to the transducer than their actual distance because of this greater speed of sound, resulting in a shorter echo transit time than for paths not containing bone.

Acoustic Artifacts in 3D Imaging

Acquisition, rendering, and editing artifacts are specific to 3D volume images. Acquisition artifacts are related to patient motion, organ motion, or position-sensing errors. Rendering artifacts include elimination of structures by limiting the region of interest boundaries, thresholding that eliminates structures, and adjacent structure artifacts that add additional information or hide structures. Editing artifacts result from data deleted from a rendered image.

Color and Color Power Angio artifacts relating to gain may also be confusing in rendered images. A color flash artifact can occur when the gain is set high and the transducer or patient moves. When the gain is set too high, the color ROI box fills with color flash. When the gain is set low, color bleed can occur. When the gain is set too low, insufficient color data renders the image undiagnosable.

Color and power Doppler artifacts relating to gain and flash may also be confusing in rendered images.

Color gain and directional artifacts can present themselves in 3D imaging. Gain artifacts are mainly related to the use of excessive gain resulting in patterns of noise in the 3D image that might be interpreted as diagnostically significant. Directional artifacts are due to aliasing or directional confusion: The velocity range must be set properly, and the relationship between the transducer orientation and the flow vector must be understood.

Dropout and shadowing are present in 3D imaging although they are more difficult to recognize due to different and unfamiliar displays. Acoustic shadowing and other artifacts look very different when displayed in 3D volumes and may be more difficult to recognize than on standard 2D imaging. Those artifacts may produce apparent defects, such as limb abnormalities or facial clefts, where they

are not present. Acquiring data from multiple orientations may avoid artifacts of this type.

Fetal limb deficit artifacts are specific to 3D volume images. Partially absent fetal limb bones have been demonstrated. One explanation for the missing limbs was shadowing caused by adjacent skeletal structures. Overcoming the limb deficit artifact can be accomplished by changing the transducer position and the acquisition plane.

Motion artifacts in 3D volumes can be caused by patient motion, fetal movement, cardiac motion, and movement of adjacent structures. Patient motion can produce flash artifacts that are more obvious in 3D images than in 2D imaging.

Pseudoclefting and pseudonarrowing artifacts may be related to limb deficit artifacts. Artifacts may be present in 3D imaging of the fetal face. Being aware of pseudoclefting of the fetal face and pseudonarrowing of the fetal spine can help the sonographer understand and identify these artifacts. As with 2D imaging, it is important to verify putative physical defects by using additional images and other modalities.

Resolution, attenuation, and propagation artifacts are all common to 3D imaging. Careful scrutiny of the original 2D images is necessary to identify and preclude these types of artifacts from the 3D volume image.

Transducer Covers

To prevent contamination by blood-borne pathogens, sterile transducer covers are required for intraoperative and biopsy procedures; in China, sterile covers are also required for transrectal, intravaginal, and transesophageal procedures. Protective covers are recommended for transrectal, intravaginal, and transesophageal procedures; the protective covers are mandatory in China and Japan. Philips recommends the use of qualified covers.

For procedures for using transducer covers, see the instructions provided with the covers.

WARNINGS

- Latex and talc are commonly used in sheaths marketed to help with infection control in transesophageal, endocavity, and intraoperative imaging applications and during biopsies. Examine the packaging to confirm latex and talc content. Studies have shown that patients can experience allergic reactions with natural rubber latex. See the FDA Medical Alert, March 29, 1991, reprinted in "FDA Medical Alert on Latex" on page 46.
- In neurosurgical applications, sterilized transducers should be used with sterile gel and a sterile transducer cover.
- Inspect transducer covers before and after use.
- If the sterile transducer cover becomes compromised during an intraoperative application involving a patient with Creutzfeldt-Jakob disease, follow the recommendations described in "Transmissible Spongiform Encephalopathy" on page 300.
- Transducer covers are disposable and must not be reused.
- If an installed transducer cover is cut or contaminated before use, the probe should be cleaned and disinfected, and a new sterile cover installed.

Ergonomic Grip

Repetitive ultrasound scanning has been associated with carpal tunnel syndrome (CTS) and repetitive strain injury. Philips offers a slip-on reusable grip to provide alternative grip options for the S8-3 transducer.

Installing the Ergonomic Grip

- 1. Insert the cable through the slot in the grip.
- 2. Align the slot with the orientation indicator.
- 3. Slip the transducer head into the grip.

Cleaning the Ergonomic Grip

- Wipe the grip with a dry or water-moistened soft cloth. You can use soapy water, a 70% isopropyl alcohol solution (rubbing alcohol), or a 10% bleach solution.
- 2. Remove any cleaning solution residue with a water-moistened soft cloth. Do not allow cleaning solutions to air dry on the grip.

Transducer Storage

Use the appropriate guidelines for storing transducers for transport, and daily and long-term storage.

Storage for Transport

If a carrying case is provided with your transducer, always use the carrying case to transport the transducer from one site to another. Follow these guidelines to properly store transducers for transport:

- Make sure that the transducer is clean and disinfected before placing it in the case to avoid contaminating the foam that lines the carrying case.
- Place the transducer in the case carefully to prevent kinking of the cable.
- Before closing the lid, make sure no part of the transducer is protruding from the case.
- Wrap the case in plastic material containing air pockets (bubble wrap), and pack the wrapped case in a cardboard carton.
- To avoid damaging the shaft or steering mechanism of TEE transducers, do not bend or coil the flexible shaft of the transducer in less than a 0.30-m (1-ft) diameter circle.

Daily and Long-Term Storage

Follow these guidelines to protect your transducer:

- Always store transducers in the transducer holders on the side of your system or on a securely mounted wall rack when you are not using them.
- Ensure the transducer holders are clean before storing transducers (see "Disinfecting System Surfaces" on page 333).
- Avoid storing transducers in areas of temperature extremes or in direct sunlight.
- Store transducers separately from other instruments to avoid inadvertent transducer damage.
- When storing transducers, use the cable-management clips to secure the transducer cable.
- Before storing transducers, make sure they are thoroughly dry.
- For TEE transducers, be sure the distal tip is straight and protected before storing the transducer.
- Never store a TEE transducer in the carrying case, except to transport it.

9 Intraoperative Transducers

An intraoperative transducer is used during surgery to help the surgeon locate and visualize anatomical structures, to visualize blood flow patterns and quantify velocities, and to image and measure anatomical and physiological parameters of interest to the surgeon.

The system supports the LI5-7io transducer for use in intraoperative applications.

Operators of Intraoperative Transducers

Philips intraoperative transducers are designed to be used under the guidance of physicians who are properly trained in intraoperative ultrasound imaging techniques according to currently approved relevant medical practices. Philips recommends that physicians operating any Philips intraoperative transducer have the following qualifications:

- Proficiency in recognizing and interpreting imaging patterns.
- Thorough familiarity with the safe operation, care, and maintenance of the ultrasound system and the intraoperative transducers.
- Thorough familiarity with the latest intraoperative methods through literature and seminars.

Intended Uses for Intraoperative Transducers

Intraoperative studies are performed by surgeons, anesthesiologists, or sonographers to obtain images that can be used for the following purposes:

- Helping a surgeon locate and visualize anatomical structures before, during, or after a surgical procedure
- Helping a surgeon visualize blood flow patterns and quantify velocities before, during, or after a surgical procedure
- Imaging and measuring anatomic and physiologic parameters before, during, or after a surgical procedure

The LI5-7io transducer can be used for adult cardiology applications.

WARNING

Intraoperative transducers used in animal studies should not be used on humans. Transducer disinfection procedures for cross-usage between animals and humans have not been validated.

Patient Safety During Intraoperative Studies

This section lists conditions that can adversely affect patients when you are using an intraoperative transducer.

To operate an intraoperative transducer, you must be under the guidance of a physician who is properly trained in intraoperative ultrasound imaging techniques, according to currently approved relevant medical practices. You also must be thoroughly familiar with the safe operation, care, and maintenance of the ultrasound system used with the transducer, as well as proficient at interpreting the images generated.

To help ensure patient safety when using an intraoperative transducer, observe the following guidelines:

- Scrutinize the entire transducer before each use. (See the "Transducer Care" section.)
- Use mandatory protective equipment, including an approved sterile protective transducer cover, during intraoperative studies. For information about using transducer covers, see "Preparing Transducers for Intraoperative Use" on page 227.
- Operate the transducer properly.
- Do not allow water or other liquids to drip onto the transducer connector, the interior of the system, or the keyboard.

WARNINGS

- All intraoperative studies must be performed with a Type CF classified transducer. If your transducer is not labeled Type CF ■ on the transducer connector, contact your Philips service representative.
- Be sure to use a market-approved sterile transducer cover and sterile ultrasound transmission gel when performing all intraoperative studies.
- Always remove the transducer from the patient before defibrillation.

Patient-Contact Parts

Latex is commonly used in sheaths marketed to help with infection control in transesophageal, endocavity, and intraoperative imaging applications and during biopsies. Examine the packaging to confirm latex content. Studies have shown that patients can experience allergic reactions with natural rubber latex. See "FDA Medical Alert on Latex" on page 46.

NOTE

The ultrasound system and transducers discussed here do not contain natural rubber latex that contacts humans. Natural rubber latex is not used on any Philips ultrasound transducers.

Preventing Intraoperative Transducer Problems

WARNING

If you find any signs of damage to the transducer, patient safety may be compromised. Do not use the transducer, and contact your Philips service representative.

Meticulous inspection and correct and careful operation of intraoperative transducers are imperative to patient safety. The situations listed here affect safe operation as well as the ability to service mechanical problems under the Philips warranty or service contract. Transducer repairs necessitated by misuse are not covered and can be very costly, often requiring complete disassembly and rebuilding of the transducer.

There are three primary areas of transducer misuse:

- Cuts and abrasions on the transducer insulation and lens from sharp instruments such as scalpels, scissors, and clamps
- Improper disinfection techniques, causing fluid to enter the transducer or damage transducer materials
- Damage caused by dropping the transducer on a hard surface

To minimize the chance of damage, Philips strongly recommends that you clearly post stringent protocols for the care of intraoperative transducers, based on the information provided here.

L15-7io Description

L15-7io Transducer

L15-7io Transducer Features and Specifications

Features	 I5 to 7 MHz extended frequency range Phased linear array with I28 elements 8 degrees of trapezoidal imaging, 23 mm (0.9 in) effective aperture length Explora connector High-resolution intraoperative vascular applications Steerable PW Doppler, Color Doppler, and Color Power Angio imaging, XRES processing, and Panoramic Imaging
Specifications	Lens footprint Elevation: 10 mm (0.4 in) Scan plane: 32 mm (1.25 in) Transducer length: 89 mm (3.5 in) Cable length: 2 m (80 in)

Preparing Transducers for Intraoperative Use

- 1. Place 20 cc of sterile gel or saline into the transducer cover.
- 2. Carefully inspect each transducer cover before use, and discard it if you find tears or blemishes. Also inspect each transducer cover after use. If you find a tear, the patient or the transducer may have been contaminated.
- 3. Insert the transducer into the transducer cover and unfurl the transducer cover until it covers the transducer and its cable. The cover must be unfurled far enough to maintain the sterile field.
- 4. Use a sterile elastic band or clip to hold the proximal end of the transducer cover in place.
- 5. Ensure that wrinkles and bubbles over the face of the transducer are minimized. Check the transducer cover for tears or damage before proceeding.

6. When operating the transducer, make sure that proper orientation is maintained to avoid interpretation confusion.

NOTES

- To achieve good acoustic contact, make sure that the imaging surface is moist.
- Imaging improves with adequate coupling between the patient surface and the transducer-cover surface. Sterile water is a good acoustic-coupling agent during surgery.

Disposable Drapes

During studies in which you believe contamination of the ultrasound system can occur, Philips recommends that you take universal precautions and cover the system with a disposable drape. Consult your hospital's rules regarding equipment use in the presence of infectious disease.

Accessories for Intraoperative Transducers

For information on ordering accessories, see "Supplies and Accessories" on page 22.

Electrical Safety and Intraoperative Transducers

All Philips ultrasound systems and transducers comply with common medical device electrical safety standards.

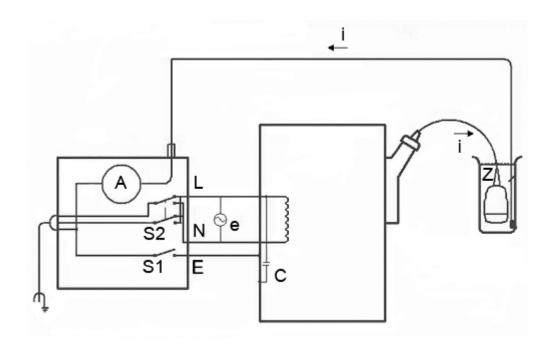
The L15-7io transducer is classified as a Type CF isolated patient-applied part, as described in IEC 60601-1. There are no exposed conductive surfaces on the transducer head. To ensure safe operation of this transducer, read the cautions and warnings in the "Safety" section, especially those that address electrosurgical units, pacemakers, and defibrillators.

Leakage Current Testing for Intraoperative Transducers

Philips transducers approved for intraoperative use are labeled on the transducer connector as Type CF in accordance with the IEC 60601-1. Type CF classification indicates that the degree of protection from electrical shock afforded by the transducer is suitable for all patient applications, including direct cardiac and intraoperative applications.

Leakage current tests should be performed by a technically qualified person any time that the transducer is dropped or if cracks or cuts are found on the transducer.

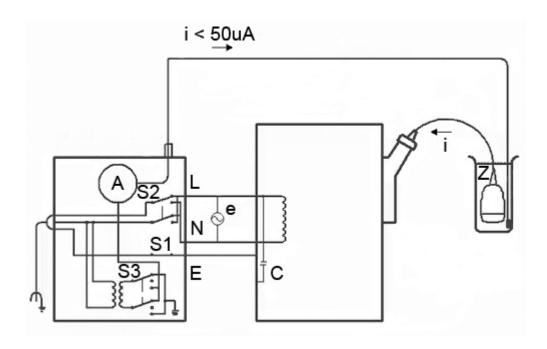
Normal leakage current testing frequency should be based on the procedures established by the hospital for operating-room-based equipment.


Regularly perform the electrical safety check to ensure that IEC 60601-1 Type CF leakage limits are not exceeded. You can perform this procedure with any commercially available safety analyzer that is designed for hospital use.

WARNING

Only a technically qualified person should perform the leakage current test procedure.

Test I tests the current leakage, using a Dynatech Nevada 232 Safety/ECG Analyzer. This procedure shows one example of a current leakage test (source and sink). The procedure for your safety analyzer may be very different.


Test I: Leakage Current Test with Mains Voltage Applied (Source) for Intraoperative Transducers

Key to Source Test Diagram

С	Stray capacitance from the ultrasound system power wiring to the system grounded metal chassis (I to 3 $M\Omega$ reactance)
Z	Impedance between the metal parts of the transducer and a test electrode placed in the bucket of saline solution (about 850 k Ω with an intact outer insulating layer, 500 Ω with a hole in the layer)
A	Microammeter to measure leakage current from the transducer to the earth lift ground through Z to the test electrode
е	Line power source, either 110 Vac or 220 Vac
I	Current caused by e and stray capacitance, and optionally \boldsymbol{Z}
SI	Open earth lift ground switch
S2	Line polarity switch
L	Line mains supply
N	Neutral mains supply
E	Earth ground

Test 2: Leakage Current Test with Mains Voltage Applied (Sink) for Intraoperative Transducers

Key to Test 2 Diagram

С	Stray capacitance from the ultrasound system power wiring to the system grounded metal chassis (I to 3 $M\Omega$ reactance)
Z	Impedance between the metal parts of the transducer and a test electrode placed in the bucket of saline solution (about 850 k Ω with an intact outer insulating layer, 500 Ω with a hole in the layer)
A	Microammeter to measure leakage current from a line supply to the transducer and back to earth ground through electrode Z and the equipment chassis
е	Line power source, either 110 Vac or 220 Vac
I	Current caused by e and stray capacitance, and optionally \boldsymbol{Z}
SI	Open earth lift ground switch
S2	Line polarity switch
S3	Isolation test button
L	Line mains supply
N	Neutral mains supply
E	Earth ground

Testing Intraoperative Transducer Leakage Current (Source)

This test checks leakage current without mains voltage applied. For a diagram of this test, Test 1, see "Leakage Current Testing for Intraoperative Transducers" on page 229.

WARNING

Electrical shock hazard: Do not touch the lead that you connect to the safety analyzer in step 7.

- 1. Plug the safety analyzer into the power source.
- 2. Plug the ultrasound system into the safety analyzer.
- 3. Connect the transducer being tested to the ultrasound system.
- 4. Immerse 5 cm (2 in) of the transducer in saline solution.
- 5. Set the safety analyzer **Mode** switch to the **ECG** position.
- 6. Set the safety analyzer Leads switch to the ALL (all ECG leads) position.
- 7. Connect a lead to any ECG terminal on the safety analyzer, and immerse the other end into the saline solution.
- 8. Set the safety analyzer Line Polarity switch to Normal.
- 9. Note the normal condition leakage reading.
- I0. Hold the safety analyzer **Ground Open** switch in the **Open** position (single fault condition), and note the leakage reading.
- II. Repeat step 9 and step 10 with the **Polarity** switch in the **Reverse** position. These are the applicable limits:
 - 10 μA RMS (normal condition)
 - 50 µA RMS (single fault condition)

Testing Intraoperative Transducer Leakage Current (Sink)

WARNING

There is considerable hazard in performing this test. Use precautionary measures to avoid accidental contact with line voltage. In addition, any time that the ground

connection has been opened, do not touch the chassis or the patient cable during the test.

This test checks leakage current with mains voltage applied. For a diagram of this test, Test 2, see "Leakage Current Testing for Intraoperative Transducers" on page 229.

- 1. Plug the safety analyzer into the power source.
- 2. Plug the ultrasound system into the safety analyzer.
- 3. Connect the transducer being tested to the ultrasound system.
- 4. Immerse 5 cm (2 in) of the transducer in saline solution.
- 5. Set the safety analyzer **Mode** switch to the **ECG** position.
- 6. Set the safety analyzer **Leads** switch to the **Isolation Test** position.
- 7. Connect a lead to any ECG terminal on the safety analyzer. Leave the other end of the lead disconnected for now.
- 8. Press and hold the **Isolation Test** button and note the leakage reading. This is the correction factor that will be subtracted from the final reading.
- 9. Immerse the other end of the lead into the saline solution.
- 10. Press and hold the Isolation Test button and take the leakage reading again.
- II. Subtract the correction factor found in step 8 to get the accurate leakage measurement. The leakage must be less than 50 μA RMS.

10 Transesophageal Transducers

A transesophageal echocardiography (TEE) study is performed with a transducer mounted in a gastroscope, which is positioned in the esophagus or stomach. TEE transducers offer images that are unobstructed by lungs and ribs, making them important diagnostic tools for conditions that transthoracic echocardiography cannot adequately image.

All transesophageal transducers are rated minimum IPX1 (control area) / IPX7 (endoscope area) in accordance with IEC 60529.

The system supports the following TEE transducers:

- S7-2omni
- S7-3t
- S8-3t
- T6207
- T6H (Omni III)
- X7-2t

NOTES

- Two Omni TEE transducers can be used with the iE33 Ultrasound System:
 the S7-2omni transducer and the T6H (Omni III) transducer, which
 requires a connector adapter to connect to the iE33 system. These
 transducers are functionally identical except for the connectors.
 Information that refers to the S7-2omni transducer also applies to the
 T6H (Omni III) transducer, except for connecting the transducer to the
 system.
- The X7-2t TEE transducer can be used with the iE33 Ultrasound system.
 It is similar to the S7-2omni transducer but it has gray controls and a square sensor face. The X7-2t transducer can be rotated electronically using controls on the control panel and the buttons on the handle.
- Two TEE transducers can also be used with the iE33 Ultrasound System: the S7-3t transducer and the T6207 transducer, which requires a connector adapter to connect to the iE33 system. These transducers are

- functionally identical. Information that refers to the S7-3t transducer also applies to the T6207 transducer.
- The S8-3t is a very small TEE transducer especially suited for very fine manipulation for small patients, smaller adults with weak esophageal tissue, and patients with constricted airways or with oral intubation.

Operators of TEE Transducers

Philips TEE transducers are designed for use under the guidance of physicians who are properly trained in esophagogastroscopic techniques, according to currently approved relevant medical practices. Philips recommends that physicians operating any Philips TEE transducer have the following qualifications:

- Proficiency in recognizing and interpreting transesophageal imaging patterns
- Thorough familiarity with the safe operation, care, and maintenance of the ultrasound system and TEE transducers
- Thorough familiarity with the latest TEE methods through literature and seminars

Patient Safety During TEE Studies

Philips recommends that you practice using the TEE transducer controls before performing any procedure mentioned here. You must also be thoroughly familiar with the safe operation, care, and maintenance of the ultrasound imaging system used with the TEE transducer, as well as proficient at interpreting the images generated.

You can help ensure patient safety when using a TEE transducer by following these guidelines:

- Use informed judgement when selecting patients for TEE studies. See "Patient Selection for TEE Transducer Use" on page 283.
- Verbally prepare each patient for the procedure before the study. See "Preparing Patients for TEE Studies" in the Help.
- Scrutinize the entire transducer and test all of the controls before each use.
 See "Checking the TEE Transducer" on page 281.

- Insert, remove, and operate the transducer properly.
- Ensure that the transducer handle does not rest on or touch the patient.
- Use protective equipment, such as a bite guard and a market-approved sterile transducer cover during a TEE study. See "TEE Accessories and Supplies" on page 292.
- Do not allow water or other liquids to come in contact with the interior of the system, the interior of the transducer connector, the inside of the transducer control handle, or to drip onto the keyboard.
- Minimize the possibility of transducer tip fold-over. This problem has
 occurred rarely, but its consequences can be serious. See "Tip Fold-Over"
 in the Help.

To prevent tissue damage such as pressure necrosis, gastroesophageal lacerations, bleeding, tearing of adhesions, ligament damage, and perforation, observe the following warnings and cautions.

WARNINGS

- Never apply excessive force when inserting or withdrawing a TEE transducer, or when operating the transducer deflection controls.
- Lock medial/lateral movement of the TEE transducer during insertion. (This does not apply to the S8-3t TEE transducer.)
- When using the S8-3t TEE transducer, do not use the deflection brake on pediatric patients.
- Whenever the TEE transducer is not being used during a procedure, ensure that it is in freewheeling mode and unplugged from the system.
- To prevent tissue damage, Philips recommends that the tip of the TEE transducer be straightened and both detent brakes released before you reposition the transducer or withdraw the transducer from the patient. In the neutral position, the tip is straight when the indicators on the control wheels are aligned and point toward the center of the array rotation button. (This does not apply to the S8-3t TEE transducer.)
- For the S8-3t TEE transducer only: To protect the patient and the transducer, the tip of the transducer must be straightened and the deflection brake must be off when inserting or withdrawing the transducer. The tip is straight when the deflection control is aligned along the distal end of the

- shaft of the transducer handle, and the white line on the articulation control is aligned with the center of the proximal end of the transducer handle.
- Bite guards are mandatory; protective transducer covers are recommended for TEE transducers, but in China and Japan, the covers are mandatory. See "Electrical Safety and TEE Transducers" on page 246.

CAUTION

To avoid damaging gastroscope cables, be sure that the distal tip of the transducer is in the neutral (straight) position when inserting a transducer into, or removing it from, the transducer cover.

The TEE transducers are classified as Type BF isolated patient-applied parts, as described in IEC 60601-1. There are no exposed conductive surfaces distal to the transducer handle. To ensure safe operation of this transducer, read the cautions and warnings in the "Safety" section, especially those that address electrosurgical units, pacemakers, and defibrillators.

The following table summarizes patient safety problems, describes how to prevent them, and lists the sections in this manual where details are provided.

WARNING

If you encounter an irregularity not listed in the following table, do not use the transducer. Potentially serious consequences could result. Contact your Philips representative.

Ensuring Patient Safety During TEE Studies

Problem	Effect on Patient	Prevention	See
Mechanical damage	Severe trauma, cuts, bleeding, perforations	Inspect the transducer, using both sight and touch, before the study.	Checking the TEE Transducer
Electrical damage	Esophageal burns	Check the transducer for frayed insulation, kinks, or other abnormalities. Follow procedures for checking electrical safety.	"Electrical Safety and TEE Transducers" on page 246
Biting, scraping transducer	Tooth damage, esophageal burns	Always use a bite guard.	"Bite Guards" on page 292

Problem	Effect on Patient	Prevention	See
Insufficient cleaning protocol	Spread of illness or disease	Thoroughly clean and disinfect the transducer after each use. Cover the tip and shaft with a transducer cover. Cover the imaging system with a disposable drape if highly pathogenic organisms are known or suspected.	"Transducer Care" section
Improper insertion or withdrawal	Esophageal cuts, bleeding, ligament damage, perforations	To prevent improper insertion or withdrawal when using a TEE transducer, never use force when inserting, removing, or manipulating the transducer. During insertion, lock the medial/lateral controls. During withdrawal, release both brakes to place both steering knobs in the freewheeling position.	"TEE Study Guidelines" on page 285
Pressure necrosis	Death of esophageal lining tissue	Keep deflection controls in freewheeling mode and unplug the transducer from the system when not imaging. Minimize the pressure applied to deflection area and distal tip. Do not let the distal tip displace a tissue area for more than 5 consecutive minutes.	"TEE Study Guidelines" on page 285

Problem	Effect on Patient	Prevention	See
Increased transducer temperature	Esophageal burns	Use the TEE preset that has been established to minimize the effects of temperature. For febrile patients, use the Auto-Cool feature.	"Entering Patient Temperature" on page 291
Improper patient position	Transient unilateral vocal cord paralysis	Never use the transducer during any procedure requiring extreme neck flexion, such as sitting craniotomies.	"TEE Study Guidelines" on page 285
Nonisolated ESUs	Electrical burns	Only use isolated-output electrosurgical units (ESUs). The ESU label or service guide or your biomedical department should identify whether or not the ESU is isolated. Unplug transducer from the system when you are not imaging.	"Electrical Safety and TEE Transducers" on page 246
Defibrillation issues	Electrical burns	Remove the transducer from the patient before defibrillation.	"Electrical Safety and TEE Transducers" on page 246

Patient-Contact Parts

Latex is commonly used in sheaths marketed to help with infection control in transesophageal, endocavity, and intraoperative imaging applications and during biopsies. Examine the packaging to confirm latex content. Studies have shown that patients can experience allergic reactions with natural rubber latex. See "FDA Medical Alert on Latex" on page 46.

NOTE

The ultrasound system and transducers discussed here do not contain natural rubber latex that contacts humans. Natural rubber latex is not used on any Philips ultrasound transducers.

Preventing TEE Transducer Problems

Meticulous inspection and correct and careful operation of the TEE (transesophageal) transducer is imperative to patient safety. The situations listed here affect safe operation as well as the ability to service mechanical problems under the Philips one-year warranty or service contract. Transducer repairs necessitated by misuse of the transducer are not covered and can be very costly, often requiring complete disassembly and rebuilding of the transducer.

There are three primary areas of transducer misuse:

- Cuts and abrasions on the transducer and insulation from teeth or sharp instruments such as scalpels, scissors, and clamps
- Improper disinfection techniques, including allowing fluid to enter the connector or transducer handle and the use of unapproved disinfectants
- Consistently applying too much force to the control wheels of a TEE transducer, which can break the steering mechanism

Review the following table to familiarize yourself with specific problems, to learn how to avoid them, and to identify the sections in this manual where details are provided. Philips also strongly recommends that you clearly post stringent protocols for TEE transducer care, based on the information in this manual, to minimize the chance of damage.

WARNING

For any other irregularity not listed in the following table, do not use the transducer. Potentially serious consequences could result. Contact your Philips representative.

Preventing TEE Transducer Equipment Problems

Problem	Effect on Equipment	Prevention	See
Current leakage	Serious electrical hazards	Check the transducer for cuts, frayed insulation, kinks, or other abnormalities.	Checking the TEE Transducer
Biting transducer	Mechanical and electrical hazards	Cover the patient's teeth with a bite guard (mandatory). Cover the distal tip and flexible shaft with a transducer cover (recommended, but in China and Japan, mandatory).	"Bite Guards" on page 292
Forcing deflection controls	Steering mechanism broken	Operate the deflection controls gently.	TEE Deflection Controls
Incorrect storage	Possible damage to highly sensitive elements, cuts in flexible shaft	Suspend the transducer from a wall-mounted rack and the distal tip with a tip protector when not in use.	"Transducer Storage" on page 220
Internal exposure to liquids	Severe transducer damage that affects the image quality, the steering mechanism, and electrical safety	Never sterilize the transducer by using bleach, steam, heat, or ethylene oxide (EtO). Never immerse the steering mechanism in any disinfectant or liquid.	"Transducer Care" section

Electrical Safety and TEE Transducers

The ultrasound system and its transducers comply with common medical device electrical safety standards.

For electrical safety information about TEE transducers, see "Leakage Current and TEE Transducers" on page 246 and "Reducing Risks of Using TEE Transducers" on page 246.

For safety information on electrosurgical units, pacemakers, defibrillators, and related topics, see "Electrical Safety" on page 28.

Leakage Current and TEE Transducers

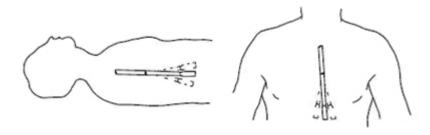
For the TEE transducers discussed in this document, the insertion tube and tip are Type BF $\dot{\Lambda}$, as described in IEC 60601-1. There are no exposed conductive surfaces distal to the transducer handle. Within the flexible shaft, all active circuits and conductors are surrounded by a chassis-grounded shield that runs the length of the transducer.

If the outer layer of the shaft is punctured or cracked, a patient's esophagus could be exposed to chassis leakage current. This leakage current is not hazardous provided that the ground connector (third wire) in the ultrasound system power cable is intact and connected to a properly grounded wall outlet. Even if the ground connector breaks, leakage current is in compliance with the limits noted in IEC 60601-1.

Leakage hazards are further reduced when the ultrasound system is plugged into an isolated power outlet, which is standard in most operating rooms.

Reducing Risks of Using TEE Transducers

To reduce the possibility of electrical risks associated with use of TEE transducers, follow these recommendations:


 Visually and tactually inspect a TEE transducer for bumps, cracks, and cuts before each TEE exam. A small bump on the shaft surface could indicate that a strand from the ground shield has broken and is beginning to puncture the outer layer. If you suspect a problem with the flexible shaft, perform the electrical safety check procedure. See "TEE Leakage Current Test" on page 294.

- Use electrosurgical units (ESUs) that have isolated outputs. Return fault/ground fault detection circuits provide additional protection. To determine if an ESU has an isolated output, read the label on the ESU, see the ESU service guide, or ask a biomedical engineer.
- Require periodic electrical safety checks to ensure that the grounding system in your area remains intact.
- If the transducer is left in a patient during periods when imaging is not taking
 place, unplug the transducer from the system to reduce the possibility of
 leakage current or ESU interaction. Also make sure that the deflection
 control brakes are off and that the transducer is in freewheeling mode.
- Always remove the transducer from the patient before defibrillation.

TEE Deflection Control Basics

The deflection controls on the TEE transducer move the deflection area, located between the distal tip and flexible shaft. The deflection area bends when you operate the controls, permitting anterior, posterior, and lateral positioning.

Deflection Control Movement

To prevent tissue damage such as pressure necrosis, gastroesophageal lacerations, bleeding, tearing of adhesions, ligament damage, and perforation, observe the following warnings. See "TEE Transducer References" on page 298.

WARNINGS

- Never apply excessive force when inserting or withdrawing a TEE transducer, or when operating the transducer deflection controls.
- Lock medial/lateral movement of the TEE transducer during insertion. (This
 does not apply to the S8-3t TEE transducer.)
- Whenever the TEE transducer is not being used during a procedure, ensure that it is in freewheeling mode and unplugged from the system.
- Do not allow the TEE transducer to remain at a maximum deflection for long periods of time.
- To prevent tissue damage, Philips recommends that the tip of the TEE transducer be straightened and both detent brakes released before you reposition the transducer or withdraw the transducer from the patient. In the neutral position, the tip is straight when the indicators on the control wheels are aligned and point toward the center of the array rotation button. (This does not apply to the S8-3t TEE transducer.)
- Bite guards are mandatory; protective covers are recommended for TEE transducers, except in China and Japan, where protective transducer covers are mandatory for TEE transducers.
- To avoid damaging gastroscope cables, be sure that the distal tip of the transducer is in the neutral (straight) position when inserting a transducer into, or removing it from, the transducer cover.

Connecting an S7-20mni, S7-3t, S8-3t, or X7-2t Transducer

NOTE

Before you connect the S7-20mni TEE transducer or the X7-2t TEE transducer, be sure the tip and shaft are straight. When you connect the transducer, it automatically calibrates itself to the 0-degree (horizontal plane) position.

If the "Calibration failed" message appears, see "Calibrating the TEE Transducer" on page 261.

- 1. Plug the transducer into a transducer receptacle on the system.
- 2. Turn the latch 90 degrees clockwise to lock the transducer to the system.

Connecting a T6H or T6207 Transducer

You can use a Philips T6H (Omni III TEE) transducer or a Philips T6207 (TEE) transducer with the iE33 system by using the appropriate adapter:

- For the T6H transducer, use the Omni III adapter
- For the T6207 transducer, use the mini-Multi adapter

These adapters are identical in appearance and operation. Each adapter, however, supports only the transducer for which it is intended. The Omni III adapter is shown below. The front of the adapter is the transducer connection. The back of the adapter is the system connection.

NOTE

Before you connect the T6H transducer, be sure the tip and shaft are straight. When you connect the transducer, it automatically calibrates itself to the 0-degree (horizontal plane) position. As with any array movement, the motor makes a humming sound while calibrating.

- Plug the Omni III or mini-Multi adapter into the left transducer receptacle on the iE33 system, with the latch side facing out. (You can use the other transducer receptacles, but one additional receptacle will be blocked by the adapter if you do.)
- 2. Turn the latch on the adapter to lock the adapter to the system.
- 3. If the "Calibration failed" message appears, see "Calibrating the TEE Transducer" on page 261.
- 4. Orient the T6H or T6207 connector so that the cord exits upward, and then plug it into the adapter.
- 5. Turn the latch 90 degrees clockwise to lock the transducer into the adapter.

- 6. To remove the T6H or T6207 transducer from the adapter, turn the transducer latch to the unlocked position (90 degrees counterclockwise) and pull the connector toward you.
- 7. To remove the adapter from the system, turn the adapter latch to its unlocked position and pull it toward you.

Omni III Adapter

S7-2omni TEE Transducer Description

The S7-20mni TEE transducer is described below.

NOTE

The features and specifications are identical for the S7-2omni and T6H (Omni III) transducers.

\$7-2omni TEE Transducer

NOTE .

Philips recommends that you use the S7-20mni transducer only on patients weighing at least 25 kg (55 lb), to ensure the esophagus can comfortably accommodate the transducer.

S7-2omni TEE Transducer Features and Specifications

Features	 Ultraband transducer technology sensor for Harmonic and Contrast imaging Enables high-resolution imaging and 360-degree views of the heart, unobstructed by lungs and ribs Capable of Harmonic imaging, contrast research, Tissue Doppler Imaging (TDI), Color imaging, steerable CW Doppler mode and PW Doppler mode, frequency agility, and electrocautery suppression Tip surface constantly monitored for patient safety Convenient hanging ring
Specifications	 Tip width: 1.5 cm (0.6 in) Tip length: 3.5 cm (1.4 in) Shaft width: 1.0 cm (0.4 in) Shaft length: 1.0 m (3.3 ft)

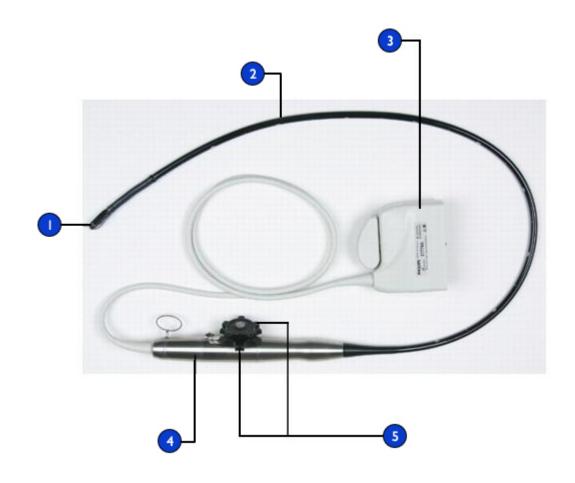
X7-2t TEE Transducer Description

The X7-2t TEE transducer is described below.

X7-2t TEE Transducer

X7-2t TEE Transducer Features and Specifications

Features	Ultraband transducer technology sensor for Harmonic imaging enables high-resolution imaging and 360-degree views of the heart, unobstructed by lungs and ribs. Capable of 2D, 3D, Harmonic imaging, Live 3D, xPlane imaging, xPlane grayscale, color DNL, steerable CW Doppler mode, and PW Doppler mode, frequency agility, and electrocautery suppression. Tip surface constantly monitored for patient safety. Convenient hanging ring.
Specifications	 Tip: 1.5 cm (0.6 in) wide, 3.5 cm (1.4 in) long Shaft: 1.0 cm (0.4 in) wide, 1.0 m(3.3 ft) long


NOTE

Philips recommends that you use the X7-2t transducer only on patients weighing at least 30 kg (66 lb), to ensure that the esophagus can comfortably accommodate the transducer.

Using S7-20mni and X7-2t Transducers

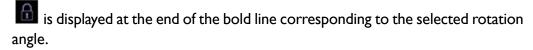
Philips recommends familiarizing yourself with the controls and parts of the TEE transducer before using it in an exam. For more information on transducer controls, see "S7-20mni and X7-2t Deflection Controls" on page 256.

TEE Transducer Parts

Ī	Distal tip
2	Flexible shaft
3	Transducer connector

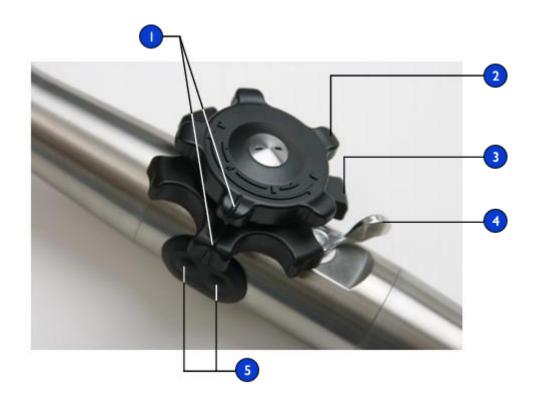
4	Transducer handle
5	Deflection controls

S7-20mni and X7-2t Deflection Controls


The S7-20mni and the X7-2t deflection controls and brake are shown below.

The larger inner knob controls anterior/posterior movement, while the smaller outer knob controls medial/lateral movement. To place the tip of the TEE transducer into the neutral position, align the ribs on each knob with the center of the array rotation buttons.

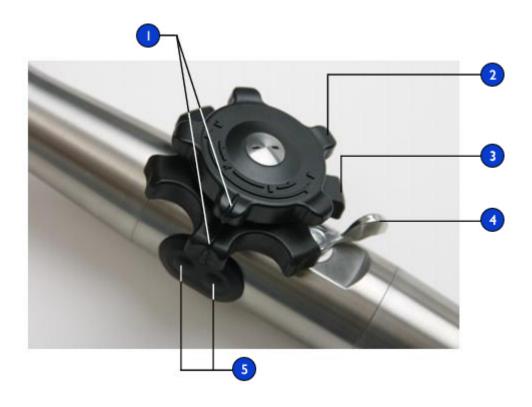
The knobs can be controlled by a detent brake that holds the tip position without locking it in place. This allows the tip to straighten if it meets additional resistance. When the detent brake actuator is rotated to the right (as shown) both knobs are in the freewheeling mode. When the detent brake actuator is centered, the small knob (medial/lateral movement) is in the detent mode, and when the actuator is rotated to the left, both knobs are in the detent mode.


NOTE

During 2D imaging, the buttons on the X7-2t transducer handle are enabled. In xPlane, Live 3D, and Full Volume modes, the buttons are disabled. A lock icon

During insertion, engage medial/lateral detent to limit movement or use freewheeling mode (no deflection and no brake resistance) to prevent patient injury.

Deflection and Brake Controls


I	Neutral position indicators (no deflection)
2	Medial/lateral control
3	Anterior/posterior control
4	Detent brake actuator
5	Image plane rotation buttons

Manipulating the S7-20mni and the X7-2t Tip

Review the warnings and caution in "Patient Safety During TEE Studies" on page 238 and "TEE Deflection Control Basics" on page 247 before using the transducer in a study.

- 1. Turn the detent brake actuator fully counter clockwise to put both knobs into freewheeling mode.
- 2. Turn the large knob to deflect the tip in the anterior/posterior plane.
- 3. Turn the small knob to deflect the tip in the medial/lateral plane.
- 4. Once the tip is positioned properly, do one of the following:
 - Turn the detent brake actuator fully clockwise to put both knobs in detent mode.
 - Center the detent brake actuator to put only the small knob (medial/lateral movement) in the detent mode.

Deflection and Brake Controls

I	Neutral position indicators (no deflection)	
2	Medial/lateral control	
3	Anterior/posterior control	
4	Detent brake actuator	
5	Image plane rotation buttons	

Rotating the S7-20mni and the X7-2t Image Plane

You can rotate the image plane on the TEE transducer to achieve a 360-degree view of the heart. You can use either the image plane rotation buttons on the transducer handle or the controls on the **Preset/Transducer** touch screen. Rotation stops when you release either button.

An icon shows the current degree of rotation. Depending on image orientation, the icon appears in the upper or lower part of the display. Because the center of the plane is the pivot point, you can achieve a 360-degree view

NOTE

The X7-2t transducer is capable of turning 360 degrees.

- 1. To rotate the X7-2t transducer image plane by using system controls, do one of the following:
 - Press the image plane rotation button that is distal to the system to rotate the imaging plane toward the 180-degree position.
 - Press the button that is proximal to the system to rotate the imaging plane toward the 0-degree position.
- 2. To rotate the S7-20mni transducer image plane by using system controls, go to the **Preset/Transducer** touch screen and do any of the following:
 - Touch **Up** to rotate the imaging plane toward the 180-degree position.
 - Touch **Down** to rotate the imaging plane toward the 0-degree position.
 - Turn Seek Angle to set an angle and touch Seek to go directly to the specified angle.
- 3. To rotate the X7-2t transducer image plane by using system controls, turn **Seek Angle** to go directly to the specified angle.

c d c 45 d 45 d 45 d 45 d 45 d 90° d 90° d 135° d 135° d 135° 180° 80° 180° 180°

TEE Transducer Image Plane Rotation

Calibrating the TEE Transducer

Before connecting the TEE transducer, ensure that the tip and shaft are straight. When you lock the connector into the transducer receptacle, the TEE transducer calibrates the array to the 0-degree (horizontal plane) position. As with any array movement, the motor makes a humming sound while calibrating.

NOTE

Do not turn the TEE control knobs while calibration is in progress.

If a system message indicates a calibration failure, you will be unable to use the transducer until you perform the following procedure.

- I. Ensure that the transducer shaft and tip are straight (the neutral position indicators must be aligned with the array rotation buttons).
- 2. Turn the locking lever on the transducer connector counterclockwise and pull the connector out of the receptacle.
- 3. Reseat the connector in the receptacle and turn the locking lever clockwise.
- 4. Select the transducer and preset.
- 5. If you still see the calibration-failure message, contact your Philips service representative.

S7-3t TEE Transducer Description

The S7-3t TEE transducer is described below.

\$7-3t TEE Transducer

S7-3t TEE Features and Specifications

Features	A small transducer that enables high-resolution imaging and 360-degree views of the heart, unobstructed by lungs and ribs. The array inside the tip can be rotated 180 degrees using a control on the handle of the transducer. Another control on the handle sets the deflection of the tip. This transducer is capable of color flow imaging, steerable CW and PW Doppler, and frequency agility. Tip surface temperature is constantly monitored for patient safety.
Connection	See: "Connecting an S7-20mni, S7-3t, S8-3t, or X7-2t Transducer" on page 248
Specifications	Tip: 10.7 mm x 8.0 mm, 27 mm long (0.42 in x 0.31 in, 1.1 in long) Shaft: 7.4 mm diameter, 70 cm long (0.29 in diameter, 27.5 in long)

Using the S7-3t TEE Transducer

Philips recommends familiarizing yourself with the controls and parts of the TEE transducer before using it in an exam. For more information on transducer controls, see "S7-3t TEE Controls" on page 266.

\$7-3t TEE Transducer Parts

ī	Distal tip
2	Flexible shaft
3	Transducer connector
4	Transducer handle
5	Deflection and array controls

Patient Selection for the S7-3t TEE Transducer

Although the S7-3t TEE transducer can provide clinical data not available from other instruments, you should consider which patients can safely use the transducer.

NOTE

Philips recommends that you use the S7-3t transducer only on patients weighing at least 3.5 kg (7.7 lb).

WARNINGS _____

- The ability of a patient to swallow or accommodate the transducer should be considered.
- You must consider any history of gastroesophageal diseases as well as the
 possible effects of other therapies that the patient is undergoing. You must
 also consider all gastroesophageal abnormalities or difficulty swallowing.

S7-3t TEE Controls

The transducer handle is designed for one-hand operation. Normally, you should operate the transducer handle with your left hand. The thumb, first, and second fingers control the deflection and the array rotation control wheels.

The smaller wheel on the transducer handle is for controlling the transducer tip deflection. This wheel has a locked mode and a freewheeling mode. In the locked mode, the movement of the deflection wheel is restrained to allow you to hold the tip in a certain position. A metallic ring around the body of the handle, which clicks on and off, controls the lock.

The larger wheel on top is for rotating the imaging array. The array can be rotated continuously from 0 degrees (transversal plane) through 90 degrees (longitudinal plane) to 180 degrees (transversal plane, left/right inverted).

WARNINGS _

 Verify that the maximum deflection of the tip is 120 degrees up and 90 degrees down. If the up/down deflection shows an unwanted amount of

- free play or exceeds the maximal deflection angles, do not use the transducer. Contact Philips to readjust the steering of the transducer. Ensuring proper deflection limits minimizes the risk of the tip folding over in the esophagus.
- To protect the patient and the transducer, straighten the tip of the transducer and unlock the deflection control when inserting or withdrawing the transducer. On the S7-3t, the tip is straight when the white line on the control wheel is aligned along the shaft of the transducer handle.

S7-3t Controls

I	90-degree rotation indicator
2	Array control
3	Deflection control
4	Deflection lock
5	Neutral position indicators (no deflection)

S7-3t Lock Operation

Unlocked, freewheeling (white)

Locked (red)

Manipulating the S7-3t TEE Tip

Review the warnings and caution in "Patient Safety During TEE Studies" on page 238 and "TEE Deflection Control Basics" on page 247 before using the transducer in a study.

- 1. Put the deflection control knob into freewheeling mode by sliding the deflection lock so that the indicator is white.
- 2. Do one of the following:
 - To deflect the tip toward the posterior, turn the smaller knob clockwise.
 - To deflect the tip toward the anterior, turn the smaller knob counterclockwise.
 - To set the tip in the neutral position (no deflection), turn the smaller knob so that its white bar is in line with the center of the proximal end of the transducer handle.

3. Once the tip is positioned properly, lock the deflection control knob by sliding the deflection lock so that the indicator is red.

Manipulating the S7-3t Transducer Tip

- I Deflection lock
- 2 Deflection control

S7-3t TEE Array Rotation

You can rotate the imaging array continuously from 0 degrees (transversal plane) through 90 degrees (longitudinal plane) to 180 degrees (transversal plane, left/right inverted). Because the transducer allows you to select all planes between 0 degrees and 180 degrees, you can scan a conical imaging volume.

An icon shows the current degree of rotation. Depending on image orientation, the icon appears in the upper or lower part of the display.

S7-3t Array Rotation

Rotating the S7-3t TEE Array

CAUTION

Do not use excessive force on the array rotation control wheel at its outer positions because this may damage the endoscope mechanism.

1. To rotate the imaging array, turn the array control (the larger wheel).

- 2. To rotate the array to 90 degrees, align the white bar on the side of the array control with the center of the proximal end of the transducer handle.
- 3. To rotate the array to a specific setting, align a setting on the top of the array control with the center of the proximal end of the transducer handle.

Rotating the S7-3t Imaging Array

- I Array control
- 2 Align settings on the control with the proximal end of the transducer handle (90° setting as shown).

S8-3t TEE Transducer Description

The S8-3t is a very small TEE transducer, which makes it ideal for:

- Very fine manipulation for small patients, including neonates, pediatrics, and small adults
- Adult 2D multiplane imaging with oral intubation
- TEE patients with constricted airways
- Smaller adults with weak esophageal tissue

NOTE

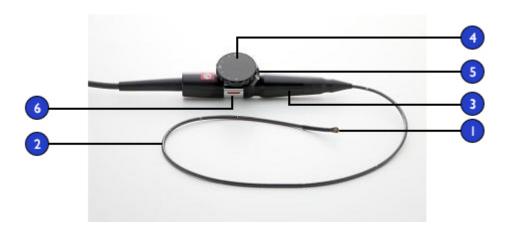
Philips recommends that you use the S8-3t transducer only on patients weighing at least 2.5 kg (5.5 lb).

The S8-3t TEE transducer is described below.

\$8-3t TEE Transducer

S8-3t TEE Features and Specifications

Features	A small transducer that enables high-resolution imaging and 360-degree views of the heart, unobstructed by lungs and ribs. The array inside the tip can be rotated 180 degrees using a control on the handle of the transducer. Another control on the handle sets the deflection of the tip. This transducer is capable of color flow imaging, 2D and Mmode, color Mmode, steerable CW and PW Doppler, HPRF Doppler, and frequency agility. Tip surface temperature is constantly monitored for patient safety.
Connection	See: "Connecting an S7-20mni, S7-3t, S8-3t, or X7-2t Transducer" on page 248
Specifications	Tip: 7.5 mm x 5.5 mm, 18.5 mm long (0.30 in x 0.22 in, 0.73 in long)
	Shaft: 5.2 mm diameter, 85 cm long (0.20 in diameter, 33.5 in long)


Using the S8-3t Transducer

WARNING

Do not use the deflection brake on pediatric patients.

Philips recommends familiarizing yourself with the controls and parts of the TEE transducer before using it in an exam. For more information on transducer controls, see "S8-3t Controls" on page 276

S8-3t TEE Transducer Parts

Ι	Distal tip
2	Flexible shaft
3	Transducer handle
4	Array control
5	Deflection control
6	Deflection brake

Patient Selection for the S8-3t TEE Transducer

Although the S8-3t TEE transducer can provide clinical data not available from other instruments, you should consider which patients can safely use the transducer.

NOTE

Philips recommends that you use the S8-3t transducer only on patients weighing at least 2.5 kg (5.5 lb).

WARNINGS

- Do not use the deflection brake on pediatric patients.
- The ability of a patient to swallow or accommodate the transducer should be considered.
- You must consider any history of gastroesophageal diseases as well as the
 possible effects of other therapies that the patient is undergoing. You must
 also consider all gastroesophageal abnormalities or difficulty swallowing.

Handling the S8-3t Transducer

Because of its small size, the S8-3t transducer is a very delicate electronic instrument. To avoid damaging the transducer, observe the following cautions:

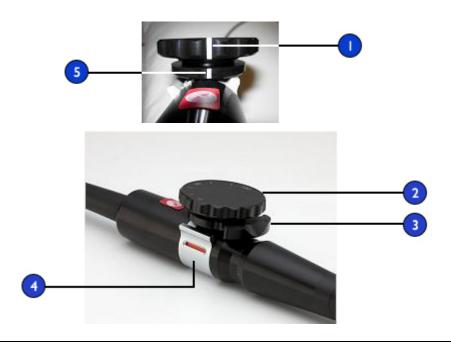
CAUTIONS

- When wiping the distal tip of the S8-3t transducer, never apply excessive force to the acoustic window. Gently wipe the tip with a moist cloth. Do not squeeze the window or tip, because this may damage the transducer.
- Do not allow sharp objects, such as scissors, scalpels, or cauterizing knives, to touch transducers or cables.
- Articulate the tip only with the controls; do not articulate it with your hand.
- Do not bend or crimp the gastroscope or cable.
- When handling any transducer, do not bump the transducer on hard surfaces.

S8-3t Controls

The transducer handle is designed for one-hand operation. Normally, you should operate the transducer handle with your left hand. The thumb, first, and second fingers control the deflection and the array rotation control wheels.

The lower wheel on the transducer handle is for controlling the transducer tip deflection. This wheel has a brake-on mode and a brake-off mode that allows it to freewheel. With the brake on, the movement of the deflection wheel is


restrained to allow you to hold the tip in a certain position. A metallic ring around the body of the handle, which clicks on and off, controls the brake.

The larger wheel on top is for rotating the imaging array. The array can be rotated continuously from 0 degrees (transversal plane) through 90 degrees (longitudinal plane) to 180 degrees (transversal plane, left/right inverted).

WARNINGS .

- Do not use the deflection brake on pediatric patients.
- Verify that the maximum deflection of the tip is 120 degrees up and 90 degrees down. If the up/down deflection shows an unwanted amount of free play or exceeds the maximal deflection angles, do not use the transducer. Contact Philips to readjust the steering of the transducer. Ensuring proper deflection limits minimizes the risk of the tip folding over in the esophagus.

S8-3t Controls

I	90-degree rotation indicator
2	Array control
3	Deflection control
4	Deflection brake
5	Neutral position indicators (no deflection)

Manipulating the S8-3t Tip

Review the warnings and cautions in the TEE Transducer section of the user manual before using the transducer in an exam.

WARNINGS

- Do not use the deflection brake on pediatric patients.
- To protect the patient and the transducer, the tip of the S8-3t transducer must be straightened and the deflection brake must be off when inserting or withdrawing the transducer. The tip is straight when the deflection control is aligned along the distal end of the shaft of the transducer handle, and the white line on the articulation control is aligned with the center of the proximal end of the transducer handle.
- Do not bend the shaft into a circle with a diameter of less than 0.3 m (I ft).
- Articulate the tip only with the controls; do not articulate it with your hand.
- 1. Put the deflection control knob into freewheeling mode by sliding the deflection brake so that the indicator is white.
- 2. Do one of the following:
 - To deflect the tip toward the posterior, turn the smaller knob clockwise.
 - To deflect the tip toward the anterior, turn the smaller knob counterclockwise.
 - To set the tip in the neutral position (no deflection), turn the smaller knob so that the deflection control knob is aligned along the shaft and the white line is aligned with the center of the proximal end of the transducer handle.

S8-3t Array Rotation

You can rotate the imaging array continuously from 0 degrees (transversal plane) through 90 degrees (longitudinal plane) to 180 degrees (transversal plane, left/right inverted). Because the transducer allows you to select all planes between 0 degrees and 180 degrees, you can scan a conical imaging volume.

An icon shows the current degree of rotation. Depending on image orientation, the icon appears in the upper or lower part of the display.

S8-3t Array Rotation

Rotating the S8-3t Array

WARNING ___

Do not use excessive force on the array rotation control wheel at its outer positions because this may damage the endoscope mechanism.

- 1. To rotate the imaging array, turn the array control (the larger wheel).
- 2. To rotate the array to 90 degrees, align the white bar on the side of the array control with the center of the proximal end of the transducer handle.

3. To rotate the array to a specific setting, turn the array control knob until the display icon indicates the desired angle.

Rotating the S8-3t Imaging Array

- I Array control
- Align settings on the control with the proximal end of the transducer handle (90° setting as shown).

Checking the TEE Transducer

Before each TEE exam, carefully inspect the transducer and try the controls, as described in the subordinate topics.

TEE Transducer Inspection

Carefully inspect the entire surface of the distal tip and flexible shaft for protrusions, holes, dents, abrasions, cuts, burrs, or cracks that could be extremely hazardous to both you and your patient.

Carefully feel the tip and shaft, and inspect the entire transducer. If you suspect an electrical problem, follow the electrical safety check procedure described in "Electrical Safety Check for TEE Transducers" in the "Transesophageal Transducers" section of the User Manual.

Also check for excessive flexibility in the tip, particularly in the medial/lateral direction. Do not use the transducer if the tip is extremely flexible. If you have any questions about tip flexibility, contact your Philips service representative.

TEE Transducer Controls Inspection

Use the deflection controls to position the tip in every possible direction, both to ensure that the controls work properly and to get used to the feel of the TEE transducer. Make sure that the controls operate smoothly without binding, and that you can achieve all possible positions easily before introducing the TEE transducer into the patient.

Test the detent brakes and freewheeling mode. Remember that the controls must be in freewheeling mode (no deflection and no brake resistance) when repositioning or withdrawing the transducer, as well as whenever you are not imaging. See "Manipulating the S7-20mni and the X7-2t Tip" on page 258.

Special Considerations for TEE Studies

Special considerations regarding TEE studies are advisable for patients with existing gastroesophageal abnormalities, such as esophageal varices, hiatal hernia, tumor, diverticula, esophageal webs and rings, fistulae, or peptic ulcers, as well

as for patients who have had anti-reflux procedures. In addition, you should do the following:

- Consider the patient's size and ability to accommodate the transducer tip and shaft.
- Check the patient's history for gastroesophageal disease or difficulty swallowing.
- Evaluate the potential overall effects of any treatment that the patient is undergoing, such as mediastinal radiation, chemotherapy, anticoagulation, or steroid therapy.
- Be aware that you may discover unsuspected esophageal pathology during a study. Be alert for congenital problems with the esophagus or stomach, particularly with pediatric patients.
- When examining a patient with an above-normal temperature, use the Auto-Cool feature and enter the patient temperature. The Auto-Cool feature is described in "Entering Patient Temperature" on page 291.

This list is not comprehensive. Rather, it suggests areas to investigate when considering TEE for a particular patient.

Patient Selection for TEE Transducer Use

Although the TEE transducers can provide clinical data not available from other instruments, you should consider which patients can safely use the TEE transducers.

WARNINGS

- The ability of a patient to swallow or accommodate the transducer should be considered.
- You must consider any history of gastroesophageal diseases as well as the
 possible effects of other therapies that the patient is undergoing. You must
 also consider all gastroesophageal abnormalities or difficulty swallowing.

The following table lists the minimum patient weight recommendations when using TEE transducers.

TEE Transducer Minimum Patient Weight Recommendations

TEE Transducer	Minimum Patient Weight
S7-2omni	25 kg (55 lb)
S7-3t	3.5 kg (7.7 lb)
S8-3t	2.5 kg (5.5 lb)
Т6Н	25 kg (55 lb)
T6207	3.5 kg (7.7 lb)
X7-2t	30 kg (66 lb)

Preparing Patients for TEE Studies

These suggestions for pre-study patient preparation do not constitute an exhaustive list of all possible factors to explore before performing transesophageal echocardiography, nor do they imply medical protocols. Instead, they reflect basic guidelines resulting from extensive consultation with physicians throughout the design, development, and clinical investigation periods of Philips TEE transducers.

- Besides gathering routine background information such as current medication and allergies, investigate any history of chronic obstructive lung disease, esophageal strictures, varices, or bleeding.
- Thoroughly explain the procedure to the patient before the study.
- Inform the patient not to eat or drink for at least 6 hours before the study.
- Advise the patient that he or she should not plan to drive after the study, because sedatives are often used.
- Follow institutional guidelines for obtaining patient consent for a transesophageal echocardiography (TEE) study.
- Be sure that a recent ECG, CBC, and SMA6 are available as a baselines.

TEE Study Guidelines

During a TEE study, an assistant can provide oral and pharyngeal suctioning of the patient and can monitor the patient's blood pressure and general responses. For unexpected occurrences, an emergency cart with basic life-support equipment should be ready. Throughout the study, it is important to carefully monitor the patient's reactions and to ensure that ventilation and vital signs are stable.

In the operating room, do not use TEE transducers during surgical procedures requiring extreme neck flexion, such as sitting craniotomies. The following are important guidelines for TEE studies. (See "TEE Transducer References" on page 298.)

- Minimize the possibility of transducer tip fold-over. This problem has
 occurred rarely, but its consequences can be serious. See "Tip Fold-Over"
 on page 286.
- Maintain a patent airway. For surgical patients, endotracheal intubation establishes a stable, patent airway before insertion of the transducer. For patients who are awake, carefully monitor the patient's breathing at all times.
- Minimize the possibility of pressure necrosis (tissue death). Do not let the
 distal tip displace any one segment of tissue for more than 5 consecutive
 minutes. Also make sure the deflection area and the distal tip are in the
 position of least potential pressure. Be sure that the transducer is in a
 freewheeling mode and unplugged whenever you are not imaging.
- Prevent potential esophageal damage. Philips recommends that you stop
 TEE scanning and unplug the transducer from the system during periods of
 poor perfusion, circulatory arrest, or the hypothermic phase of open heart
 surgery. To discontinue scanning, unlock the transducer connector.
- Before each TEE study, carefully inspect the transducer, as described in "TEE Transducer Inspection" on page 282. A thorough inspection procedure is required for the safety of the patient and yourself, and to ensure the continued correct functioning of the transducer.
- Never use excessive force when inserting, operating, or withdrawing a transducer, and make sure the deflection area is straight during insertion and withdrawal. Forceful insertion, manipulation, or withdrawal of a

- transducer can result in lacerations, bleeding, perforation, tearing of adhesions, and ligament damage. Also be aware that the tip can fold over, causing similar damage.
- Refrain from handling the distal tip whenever possible. If you must handle the distal tip, grasp it on the sides. Do not touch the top or bottom. Support the transducer's proximal head, either by having an assistant hold the steering mechanism or by clamping the transducer at the steering mechanism. Ensure that the clamp does not interfere with steering, and do not clamp any part of the flexible shaft, as this will damage the transducer.

Tip Fold-Over

On rare occasions, the tip of a TEE transducer has folded over during insertion. The effects can be serious if the situation is handled incorrectly. The esophagus can be scraped, perforated, or otherwise damaged.

For more information on tip fold-over, see "Tip Fold-Over" in the Help.

Recognizing Tip Fold-Over

The TEE transducer tip might be folded over in the patient if you encounter any of the following:

- · Resistance to advancing or removing the transducer
- An inability to turn the control knobs
- Fixation of the control knobs in the maximum flexion position
- · Extreme difficulty in obtaining an image

Correcting Tip Fold-Over

If you suspect the transducer tip is folded over, Philips' physician consultants recommend that you gently try to manipulate the transducer. If the tip is neither locked nor jammed in a doubled-over position, and you can move it forward, advance the transducer into the stomach. Then straighten the tip and remove the transducer.

If you cannot move the tip in any direction, Philips's consultants recommend that you x-ray the patient to evaluate the situation. You might also want to involve a gastroenterologist or anesthesiologist.

Preventing Tip Fold-Over

The following steps can prevent the tip from folding over. This list is not exhaustive; other factors can also be involved.

Using Correct Insertion Technique

You may find transducer insertion easier if you guide the transducer into the patient's mouth with your fingers. You also may want to lock medial/lateral tip movement.

CAUTION

All patients should wear a bite guard during a TEE exam. A bite guard protects against dangerous transducer mechanical and electrical malfunction caused by involuntary biting. Even anesthetized patients require bite guards to prevent damage to both their teeth and to the transducer. For information on bite guards available from Philips, see "Bite Guards" on page 292.

Avoid the following when inserting any TEE transducer into a patient:

- Any excessive flexion of the transducer tip, particularly in the medial/lateral direction
- Catching the tip in pharyngeal recesses
- Insertion when a patient is being uncooperative or is having a convulsion or spasm

Reviewing Patient Esophageal Pathology

Carefully review a patient's medical history for obstructing pathologies or anatomical irregularities before performing a TEE exam.

Ensuring Proper Transducer Maintenance

Thoroughly examine the transducer and test the controls before each exam. Be sure to check for excessive flexibility in the tip. See "TEE Transducer Inspection" on page 282.

TEE Temperature Sensing

The transesophageal transducers contain built-in temperature sensors near the distal tip. The sensor monitors the transducer's temperature to prevent potential burning of esophageal tissue. The patient's actual temperature is required to accurately estimate the distal tip temperature. By default the system assumes that the patient temperature is 37°C (98.6°F). You must manually enter the actual patient temperature if it is above 37°C (98.6°F).

Ensuring Safe TEE Temperatures

To ensure patient safety and to avoid unnecessary interruption while scanning, follow these suggestions:

- Ensure distal-tip-temperature accuracy by entering an accurate patient core temperature.
- Decrease the transducer temperature by using the **Output Power** knob before introducing a TEE transducer to decrease acoustic output, and keep the control at the lowest possible setting during an exam.
- Use the TEE Manual Auto-Cool Safety feature to enter the patient temperature if it is above 37°C (98.6°F) as described in "Entering Patient Temperature" on page 291.

Manual Auto-Cool Feature

Use the TEE Manual Auto-Cool safety feature to enter above-normal patient temperatures. When the temperature display is enabled, you can see both the patient temperature and the distal tip temperature while scanning.

NOTE

The patient temperature shown on the ultrasound display is always either 37°C (98.6°F) or the temperature that you manually enter. The system does not monitor or report the actual patient temperature.

If the distal tip temperature reaches 41°C (105.8°F), a warning message appears and the transducer temperature is displayed in inverse video. If the temperature reaches 42.5°C (108.5°F), a warning appears with the patient and the transducer temperatures, and the system stops imaging until the distal tip cools to below 42°C (107.6°F). If the distal tip temperature reaches 43.5°C (110.3°F), the system shuts down. You may need to restart the system by turning it on.

WARNINGS

- To avoid the risk of esophageal burn for adult patients, minimize the time spent imaging at distal tip temperatures in excess of 42°C (107.6°F).
 Exposure should be limited to 10 minutes or less at 42°C (107.6°F) or higher.
- Sufficient data on thermal tolerance of the esophagus in neonate and pediatric patients does not exist, but it is likely these patients are more vulnerable than adults. Minimize the time spent imaging at distal tip temperatures in excess of 41°C (105.8°F).

Using the Temperature Display

Both the patient temperature (assumed or entered) and the transducer temperature appear in the lower left corner of the display when enabled. On the display, the patient temperature is labeled **PAT T**, and the transducer temperature is labeled **TEE T**.

A less-than sign (<) after **TEE T** indicates that the transducer's distal tip temperature is below the patient temperature (**PAT T**) assumed by the system, which is either 37°C (98.6°F) or the temperature you entered.

You can customize the display of the TEE transducer temperature and the patient temperature from the **Preset/Transducer** touch screen.

NOTE

If you want the temperature display enabled by default, turn on the temperature display and then create a preset as described in "Creating Quick Save Presets" on page 181.

- Display the Preset/Transducer touch screen by touching Preset/Transducer.
- 2. Touch **Temp Display** to display or hide the temperature display.
- 3. Touch **Temp Units** to switch the temperature scale between Farenheit and Celsius.

Patient Temperature

Entering a patient's temperature enables the Auto-Cool feature to calculate tip temperature more accurately, which can prevent unnecessary interruptions while scanning. If a patient's temperature is above normal, entering a temperature can avoid exposing the patient to excessive temperatures.

Always check the patient's temperature before inserting a TEE transducer. If it is above normal, whether from fever or therapeutic heating from a cardiac bypass heart-lung machine, perform the procedure in "Entering Patient Temperature" on page 291 before inserting the transducer. Also, follow that procedure if a patient's temperature rises during a study.

Measure the patient's core temperature, or more specifically, the actual temperature in the esophagus. For patients undergoing surgery, determine the temperature in the esophagus by direct measurement or by monitoring the temperature of blood returning from the bypass pump heat exchanger.

For closed-chest situations, rectal temperature is the best estimate of core temperature. You can also use oral temperatures, even though they can be one degree lower than the core temperature. If you measure an auxiliary temperature, which can be two degrees lower than the core temperature, add one or two degrees.

Entering Patient Temperature

- 1. If necessary, select the TEE transducer.
- 2. Display the **Preset/Transducer** touch screen by touching **Preset/Transducer**.
- 3. Turn **Pat Temp** to enter the patient's measured temperature.

NOTE _

Each time you turn off or reset the system, or enter a new patient ID, the system assumes that the patient temperature is 37°C (98.6°F).

Resuming Imaging After Auto-Cool

If the distal tip temperature drops below 42.5°C (108.5°F), the system resumes imaging. If the Auto-Cool message persists longer than I minute or an error message appears, contact your Philips service representative.

If the distal tip temperature reaches 43.5°C (110.3°F), the system shuts down. You may need to restart it by pressing the On button.

WARNING .

The **Reconnect the Transducer** error message is often caused by a poorly seated transducer connector, but it could be caused by a failure in the Auto-Cool safety logic. In the case of a logic failure, distal tip temperatures could reach 46.5°C (115.7°F) in hyperthermic patients (40°C to 41°C or 104°F to 106°F) before the error causes scanning to stop. At this temperature, esophageal burns may occur (see "TEE Transducer References" on page 298).

- 1. Turn the locking lever on the transducer connector counterclockwise, and pull the connector out of the receptacle.
- 2. Reseat the connector in the receptacle and turn the locking lever clockwise.
- 3. Select the transducer and preset.
- 4. If the system does not resume imaging after the transducer has initialized, shut down the system and then restart it.

Patient Care After a TEE Study

Follow your institutional guidelines for post-TEE studies. Additionally, you might want to include the following recommendations in your guidelines as part of your post-TEE study routine. These recommendations are neither exhaustive nor restrictive, but are steps you might want to incorporate into your post TEE exam routine.

- Inspect the patient's throat for any bleeding.
- Examine the patient for postural hypotension or difficulty walking.
- Instruct the patient to contact you immediately if he or she experiences any fever, chills, chest pain, or bleeding.
- Instruct the patient not to eat or drink for at least 2 hours or until swallowing returns to normal after anesthesia has worn off. It is especially important that the patient not ingest hot foods or fluids during this period.
- Follow up with a call to the patient the day after the a study to make sure there are no complications.

TEE Accessories and Supplies

Each TEE transducer comes with disposable bite guards and a disposable tip protector. Bite guards, TEE transducer covers, tip protectors, and disposable drapes are described here. For information on ordering TEE accessories, see "Supplies and Accessories" on page 22.

Bite Guards

WARNING

The M2203A bite guard strap contains natural rubber latex, which may cause allergic reactions. For more information, see "FDA Medical Alert on Latex" on page 46.

CAUTION

Damage caused when patients bite or scrape a TEE transducer is not covered in the transducer warranty or your service contract. Use bite guards to help prevent such accidents.

All patients must wear a bite guard during a TEE study. A bite guard prevents dangerous transducer mechanical and electrical malfunctions caused by involuntary biting. Even anesthetized patients require bite guards to prevent damage to their teeth and to the transducer. Philips supplies disposable bite guards that are suitable for both awake and anesthetized patients.

TEE Transducer Covers

WARNING

Transducer covers often contain natural rubber latex and talc, which may cause allergic reactions. For more information, see "FDA Medical Alert on Latex" on page 46.

Philips recommends the use of a market-approved transducer cover during every TEE study.

For procedures on using transducer covers (protective sheaths), see the instructions provided with the covers.

Tip Protectors

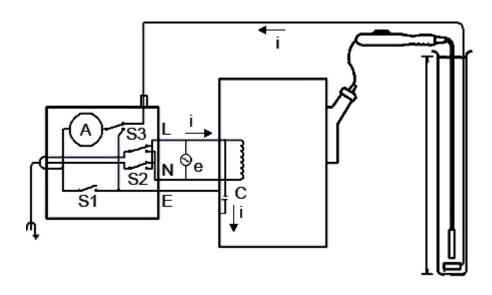
When not using a carrying case to transport a TEE transducer, use a tip protector on its distal tip. The tip protector helps prevent serious damage to the transducer lens. Philips supplies tip protectors designed for each of its TEE transducers.

Disposable Drapes

During studies in which you believe contamination of the imaging system can occur, Philips recommends that you take universal precautions and cover the system with a disposable drape. Consult your hospital's rules regarding equipment use in the presence of infectious disease.

TEE Leakage Current Test

The electrical safety check described here should be performed regularly to determine if there is a hole in a transducer's outer insulating layer. This procedure detects liquid pathways to the interior parts of the transducer shaft and tip by measuring third-wire leakage current. This procedure can be performed with any commercially available safety analyzer that is designed for hospital use.


١	٨	ΙΔ	R	N	IN	1G
М	v	-	п	ıv		41.

Only a technically qualified person should perform the leakage-test procedure.

TEE Test Background

The test procedure (see figure) involves making an AC measurement of the ultrasound system current without a transducer. The results are then compared with the current measured when it is forced to flow through the insulating layer of the TEE transducer. If the two currents are nearly the same, it means there is a hole in the transducer's outer insulating layer that must be fixed before using the transducer.

Electrical Safety Check for TEE Transducers

TEE Leakage Current Test

Symbol	Definition
С	Stray capacitance from the ultrasound system power wiring to the system grounded metal chassis (I to 3 M Ω reactance)
Z	Impedance between the metal parts of the TEE transducer and a test electrode placed in the bucket of saline solution (about 850 k Ω with an intact outer insulating layer, 500 Ω with a hole in the layer)
Α	Microammeter to measure third-wire current, either directly from the chassis or through Z to the test electrode
е	Line power source, either 110 Vac or 220 Vac
I	Current caused by e and stray capacitance, and optionally Z
SI	Open earth lift ground switch

Symbol	Definition				
S2	Line polarity switch				
S3	Microammeter switch				
L	Line mains supply				
N	Neutral mains supply				
E	Earth ground				

Current I, driven by line supply e, flows through all stray capacitances between the primary wiring and the ultrasound system's metal chassis. Ordinarily, current then flows from the metal chassis through S3 and back to e through a third-wire ground. When S3 is thrown in the other position, current I is forced:

- From the chassis through the metal parts of the transducer
- Through impedance Z, produced by the insulating layer that covers the metal parts of the transducer and the saline solution
- Through the test electrode

Saline generally presents an impedance of about 500 Ω , so Z will vary between 850 k Ω and 500 Ω , depending on whether or not there is a conductive pathway caused by a hole in the transducer's insulating layer.

CAUTION

Do not make a DC measurement of impedance. This could set up a voltaic cell, with the metal of the transducer and a test electrode in the salt bath forming the two electrodes and an electrolyte. Such a voltaic cell produces inaccurate resistance measurements.

You need the following equipment to perform the electrical safety check procedure:

- Dempsey 432HD or 232D safety analyzer or equivalent
- Philips 21110A Disinfection Basin or equivalent
- Saline solution, 9 grams (0.3 oz) of salt to 1 liter (1 qt) of tap water, or one of the tested disinfectants listed in the "Transducer Care" section.

Testing TEE Transducer Leakage Current

For a list of the equipment needed to perform the electrical safety test procedure, see "TEE Test Background" on page 294.

WARNING

Only a technically qualified person should perform this procedure.

- 1. Gather the equipment in the preceding list.
- 2. Fill the basin to the fill line with saline solution.
- 3. Place the distal tip and shaft of the transducer into the basin.
- 4. Connect the transducer to the system.
- 5. Plug the ultrasound system's power cord into the test receptacle on the safety analyzer.
- 6. Attach a lead from the safety analyzer binding post labeled RL to a metal plate submerged in the basin.
- 7. On the safety analyzer, set the **Leads** switch to **RL**. Set the **Line Polarity** switch (S2) to **NORMAL**.
- 8. Turn on the safety analyzer and the ultrasound system.
- 9. Set the **Mode** switch (S3) on the safety analyzer to the **Case Leakage - Ground Conductor** position. Press the **Lift Ground** switch (S1) on the safety analyzer and record the chassis leakage current.
- 10. Set the Mode switch (S3) on the safety analyzer to the ECG position. Press the Lift Ground switch (S1) on the safety analyzer and record the patient leakage current.

The transducer fails the test if the patient leakage current recorded in step 10 is greater than 80% of the chassis leakage current recorded in step 9.

This failure indicates that there is a hole in the insulating layer of the TEE shaft. A hole enables a conductive pathway to internal metal parts of the transducer and presents a potentially hazardous condition to a patient undergoing external defibrillation or electrosurgery. A hole also allows invasion of organic material,

making it difficult to completely disinfect all portions of the transducer. For these reasons, the transducer must be repaired before it is used.

TEE Transducer References

Cucchiara, R.F., et al. "Air Embolism in Upright Neurosurgical Patients: Detection and Localization by Two-dimensional Transesophageal Echocardiography." *Anesthesiology*, 353-355, 1984.

Gussenhoven, Elma, et al. "Transesophageal Two-dimensional Echocardiography: Its Role in Solving Clinical Problems." *Journal of the American College of Cardiology*, 975-979, 1986.

Radwin, Martin, et al. "Transesophageal Echocardiography: Intubation Techniques." *Philips Application Note* 5091-2804E, 1992.

Urbanowitz, John H., et al. "Transesophageal Echocardiography and Its Potential for Esophageal Damage." *Anesthesiology*, Vol. 72, No. 1, 1990.

11 Transducer Care

This section contains information on cleaning, disinfecting, and sterilizing transducers compatible with your system, as well as cleaning and disinfecting system surfaces. This section also lists the ultrasound gels that are safe to use with the transducers compatible with your system.

These instructions are intended to assist in effective cleaning, disinfection, and sterilization. In addition, these instructions will help avoid damage, which could void your warranty, during cleaning, disinfection, sterilization, and gel use.

Transducer Care Safety

Observe the following warnings and cautions when using disinfectants and gels. More specific warnings and cautions are included within the various procedures in this section and on the labels of the cleaning or disinfection solutions.

WARNINGS _

- Disinfectants listed in "Disinfectants and Cleaning Solutions Compatibility
 Table" on page 322 are recommended because of their chemical
 compatibility with product materials, not their biological effectiveness.
 For the biological effectiveness of a disinfectant, see the guidelines and
 recommendations of the disinfectant manufacturer, the U.S. Food and
 Drug Administration, and the U.S. Centers for Disease Control.
- The level of disinfection required for a device is dictated by the type of tissue it will contact during use. Ensure the disinfectant type is appropriate for the type of transducer and the transducer application. For information on the levels of disinfection requirements, see "Choosing a Disinfectant" on page 301. Also, see the disinfectant label instructions and the recommendations of the Association for Professionals in Infection Control, the U.S. Food and Drug Administration, and the U.S. Centers for Disease Control.
- Sterile transducer covers with sterile ultrasound transmission gel are required for intraoperative and biopsy procedures, and protective covers

are recommended for transrectal, transesophageal, and intravaginal procedures, but in China and Japan, the covers are mandatory. Philips recommends the use of qualified covers.

- Bite guards are mandatory for TEE transducers. See "Bite Guards" on page 292.
- Do not apply the transducer cover and gel until you are ready to perform the procedure. Transducers should not be left soaking in gel.
- In intraoperative applications, sterilized transducers should be used with sterile gel and a sterile transducer cover.
- Transducer covers can contain natural rubber latex, which may cause allergic reactions in some individuals. See "Latex Product Alert" on page 300.

For information on ordering transducer covers, contact CIVCO Medical Solutions (see "Supplies and Accessories" on page 22).

Latex Product Alert

Philips ultrasound systems and transducers do not contain natural rubber latex that contacts humans. Natural rubber latex is not used on any ultrasound transducer, including transthoracic, intraoperative, and transesophageal echocardiography (TEE) transducers. It also is not used on Philips ECG cables for the products in this manual.

WARNING

The M2203A bite guard strap contains natural rubber latex, which may cause allergic reactions.

For information on allergic reactions to latex-containing medical devices, see "FDA Medical Alert on Latex" on page 46.

Transmissible Spongiform Encephalopathy

WARNING

If a sterile transducer cover becomes compromised during an intraoperative application involving a patient with transmissible spongiform encephalopathy,

such as Creutzfeldt-Jakob disease, follow the guidelines of the U.S. Centers for Disease Control and this document from the World Health Organization: WHO/CDS/ APH/2000/3, WHO Infection Control Guidelines for Transmissible Spongiform Encephalopathies. The transducers for your system cannot be decontaminated using a heat process.

Acoustic Coupling Medium

For proper transmission of the acoustic beam, use the ultrasound transmission gel supplied by or recommended by Philips, or another glycol-, glycerol-, or water-based acoustic coupling medium.

CAUTION

Do not use mineral oil, oil-based couplants, gels with lotions or emollients of any kind, or other unapproved materials, because they might damage the transducer.

Choosing a Disinfectant

To choose an appropriate disinfectant, you first must determine the required level of disinfection, based on the device classification.

Levels of Disinfection by Device Classification

Classification	Definition	Level of Disinfection
Critical	Device enters otherwise sterile tissue (for example, intraoperative applications)	Sterilization
Semi-critical	Device contacts mucous membranes (for example, intracavity applications)	High
Noncritical	Device contacts intact skin	Intermediate or low

General Cleaning for All Transducers

These general cleaning instructions are indicated for all transducers. It is important that you clean the transducer and cable according to the following procedures.

WARNING

Always use protective eyewear and gloves when cleaning and disinfecting any equipment.

CAUTIONS _

- Transducers must be cleaned after each use. Cleaning the transducer is an essential step before effective disinfection or sterilization. Be sure to follow the manufacturer's instructions when using disinfectants.
- Do not allow sharp objects, such as scalpels or cauterizing knives, to touch transducers or cables.
- When handling a transducer, do not bump the transducer on hard surfaces.
- Do not use paper products or products that are abrasive when cleaning the transducer. They will damage the soft lens of the transducer.
- Do not use a surgeon's brush when cleaning transducers. Even the use of soft brushes can damage transducers.
- During cleaning, disinfection, and sterilization, orient the parts of the transducer that must remain dry higher than the wet parts until all parts are dry. This will help keep liquid from entering unsealed areas of the transducer.
- Be sure to use the proper concentration of enzymatic cleaner and rinse thoroughly.
- Before storing transducers, make sure they are thoroughly dry. If it is necessary to dry the transducer's lens after cleaning, use a soft cloth and a blotting motion instead of a wiping motion.

Cleaning a Transducer

C	Δ	П	т	10	7	N	ı
	_					12	

When cleaning the transducer, do not use paper products or products that are abrasive. They will damage the soft lens of the transducer.

- 1. After every patient study, use a moist cloth to remove the ultrasound transmission gel off of the transducer.
- 2. Disconnect the transducer from the system and remove any accessories attached to or covering the transducer.
- 3. To remove all organic matter and other residue, use a pre-cleaner or detergent to assist in removing protein residuals. Enzymatic cleaners should have a pH of 6.0 to 8.0. Those cleaners are further diluted during use. Follow the manufacturer's instructions for dilution. When cleaning the lens, use a blotting motion rather than a wiping motion.
- 4. To remove remaining particulate and cleaning residue, rinse thoroughly with water up to the immersion point shown in "Disinfecting Transducers by Immersion" on page 310 and "Disinfecting TEE Transducers by Immersion" on page 311.
- 5. Wipe with a dry cloth. To dry the lens, use a soft cloth and a blotting motion instead of a wiping motion.

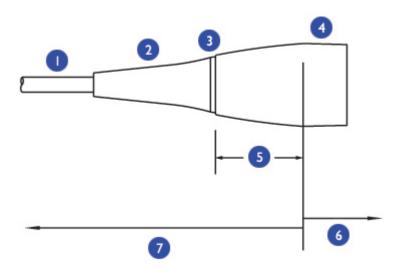
Disinfecting Transducers Using a Wipe or Spray Method

To disinfect transducers, you can use either an immersion method or a wipe method with a disinfectant recommended by Philips Ultrasound. Use the method that is biologically appropriate, as described in "Choosing a Disinfectant" on page 301.

This topic provides instructions on using the wipe or spray method.

WARNING .

Always use protective eyewear and gloves when cleaning and disinfecting any equipment.


CAUTIONS

- When wiping the distal tip on the S8-3t transducer, never apply excessive force to the window. Gently wipe the tip with a moist cloth. Do not squeeze the tip as this may damage the transducer.
- The use of 70% isopropyl alcohol (rubbing alcohol) on transducers is restricted. Wipe only the distal tip of the transducer up to 2.5 cm (I in) from the strain relief/housing joint with an isopropyl alcohol solution. Do not use isopropyl alcohol on the strain relief/housing joint, the strain relief, or the cable. Do not use isopropyl alcohol on TEE transducers, except for the handle. Isopropyl alcohol can cause damage to these parts of the transducer. This damage is not covered by the warranty or your service contract.
- Do not use peracetic acid-based disinfectants on the S8-3t transducer.

NOTE

Transducers can be disinfected using the wipe method only if the product labeling of the compatible disinfectant you are using indicates it can be used with a wipe method.

Restricted Use of Isopropyl Alcohol to Clean Transducers

Ī	Cable
2	Strain relief
3	Strain relief/housing joint
4	Housing
5	2.5 cm (1 in) between housing and strain relief/housing joint
6	You can use alcohol in this area of non-TEE transducers
7	Do not use alcohol in this area

 After cleaning the transducer and cable (see "General Cleaning for All Transducers" on page 302), wipe or spray the transducer and cable with a low-level disinfectant. Allow for the manufacturer's recommended contact time. For a list of compatible disinfectants, see "Disinfectants Compatibility" on page 320.

- 2. Remove any residue with a water-moistened soft cloth. Do not allow any solutions to air dry on the transducer.
- 3. Examine the device and cable for damage such as cracks, splitting, sharp edges, or projections. If damage is evident, discontinue use of the device and contact your Philips Ultrasound representative.

Cleaning and Disinfecting Cables and Connectors

The cables and connectors of all transducers can be disinfected using a recommended wipe or spray disinfectant. To protect the electronics in the connector, Philips advises use of a Philips Connector Seal when you disinfect near the connector. Kits are available from CIVCO Medical Solutions (see "Supplies and Accessories" on page 22).

WARNING _

Always use protective eyewear and gloves when cleaning and disinfecting any equipment.

CAUTIONS _

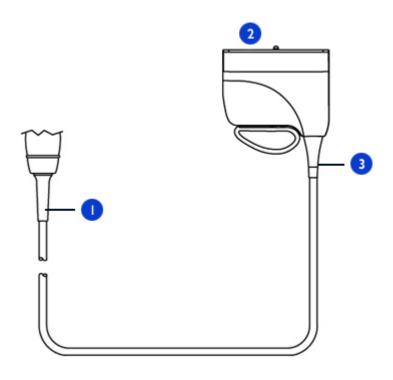
- Attempting to disinfect a cable or connector by using a method other than the one included here can damage the device and voids the warranty.
- Orient the parts that must remain dry higher than the wet parts until all parts are dry.
- Do not bend or crimp the gastroscope or cable.
- 1. Disconnect the device from the system.
- 2. Push the connector cover, if available, onto the connector to protect against fluid splashing onto the contacts.
- 3. Orient the device and the connector so they are both facing up.

CAUTIONS

• Do not allow any type of fluid to enter the connector. Be careful that fluid does not enter through the strain relief, through the connector, through the electrical contacts, or through the areas surrounding the locking lever

shaft and the strain relief. Fluid in the connector may void the transducer or device warranty.

- Do not use a brush on the connector label.
- 4. Use a soft cloth lightly dampened in a mild soap or detergent solution to clean the cable and the connector. A soft-bristled brush can be used to clean only the metal surfaces of the connector.


WARNING .

If a premixed solution is used, be sure to observe the solution expiration date.

CAUTIONS _

- You can use an alcohol solution for disinfection on the connector only.
 Ensure the solution is only 70% alcohol or less. Solutions of more than 70% alcohol can cause product damage.
- Do not use any alcohol or alcohol-based products on the cable or strain relief.
- Avoid disinfectant contact with the connector label.
- 5. Mix the disinfection solution compatible with your cable (see "Disinfectants and Cleaning Solutions Compatibility Table" on page 322) according to label instructions for solution strength.
- 6. Wipe or spray the cable and connector with the disinfectant, following disinfectant label instructions for wipe durations, solution strengths, and duration of disinfectant contact with the cable. Ensure that the solution strength and duration of contact are appropriate for the intended clinical use of the device. Ensure that the disinfectant solution does not enter the device or the connector or come into contact with the connector label.
- 7. Air dry or towel dry with a sterile cloth according to the instructions on the disinfectant label.
- 8. Examine the device and cable for damage such as cracks, splitting, sharp edges, or projections. If damage is evident, discontinue use of the device and contact your Philips Ultrasound representative.

Disinfecting Cables and Connectors

NOTE

For cable disinfection, orient the device and the connector facing up (strain reliefs on the bottom). Wipe the strain reliefs, cable, and connector with a compatible disinfectant.

Ī	Transducer strain relief
2	Electrical contacts
3	Connector strain relief

Disinfection of Transducers by Immersion (High-Level Disinfection)

Methods for disinfecting transesophageal (TEE) and non-TEE transducers differ. Observe the following warnings and cautions and then see the procedure for your transducer. For non-TEE transducers, see "Disinfecting Transducers by Immersion" on page 310. For TEE transducers, see "Disinfecting TEE Transducers by Immersion" on page 311 or "Disinfecting TEE Transducers in an Automated Disinfector" on page 315.

WARNINGS .

- If a premixed disinfectant is used, be sure to observe the expiration date.
- If you use Cidex OPA Solution or other OPA-based disinfectants, residual solution may remain on your transducers if you do not carefully follow the manufacturer's instructions. Residual OPA on TEE transducers may cause temporary staining of the mouth and lip area and irritation or chemical burns of the mouth, throat, esophagus, and stomach.

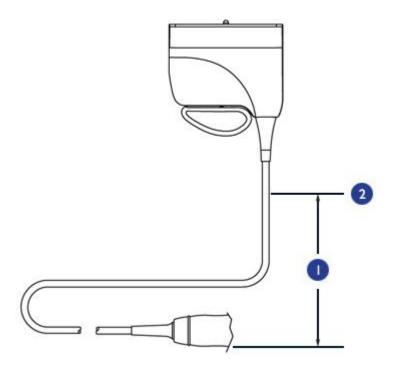
WARNINGS _

To minimize the effects from residual OPA, or any other disinfectant, Philips recommends the following:

- Follow the disinfectant manufacturer's instructions very carefully. For example, the manufacturer of Cidex OPA recommends soaking transducers three times in fresh water.
- Use a protective transducer cover during endocavity and TEE studies.
- Use a sterile protective transducer cover with sterile ultrasound transmission gel during intraoperative and biopsy studies.
- Limit the time that transducers are soaked in the disinfectant solution to the minimum time recommended by the disinfectant manufacturer (for example, the manufacturer of Cidex OPA recommends a minimum of 12 minutes).

CAUTIONS

- Using non-recommended disinfectants, using incorrect solution strengths, or immersing a transducer deeper or longer than recommended can damage or discolor the transducer and voids the transducer warranty.
- Do not immerse transducers longer than the minimum time needed for your level of disinfection. For information on the levels of disinfection requirements, see "Choosing a Disinfectant" on page 301.


Disinfecting Transducers by Immersion

Before performing this procedure, read the warnings and cautions in "Disinfection of Transducers by Immersion (High-Level Disinfection)" on page 309.

Methods for disinfecting transesophageal (TEE) and non-TEE transducers differ. For TEE transducers, see "Disinfecting TEE Transducers by Immersion" on page 311 or "Disinfecting TEE Transducers in an Automated Disinfector" on page 315.

- Clean the transducer according to "General Cleaning for All Transducers" on page 302.
- 2. Mix the disinfection solution compatible with your transducer (see "Disinfectants and Cleaning Solutions Compatibility Table" on page 322) according to label instructions for solution strength.
- 3. Immerse the transducer into the appropriate disinfectant for your transducer as shown. Follow the instructions on the disinfectant label for the duration of transducer immersion. Do not immerse transducers longer than the minimum time needed for your level of disinfection.
- 4. Using the instructions on the disinfectant label, rinse the transducer up to the point of immersion, and then air dry or towel dry with a sterile cloth.
- 5. Examine the transducer for damage, such as cracks, splitting, fluid leaks, or sharp edges or projections. If damage is evident, discontinue use of the transducer and contact your Philips Ultrasound representative.

Immersing Transducers

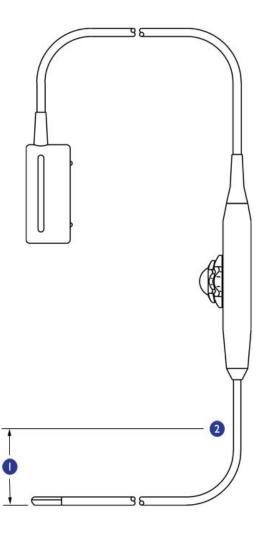
- I Immerse this section only, up to 5.1 cm (2 in) from the connector's strain relief.
- This is the maximum allowable immersion depth; you are not required to immerse to this depth if it is not necessary.

Disinfecting TEE Transducers by Immersion

Disinfection by immersion is the accepted method of infection control for transesophageal transducers. Philips recommends that a protective transducer cover be used during studies.

Upon receiving your new transducer, disinfect it before performing the first study. Clean and disinfect the transducer immediately after each use to protect patients and personnel from a variety of pathogens. Establish and clearly post a cleaning procedure that includes the following steps.

Before performing this procedure, read the warnings and cautions in "Disinfection of Transducers by Immersion (High-Level Disinfection)" on page 309.


Methods for disinfecting transesophageal (TEE) and non-TEE transducers differ. For non-TEE transducers, see "Disinfecting Transducers by Immersion" on page 310.

CAUTIONS

- Never sterilize the transducer with autoclave, ultraviolet, gamma radiation, gas, steam, or heat sterilization techniques. Severe damage will result. Avoidable transducer damage is not covered by the warranty or service contract.
- Do not bend the shaft into a circle with a diameter of less than 0.30 m (1 ft).
- Do not use bleach on the transducer and shaft.
- Do not use isopropyl alcohol-based products on the transducer and shaft.
- Do not soak the transducer for extended periods of time. Limit the time that transducers are soaked in disinfectant solution to the minimum time recommended by the disinfectant manufacturer.
- Do not rinse or immerse the control housing, cable, connector, or the portion of the cable near the connector.
- Do not immerse or rinse the steering mechanism.
- Follow the recommendations of the disinfectant manufacturer.
- The transducer steering mechanism is not sealed. If disinfectant or other fluid enters the steering mechanism, it will corrode the gears and electrical connections. Avoidable transducer damage is not covered by the warranty or service contract.
- 1. Disconnect the transducer from the system.
- 2. Do either of the following to remove all organic matter and other residue:

- Use an enzymatic pre-cleaner or detergent to assist in removing protein residuals. Enzymatic cleaners should have a pH of 6.0 to 8.0. Those cleaners are further diluted during use. Follow the manufacturer's instructions for dilution.
- Gently wipe the distal tip and flexible shaft up to the control housing (steering mechanism) with gauze pads soaked in mild, soapy water. Do not use iodine-based soaps.
- 3. Use water to rinse the distal tip and flexible shaft thoroughly.
- 4. Disinfect the distal tip and flexible shaft by placing them in the appropriate disinfectant.
- 5. Remove the tip and shaft from the disinfectant and thoroughly rinse with water according to the instructions from the disinfectant manufacturer.
- 6. Check the transducer for any residual organic material. If any is present, remove it and disinfect the transducer again.
- Gently dry the distal tip and flexible shaft with a sterile cloth or pad, or allow it to air dry.
- 8. Lightly wipe only the steering mechanism and handle with a pad moistened with rubbing alcohol (70% isopropyl alcohol), or use approved cleaners as directed on the handle and steering mechanism.
- 9. Hang the transducer on a wall-mounted rack and let it air dry.

Immersing TEE Transducers

- I Immerse this section only, up to 5.1 cm (2 in) from the handle's strain relief.
- This is the maximum allowable immersion depth; you are not required to immerse to this depth if it is not necessary.

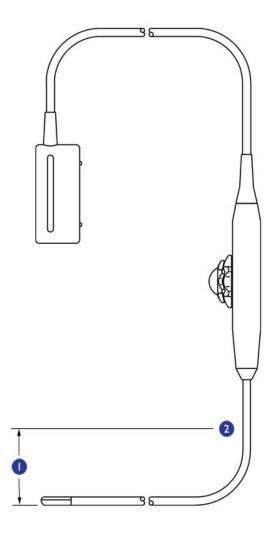
Disinfecting TEE Transducers in an Automated Disinfector

The TD-100 is an automated disinfector available from PCI Medical. For more information about this product, see www.pcimedical.com. Use this disinfector only for those transducers listed as compatible in "Disinfectants and Cleaning Solutions Compatibility Table" on page 322 or in the results of a compatible-solution search on the Transducer Care Web site:

www.healthcare.philips.com/us/products/ultrasound/transducers/transducer_care

Before performing this procedure, read the warnings and cautions in "Disinfection of Transducers by Immersion (High-Level Disinfection)" on page 309.

Methods for disinfecting transesophageal (TEE) and non-TEE transducers differ. For non-TEE transducers, see "Disinfecting Transducers by Immersion" on page 310.


CAUTIONS

- Never sterilize the transducer with autoclave, ultraviolet, gamma radiation, gas, steam, or heat sterilization techniques. Severe damage will result. Avoidable transducer damage is not covered by the warranty or service contract.
- Do not bend the shaft into a circle with a diameter of less than 0.30 m (1 ft).
- Do not use bleach on the transducer and shaft.
- Do not use isopropyl alcohol-based products on the transducer and shaft.
- Do not soak the transducer for extended periods of time. Limit the time that transducers are soaked in disinfectant solution to the minimum time recommended by the disinfectant manufacturer.
- Do not rinse or immerse the control housing, cable, connector, or the portion of the cable near the connector.
- Do not immerse or rinse the steering mechanism.
- Follow the recommendations of the disinfectant manufacturer.
- The transducer steering mechanism is not sealed. If disinfectant or other fluid enters the steering mechanism, it will corrode the gears and electrical

connections. Avoidable transducer damage is not covered by the warranty or service contract.

- 1. Disconnect the transducer from the system.
- 2. Do either of the following to remove all organic matter and other residue:
 - Use a pre-cleaner or detergent to assist in removing protein residuals.
 Enzymatic cleaners should have a pH of 6.0 to 8.0. Those cleaners are further diluted during use. Follow the manufacturer's instructions for dilution.
 - Alternatively, you may gently wipe the distal tip and flexible shaft up to the control housing (steering mechanism) with gauze pads soaked in mild, soapy water. Do not use iodine-based soaps.
- 3. Use water to rinse the distal tip and flexible shaft thoroughly.
- 4. Disinfect the distal tip and flexible shaft in the TD-100 Automated TEE Disinfector. Follow the manufacturer's instructions for operation of the disinfector.
- 5. Check the transducer for any residual organic material. If any is present, remove it and disinfect the transducer again.
- 6. Gently dry the distal tip and flexible shaft with a sterile cloth or pad, or allow it to air dry.
- 7. Lightly wipe only the steering mechanism and handle with a pad moistened with rubbing alcohol (70% isopropyl alcohol), or use approved cleaners as directed on the handle and steering mechanism.
- 8. Hang the transducer on a wall-mounted rack and let it air dry.

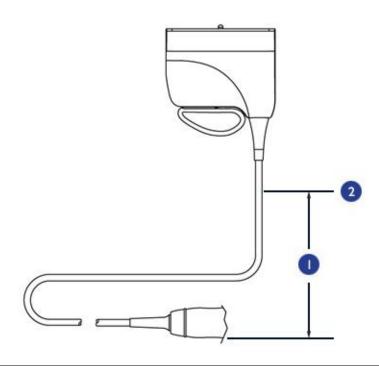
Immersing TEE Transducers

- I Immerse this section only, up to 5.1 cm (2 in) from the handle's strain relief.
- This is the maximum allowable immersion depth; you are not required to immerse to this depth if it is not necessary.

Sterilizing Transducers

Sterilization is required if the device is classified as a critical device.

WARNINGS


- Always use protective eyewear and gloves when cleaning, disinfecting, or sterilizing any equipment.
- In neurosurgical applications, sterilized transducers should be used with a sterile transducer cover.
- If a premixed solution is used, be sure to observe the solution expiration date.

CAUTIONS _

- Transducers must be cleaned after each use. Cleaning the transducer is an essential step before effective disinfection or sterilization. Be sure to follow the manufacturer's instructions when using disinfectants.
- Use only liquid solutions to sterilize transducers. Using autoclave, gas (EtO), or other methods not approved by Philips Ultrasound will damage your transducer and void your warranty.
- Do not allow sharp objects, such as scalpels and cauterizing knives, to touch transducers or cables.
- When handling a transducer, do not bump the transducer on hard surfaces.
- Ensure the solution strength and duration of contact are appropriate for sterilization. Be sure to follow the manufacturer's instructions.
- 1. Clean the transducer according to "General Cleaning for All Transducers" on page 302.
- 2. Mix the sterilization solution compatible with your transducer according to label instructions for solution strength.
- Immerse the transducer in the sterilization solution as shown.
- 4. Follow the instructions on the sterilization label for the duration of transducer immersion required for sterilization.

- 5. Remove the transducer from the sterilization solution after the recommended sterilization time has elapsed.
- 6. Using the instructions on the sterilization label, rinse the transducer in sterile water up to the point of immersion, and then air dry or towel dry with a sterile cloth.
- 7. Examine the transducer for damage, such as cracks, splitting, fluid leaks, or sharp edges or projections. If damage is evident, discontinue use of the transducer, and contact your Philips Ultrasound representative.

Immersing Transducers

- I Immerse this section only, up to 5.1 cm (2 in) from the connector's strain relief.
- This is the maximum allowable immersion depth; you are not required to immerse to this depth if it is not necessary.

Disinfectants Compatibility

Read this information before performing disinfection and sterilization procedures. It discusses recommended disinfectants and choosing an appropriate disinfectant for the required level of disinfection. You must check "Disinfectants and Cleaning" Solutions Compatibility Table" on page 322 for the chemical compatibility of disinfectants and cleaners with specific transducers. In addition, the table indicates if a device can be sprayed or wiped only, or if it can be soaked.

WARNINGS

- Not all disinfectants are effective against all types of contamination. Ensure the disinfectant type is appropriate for the type of transducer and that the solution strength and time of contact are appropriate for the intended clinical use.
- Disinfectants listed in this section are recommended because of their chemical compatibility with product materials, not their biological effectiveness. For the biological effectiveness of a disinfectant, see the guidelines and recommendations of the disinfectant manufacturer, the Association for Professionals in Infection Control, the U.S. Food and Drug Administration, and the U.S. Centers for Disease Control.
- If a premixed solution is used, be sure to observe the solution expiration date.
- Always use protective eyewear and gloves when cleaning and disinfecting any equipment.

CAUTION _

Using a non-recommended disinfection solution, using an incorrect solution strength, or immersing a transducer deeper or longer than recommended can damage the device and voids the warranty.

Disinfectant Types

WARNING .

The level of disinfection required for a device is dictated by the type of tissue it will contact during use. Ensure the disinfectant type is appropriate for the type of transducer and the transducer application. For information on the levels of disinfection requirements, see "Choosing a Disinfectant" on page 301. For more information, see the disinfectant label instructions and the recommendations of the Association for Professionals in Infection Control, the U.S. Food and Drug Administration, and the U.S. Centers for Disease Control.

CAUTION _

If you use an isopropyl alcohol-based product for disinfection, ensure the solution is only 70% alcohol or less. Solutions of more than 70% alcohol can cause product damage. Do not use alcohol on the transducer's strain relief or cable, or on TEE transducers (except the handle).

See "Disinfectants Compatibility" on page 320 for standard industry recommendations on disinfection, for information that can help you choose an appropriate disinfectant for the required level of disinfection, and for transducer-specific instructions.

Factors Affecting Disinfectant Efficiency

The following factors will affect the efficiency of a disinfectant solution:

- Duration of exposure
- Age of the solution
- Concentration and potency of the disinfectant
- Quantity and location of the contamination
- Resistance of the contaminant
- Organic matter on the item to be disinfected

Disinfectants and Cleaning Solutions Compatibility Table

The table that follows lists the disinfectants and cleaning solutions compatible with the transducers available for your system.

Other low- and intermediate-level disinfectants marketed for use on medical instruments and based on quaternary ammonium compounds (QUATS) or sodium hypochlorite (NaOCI), equal to or less than 0.6%, are approved for use.

NOTE

A 10% bleach solution typically provides a solution that is less than 0.6% NaOCI.

Additionally, products that contain 70% or less isopropyl alcohol (IPA) are acceptable for use on the transducer portion of the device only. Those disinfectant types must be used only in a spray or wipe application. This does not not apply to transesophageal (TEE) transducers. TEE transducers require unique methods for disinfection by immersion. For details, see "Disinfecting TEE Transducers by Immersion" on page 311 or "Disinfecting TEE Transducers in an Automated Disinfector" on page 315.

CAUTION _

Do not use alcohol-based products on transducer cables and strain reliefs.

For more information:

- Philips Ultrasound Transducer Care Web site (www.healthcare.philips.com/us/products/ultrasound/transducers/transducer care/)
- In North America, call Philips at 800-722-9377.
- Outside North America, contact your local Philips Ultrasound representative.

Disinfectants and Cleaning Solutions Compatibility Table Legend

	1	
AU = Australia	I. Soak or per product	T = Approved for use on
CA = Canada	instructions	the transducer
DE = Germany	2. Do not use on L15-7io transducers unless the	C = Approved for use on the cable
FR = France	part number is	H =Approved for use on
UK = United Kingdom	453561407811 or higher.	H =Approved for use on the handle housing
US = United States		N = Not approved for use

Disinfectants and Cleaning Solutions Compatibility

Solution	Origin	Qualified Use	Active Ingredients	C5-1 C5-2 C8-5 C9-4	D2cwc D5cwc D2tcd	L8-4 L9-3	LII-3	LI5-7io	S8-3	\$5-1 \$12-4	S7-2 omni T6H X7-2t	\$7-3t \$8-3t T6207	X3-I X5-I X7-2
70% Isopropyl Alcohol	All	Spray/Wipe	Alcohol	Т	Т	Т	Т	Т	Т	Т	Н	Н	Т
AbcoCide	US	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
AbcoCide 28	US	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Accel Wipes	CA	Wipe	Hydrogen Peroxide	T,C	N	T,C	T,C	T,C	T,C	T,C	H,C	С	T,C
Aidal	AU	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Aidal Plus	AU	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Alkaspray	FR	Spray/Wipe	Alcohol, Alkylamine	Т	Т	Т	Т	Т	Т	Т	N	N	Т
Ampholysine Basique	FR	Spray/Wipe	Biguanide/Quat. Ammonia	T,C	T,C	T,C	T,C	T,C	T,C	T,C	С	С	T,C
Aniosept Activ	FR	Soak	Peracetic Acid	N	N	N	N	T,C ²	N	N	Т	N	N
Banicide	US	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Bleach (10% solution of 5.25% Bleach)	All	Spray/Wipe	Sodium Hypochlorite	T,C	T,C	T,C	T,C	T,C	T,C	T,C	С	С	T,C
CaviWipes	US	Wipe	Alcohol, Quat. Ammonia	Т	Т	Т	Т	Т	Т	Т	N	N	Т
Cidex	US	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	T	T,C
Cidex 7	US	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Cidex OPA	US	Soak	Ortho-phthal aldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Cidex PAE 14J	FR	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Cidex Plus	US	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Cleanisept Wipes	DE	Spray/Wipe	Quat. Ammonia	T,C	T,C	T,C	T,C	T,C	T,C	T,C	С	С	T,C

4535 616 23901	iE33 User Manual

Solution	Origin	Qualified Use	Active Ingredients	C5-1 C5-2 C8-5 C9-4	D2cwc D5cwc D2tcd	L8-4 L9-3	LII-3	LI5-7io	S8-3	\$5-1 \$12-4	S7-2 omni T6H X7-2t	\$7-3t \$8-3t T6207	X3-I X5-I X7-2
Descoton Extra	DE	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Dispatch	US	Spray/Wipe	Sodium Hypochlorite	T,C	T,C	T,C	T,C	T,C	T,C	T,C	С	С	T,C
Endo FC	FR	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Endosporine	FR	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Enzol	US	Pre-cleaner	Enzymes	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Epizyme Rapid	AU	Pre-cleaner	Enzymes	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Gigasept FF	DE	Soak	Succindialdehyde, dimethoxy tetrahydrofuran	T,C	Ν	T,C	N	T,C	Ν	N	N	N	N
Incidin	DE	Spray/Wipe	Alcohol	Т	Т	Т	Т	Т	Т	Т	Н	Н	Т
Incidur Spray	DE	Spray/Wipe	Alcohol, Quat. Aldehyde	Т	Т	Т	Т	Т	Т	Т	N	N	Т
Instruzyme	FR	Pre-cleaner	Enzymes, Quat. Ammonia, Biguanide	T,C	N	T,C	N	T,C	Ν	N	Т	N	N
Klenzyme	US	Pre-cleaner	Enzymes	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Kohrsolin	DE	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Korsolex Basic	FR	Soak	Aldehyde Releasing	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Korsolex PAE	FR	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
MaxiCide Plus	US	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
MedDis	UK	Soak	Quat. Ammonia, Sulfamic Acid	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
MetriCide	US	Soak ^I	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
MetriCide 28	US	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C

Transducer Care

Solution	Origin	Qualified Use	Active Ingredients	C5-1 C5-2 C8-5 C9-4	D2cwc D5cwc D2tcd	L8-4 L9-3	LII-3	LI5-7io	S8-3	\$5-1 \$12-4	S7-2 omni T6H X7-2t	\$7-3t \$8-3t T6207	X3-1 X5-1 X7-2
MetriCide OPA Plus	US	Soak	Ortho-phthalaldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	N	Т	T,C
MetriCide Plus 30	US	Soak ^l	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
MetriZyme	US	Pre-cleaner	Enzymes	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Mild Soap Solution	All	Pre-cleaner	Surfactants/Soap	T,C	T,C	T,C	T,C	T,C	T,C	T,C	T,C,H	T,C,H	T,C
Milton	AU	Spray/Wipe	Sodium Hypochlorite	T,C	T,C	T,C	T,C	T,C	T,C	T,C	С	С	T,C
Omnicide I4NS	US	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Omnicide 28	US	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Opticide3	US	Spray/Wipe	Alcohol, Quat. Ammonia	Т	Т	Т	Т	Т	Т	Т	N	N	Т
Peracetic Acid OCS	UK	Soak	Peracetic Acid	N	N	N	N	T,C ²	N	N	Т	N	N
PeraSafe Powder	UK	Soak	Peracetic Acid	N	N	N	N	T,C ²	N	N	Т	N	N
Perascope	UK	Soak	Peracetic Acid	N	N	N	N	T,C ²	N	N	Т	N	N
PerCept Wipes	CA	Wipe	Hydrogen Peroxide	T,C	N	T,C	T,C	T,C	T,C	T,C	H,C	С	T,C
Phagocide D	FR	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Phagozyme ND	FR	Pre-cleaner	Enzymes, Quat. Ammonium	T,C	N	T,C	N	T,C	N	N	Т	N	N
Pro-Cide	US	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Pro-Cide 14NS	US	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Pro-Cide 28	US	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Pro-Cide NS	US	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C

Trc	
ınsducer	
Care	

Solution	Origin	Qualified Use	Active Ingredients	C5-1 C5-2 C8-5 C9-4	D2cwc D5cwc D2tcd	L8-4 L9-3	LII-3	L15-7io	S8-3	S5-1 S12-4	S7-2 omni T6H X7-2t	\$7-3t \$8-3t T6207	X3-I X5-I X7-2
Pro-Cide Plus	US	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Prolystica 2X	US	Pre-cleaner	Enzymes	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Protex Disinfectant Spray	US	Spray/Wipe	Quat. ammonia	T,C	T,C	T,C	T,C	T,C	T,C	T,C	С	С	T,C
PSS Select 14 Day	US	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
PSS Select 28 Day	US	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
PSS Select Plus	US	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Quaternary Ammonium	All	Spray/Wipe	Quat. Ammonia	T,C	T,C	T,C	T,C	T,C	T,C	T,C	С	С	T,C
Rapicide	US	Soak	Gluteraldehude	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Resert XL HLD	US	Soak	Hydrogen Peroxide	N	N	N	N	T,C ²	N	N	N	N	N
Rivascop	FR	Spray/Wipe	Quat. Ammonia	T,C	T,C	T,C	T,C	T,C	T,C	T,C	С	С	T,C
Salvanios pH 10	FR	Spray/Wipe	Quat. Ammonia	T,C	T,C	T,C	T,C	T,C	T,C	T,C	С	С	T,C
Sani-Cloth AF	US	Wipe	Quat. Ammonia	T,C	T,C	T,C	T,C	T,C	T,C	T,C	С	С	T,C
Sani-Cloth Plus	US	Wipe	Alcohol, Quat. Ammonia	Т	Т	Т	Т	Т	Т	Т	N	N	Т
SDS 14 NS	US	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
SDS 28	US	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Sekucid N	FR	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Sekusept Aktiv	DE	Soak	Peracetic Acid	N	N	N	N	T,C ²	N	N	Т	N	N
Sekusept Easy	DE	Soak	Peracetic Acid	N	N	N	N	T,C ²	N	N	Т	N	N
Sekusept Plus	DE	Soak	Glucoprotamin	T,C	N	T,C	N	T,C	N	N	N	N	N
Steranios 2%	FR	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
TD-5	US	TD-100 Reprocessor	Glutaraldehyde	N	N	N	N	N	N	N	Т	Т	N

Transducer Care

Solution	Origin	Qualified Use	Active Ingredients	C5-1 C5-2 C8-5 C9-4	D2cwc D5cwc D2tcd	L8-4 L9-3	LII-3	L15-7io	S8-3	S5-1 S12-4	S7-2 omni T6H X7-2t	\$7-3t \$8-3t T6207	X3-I X5-I X7-2
Trophon EPR	AU	Trophon EPR Reprocessor	Hydrogen Peroxide	T,C	Z	TC	N	T,C	Z	T,C	N	Z	T,C
T-Spray	US	Spray/Wipe	Quat. Ammonia	T,C	T,C	T,C	T,C	T,C	T,C	T,C	С	С	TC
T-Spray II	US	Spray/Wipe	Quat. Ammonia	T,C	T,C	T,C	T,C	T,C	T,C	T,C	H,C	С	TC
Vaposeptol	FR	Spray/Wipe	Alcohol, Biguanide	Т	Т	Т	Т	Т	Т	Т	Н	Н	Т
Vespore	US	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Virox 5 RTU	CA	Wipe	Hydrogen Peroxide	T,C	N	T,C	T,C	T,C	T,C	T,C	H,C	С	T,C
Wavicide -01	US	Soak	Glutaraldehyde	T,C	N	T,C	T,C	T,C	T,C	T,C	Т	Т	T,C
Wip'Anios	FR	Wipe	Alohol, Quat. Ammonia	Т	Т	Т	Т	Т	Т	Т	N	N	Т

Gels Compatibility

Although most gels will provide suitable acoustic coupling, some gels are incompatible with certain transducer materials. Products that do not contain mineral oil are acceptable for use. Never use lotion-based products.

WARNING

For intraoperative applications, use only the Sterile Aquasonic or Sterile Ultraphonic gel provided with the transducer cover.

CAUTIONS _

- Do not use gels that contain mineral oil or lotion. Such products may damage the transducer and void the warranty.
- Gels listed in this section are recommended because of their chemical compatibility with product materials.

Some recommended gels include:

- Aquasonic 100
- Aquasonic Clear
- Carbogel-ULT
- ECG Gel (Nicom)
- Nemidon Gel
- Scan

For additional compatibility information, call Philips at 800-722-9377 (North America) or your local Philips Ultrasound representative (outside North America).

12 System Maintenance

Maintenance should be performed regularly and as needed.

Because the system is a piece of medical equipment that contains several circuit boards, extensive service diagnostics, and complex operating software, Philips recommends that only trained personnel service the system.

Cleaning and Maintaining the System

It is important to clean and maintain the ultrasound system and peripherals. Thorough cleaning is particularly important for pieces of peripheral equipment, because they contain electromechanical devices. If exposed to constant and excessive environmental dust and humidity, these devices will suffer in both performance and reliability.

It is essential to clean the transducers used with your ultrasound system. The cleaning procedures vary for the different types of transducers and their uses.

For detailed instructions on how to clean and maintain each type of transducer used with the system, including disinfectant compatibility, see the "Transducer Care" section.

Cleaning the System and ECG Equipment

Use this method to clean the system and the ECG cables, leads, and electrodes. You can use a mild soap solution. If the equipment has come in contact with blood or infectious material, clean the equipment with a 70% solution of isopropyl alcohol. For instructions on disinfecting system surfaces, see "Disinfecting System Surfaces" on page 333.

WARNING

Always use protective eyewear and gloves when cleaning and disinfecting any equipment.

CAUTIONS

- Attempting to disinfect a cable or connector by using a method other than
 the one included here can damage the device and voids the warranty.
- Orient the parts that must remain dry higher than the wet parts until all parts are dry.

Use the following procedure to clean the display; the system control panel; all the external surfaces of the system and the cart; and the ECG trunk cables, leads, and electrodes.

- 1. Before cleaning, turn off the system and unplug the power cord from the power source.
- 2. Wipe with a soft cloth moistened with soap and water.

CAUTION

Do not spill or spray liquid on the controls, into the system cabinet, or into the transducer connection receptacle.

- 3. Remove any solid matter around the keys or the controls with a cotton swab or toothpick to ensure that solids are not pushed into the cabinet.
- 4. If blood or other infectious material comes in contact with the system or any cable other than a transducer cable, wipe with a 70% solution of isopropyl alcohol.

CAUTION

If blood or other infectious material comes in contact with a transducer or transducer cable, do not wipe with isopropyl alcohol until you have read the "Transducer Care" section for specific cleaning guidelines. Isopropyl alcohol should not be used on some parts of the transducer and should never be used on any parts of the transducer cable. Additional cleaning agents are also available for transducers.

- 5. Remove any residue with a cloth moistened with sterile water.
- 6. Be sure to dry the equipment to prevent potential corrosion.

Disinfectants for System Surfaces

The exterior surfaces of the system can be disinfected using a compatible disinfectant with a wipe method. System surfaces include the monitor screen, the touch screens, and plastic and painted surfaces. The following products can be used on system surfaces:

- Mild soap solution
- 70% isopropyl alcohol (IPA)
- T-Spray II (quaternary ammonium-based)
- Opticide3 (quaternary ammonium/isopropyl alcohol-based)
- Sani-Cloth HB (quaternary ammonium-based)
- Sani-Cloth Plus (quaternary ammonium/isopropyl alcohol-based)

Other products that are based on quaternary ammonium compounds (QUAT) or QUAT/isopropyl alcohol can also be used in disinfecting system surfaces.

Disinfecting System Surfaces

WARNING

Always use protective eyewear and gloves when cleaning and disinfecting any equipment.

CAUTIONS

- Use only compatible disinfectants on system surfaces.
- If you use an isopropyl alcohol solution for disinfection, ensure the solution is only 70% alcohol or less. Solutions of more than 70% alcohol can cause product damage.

Before performing this procedure, read "Disinfectants for System Surfaces" on page 333.

- 1. Turn off the system and disconnect the system power cord from the wall outlet.
- 2. Use a soft cloth lightly dampened in a mild soap or detergent solution to clean exterior surfaces on the system.

3. Mix the disinfection solution compatible with your system according to label instructions for solution strength.

CAUTION

Do not spray disinfectant directly on system surfaces. When wiping, do not allow disinfectant to pool or run on system surfaces. In either case, disinfectant may leak into the system, damaging the system and voiding the warranty. Wipe only with a cloth or applicator that is lightly dampened.

- 4. Wipe system surfaces with the disinfectant, following disinfectant label instructions for wipe durations, solution strengths, and disinfectant contact duration. Ensure the solution strength and duration of contact are appropriate for the intended clinical application.
- 5. Air dry or towel dry with a sterile cloth according to the instructions on the disinfectant label.
- 6. Because the system is a piece of medical equipment that contains several circuit boards, extensive service diagnostics, and complex operating software, Philips recommends that only trained personnel service the system.

System Control Panel Maintenance

The system control panel and other outer surfaces are most likely to be affected by liquid spills and other materials such as excessive amounts of gel. These materials may seep into electrical components under the panel and cause intermittent failures. During preventive maintenance, look for such potential problems including loose knobs and worn controls.

Regularly clean the outside of the system as described in "Cleaning the System and ECG Equipment" on page 331.

Cleaning the Trackball

Cleaning the trackball regularly prolongs its useful life and prevents service calls.

1. With your fingers, unscrew the ring around the trackball.

- 2. Put your finger in the access hole underneath the trackball, and push the trackball up.
- 3. Clean the trackball and the mounting area with a lint-free cloth or a small brush.
- 4. Place the ball back on the mounting area.
- 5. With your fingers, screw the ring back on.

Air Filter Cleaning

The system air filters should be inspected every week and cleaned as needed. The air filters are located in a slot at the bottom left side of the system and on the rear of the system. If you decide to clean the air filters with soap and water, you may want to install a set of spare filters while the other filters dry. Additional air filters can be ordered from Philips Ultrasound Customer Service.

You can specify the time period settings to remind you when to clean the air filter. The default setting is 365 days, but the time period for the air filter status reminder should be set according to the environmental conditions in which the system is located. For example, in an environment where a high concentration of dust is present you should select a shorter period of time (90 or 180 days). If you need assistance in determining which time period is best for your system, contact Philips Ultrasound Customer Service.

Cleaning System Air Filters

WARNINGS

- Before performing maintenance or cleaning, always press the On/Off switch
 to turn the system off, set the power switch to off
 , and then disconnect
 the system from the wall outlet.
- When a certain internal temperature is reached, the system displays a warning message and then shuts off automatically 30 minutes later. Increased internal temperature can be caused by a dirty air filter. Failure to keep the

air filter clean can result in the system becoming unavailable during critical use.

CAUTIONS

- Turn off power before you remove the air filter. Do not turn on power without the air filter installed.
- Ensure that air filter is dry before installing it. Installing a wet or damp air filter can damage the system.
- I. Remove the air filter cover on the lower left side of the system by pulling the bottom of the cover toward you.

Removing the Lower Left Air Filter

- 2. Inspect the filter, and if it is dirty, replace it with a spare.
- 3. Open the air filter door on the rear of the system and lift the filter out for inspection.

Removing the Rear Air Filter

- 4. Inspect the filter, and if it is dirty, replace it with a spare.
- 5. Depending on the condition of the air filters, use either a vacuum cleaner or soap and water to clean them.

Specifying and Resetting the Air Filter Maintenance Status

- I. Press the **Setup** key.
- 2. Click Service.
- 3. Click **Service Messages**.
- 4. In the **Filter Cleaning** section, select the number of days from the **Set Interval** menu and click **Done**.

Transducer Maintenance

Transducers require proper care, cleaning, and handling. Reasonable care includes inspection, cleaning, and disinfection or sterilization, as necessary.

Inspect the transducer cable, case, and lens before each use. Check for cracks or other damage that jeopardizes the integrity of the transducer. Report any damage to your Philips Ultrasound customer service representative, and discontinue use of the transducer.

For all information on transducer cleaning and disinfection and the use of acoustic coupling gels, see the "Transducer Care" section.

CAUTION _

Some ultrasound coupling gels, as well as some solutions for precleaning, disinfecting, and sterilizing can damage a transducer. Before using a gel or solution on a transducer, see "Transducer Care". You can also call Philips at 800-722-9377 (North America), or call your local Philips Ultrasound representative (outside North America).

Information on compatible disinfectants is available on the Philips Ultrasound Transducer Care website:

www.healthcare.philips.com/us/products/ultrasound/transducers/transducer_care/

If you encounter poor image quality or transducer problems, see "Troubleshooting" on page 340.

Printer Maintenance

WARNINGS .

Before performing any maintenance on a device, always disconnect it from the source of power by using either of the following methods:

- If the device is internal to the system, disconnect the system from the wall outlet.
- If the device is external to the system, disconnect the device from the wall outlet.

CAUTIONS

- Do not scratch the roller or allow dirt and dust to contact the roller of a printer.
- Do not use strong solvents such as thinner or acetone, or abrasive cleaners, because those will damage a device cabinet.

Periodically clean the external surfaces of a device with a soft cloth. Difficult stains may be removed with a cloth lightly dampened with a mild detergent solution.

VCR and DVD Recorder Maintenance

WARNINGS .

Before performing any maintenance on a device, always disconnect it from the source of power by using either of the following methods:

- If the device is internal to the system, disconnect the system from the wall outlet.
- If the device is external to the system, disconnect the device from the wall outlet.

CAUTIONS _

- Do not insert a videotape into the VCR before the system has completed the initialization/warm-up phase.
- Do not move the ultrasound system with the videotape cassette in the VCR. Damage to the VCR may result.
- Do not use commercial head-cleaning products on the VCR. These products may damage the recording heads. All maintenance should be performed by a Philips Ultrasound field service engineer.
- Do not make adjustments to your VCR. Consult a Philips Ultrasound field service engineer for repair or maintenance of your VCR.
- Do not use strong solvents such as thinner or acetone, or abrasive cleaners, since these will damage a device cabinet.

Periodically clean the external surfaces of a device with a soft cloth. Difficult stains may be removed with a cloth lightly dampened with a mild detergent solution.

Troubleshooting

If you encounter difficulty in the operation of the system, use the information here to help correct the problem. If the problem is not covered here, contact your Philips Ultrasound customer support representative.

The troubleshooting table contains a list of symptoms and the actions to take to correct the problems.

Troubleshooting

Symptoms	Corrective Action
The system does not power up. The monitor indicator light is off.	 Verify the power connections. Check the circuit breaker on the back of the system.
No image displays on the monitor.	I. After power up, the system takes about 20 seconds to initialize. During this time the monitor is blank.
	2. After 20 seconds, adjust the Monitor brightness control.
	3. Check the monitor cables and connections.
No audio comes from the system speakers.	Use the Volume knob to ensure the speakers are not muted.

Symptoms	Corrective Action
The system failed to communicate error message is displayed during use of voice control.	 Ensure headset is turned on. Ensure headset is paired to system. Refresh the Active Headsets list and select your headset again.
An error message is displayed.	Run the system test (see "Testing the System" on page 343).
An error message indicates that the system is above normal operating temperature.	I. Click Continue . The system will power down automatically in 30 minutes.
	2. With power off, check for obstructed air filters (see Cleaning the System Air Filter).

Error Messages

The system displays error messages in response to operating or error conditions detected by the system.

The error messages must be noted and reported to your Philips Ultrasound customer support representative, who may ask you to run the system test (see "Testing the System" on page 343).

Test Patterns

Two sets of test patterns are available for testing the image quality of the system, peripheral devices, review stations, or a PACS.

- The original set of test patterns (labeled **Test Patterns**) includes images intended for a variety of tests. Unlike the TG-18 test patterns, however, these test patterns are not tied to a unified standard.
- The newest set of test patterns was created by the American Association of Physicists in Medicine Task Group 18 (TG-18). The TG-18 test patterns on the system were adapted for the 1024 x 768 pixel image area of the 51-cm (20-in) system monitor. For information on using these test patterns, read IEC publication 61223-3-6 (62B/588/CD).

Transferring the Test Patterns

The test patterns are stored on a separate part of the system hard drive. You must transfer the test patterns to a different part of the hard drive before you can view them. The transferred test patterns remain unless you delete them.

- I. Press **Review**.
- 2. Select **Test Imgs** from the **Source** menu.
- 3. Select TG18 Test Patterns or Test Patterns from the exam selection list.
- 4. Click Send to.
- 5. Select **Hard Drive** and click **OK** to transfer the images.

NOTE

To view transfer progress, click the DVD drive status icon .

Using the Test Patterns

I. Press Review.

- Select Hard Drive from the Source menu.
- 3. Select **TG18 Test Patterns** or **Test Patterns** from the exam selection list.
- 4. Click **Display Exams** and do any of the following:
 - To send a test pattern to a local printer, double-click a test pattern to display it full-screen, and press Print or Alt Print.
 - To send a test pattern to a DICOM printer or archive server, click a test
 pattern number to select it, click Send To, select a device, and click OK.

Testing the System

The system test is a comprehensive test of the system operational status. This test includes numerous subtests. If a subtest fails, the system completes the remaining subtests. When run from the setups, the system test displays only a pass-fail result on the system monitor. The test can also be run from the Technical Administration application by qualified users, in which case error codes are displayed if faults are found. If the system test fails, notify your Philips service representative.

Run the system test any time a system error is displayed, or if you suspect problems with the system. If an error message is displayed during the test, restart the system with the **On/Off** control.

NOTE

The system test takes approximately 15 minutes.

- I. Turn on the system.
- 2. Disconnect all transducers from the system.
- 3. Press the **Setup** key.
- 4. Click **Service**.
- 5. Click the **Test & Utilities** tab.
- 6. In the **System Test** area, click **Run**. The system displays a message when the test is complete, indicating whether the test passed or failed.

7. Click **Cancel** or **Done** to exit the setups.

For Assistance

If you are unable to correct a problem, call your local Philips Ultrasound customer support representative.

13 Specifications

Philips reserves the right to change specifications contained herein or discontinue manufacture at any time without prior notice. Current specifications are supplied with each system purchased or are available from your Philips representative.

Dimensions

- Width: 55.9 cm (22.5 in)
- Height: 166.4 cm (65.5 in), with monitor fully raised, to 139.7 cm (55 in) with monitor locked, depending on system configuration
- Depth: 113.0 cm (44.5 in)
- Weight: 164.2 kg (362 to 419 lb) without peripherals devices installed, and up to 177.3 kg (410 lb) with peripheral devices installed

Gray Shades

255 in 2D, M-mode, and Doppler

Scan Lines

Up to 1,024 scan lines, depending on transducer and mode

Monitor

- 51-cm (20-in) flat-panel monitor on a tilt/swivel arm
- Vertical adjustment range of 120.7 to 144.8 cm (47.5 to 57 in) at the center of the screen
- 128 hues of color available

Input Signals

- S-Video with separate luma and chroma for VCR video in
- Pencil probe receptacle
- Physio pulse, phono, auxiliary 1, and auxiliary 2

- VCR remote control
- Three transducer receptacles
- DVR and VCR audio (left and right)
- Microphone for DVR and VCR voice recording
- External peripheral device remote control

Output Signals

- Video: composite color, interlaced black-and-white, S-Video, and DVI-D
- External report printer
- USB serial data
- VCR audio (left and right)
- Physio analog signal

Data Connections

- Ethernet network (10/100/1000 Mb/s)
- USB 2.0

Modality Interface

DICOM standard. DICOM conformance statements for Philips products are available at this website:

 $www.healthcare.philips.com/us/about/connectivity/dicom_conformance_main.wpd$

Physio

- Lower Frequency Cut-off: 0.70 Hz ±10%
- Upper Frequency Cut-off: 17 Hz ±10%
- Nominal Input Amplitude: ±5 mV peak
- Minimum QRS Wave Amplitude: 0.05 mV

Peripherals

- Black-and-white video printer
- Color video printer
- S-VHS VCR

- DVR
- Report printer

Electrical Parameters

Power must be available through a grounded outlet.

In the United States, power must be available through a grounded, hospital-grade outlet.

The system contains a power supply designed to work with one of two voltage ranges: 100-127 Vac, 50/60 Hz, or 220-240 Vac, 50/60 Hz, both at 1,010 VA. Power must be available through a grounded, hospital-grade outlet.

Languages

Localized control panel, user interface, and documentation:

- English
- French
- German
- Italian
- Spanish

English control panel and localized keyboard and documentation:

- Danish
- Norwegian
- Swedish/Finnish

English control panel and localized documentation:

- Chinese, Traditional and Simplified
- Czech
- Dutch
- Estonian
- Greek
- Hungarian

- Japanese
- Polish
- Portuguese
- Romanian
- Russian
- Turkish

Pressure Limits

- Operating: 525 mmHg to 795 mmHg (700 hPa to 1,060 hPa)
- Storage: 375 mmHg to 795 mmHg (500 hPa to 1,060 hPa)

Humidity Limits

- Operating: 30% to 85%
- Storage: 15% to 95%

Temperature Limits

- Ambient Operating Temperature: 16°C to 40°C (61°F to 104°F)
- Internal Operating Temperature: 16°C to 55°C (61°F to 131°F)
- Storage: -34°C to 65°C (-29°F to 149°F)

Safety and Regulatory Requirements

Classification

- Class I equipment with Type B, Type BF, and Type CF applied parts
- Ordinary Equipment/Continuous Operation
- Non-AP/APG

Electromechanical Safety Standards Met

The system complies with the requirements of IEC 60601-1 Medical Electrical Equipment, General Requirements for Safety, including all applicable collateral and particular standards, as well as all applicable national deviations.

Compliance

Philips products comply with relevant international and national standards and laws. Information on compliance will be supplied by your local Philips representative, or the manufacturer, on request.

Index

	Alcohol, restricted use on transducers,
Numbers	304
2D	Allergic reactions to latex, 46
	Analysis, 201
measuring distance, 202	Analysis options, 88
TI and MI values, 56	Annot
using, 191	adding labels, 192
3D	adding labels with keyboard, 193
acoustic artifacts, 217	Applications, clinical options, 88, 185
	Artifacts, 214, 217
	Assistance, 23, 344
A	Audience, intended, 15
Accessories, 22	Audio, troubleshooting, 340
·	Auto Freeze function, 169
Accessories, electromagnetic compliance, 73	Auto-Cool, 288, 291
Acoustic artifacts, 214, 217	
Acoustic coupling medium, 299, 301	
Acoustic output limits, 47	В
Acoustic output measurement, 59, 63	Biological safety, 44
Acoustic output tables, 18, 54, 63	Biopsy
Acquiring	safety precautions, 44
images, 200	Bite guards, 292
loops, 200	Body markers
Activating keyword feature, 160	displaying, 194
Air filters, cleaning, 335	Brakes
ALARA principle	S7-2omni transducer, 258
applying, 48	S7-3t transducer, 269
education program, 47	system, I28
example, 51	wheel, 32, 103
related guidance documents, 59	Buttons, control panel, 18

	Clinical options (continued)
C	transducers supporting, 206
C	Commands
Cables	annotation, [6]
approved for electromagnetic	using, 159
compliance, 71	Comments
cleaning, 33 l	customer, 21
cleaning and disinfecting, 306	Compact transducer adapter, 211, 212
protecting from damage, 33, 114, 306,	Compatibility
331	disinfectants, 320
Calculations, 201, 203	gels, 329
performing, 203	product, 34
Calibration	Compliance, electromagnetic
TEE transducers, 261	approved accessories, 73
Capabilities, system, 85	approved cables, 71
Capillary rupture, 44	approved transducers, 73
Cautions, described, 27	Components, system, 90
CD	Condensation, 33
loading and ejecting, 175	Connecting an external monitor, 113
CD, User Information, 17	Connecting devices, 105
Changing setups, 184	Connecting external printer, 107
CIVCO Medical Solutions, 22	Connectivity options, 88
Cleaning	Connectors
air filters, 335	cleaning and disinfecting, 306
control panel, 334	Connectors, cleaning, 331
ECG equipment, 331	Control panel, cleaning, 334
printers, 338	Controls
system surfaces, 331	control panel, 18, 133
system, cables, and connectors, 331	S7-2omni transducer, 258
trackball, 334	S7-3t transducer, 269
transducers, 302	TEE transducers, 247, 260, 270, 271
Cleaning solutions, 321, 322	Controls affecting MI and TI
Clinical options	direct controls, 49
analysis, 88	indirect controls, 50
overview, 185	receiver controls, 51
transducers and, 206	

Conventions	Disinfecting
product, 18	cables and connectors, 306
system, 18	high-level, 309
user information, 20	low-level, 303
Covers	system surfaces, 333
TEE transducer, 105, 293	TEE transducers, 311
transducer, 44, 105, 299	transducers, 309, 310, 311
transducer requirements and warnings,	Display dimming, 132
218	Display, avoiding damage, 33
Creutzfeldt-Jakob disease, 300	Disposable drape, 228, 293
Customer comments, 21	Disposal information, 23
Customer service, 23	Disposal of system, 24
Customizing the system, 179	Doppler velocity, hiding minus sign, 184 DVD
	erase, 175
	image acquisition and review, 86
	loading and ejecting, 175
Data connections specifications, 346	media compatibility, 174
Data security, 89, 162	using, 174, 175
Data storage, 95, 173	DVD drive, 95, 173
Date and time, setting, 127	DVD recorder
Default transducer and preset, 180, 206	maintaining, 339
Defibrillation, electrical safety, 29, 31	using, 196
Deflection controls	
S7-20mni transducer, 258	
S7-3t transducer, 269	E
TEE transducer, 247	-
Device class, 28	ECG
Devices, connecting, 105	receptacles, 173
Dimensions, system, 345	ECG equipment, cleaning, 331
Disinfectants, 299, 301, 320, 321, 322	ECG receptacles, 100
compatibility, 320	ECG signal requirements, 69
factors affecting efficiency, 321	Ejecting a CD, 175
safety, 299	Ejecting a DVD, 175
types, 301, 321	Electrical parameters, 347 Electrical safety, 28

Electrical safety tests	Exams (continued)
TEE transducer, 297	new, 187
TEE transducers diagram, 294	Explosion hazard, 29
Electrical safety, intraoperative transducers,	External printers, 106, 107
228	
Electromagnetic compatibility, 67	
Electromagnetic compliance	F
approved accessories, 73	Г
approved cables, 71	Fire hazard, 30
approved transducers, 73	Fire safety, 32
Electromagnetic emissions	Foot switch
defined, 67	connecting, 109
environment, 70	warning, 65
Electromagnetic immunity	Freezing an inactive system, 169
defined, 67	Full screen image view, 199
system environment, 75	
Electromagnetic interference	
avoiding, 82	G
distance to transmitters, 80	
types, <mark>78</mark>	Gain control, ECG, 173
Electromagnetism, 30	Gels, 225, 299, 301, 329
Electrostatic discharge (ESD), 69	compatibility, 329
Electrosurgical units (ESUs), 30	intraoperative studies, 225
Emergency studies	recommendations, 301, 329
about, 164	safety, 299
starting, 165, 188	Glutaraldehyde exposure, 65
Equipment protection, 33	Gray shades specification, 345
Erase DVD, 175	Grip, S8-3 transducer, 219, 220
Ergonomic grip, 219, 220	cleaning, 220
cleaning, <mark>220</mark>	installing, 219
installing, 219	
Error messages, 44, 341	
ESD precautions, 69	Н
Exams	11 11: 05
ending, <mark>204</mark>	Hard drive, 95
entering patient data, 188	

Hazards	Immersion
electrical shock, 28, 29, 30	disinfecting TEE transducers, 311
explosion, 29	disinfecting transducers, 309
fire, 30	Indications for use, 208
IEC symbols, 35	Indices, 53
Headset	Infection control, 66
background noise, 158	Input signals, 345
communication problem, 158	Inspection, 282
configuration, 153	Intended audience, 15
muting, 154	Intended use, 15
pairing, 151	Interference, 78, 82
turning on and off, 151	Intraoperative transducers, 223, 224, 225,
Help, 18	226, 227, 228, 229, 234
High-level disinfection, 309	accessories, 228
HIPAA, 86	checking the transducer, 225
Humidity limits, 348	description, 226
	disposable drape, 228
	electrical safety, 228
	intended uses, 223
•	leakage current testing, 229, 234
Icons	misuse, common problems, 226
voice controls, 150	operator qualifications, 223
IEC symbols, 35	patient safety, 224
Image review, 199	preparing for imaging, 227
Image title, adding with keyboard, 194	transducer covers, 227
Image updating, inconsistent, 44	Isolation transformers, 29, 105
Images	
acquiring, 86, 200	
troubleshooting the display of, 340	K
Imaging	K
2D, 191	Keyboard, 145
acoustic artifacts, 214, 217	Keyword feature
display, 166	activating, 160
options, 87	default settings, 161
Imaging modes, 191	

	Maintenance (continued)
L	- system, 331
_	transducers, 213, 338
L15-7io transducer, 226	Measurement tools, 85
Labeled measurements, 202	Measurements, 59, 85, 89, 201, 202
Labels	2D distance, 202
adding, 192	acoustic, 59
adding image title, 194	labeled, obtaining, 202
adding with keyboard, 193	QLAB software, 89
Languages, 347	tools, 85
Latex	types, <mark>85</mark>
allergic reactions, 46	Mechanical index (MI), 52, 53, 54, 56
in patient-contact parts, 225, 243	controls affecting, 56
in Philips products, 300	display, 53
sensitivity, 225, 243	display precision and accuracy, 54
transducer covers, 44	on-screen, 52
Leakage current, 30, 229, 234, 244, 246	Mechanical safety, 32
intraoperative transducers, 229, 234	Media compatibility, 174
TEE transducers, 244, 246	Medical Ultrasound Safety, 18
Live imaging, printing, 198	Messages, error, 44, 341
Loading	MI, 52, 53, 54
CDs, 175	MI and TI accuracy estimates, 54
DVDs, 175	Microphone, voice annotation, 94
Lock, S7-2omni transducer, 258	Modality interface specification, 346
Lock, S7-3t transducer, 269	Modality Worklist
Logging off of the system, 162, 163	searching for exams, 190
Logging on to the system, 162	selecting patient, 189
Loops	Monitor
acquiring, 200	description, 92
Low-level disinfection, 303	external, connecting, 113
	precautions when positioning, 32
	specifications, 345
M	troubleshooting, 340
l'1	Moving the system
Maintenance	confined spaces, 118
printer, 338	safety precautions, 32, 114

Moving the system (continued)	Patient contact temperature, 205
setting up after, 119	Patient data
	entering, 188
	protecting, 86, 89
N	security, 86
N	Patient temperature
Neurosurgical applications, 299, 318	entering, 291
	overview, 290
	Perchlorate information, 25
	Peripherals
9	bay, <mark>97</mark>
On/Off control, system power, 35, 36, 125	specifications, 346
Operating notes, 17	Philips contact information, 23
Operating temperature, 33, 348	Physio, 100, 173
Operator safety, 64	receptacles, 100
Options	Physio specifications, 346
analysis, <mark>88</mark>	Positioning the system in confined spaces,
clinical, <mark>88</mark>	118
connectivity, <mark>88</mark>	Power
imaging, <mark>87</mark>	peripherals, 29, 105
overview, 185	troubleshooting, 340
system, <mark>87</mark>	Power (On/Off) control, 94
technical administration, 90	Power switch, 102
Ordering supplies and accessories, 22	Presets
Output display, 52	clinical options, 180
Output signals, 346	copying, 182
Output tables, acoustic, 18, 54, 63	creating, 181
Overview, system, 85	deleting, 181
	loading, 183
	overview, 179
P	quick save, 180
<u>-</u>	setting default, 180, 206
Pacemakers, 29	tissue specific, 180
Passing system to others, 24	Pressure limits, 348
Password protection, 89	Preventricular contractions, 44
Passwords, 162	Print functions, configuring, 111
	5 5

Printers maintaining, 338 supported models, 106 types, 197 Printing about, 197 during live imaging, 198 Problems, correcting, 340 Product compatibility, 34 Product conventions, 18	Restrictions for use, 83 Review image view, 199 measuring in, 199 navigating, 199 overview, 199 starting, 199 thumbnail view, 199
Protection against system damage, 33	S
Q	S7-2omni transducer deflection controls, 256 manipulating the tip, 258
QLAB Advanced Quantification Software options, 89	rotating the image plane, 260 using, 254
Quick Guide, 18 Quick Save presets, 180	S7-3t transducer array rotation, 270, 271 deflection controls, 266 manipulating the tip, 269 patient selection, 266
R	using, 264
Rear panel, 102	S8-3 transducer grip, 219
Receptacles ECG, 100 physio, 100 transducer, 99, 169, 205 Recording	S8-3t transducer handling, 276 deflection controls, 276 manipulating the tip, 278 patient selection, 275
DVD recorder, 196 overview, 195 using VCR, 195 Recycling information, WEEE, 23	using, 274 Safety, 18, 27, 28, 29, 30, 31, 32, 33, 35, 44, 47, 52, 53, 54, 59, 64, 67, 114, 224, 238, 299
Regulatory requirements, 348	acoustic output and measurement, 59
Repetitive strain injury, 64	ALARA principle, 47
Report printers, 106	basic, 27

Safety (continued)	Shock hazards, electrical, 28
biological, 44	Solutions
biopsy, 44	cleaning, 322
defibrillators, 31	Solutions, cleaning, 321
disinfectants and gels, 299	Solvents, 33
electrical, 28	Specifications
electromagnetic emissions and immunity,	data connections, 346
67	dimensions, 345
electrosurgical units, 30	electrical parameters, 347
equipment protection, 33	gray shades, 345
fire, 32	humidity limits, 348
guidance documents, 59	input signals, 345
intraoperative studies, 224	languages, 347
mechanical, 32	modality interface, 346
mechanical index, 53	monitor, 345
medical ultrasound, 18	output signals, 346
moving the system, 33, 114	peripherals, 346
operator, 64	physio, 346
output display, 52	pressure limits, 348
pacemakers, 29	safety requirements, 348
patient, intraoperative transducers, 224	scan lines, 345
symbols, 35	temperature limits, 348
TEE transducers, 238	Spongiform encephalopathy, 300
thermal index, 54	Static shock, 69
Safety requirements, 348	Status icons, 146
Scan lines specification, 345	Steering locks, system wheels, 103, 128
Security	Sterilizing transducers, 318
data, 86, 89	Storage temperature, 348
logging on, 162	Storage, data, 95, 173
Select controls, 18	Storing transducers, 220, 221
Selecting transducers, 173, 190, 205	daily and long-term, 221
Separation distance, 80	for transport, 220
Service, customer, 23	Supplies, 22
Setups	Surfaces, disinfecting system, 333
changing, 184	Symbols
overview, 183	definitions, 35

Symbols (continued) warning, 17	TEE transducers (continued) connecting T6207, 249
System cleaning, 331, 333	connecting T6H, 249
System conventions, 18	connecting X7-2t, 248
System error messages, 341	controls, 247, 258, 260, 269, 270, 271
System maintenance, 331	controls inspection, 282
System options, 87	correcting tip fold-over, 286
System setups	covers, 293
changing, 184	disinfecting by immersion, 311
overview, 183	disinfecting in automated disinfector
System testing, 343	315
System upgrades, 21	disposable drape, 228, 293
	electrical safety, 246
	electrical safety test, 294, 297
т	ensuring safe temperatures, 288
•	entering patient temperature, 291
Tables, acoustic output, 18, 63	inspection, 282
Technical Administration, 90	leakage current, 244, 246
Technical support, 344	operator qualifications, 238
TEE studies	patient care, 292
avoiding esophageal damage, 285	patient safety, 238
guidelines, 285	patient temperature, 290, 291
patient care, <mark>292</mark>	patient-contact parts, 225, 243
patient selection, 283	recognizing tip fold-over, 286
preparing patients, 284	reducing risks, 246
special considerations, 282	references, 298
TEE transducers	S7-2omni, <mark>254</mark>
about, 237	S7-2omni deflection controls, 256
accessories, 292	S7-2omni description, 250
Auto-Cool, 288, 291	S7-3t, 264
avoiding problems, 244	S7-3t deflection controls, 266
bite guards, 292	S7-3t description, 262
calibration, 261	S7-3t patient selection, 266
connecting S7-2omni, 248	S8-3t, 274
connecting S7-3t, 248	S8-3t deflection controls, 276
connecting S8-3t, 248	S8-3t description, 273

TEE transducers (continued)	Tip fold-over (continued)
S8-3t patient selection, 275	recognizing, 286
supplies, 292	Tip protector, TEE transducer, 293
temperature sensing, 288	Tools, measurement, 85
tip fold-over, 286	Touch screen
tip protector, 293	brightness control, 139
X7-2t, 254	controls, 140
X7-2t deflection controls, 256	knob displays, 144
X7-2t description, 252	Touch screens
Temperature limits, 348	layout, 1 <mark>36</mark>
Temperature sensing, 288	Trackball controls, 18
Temperature, Auto-Cool, 288	Trackball, cleaning, 334
Temporary ID	Transducer connectors, cleaning, 331
overview, 164	Transducer maintenance, 213, 338
using, 165, 188	Transducers
Test patterns	affecting TI and MI values, 58
about, 342	care, 213, 338
transferring, 342	cleaning procedures, 302
using, 342	clinical options and, 206
Testing leakage current	compact adapter, 212
intraoperative transducers, 229, 234	compact transducer adapter, 211
TEE transducers, 246, 297	connecting, 173, 190, 205
Testing the system, 343	covers, 44, 218, 299
Text entry, 18, 19	disinfectants compatibility, 320
Thermal index (TI), 52, 53, 54, 56	disinfecting by immersion, 309
controls affecting, 56	disinfecting with wipes and sprays, 303
display precision and accuracy, 54	electrical safety, 29
displays, 54	electromagnetic compliance, 73
modes of operation, 53	gels compatibility, 329
on-screen, 52	high-level disinfection, 309
using appropriate for application, 53	immersing for disinfection, 310
Thumbnail view, 199	indications for use, 208
TI, 52, 54	inspecting for damage, 29
Time and date, setting, 127	intraoperative, 223
Tip fold-over, 286	isopropyl alcohol, 304
correcting, 286	low-level disinfection, 303

Transducers (continued)	USB devices
maintenance, 213, 338	location, 176
receptacles, 99, 169, 205	overview, 173
selecting, 173, 190, 205	warnings and cautions, 176
setting default, 180, 206	User information
sterilizing, 318	about, 15
storage, daily and long-term, 221	components, 17
storage, for transport, 220	conventions, 20
storing, 220	User Information CD, 17
transesophageal, 237	
using, 205	
using disinfectants and gels, 299	
Transesophageal transducers, 237	•
Transferring the system to other users, 23	VCR
Transformers, isolation, 29, 105	maintaining, 339
Transmissible spongiform encephalopathy,	overview, 195
300	using, 195
Transporting the system, 114, 119, 122	Video monitor, 92
safety precautions, 114	Voice annotation microphone
setting up after, 119	VCR microphone, 94
Troubleshooting, 340	Voice control, 148
Turning the system on and off, 125	Voice controls
	annotation command list, 161
	background noise, 158
U	communication problem, 158
_	enabling, 154
U.S. Health Insurance Portability and	icons, 150
Accountability Act (HIPAA), 86	overview, 148
Ultrasonic bioeffects, related	using commands, 159
documentation, 59	voice profiles, 154
Ultrasound transmission gel	Voice profiles
compatibility, 329	creating, 155
intraoperative studies, 225	deleting, 158
recommendations, 301	new, 155
recommended, 329	training, 154, 156
Upgrades, system, 21	Voltage precautions, 33

Wheel brakes, 32, 103 Volume control, troubleshooting, 340 Wheels, 32, 114 X Warning symbols, 17, 35 Warnings X3-1 transducer, 210 described, 27 X5-I transducer, 211 general, 16, 27 X7-2 transducer, 211 X7-2t transducer Waste Electrical and Electronic Equipment, European Union Directive, 23 deflection controls, 256 Website, Philips, 23 using, 254 WEEE recycling information, 23 xMatrix array transducers, 210