

UM-V200-E002

Programmable Logic Controllers

USER'S MANUAL LADDER LOGIC

CONTENTS

V200 Series PLC & OIS PLUS

Toshiba International Corporation

Thank you for purchasing the V200 Series PLC (Programmable Logic Controller) product from Toshiba International Corp. V200 Series products are versatile PLCs which are configured with Microsoft Windows® based software.

Manual's Purpose and Scope

This manual provides information on how to safely install, operate, and maintain your TIC V200 Series PLC. This manual includes a section of general safety instructions that describes the warning labels and symbols that are used throughout the manual. Read the manual completely before installing, operating, or performing maintenance on this equipment.

This manual and the accompanying drawings should be considered a permanent part of the equipment and should be readily available for reference and review. Dimensions shown in the manual are in metric and/or the English equivalent.

Toshiba International Corporation reserves the right, without prior notice, to update information, make product changes, or to discontinue any product or service identified in this publication.

TOSHIBA is a registered trademark of the Toshiba Corporation. All other product or trade references appearing in this manual are registered trademarks of their respective owners.

Toshiba International Corporation (TIC) shall not be liable for technical or editorial omissions or mistakes in this manual, nor shall it be liable for incidental or consequential damages resulting from the use of information contained in this manual.

This manual is copyrighted. No part of this manual may be photocopied or reproduced in any form without the prior written consent of Toshiba International Corporation.

Toshiba International Corporation. All rights reserved. Printed in the U.S.A.

Important Notice

The instructions contained in this manual are not intended to cover all details or variations in equipment types, nor may it provide for every possible contingency concerning the installation, operation, or maintenance of this equipment. Should additional information be required contact your Toshiba representative. The contents of this manual shall not become a part of or modify any prior or existing agreement, commitment, or relationship. The sales contract contains the entire obligation of Toshiba International Corporation. The warranty contained in the contract between the parties is the sole warranty of Toshiba International Corporation and any statements contained herein do not create new warranties or modify the existing warranty.

Any electrical or mechanical modifications to this equipment without prior written consent of Toshiba International Corporation will void all warranties and may void the 3rd party (CE, UL, CSA, etc) safety certifications. Unauthorized modifications may also result in a safety hazard or equipment damage.

Contacting Toshiba's Customer Support Center

Toshiba's Customer Support Center may be contacted to obtain help in resolving any system problems that you may experience or to provide application information. The center is open from 8 a.m. to 5 p.m. (CST), Monday through Friday. The Support Center's toll free number is US 800-231-1412 Fax 713-466-8773 — Canada 800-527-1204 — Mexico 01-800-527-1204.

You may also contact Toshiba by writing to:

Toshiba International Corporation

13131 West Little York Road

Houston, Texas 77041-9990

Attn: PLC Marketing

Or email

plc@tic.toshiba.com.

For further information on Toshiba's products and services, please visit our website at <u>www.toshiba.com/ind/</u>.

Manual Revisions

Please have the following information available when contacting Toshiba International Corp. about this manual.

Name: V200 User's Manual Document: UM-V200-E001 Revision:

Rev No.DateDescription02012/01/1Initial Issue (for V200)

TABLE OF CONTENTS

. 1
.2
.4
.4
.6
. 8
10
.5
.6
.7
.7
.9
13
16
17
18
19
21
23
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Instruction-14:	Invert Transfer	40
Instruction-15:	Table Initialize	41
Instruction-16:	Table Block Transfer	42
Instruction-17:	Table Invert Transfer	43
Instruction-18:	Data Exchange	44
Instruction-19:	Multiplexer	45
Instruction-20:	Demultiplexer	46
Instruction-21:	Addition	47
Instruction-22:	Double-word Addition	49
Instruction-23:	Float Addition	50
Instruction-24:	Subtraction	51
Instruction-25:	Double-Word Subtraction	53
Instruction-26:	Float Subtraction	54
Instruction-27:	Multiplication	55
Instruction-28:	Unsigned Multiplication	57
Instruction-29:	Float Multiplication	58
Instruction-31:	Division	59
Instruction-32:	Unsigned Division	61
Instruction-33:	Unsigned Double / Single Division	62
Instruction-34:	Float Division	63
Instruction-35:	Addition with Carry	64
Instruction-36:	Subtraction with Carry	65
Instruction-37:	Increment	66
Instruction-38:	Decrement	67
Instruction-39:	Log (10)	68
Instruction-40:	Log (e)	69
Instruction-41:	Antilog (10)	70
Instruction-42:	Antilog (e)	71
Instruction-43:	Square Root	72
Instruction-44:	Greater Than	73
Instruction-45:	Double Word Greater Than	74
Instruction-46:	Unsigned Greater Than	76
Instruction-47:	Float Greater Than	77
Instruction-48:	Greater Than or Equal To	78
Instruction-49:	Double Word Greater Than or Equal To	79
Instruction-50:	Unsigned Greater Than or Equal To	80
Instruction-51:	Float Greater Than or Equal To	81

Instruction-52:	Equal	82
Instruction-53:	Double Word Equal	83
Instruction-54:	Float Equal	84
Instruction-55:	Unsigned Equal	85
Instruction-56:	Not equal	86
Instruction-57:	Double Word Not Equal	87
Instruction-58:	Unsigned Not Equal	88
Instruction- 59:	Float Not Equal	
Instruction-60:	Less than	90
Instruction-62:	Unsigned Less Than	92
Instruction-63:	Float Less Than	93
Instruction-64:	Less Than or Equal	94
Instruction-65:	Double Word Less Than or Equal	95
Instruction-66:	Unsigned Less Than or Equal	96
Instruction-67:	Float Less Than or Equal	97
Instruction-68:	Logic AND	98
Instruction-69:	Logic OR	99
Instruction-70:	Logic Exclusive OR	100
Instruction-71:	Logic Shift - 1 bit Shift Right	101
Instruction-72:	Logic Shift - 1 bit Shift Left	102
Instruction-73:	Logic Shift - n bits Shift Right	103
Instruction-74:	Logic Shift - n bits Shift Left	104
Instruction-75:	Shift Register	105
Instruction-76:	Bi-directional Shift Register	107
Instruction-77:	1 bit Rotate Right	109
Instruction-78:	1 bit Rotate Left	110
Instruction-79:	n bit Rotate Right	111
Instruction-80:	n bit Rotate Left	112
Instruction-81:	Hex to ASCII Conversion	113
Instruction-82:	ASCII to Hex Conversion	114
Instruction-83:	Absolute Value	115
Instruction-84:	2's Compliment	116
Instruction-85:	Double-Word 2's Compliment	117
Instruction-86:	7 Segment Decode	118
Instruction-87:	ASCII Conversion	120
Instruction-88:	Binary Conversion	121
Instruction-89:	BCD Conversion	122

Instruction-90: Integer to Float	123
Instruction-91: Float to Integer	124
Instruction-92: ON Timer	125
Instruction-93: OFF Timer	126
Instruction-94: Single Shot Timer	127
Instruction-95: Counter	128
Instruction-96: Up / Down Counter	129
Instruction-97: Subroutine Call	130
Instruction-98: Subroutine Return	131
Instruction-99: FOR (For next loop)	132
Instruction-100: NEXT (FOR-NEXT loop)	133
Instruction-101: Master Control Set / Reset	134
Instruction-102: Jump Control Set / Reset	135
Instruction-103: Enable Interrupt	136
Instruction-104: Disable Interrupt	137
Instruction-105: Watchdog Timer Reset	138
Instruction-106: Step Sequence Initialize	139
Instruction-107: Step Sequence Input	140
Instruction-108: Step Sequence Output	141
Instruction-109: Moving Average	142
Instruction-110: Digital Filter	143
Instruction-111: Pre-derivative Real PID1	144
Instruction-112: Pre-derivative Real PID4	146
Instruction-113: Upper Limit	148
Instruction-114: Lower Limit	149
Instruction-115: Maximum Value	150
Instruction-116: Minimum Value	151
Instruction-117: Average Value	152
Instruction-118: Function Generator	153
Instruction-119: USB Data log Upload	155
Instruction-120: Device Set	157
Instruction-121: Device Reset	158
Instruction-122: Register Set	159
Instruction-123: Register Reset	160
Instruction-124: Set Carry	161
Instruction-125: Reset Carry	162
Instruction-126: Encode	163

Instruction-127:	Decode	164
Instruction-128:	Bit Count	. 165
Instruction-129:	Flip-Flop	166
Instruction-130:	Direct I/O	167
Instruction-131:	Set Calendar	168
Instruction-132:	Calendar Operation	170

General Safety Instructions and Information

- Warning Labels Within Manual
- Equipment Warning Labels
- Preparation
- Installation Precautions
- <u>Connection, Protection & Setup</u>
- System Integration Precautions
- <u>3rd Party Safety Certifications</u>

0.1 Warning Labels Within Manual

DO NOT attempt to install, operate, maintain, or dispose of this equipment until you have read and understood all of the product warnings and user directions that are contained in this instruction manual.

Listed below are the signal words that are used throughout this manual followed by their descriptions and associated symbols. When the words **DANGER**, **WARNING**, and **CAUTION** are used in the manual, they will be followed by important safety information that must be carefully adhered to.

DANGER — The danger symbol is an exclamation mark enclosed in a triangle that precedes the word DANGER. The danger symbol is used to indicate an imminently hazardous situation that will result in serious injury, possible severe property and equipment damage, or death if the instructions are not followed.

WARNING — The warning symbol is an exclamation mark enclosed in a triangle that precedes the word WARNING. The warning symbol is used to indicate a potentially hazardous situation that can result in serious injury, or possibly severe property and equipment damage, or death, if the instructions are not followed.

CAUTION — The caution symbol is an exclamation mark enclosed in a triangle that precedes the word CAUTION. The caution symbol is used to indicate situations that can result in minor or moderate operator injury, or equipment damage if the instructions are not followed.

To identify special hazards, other symbols may appear in conjunction with the **DANGER**, **WARNING**, and **CAUTION** symbols. These warnings describe areas that require special care and/or strict adherence to the procedures to prevent serious injury and possible death.

Electrical Hazard — The electrical hazard symbol is a lightning bolt enclosed in a triangle. The electrical hazard symbol is used to indicate high voltage locations and conditions that may cause serious injury or death if the proper precautions are not observed.

Explosion Hazard — The explosion hazard symbol is an explosion image enclosed in a triangle. The explosion hazard symbol is used to indicate locations and conditions where molten exploding parts may cause serious injury or death if the proper precautions are not observed.

0.2 Equipment Warning Labels.

DO NOT attempt to install, operate, maintain, or dispose of this equipment until you have read and understood all of the product warnings and user directions that are contained in this instruction manual.

Shown below are examples of warning labels that may be found attached to the equipment. **DO NOT** remove or cover any of the labels. If the labels are damaged or if additional labels are required, contact your Toshiba representative for additional labels.

The following are examples of the warning labels that may be found on the equipment and are there to provide useful information or to indicate an imminently hazardous situation that may result in serious injury, severe property and equipment damage, or death if the instructions are not followed.

Examples of labels that may be found on the equipment.

0.3 Preparation

Qualified Person

A **Qualified Person** is one that has the skills and knowledge relating to the construction, installation, operation, and maintenance of the electrical equipment and has received safety training on the hazards involved (Refer to the latest edition of NFPA 70E for additional safety requirements).

Qualified Personnel shall:

- Have carefully read the entire operation manual.
- Be trained and authorized to safely energize, de-energize, ground, lockout and tag circuits and equipment, and clear faults in accordance with established safety practices.
- Be trained in the proper care and use of protective equipment such as safety shoes, rubber gloves, hard hats, safety glasses, face shields, flash clothing, etc., in accordance with established safety practices.
- Be trained in rendering first aid.

For further information on workplace safety visit www.osha.gov.

Equipment Inspection

- Upon receipt of the equipment inspect the packaging and equipment for shipping damage.
- Carefully unpack the equipment and check for parts that were damaged from shipping, missing parts, or concealed damage. If any discrepancies are discovered, it should be noted with the carrier prior to accepting the shipment, if possible. File a claim with the carrier if necessary and immediately notify your Toshiba representative.
- **DO NOT** install or energize equipment that has been damaged. Damaged equipment may fail during operation resulting in further equipment damage or personal injury.
- Check to see that the model number specified on the nameplate conforms to the order specifications.
- Modification of this equipment is dangerous and must not be performed except by factory trained representatives. When modifications are required contact your Toshiba representative.
- Inspections may be required before and after moving installed equipment.
- Keep the equipment in an upright position as indicated on the shipping carton.
- Contact your Toshiba representative for assistance if required.

Handling and Storage

- Use proper lifting techniques when moving the OIS; including properly sizing up the load, and getting assistance if required.
- Store in a well-ventilated covered location and preferably in the original carton if the equipment will not be used upon receipt.
- Store in a cool, clean, and dry location. Avoid storage locations with extreme temperatures, rapid temperature changes, high humidity, moisture, dust, corrosive gases, or metal particles.
- Do not store the unit in places that are exposed to outside weather conditions (i.e., wind, rain, snow, etc.).
- Store in an upright position as indicated on the shipping carton.
- Include any other product-specific requirements.

Disposal

Never dispose of electrical components via incineration. Contact your state environmental agency for details on disposal of electrical components and packaging in your area.

0.4 Installation Precautions

Location and Ambient Requirements

- Adequate personnel working space and adequate illumination must be provided for adjustment, inspection, and maintenance of the equipment (refer to NEC Article 110-34).
- Avoid installation in areas where vibration, heat, humidity, dust, fibers, steel particles, explosive/corrosive mists or gases, or sources of electrical noise are present.
- The installation location shall not be exposed to direct sunlight.
- Allow proper clearance spaces for installation. Do not obstruct the ventilation openings. Refer to the recommended minimum installation dimensions as shown on the enclosure outline drawings.
- The ambient operating temperature shall be between 0° and 50° C (32° and 122° F).

Mounting Requirements

- Only Qualified Personnel should install this equipment.
- Install the unit in a secure upright position in a well-ventilated area.
- A noncombustible insulating floor or mat should be provided in the area immediately surrounding the electrical system at the place where maintenance operations are to be performed.
- As a minimum, the installation of the equipment should conform to the NEC Article 110 Requirements For Electrical Installations, OSHA, as well as any other applicable national, regional, or industry codes and standards.
- Installation practices should conform to the latest revision of NFPA 70E Electrical Safety Requirements for Employee Workplaces.

Conductor Routing and Grounding

- Use separate metal conduits for routing the input power, and control circuits.
- A separate ground cable should be run inside the conduit with the input power, and control circuits.
- **DO NOT** connect control terminal strip return marked CC to earth ground.
- Always ground the unit to prevent electrical shock and to help reduce electrical noise.

The Metal Of Conduit Is Not An Acceptable Ground.

0.5 Connection, Protection & Setup

Personnel Protection

- Installation, operation, and maintenance shall be performed by Qualified Personnel Only.
- A thorough understanding of the OIS will be required before the installation, operation, or maintenance of the OIS.
- Rotating machinery and live conductors can be hazardous and shall not come into contact with humans. Personnel should be protected from all rotating machinery and electrical hazards at all times. Depending on its program, the OIS can initiate the start and stop of rotating machinery.
- Insulators, machine guards, and electrical safeguards may fail or be defeated by the purposeful or inadvertent actions of workers. Insulators, machine guards, and electrical safeguards are to be inspected (and tested where possible) at installation and periodically after installation for potential hazardous conditions.
- Do not allow personnel near rotating machinery. Warning signs to this effect shall be posted at or near the machinery.
- Do not allow personnel near electrical conductors. Human contact with electrical conductors can be fatal. Warning signs to this effect shall be posted at or near the hazard.
- Personal protection equipment shall be provided and used to protect employees from any hazards inherent to system operation or maintenance.

System Setup Requirements

- When using the OIS as an integral part of a larger system, it is the responsibility of the OIS installer or maintenance personnel to ensure that there is a fail-safe in place (i.e., an arrangement designed to switch the system to a safe condition if there is a fault or failure).
- System safety features should be employed and designed into the integrated system in a manner such that system operation, even in the event of system failure, will not cause harm or result in personnel injury or system damage (i.e., E-Off, Auto-Restart settings, System Interlocks, etc.).
- The programming setup and system configuration of the OIS may allow it to start a motor unexpectedly. A familiarity with Auto-restart settings is a requirement to use this product.
- Improperly designed or improperly installed system interlocks may render the motor unable to start or stop on command.

The failure of external or ancillary components may cause intermittent system operation, i.e., the system may start a motor without warning or may not stop on command.

- There may be thermal or physical properties, or ancillary devices integrated into the overall system that may allow the OIS to start a motor without warning. Signs at the equipment installation must be posted to this effect.
- The operating controls and system status indicators should be clearly readable and positioned where the operator can see them without obstruction.
- Additional warnings and notifications shall be posted at the equipment installation location as deemed required by **Qualified Personnel**.

0.6 System Integration Precautions

The following precautions are provided as general guidelines for using an OIS in an industrial or process control system.

- The Toshiba PLC is a general-purpose product. It is a system component and is used in conjunction with other items of industrial equipment such as PLCs, Loop Controllers, Adjustable Speed Drives, etc.
- A detailed system analysis and job safety analysis should be performed by the systems designer or systems integrator before including the OIS in any new or existing system. Contact Toshiba for options availability and for application-specific system integration information if required.
- The PLC may be used to control an adjustable speed drive connected to high voltage sources and rotating machinery that is inherently dangerous if not operated safely. Interlock all energy sources, hazardous locations, and guards in order to restrict the exposure of personnel to hazards. The adjustable speed drive may start the motor without warning. Signs at the equipment installation must be posted to this effect. A familiarity with Autorestart settings is a requirement when controlling adjustable speed drives. Failure of external or ancillary components may cause intermittent system operation, i.e., the system may start the motor without warning or may not stop on command. Improperly designed or improperly installed system interlocks and permissives may render a motor unable to start or stop on command.
- Control through serial communications can fail or can also override local controls, which can create an unsafe condition. System safety features should be employed and designed into the integrated system in a manner such that system operation, even in the event of system failure, will not cause harm or result in personnel injury or system damage. Use of the builtin system protective features and interlocks of the equipment being controlled is highly recommended (i.e., emergency-off, overload protection, etc.)
- Never use the PLC units to perform emergency stops. Separate switches outside the OIS, the PLC, and the ASD should be used for emergency stops.
- Changes or modifications to the PLC program should not be made without the approval of the system designer or systems integrator. Minor changes or modifications could cause the defeat of safety interlocks and permissives. Any changes or modifications should be noted and included with the system documentation.

Instruction Overview

- Instruction Specifications
- List of Instructions

1.1 Instruction Specifications

In this section, each instruction mentioned in section 1.1 is described in detailed. For each instruction, the following items are explained:

Expression:Shows the operands required for the instruction as marked.Function:Explains the function of the instruction with referring the operands shown on the expression box.Execution Condition:
Shows the execution condition of the instruction and the instruction's output status.Operand:Shows available register, device or constant value for each operand. For constant operand, available
value range is described. If the constant column is just marked (\sqrt), it means normal value range
(-32768 to 32767 in 16-bit integer or -2147483648 to 2147483647 in 32-bit integer) is available.
Whether index modification for a register operand is usable or not is also shown for each operand.Example:Explains the operation of the instruction by using a typical example.Note:Explains supplementary information, limitations, etc. for the instruction.

For a quick reference, table given in next section will describe you the purpose of each instruction, instruction timings and number of steps for each instruction.

About RAM registers, EEPROM registers and Instruction Timings:

Register 'D', 'BW', 'MW', 'SW', 'T', 'C' are allocated memory in RAM for all models. 'R' are the retentive registers which retain their values after power cycle. 'R' registers are allocated memory in EEPROM for V200, OIS45/55/65/7 PLUS series models. For OIS10 PLUS and OIS40 PLUS series models a battery back up for RAM is used as 'R' memory.

When retentive registers are used in the ladder, a call to EEPROM is invoked. As the EEPROM access is slow, the execution time is higher if retentive registers are used in the instructions. So separate execution timings are mentioned for instructions where 'R' registers are used. Retentive register 'R' in OIS10 PLUS & OIS40 PLUS are stored in Battery backup RAM. So execution time for retentive register operation is same as RAM registers ('D', 'BW' etc.) User should be careful while using 'R' registers in destination as the number of write operations to EEPROM is limited to 10,000,000 operations only. After that the EEPROM may become unusable.

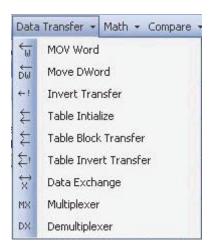
Data retention validity for EEPROM is more than 200 years. Data retention validity for battery backup RAM is dependent on Battery life which is published by the battery manufacturer.

1.2 List of Instructions

The Flexi Panel series units has 113 types of ladder instructions as listed below.

Proje	st <u>V</u> iev	v <u>M</u> od	le <u>B</u> lo	ck De	fine <u>T</u>	ools	Windo	ow <u>I</u>	<u>H</u> elp									
🗋 • 📂					100	- i	2 0		* (2	1.%		- E.E.	17 (n m			
) E.)	K 💕 🗄	3		3 10	16 ×	业	<u>ه</u>	< →	≪ :	> 🗟	+	I HH	+/+ {}	123	End 🔎	I	
I/O Instru	tions 👻	Data Tra	nsfer 👻	Math 👻	Compar	e 👻 Lo	ogic 🝷	Conve	ersion 🔻	Timer	🕶 Cour	nter 👻	Progra	m Control	- Fund	ions 👻 Sj	pecial Inst	tructions
									1	1								
									<u>ل</u> لا	7								

The specifications of each instruction will be described in detail later.


1.2.1 I/O Instructions

I/O I	nstructions 👻 Data Transfer 👻 Ma
4 F	NO Contact
+1+	NC Contact
{}	Output
-	Rising Edge
┨↓┠	Falling Edge
-{I}-	Inverter
{I}-	Invert Coil
1PF	Positive Pulse Contact
INF	Negative Pulse Contact
{P}	Positive Pulse Coil
{N}	Negative Pulse Coil

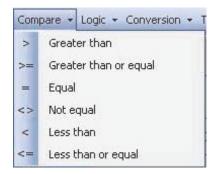
Sr.	Name of Instruction	Description	Execution Speed					
No.			OIS10/20/40 PLUS V200 OIS45/55/60/7					
			RAM andOIS10/ 20/40PLUS R Registers (uSec)	V200 Retentive Registers (mSec)	On RAM (nS)	On Retentive Register (mSec)		
1.	NO Contact	NO (Normally open) contact	1.0333	NA	371.988	NA		
2.	NC Contact	NC (Normally Closed) contact	1.0472	NA	376.992	NA		
3.	Output	Relay Coil	1.0889	NA	392.004	NA		
4.	Transitional Contact (rising edge)	Turns ON output for 1 scan when input changes from OFF to ON	1.0055	NA	361.98	NA		
5.	Transitional Contact (falling edge)	Turns ON output for 1 scan when input changes from ON to OFF	1.0194	NA	366.984	NA		

Sr.	Name of Instruction	Description		on Speed	1	
No.			OIS10/20/40 PLU	JS V200	OIS45/5	5/60/70
			RAM and OIS10/	V200	On	On
			20/40PLUS	Retentive	RAM	Retentive
			R Registers	Registers	(nS)	Register
			(uSec)	(mSec)		(mSec)
7.	Inverter	Inverts the input state	0.8250	NA	297	NA
8.	Inverter Coil	Stores the invers state of input input into device A	1.1167	NA	402.012	NA
9.	Positive Pulse Contact	Turns ON output for 1 scan when input is ON and device A changes from OFF to ON.	1.2833	NA	461.988	NA
10.	Negative Pulse Contact	Turns ON output for 1 scan when input is ON and device A changes from ON to OFF	1.3389	NA	482.004	NA
11.	Positive Pulse Coil	Turns ON device A for 1 scan when input changes from OFF to ON	1.3250	NA	477	NA
12.	Negative Pulse Coil	Turns ON device A for 1 scan when input changes from ON to OFF	1.2972	NA	466.992	NA

1.2.2 Data Transfer

Sr.	Name of Instruction	Description	Executi	on Speed		
No.			OIS10/20/40 PLU	OIS45/55/60/70		
			RAM and OIS10/	V200	On	On
			20/40 PLUS	Retentive	RAM	Retentive
			R Registers	Registers	(nS)	Register
			(uSec)	(mSec)		(mSec)
1.	MOV Word	Transfers data of A to B	1.85278	1.10300	667.0008	0.6
2.	MOV Dword	Transfers double-word data of (A+1)-A to (B+1)-B	2.22700	2.15709	801.7200	1.2
3.	Invert Transfer	Transfers bit-inverted data of A to B	1.85278	1.12806	667.0008	0.6

Sr.	Name of Instruction	Description		Execution S	peed	
No.			OIS10/20/40 PLU	S V200	OIS45/55/60	0/70 PLUS
			RAM and OIS10/	V200	On	On
			20/40 PLUS	Retentive	RAM	Retentive
			R Registers	Registers	(nS)	Register
			(uSec)	(mSec)		(mSec)
4.	Table Initialize	Transfers data of A to n	1.81110	1.10309	651.996	0.6
		registers starting with B	205.25600	547.06731	73892.16	0.3
5.	Table Block Transfer	Transfers data n registers	1.65833	1.09168	596.9988	0.6
		starting with A to n	271.39440	1093.62762	97701.98401	600
		registers starting with B				
6.	Table Invert Transfer	Transfers bit-inverted data	1.64444	1.10842	591.9984	0.6
		of n registers starting with A	316.25000	1095.56357	113850	600
		to n registers starting with B				
7.	Data Exchange	Exchanges data of A with B	2.08890	10.27224	752.004	6
8.	Multiplexer	Transfers data from the	2.68611	1.62344	966.9996001	0.9
		register specified by B in				
		table, size n starting with				
		A, to C				
9.	Demultiplexer	Transfers data from A to	2.54722	1.64176	916.9992001	0.9
		the register specified by B				
		in the table, size n starting				
		with C				


1.2.3 Math (Arithmatic Instructions)

Math	▼ Compare ▼ Logic ▼ Con	vers
+	Addition	
-	Subtraction	
X	Multiplication	
1	Division	
$+_{c}$	Addition with Carry	
 C	Subtraction with Carry	
+↑	Increment	
-↓	Decrement	

Sr.	Name of Instruction	Description	Execution Speed				
No.			OIS10/20/40 PLU	S V200	OIS45/55/6	60/70 PLUS	
			RAM and OIS10/ 20/40 PLUS R Registers (uSec)	V200 Retentive Registers (mSec)	On RAM (nS)	On Retentive Register (mSec)	
1.	Addition	Adds data of A & B and					
	(i) Signed Word	stores the result in C	3.2833	1.6473	1181.988	0.9	
	(ii) Signed D-Word		2.9083	3.2323	1046.9988	1.8	
	(iii) Float						
2.	Subtraction	Subtracts data B from A,					
	(i) Signed Word	and stores result in C	3.5056	1.6437	1262.0016	0.9	
	(ii) Signed D-Word		2.9222	3.2183	1051.992	1.8	
	(iii) Float						
3.	Multiplication	Multiplies data of A & B,					
	(i) Signed	and stores the result in	1.9917	2.1840	717.0012	1.2	
	(ii) Unsigned	double-length register	2.8389	2.1716	1022.004	1.2	
	(iii) Float	C+1.C					

5/55/60/70 PLUS On Retentive Register
Retentive
Register
rtogiotol
(mSec)
0016 1.2
1.2
3 1.4
98 0.9
976 0.9
34 2.6
012 2.6
3. 9.

1.2.4 Compare Instructions

Sr.	Name of Instruction	Description		Execution S	peed	
No.			OIS10/20/40 PLU	IS V200	OIS45/55/60/70 PLUS	
			RAM and OIS10/ 20/40 PLUS	V200 Retentive	On RAM	On Retentive
			R Registers (uSec)	Registers (mSec)	(nS)	Register (mSec)
1.	Greater than	Turns ON output if $A > B$				
	(i) Signed Word		2.4222	1.0975	871.9920	0.6
	(ii) Unsigned Word		2.1583	1.1175	776.9880	0.6
	(iii) Signed D-Word		2.6444	2.1814	951.9840	1.2
2.	Greater than or	Turns ON output if $A \ge B$				
	equal (i) Signed		2.4222	1.1028	871.9920	0.6
	(ii) Unsigned Word	_	2.1861	1.1074	786.9960	0.6
	(iii) Signed D-Word		2.5472	2.1763	916.9992	1.2
3.	Equal	Turns ON output if $A = B$				
	(i) Signed Word		2.3111	1.1027	831.9960	0.6
	(ii) Unsigned Word		2.4306	1.1076	875.0001	0.6
	(iii) Signed D-Word		2.5472	2.1624	916.9992	1.2

4.	Not Equal (i) Signed Word (ii) Unsigned Word (iii) Signed D-Word	Turns ON output if $A = B$	2.3389 2.1583 2.5889	1.1022 1.1062 2.1766	842.0004 776.9880 932.0040	0.6 0.6 1.2
5.	Less Than (i) Signed Word (ii) Unsigned Word (iii) Signed D-Word	Turns ON output if <i>A</i> < <i>B</i>	2.3667 2.1306 2.5472	1.1081 1.1098 2.1757	852.0120 766.9980 916.9920	0.6 0.6 1.2
6.	Less than or equal (i) Signed Word (ii) Unsigned Word (iii) Signed D-Word	Turns ON output if <i>A</i> <u><</u> B	2.3520 2.1306 2.6444	1.1027 1.1065 2.1717	846.7200 767.0001 951.9840	0.6 0.6 1.2

1.2.5 Logic Instructions

Logic	- Co	nversion 👻	Time
8.8	AND		
11	OR		
^	Exclus	sive OR	
	Shift		•
	Rotat	e	

Sr.	Name of Instruction	Description	Execution Speed			
No.			OIS10/20/40 PLU		OIS45/55/60/70 PLUS	
			RAM and OIS10/ 20/40 PLUS R Registers (uSec)	V200 Retentive Registers (mSec)	On RAM (nS)	On Retentive Register (mSec)
1.	AND	Finds logical AND of <i>A</i> & <i>B</i> , and stores it in <i>C</i> .	2.7000	1.6382	972.0000	0.9
2.	OR	Finds logical OR of <i>A</i> & <i>B</i> , and stores it in <i>C</i> .	2.6722	1.6373	961.9920	0.9
3.	Exclusive OR	Finds logical exclusive OR of <i>A</i> & <i>B</i> , and stores it in <i>C</i> .	2.7417	1.6485	987.0001	0.9

1.2.5.1 Shift Instructions:

Shift	•	→ 1 bit shift right
Rotate	•	⇐ 1 bit shift left
		n bits shift right
		<hr/> n bits shift left
		SR Shift register
		SR Bi-directional shift register

Sr.	Name of Instruction	Description	Execution Speed OIS10/20/40 PLUS V200 OIS45/55/60/70 PLUS				
No.			OIS10/20/40 PLU3 RAM and OIS10/ 20/40 PLUS R Registers (uSec)	S V200 V200 Retentive Registers (mSec)	OIS45/55/6 On RAM (nS)	On Retentive Register (mSec)	
1.	1 bit shift right	Shifts data of A 1 bit to the right (LSB). The carry flag changes accordingly to the	1.9778	1.1017	712.008	0.6	
2.	1 bit shift left	result. Shifts data of <i>A</i> 1 bit to the left (MSB). The carry flag changes accordingly to the	2.0333	1.1026	731.988	0.6	
3.	n bits shift right	result. Shifts data of <i>A</i> n bits to the right (LSB) and stores result in <i>B</i> . The carry flag changes	2.4361	1.1082	876.9996	0.6	
4.	n bits shift left	accordingly to the result. Shifts data of <i>A</i> n bits to the left (MSB) and stores result in <i>B</i> . The carry flag changes	2.4639	1.0989	887.0004	0.6	
5.	Shift register	accordingly to the result. When shift input (S) comes	15.4500	NA	5562	NA	
		ON, shifts the data of specified shift register 1 bit to the left, and stores data input (D) state into A. This operation is enabled while enable input (E) is ON. The carry flag changes according to the result. Shift register: <i>n</i> devices	36.6444	NA	13191.984	NA	
6.	Bi-directional	starting with device <i>A</i> . When shift input (S) comes	21.6861	NA	7806.9996	NA	
	shift registerON, shifts the data of specified shift register 1 bit to the left or to the right depending on direction input (L). This operation is enabled while enable input (E) is ON. The carry flag changes according to the result. Shift register: n devices starting with device A. Direction: Left when L is ON, right when L is OFF	42.2972	NA	15226.992	NA		

1.2.5.2 Rotate Instructions:

Rotate	• •	7	1 bit rotate right
		ŧ	1 bit rotate left
	+	n h	n bits rotate right
	1	'n	n bits rotate left

Sr.	Name of Instruction	Description	Execution Speed			
No.			OIS10/20/40 PLUS V200		OIS45/55/60/70 PLUS	
			RAM and OIS10/ 20/40 PLUS R Registers (uSec)	V200 Retentive Registers (mSec)	On RAM (nS)	On Retentive Register (mSec)
1.	1 bit rotate right	Rotates data of <i>A</i> 1 bit to the right (LSB direction).The carry flag changes according to the result.	2.0750	5.1967	747	2.6
2.	1 bit rotate left	Rotates data of <i>A</i> 1 bit to the left (MSB direction). The carry flag changes according to the result.	2.0611	5.1758	741.996	2.6
3.	n bit rotate right	Rotates data of <i>A n</i> bits to the right (LSB direction) and stores the result in <i>B</i> . The carry flag changes according to the result	2.4222	1.1168	871.9920	0.6
4.	n bits rotate left	Rotates data of <i>A n</i> bits to the left (MSB direction) and stores the result in <i>B</i> . The carry flag changes according to the result	2.5750	1.1065	927.0000	0.6

1.2.6 Conversion Instructions:

Conv	ersion 👻 Timer 🔹 Counter 👻 Program
H A L	Hex to ASCII
旺	ASCII to Hex
ABS	Absolute Value
NEG	2's Complement
DW NEG	Double-word 2's Complement
SÉG	7-segment decode
ASC	ASCII conversion
BIN	Binary conversion
BCD	BCD conversion
	Integer to Float
	Float to Integer

For a quick reference, below given table will describe the purpose of each instruction.

C

Sr.	Name of Instruction	Description	Execution Speed				
No.			OIS10/20/40 PLU		OIS45/55/6	0/70 PLUS	
			RAM and OIS10/	V200	On	On	
			20/40 PLUS	Retentive	RAM	Retentive	
			R Registers	Registers	(nS)	Register	
			(uSec)	(mSec)		(mSec)	
1.	Hex to ASCII	Converts the hexadecimal data	5.8389	NA	2102.0004	NA	
		of <i>n</i> words stating with A into	87.1167	NA	31362.012	NA	
		ASCII characters, and sto- res					
		them in nx2 registers starting					
		with B					
2.	ASCII to Hex	Converts the ASCII chara-	6.5333	NA	2351.988	NA	
		cters stored in <i>n</i> registers	64.8667	NA	23352.012	NA	
		stating with A into hexa-					
		decimal data, & stores them					
		in n/2 registers starting with B.					
3.	Absolute Value	Stores absolute value of A in B		NA	482.0004	NA	
4.	2's Complement	Stores the 2's complement	1.1306	NA	407.00016	NA	
_		value of A in B					
5.	Double-word 2's	Stores the 2's complement	1.5889	NA	572.004	NA	
	Complement	value of A+1.A in B+1.B					
6.	7-segment decode	Converts lower 4 bits of A into7	1.2556	NA	452.016	NA	
		segment code and stores in B					
7.	ASCII Conversion	Converts the alphanumeri-	1.6583	NA	596.9988	NA	
		cs (max. 16 characters) of	5.7694	NA	2076.9984	NA	
		A into ASCII codes, and					
		stores them in registers					
		starting with <i>B</i> .					
8.	Binary conversion	Converts the BCD data in	1.7417	NA	627.00012	NA	
		A into binary data, and					
-		stores it in B					
9.	BCD Conversion	Converts the binary data in A	11.3667	NA	4092.012	NA	
4.0		into BCD data, & stores in B					
10.	Integer to Float	Converts the integer data from					
		A into float format, and stores					
11.	Float to Integer	it in B. Converts the float data from					
11.	i loat to integer	A into interger format, and					
		stores it in B.					

1.2.7 Timer Instructions:

Time	r -	Counter 👻 Program Cor
ON	o	N Timer
OFF	O	FF Timer
55	Sir	ngle Shot Timer

г

Sr. No.	Name of Instruction	Description	Execution Speed OIS10/20/40 PLUS V200 OIS45/55/60/70 PLU			60/70 PLUS
			RAM and OIS10/ 20/40 PLUS R Registers (uSec)	V200 Retentive Registers (mSec)	On RAM (nS)	On Retentive Register (mSec)
1.	ON Timer	Turns ON output when the time specified by <i>A</i> has elapsed after the input came ON. <i>B</i> is a timer register	6.7278	NA	2422.008	NA
2.	OFF Timer	Turns OFF output when the time specified by <i>A</i> has elapsed after the input came OFF. <i>B</i> is a timer register	6.7833	NA	2441.988	NA
3.	Single Shot Timer	Turns ON output for the time specified by <i>A</i> when the input comes ON. <i>B</i> is a timer register	7.0889	NA	2552.004	NA

1.2.8 Counter Instructions:

Counter -		Program Control 🝷 Fun	
£	Counter		
fl	Up / down Counter		

Sr. Name of Instruction Description			Execution Speed OIS10/20/40 PLUS V200 OIS45/55/60/70 PLUS			
No.			OIS10/20/40 PLUS RAM and OIS10/ 20/40 PLUS R Registers (uSec)	S V200 V200 Retentive Registers (mSec)	OIS45/55 On RAM (nS)	On Retentive Register (mSec)
1.	Counter	Counts the number of cyc- les the count input (C) comes ON while the enable input (E) is ON, and turns ON output (Q) when the count reaches to the value specified by <i>A</i> . <i>B</i> is a cou- nter register	4.3944	NA	1581.984	
2.	Up / down Counter	While enable input (E) is ON, counts up or down the number of cycles the count input (C) comes ON, dep- ending on the up/down select input (U). Up when U is ON, down when U is OFF	1.3528	NA	486.9972	

1.2.9 Program Control Instructions:

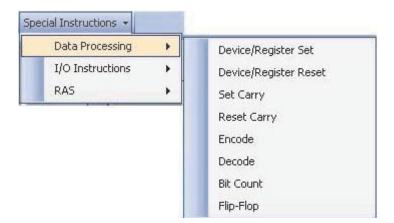
Sr.	Name of Instruction	Description	Execution Speed			
No.			OIS10/20/40 PLUS V200		OIS45/55/60/70 PLUS	
			RAM and OIS10/ 20/40 PLUS R Registers (uSec)	V200 Retentive Registers (mSec)	On RAM (nS)	On Retentive Register (mSec)
1.	Subroutine call	Calls the subroutine number n	2.7000	NA	2.7000	NA
2.	Subroutine return	Indicates the end of a subroutine				
3.	FOR	When the input of FOR is ON, executes the segment from FOR to NEXT the	3.2694	NA	3.2694	NA
4.	NEXT	number of times specified by <i>n</i> .				
5.	Master Control Set	Turns OFF power rail betw- een MCS and MCR when	2.3111	NA	2.3111	NA
6.	Master Control Reset	MCS input is OFF				
7.	Jump Control Set	Jumps from JCS to JCR when JCS input is ON	1.8111	NA	1.8111	NA
8.	Jump Control Reset					
9.	Enable interrupt	Enables execution of inte- rrupt program.	5.1861	NA	5.1861	NA
10.	Disable interrupt	Disables execution of inte- rrupt program.				

11.	Watchdog timer reset	Extends the scan time over detection time.	0.9917	NA	0.9917	NA
12.	*Step sequence Initialize	Resets OFF the <i>n</i> devices stating with <i>A</i> , and sets	3.4500 86.8389 ON <i>A</i> .	NA NA	3.4500 86.8389	NA NA
13.	*Step sequence input	Turns ON output if input is ON and <i>A</i> is ON.	1.2139	NA	1.2139	NA
14.	*Step sequence output	When input is ON, resets OFF the devices of STIN on the same rung, and sets ON <i>A</i>	1.852778	NA	1.852778	NA

*: These Configure a series of step sequences.

1.2.10 Functions:

Funct	ions 👻 Special Instructions 👻
MA	Moving average
DF	Digital filter
UL	Upper limit
LL	Lower limit
MAX	Maximum value
MIN	Minimum value
AVG	Average value
FG	Function generator
E	Data log upload


Sr.	Name of Instruction	Description	Execution Speed			
No.			OIS10/20/40 PLUS V200		OIS45/55/60/70 PLUS	
			RAM and OIS10/ 20/40 PLUS R Registers (uSec)	V200 Retentive Registers (mSec)	On RAM (nS)	On Retentive Register (mSec)
1.	Moving average	Calculates the average va-	5.6583	NA	5.6583	NA
	5 5	lue of latest <i>n</i> scan values of <i>A</i> , and stores the result in <i>C</i>	45.5333	NA	45.5333	NA
2.	Digital Filter	Filters the value of <i>A</i> by fil- ter constant specified by <i>B</i> , and stores the result in <i>C</i>	28.3528	NA	28.3528	NA
3.	PID (1,4)	Performs PID control.(pre-	35.8805	NA	35.8805	NA
		derivative real PID algorithm) Process value (PV): <i>A</i> Set value (SV): <i>A</i> +1 PID parameters: <i>B</i> & after Manipulation value (MV): <i>C</i>	44.7000	NA	44.7000	NA
4.	Upper limit	Upper limits the value of <i>A</i> by B, and stores the result in <i>C</i> .	2.3389	NA	2.3389	NA
5.	Lower limit	lower limits the value of <i>A</i> by B, and stores the result in C.	2.0889	NA	2.0889	NA
6.	Maximum Value	Finds the maximum value of	3.9917	NA	3.9917	NA
		<i>n</i> registers data starting with <i>A</i> , and stores the value in <i>C</i> and the pointer in $C+1$	64.5611	NA	64.5611	NA
7.	Minimum Value	Finds the minimum value of	3.9361	NA	3.9361	NA
		<i>n</i> registers data starting with <i>A</i> , and stores the value in <i>C</i> and the pointer in $C+1$	61.0611	NA	61.0611	NA

Sr.	Name of Instruction	Description	Execution Speed								
No.			OIS10/20/40 PLUS	V200	OIS45/55/60/70 PLUS						
			RAM and OIS10/ 20/40 PLUS R Registers (uSec)	V200 Retentive Registers (mSec)	On RAM (nS)	On Retentive Register (mSec)					
8.	Average Value	Calculates the average value of <i>n</i> registers data starting with <i>A</i> , and stores the result in <i>C</i>	12.5472 39.7556	NA NA	12.5472 39.7556	NA NA					
9.	Function generator	Finds $f(x)$ for given $x=A$, & stores it in C. The function f(x) is defined by parameters stored in a table $2 \times n$ registers starting with B	5.2417 68.7694	NA NA	5.2417 68.7694	NA NA					

1.2.11 Special Instructions

Special Instructions consist of Data Processing Instructions, I/O Instructions, and RAS Instructions

1.2.11.1 Data Processing Instructions:

For a quick reference, below given table will describe the purpose of each instruction.

Sr.	Name of Instruction	Description		Execution S	peed			
No.			OIS10/20/40 PLUS	V200	OIS45/55/60/70 PLUS			
			RAM and OIS10/ 20/40 PLUS R Registers (uSec)	V200 Retentive Registers (mSec)	On RAM (nS)	On Retentive Register (mSec)		
1.	Device Set	If A is a device:	1.0889	NA	1.0889	NA		
	Register Set	Sets device A to ON If A is a register: Stores HFFFF in register A	1.0472	NA	1.0472	NA		
2.	Device Reset Register Reset	If <i>A</i> is a device: Resets device <i>A</i> to OFF If <i>A</i> is a register: Stores 0 in register <i>A</i>	1.0750 0.9778	NA NA	1.0750 0.9778	NA NA		
3.	Set Carry	Sets the carry flag to ON.	1.0194	NA	1.0194	NA		
4.	Reset Carry	Resets the carry flag to OFF	1.0056	NA	1.0056	NA		
5.	Encode	Finds the uppermost ON bit	4.6861	NA	4.6861	NA		
		position in the bit file of size 2n bits starting with register <i>A</i> , and stores it in <i>B</i> .	99.7000	NA	99.7000			

Sr.	Name of Instruction	Description		Execution S		100/70		
No.			OIS10/20/40 PLUS RAM and OIS10/	S V200 V200	01845/55 On	OIS45/55/60/70 On On		
			20/40 PLUS R Registers (uSec)	Retentive Registers (mSec)	RAM (nS)	Retentive Register (mSec)		
6.	Decode	In the bit file of size 2n bits starting with register <i>B</i> , sets ON the bit position indicat- ed by lower <i>n</i> bits of <i>A</i> , and resets OFF all other bits	4.2833 46.8389	NA NA	4.2833 46.8389	NA NA		
7.	Bit Count	Counts the number of ON bits of <i>A</i> and stores it in <i>B</i>	4.2273	NA	4.2278	NA		
8.	Flip-Flop	Sets ON device A when set input (S) is ON, and resets OFF device A when reset input (R) is ON. (Reset takes priority)	1.5890	NA	1.5890	NA		

1.2.11.2 I/O Instructions:

Iounte	er 🔹 Program Control 👻 Functions 👻	Special Instructions 👻	
		Data Processing	+
DI	Direct I/O	I/O Instructions	
-		RAS	+

For a quick reference, below given table will describe the purpose of each instruction.

Sr.	Name of Instruction	Description	Execution Speed								
No.			OIS10/20/40 PLUS	5/60/70							
			RAM and OIS10/ 20/40 PLUS R Registers (uSec)	V200 Retentive Registers (mSec)	FP4035 / FP4057 (uSec)	On Retentive Register (mSec)					
1.	Direct I/O	i) Immediate update of inputs and outputs of base registers (Local I/O)	1.5889	1.5889	0.57	NA					
		ii) Immediate update of inputs and outputs of expansion registers (Expansion I/O)	176.8667	2000	2000	NA					

1.2.11.3 RAS Instructions:

Data Processing		
I/O Instructions		7. 2.
RAS	•	Set Calendar
		I/O Instructions

For a quick reference, below given table will describe the purpose of each instruction.

Sr. No.	Name of Instruction	Description	Execution Speed FP4020/FP4030/V200 FP4035/FP4057								
110.			RAM and OIS10/ 20/40 PLUS R Registers (uSec)		On RAM (nS)	On Retentive Register (mSec)					
1.	Set Calender	Sets 6 registers data start- ing with A into clock/calen- dar.	785.2694	NA	785.2694	NA					
2.	Calendar Operation	Calculates difference betw- een present date & time and past date & time stored in 6 registers starting with <i>A</i> , and stores the result in 6 registers starting with <i>B</i> .	748.9222	NA	748.9222	NA					

Instruction Details

Instruction-1: NO Contact

Expression:

A Input ⊣ ⊢ Output

Function:

NO (normally open) contact of device A.
When the input is ON and the device <i>A</i> is ON, the output is turned ON.

Execution condition:

Input	Operation	Output
OFF	Regardless of the state of device A	OFF
ON	When device A is OFF	OFF
	When device A is ON	ON

Operand:

	Name	Device				Device Register								Constant	Index							
		Х	Y	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
Α	Device	\checkmark		\checkmark				\checkmark														

Example:

×00000 B00001	Y00022	
T-X0 T-B1	T-Y22	

Coil Y0022 comes ON when the devices X0000 and B0001 are both ON.

X0000		
B0001		
Y0022		

Instruction-2: NC Contact

Expression:

Output

Function:

NC (normally closed) contact of device A.
When the input is ON and the device A is OFF, the output is turned ON.

Execution condition:

Input	Operation	Output
OFF	Regardless of the state of device A	OFF
ON	When device A is OFF	ON
	When device A is ON	OFF

Operand:

	Name			De	evic	е				Re	egiste	er									Constant	Index
		Х	Υ	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Device	\checkmark	\checkmark	\checkmark				\checkmark														
-																						

Example:

X00000 B00001 Y00002 I I I I T.X0 T-B1	0000 B00001 Y00002 V V I I I I I I I I I I I I I I I I I I
--	---

Coil Y0002 comes ON when the devices X0000 and B0001 are both OFF.

X0000	
B0001	
Y0002	

Instruction-3: Output

Expression:

А	
Input -()-	

Function:

Output coil of device A.
When the input is ON, the device A is ON.

Execution condition:

Input	Operation	Output
OFF	Sets device A to OFF	
ON	Sets device A to ON	

Operand:

	Name			De	evice	е				R	egiste	er									Constant	Index	
		Х	Y	В	S	Τ.	C.	М	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R			
A	Device			\checkmark				\checkmark															
									1														

Example:

100	Y0005
	TUE
XU	C1-10

Coil Y0005 comes ON when the device X0000 is ON.

Instruction-4: Rising Edge (Transitional Contact)

Expression:

A Input ⊣↑⊢ Output

Function:

When the input at last scan is OFF and the input at this scan is ON, the output is turned ON. This instruction is used to detect the input changing from OFF to ON

Execution condition:

Input	Operation	Output
OFF	Regardless of the input state at last scan	OFF
ON	When the input state at last scan is OFF	ON
	When the input state at last scan is ON	OFF

Operand:

No operand is required.

Example:

Coil Y0002 comes ON for only 1 scan when the device X0000 comes ON.

X0000		
Y0002		
><		
1 scan time	1 scan time	

Instruction-5: Falling Edge (Transitional Contact)

Expression:

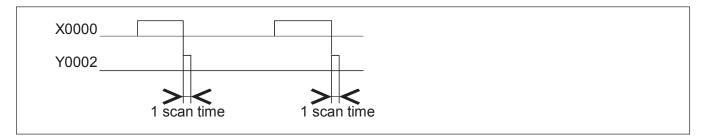
		А	
Inn		1.1.1	Output
Inpi	uι	$\dashv\downarrow\vdash$	Output
		1.4.1	

Function:

When the input at last scan is ON and the input at this scan is OFF, the output is turned ON. This instruction is used to detect the input changing from ON to OFF.

Execution condition:

Input	Operation	Output
OFF	When the input state at last scan is OFF	OFF
	When the input state at last scan is ON	ON
ON	Regardless of the input state at last scan	OFF


Operand:

No operand is required.

Example:

Coil Y0002 comes ON for only 1 scan when the device X0000 comes OFF.

Instruction-6: Inverter

Expression:

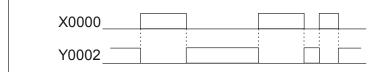
	Α
Input	⊣ı⊢ Output

Function:

When the input is OFF, the output is turned ON, and when the input is ON, the output is turned OFF. This instruction inverts the link state.

Execution condition:

Input	Operation	Output
OFF	Inverts the input state	ON
ON	Inverts the input state	OFF


Operand:

No operand is required

Example:

Device Y0002 comes ON when X0000 is OFF, and Y0002 comes OFF when X0000 is ON.

Instruction-7: Inverter Coil

Expression:

Function:

When the input is OFF, the device *A* is set to ON, and when the input is ON, the device *A* is set to OFF. This instruction inverts the input state and store it in the device *A*.

Execution condition:

Input	Operation	Output
OFF	Sets device A to ON	
ON	Sets device A to OFF	

Operand:

	Name			De	vice	Э				R	egiste	er									Constant	Index
		Х	Y	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	κ	MW	R		
Α	Device				\checkmark			\checkmark														

Example:

×0000					Y0005	
T.XO					T.VS	
170	100		- C.		1.1.2	

Device Y0005 comes ON when X0000 is OFF, and Y0005 comes OFF when X0000 is ON.

X0000	[]
Y0005			

Instruction-8: Positive Pulse Contact

Expression:

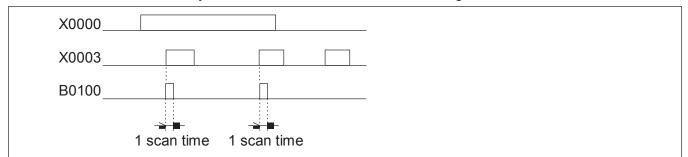
	А	
Input	⊣P⊢	Output

Function:

When the input is ON and the device *A* is changed from OFF to ON (OFF at last scan and ON at this scan), the output is turned ON. This instruction is used to detect the device changing from OFF to ON.

Execution condition:

Input	Operation		Output
OFF	Regardless of the state	of device A	OFF
ON	State of device A is OFF		OFF
	State of device A is ON	A is OFF at last scan	ON
		A is ON at last scan	OFF


Operand:

	Name			De	evice	е				Register								Constant	Index			
		Х	Y	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
Α	Device	\checkmark	\checkmark					\checkmark														

Example:

×00000 ×00003	BODIOO	
TX0 TX3	т-в100	

B0100 comes ON for only 1 scan when X0000 is ON and X0003 changes to ON.

Instruction-9: Negative Pulse Contact

Expression:

A		
INTER Output		
– N ⊢ Output		

Function:

When the input is ON and the device *A* is changed from ON to OFF (ON at last scan and OFF at this scan), the output is turned ON. This instruction is used to detect the device changing from ON to OFF.

Execution condition:

Input	Operation		Output
OFF	Regardless of the state of	of device A	OFF
ON	State of device A is OFF	A is OFF at last scan	OFF
		A is ON at last scan	ON
	State of device A is ON		OFF

Operand:

	Name			De	evice	Э				Register									Constant	Index		
		Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
Α	Device		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark														

Example:

×00000 ×00003	B00100
	[]
T-X0 T-X3	T-B100

B0100 comes ON for only 1 scan when X0000 is ON and X0003 changes to OFF.

X0000			
X0003]
B0100	i		
	1 scan time	1 scan time	

Instruction-10: Positive Pulse Coil

Expression:

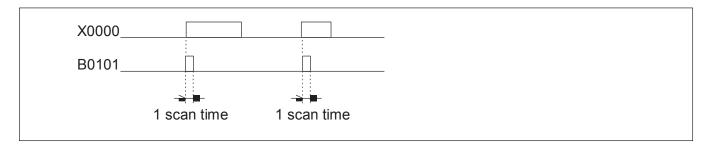
A Input –(P)–(

Function:

When the input is changed form OFF to ON, the device *A* is set to ON for 1 scan time. This instruction is used to detect the input changing from OFF to ON.

Execution condition:

Input	Operation	Output
OFF	Sets device A to OFF	
ON	When the input at last scan is OFF, sets A to ON	
	When the input at last scan is OFF, sets A to OFF	


Operand:

	Name			De	evice	е				Register								-	Constant	Index		
		Х	Υ	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Device		\checkmark	\checkmark				\checkmark														

Example:

×00000	B00101
T-XO	T-B101

B0101 comes ON for only 1 scan when X0000 is changed from OFF to ON.

Instruction-11: Negative Pulse Coil

Expression:

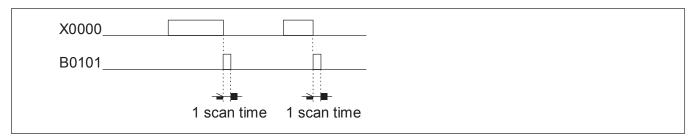
A Input –(N)–

Function:

When the input is changed from ON to OFF, the device *A* is set to ON for 1 scan time. This instruction is used to detect the input changing from ON to OFF.

Execution condition:

Input	Operation	Output
OFF	When the input at last scan is OFF, sets A to OFF	
	When the input at last scan is ON, sets A to ON	
ON	Sets device A to OFF	


Operand:

	Name			De	evice	е				R	egiste	er									Constant	Index
		Х	Y	В	S	Т.	C.	М	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
Α	Device		\checkmark		\checkmark			\checkmark														

Example:

×00000	B00101
T-X0	T-B101

B0101 comes ON for only 1 scan when X0000 is changed from ON to OFF.

Instruction-12: MOV WORD

Expression:

Input -[A MOV B]-

Function:

When the input is ON, the data of A is stored in B.

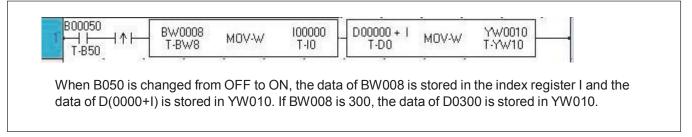
Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

Operand:

	Name			De	evice	Э				R	egiste	er									Constant	Index
		Х	Y	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
Α	Source								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark		\checkmark	\checkmark	\checkmark	
В	Destination									\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	

Example-1: (constant to register)


B00010	12345	MOV-W	D00100 T-D100	
	N. a cons	stant data	(12345) is s	d in D0100 and the output is turned ON.

Example-2: (register to register)

B00010	SW0030	MOVUM	BW0045	8
T-B10	T-SW30	MOV-W	T-BW45	

When B00010 is ON, the data of SW030 is stored in BW045 and the output is turned ON. If SW030 is 500, the data 500 is stored in BW045.

Example-3: (index modification)

Instruction-13: MOV DWord

Expression:

I.A MOV B+1.B

Function:

When the input is ON, the double-word (32-bit) data of A+1×A is stored in double-word register B+1×B. The data range is -2147483648 to 2147483647.

Execution condition:

Input	Operation	(Output
OFF	No execution	0	OFF
ON	Execution	C	ON

Operand:

	Name			De	vice	Э				R	egiste	er									Constant	Index
		Х	Y	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
Α	Source								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
В	Destination									\checkmark		\checkmark	\checkmark	\checkmark		\checkmark						

Example:

B00011 [13		
	D00100	MOV-DW	BW0016			
T-B11	T-D100	MOV-DW	T-BW16			22

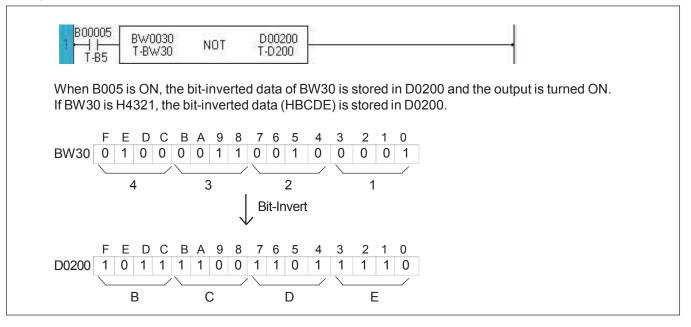
When B011 is ON, a double-word data of D0101×D0100 is stored in BW17×BW16 and the output is turned ON. If D0101×D0100 is 1234567, the data 1234567 is stored in BW17×BW16.

Instruction-14: Invert Transfer

Expression:

Input -[A NOT B]-

Function:


When the input is ON, the bit-inverted data of A is stored in B.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

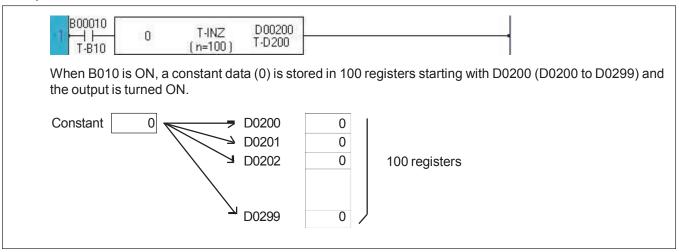
Operand:

	Name			De	evice	е				R	egiste	er									Constant	Index
		х	Y	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	К	MW	R		
Α	Source								\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
В	Destination											\checkmark	\checkmark		\checkmark		\checkmark		\checkmark	\checkmark		\checkmark

Instruction-15: Table Initialize

Expression:

Function:


When the input is ON, the data of A is stored in n registers starting with B. The allowable range of the table size n is 1 to 1024 words.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

Operand:

	Name			De	evice	е				R	egiste	er									Constant	Index
		Х	Y	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	ource								\checkmark	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		
n	Table Size																				1 - 1024	
В	Start of estination									\checkmark	\checkmark	V	\checkmark		\checkmark				\checkmark	\checkmark		

Instruction-16: Table Block Transfer

Expression:

Input –[A TMOV (n) B]– Output

Function:

When the input is ON, the data of n registers starting with A are transferred to n registers starting with B in a block. The allowable range of the table size n is 1 to 1024 words.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

Operand:

	Name			De	evice	Э				R	egiste	er									Constant	Index
		Х	Υ	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Start of Source								\checkmark					\checkmark								
n	Table Size																				1 - 1024	
В	Start of Destination									\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark		

) is ON, the da I the output is		egisters) are b	lock transferred to D1000 to
D0500	1111	D1000	1111	\mathbf{n}
D0501	2222	Block transfer D1001	2222	
D0502	3333	───> D1002	3333	10 registers
D0509	12345	D1009	12345	

Instruction-17: Table Invert Transfer

Expression:

Input –[A TNOT (n) B]– Output

Function:

When the input is ON, the data of n registers starting with A are bit-inverted and transferred to n registers starting with B in a block. The allowable range of the table size n is 1 to 1024 words.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

Operand:

	Name			De	vice	Э				R	egiste	er									Constant	Index
		Х	Υ	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Start of Source								\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark		
n	Table Size																				1 - 1024	
В	Start of Destination										\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark		

T-B10	D00600 T-D600	T-NOT D00((n=5) T-D8			1
When B01) is ON, the da	ata of D0600 to	D0604 (5 rec	uisters) are bit-in	verted and transferred to D0865 to
	d the output is			,,	
D0600	H00FF		D0865	HFF00	\mathbf{n}
D0601	H0000	Bit Invert &	D0866	HFFFF	
D0602	H1234	Transfer	D0867	HEDCB	5 registers
D0603	H5555	\longrightarrow	D0868	HAAAA	C C
D0604	H89AB		D0869	H7654	

Instruction-18: Data Exchange

Expression:

Input –[A XCHG B]– Output

Function:

When the input is ON, the data of A and the data of B is exchanged.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

Operand:

	Name			De	evice	е				R	egiste	er									Constant	Index
		Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Operation Data									\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		
В	Operation Data									\checkmark												

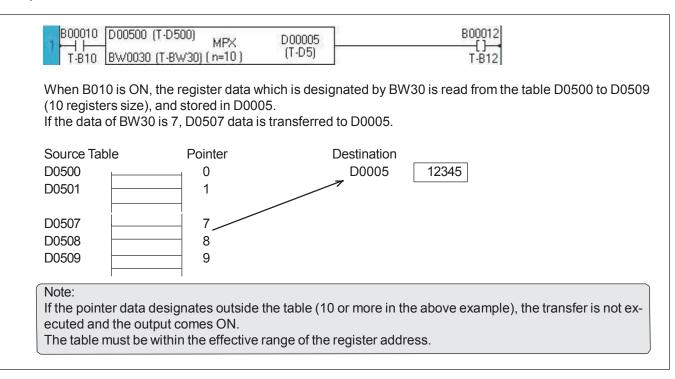
	1W0023 XCHG 1-BW23 XCHG	D00100 T-D100			
		BW23 and D0100 is e tion result is as follow	•	original data of BW23 is	3 23456 and
BW023	23456	7 BW023	291		
D0100	291	스 D0100	23456		
Before Op	eration	After Ope	eration		

Instruction-19: Multiplexer

Expression:

Input $-[A MPX(n) B \rightarrow C]$ Output

Function:


When the input is ON, the data of the register which is designated by B in the table, size n starting with A, is transferred to C.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Normal Execution	OFF
	Pointer over (no execution)	ON

Operand:

	Name			De	vice	Э				R	egiste	er									Constant	Index
		Х	Y	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Start of table								\checkmark				\checkmark	\checkmark								
n	Table Size																				1 - 64	
В	Pointer								\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	0 - 63	
С	Destination									\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		

Instruction-20: Demultiplexer

Expression:

Input –[A DMPX (n) $B \rightarrow C$]– Output

Function:

When the input is ON, the data of A is transferred to the register which is designated by B in the table, size n starting with C.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Normal Execution	OFF
	Pointer over (no execution)	ON

Operand:

	Name			De	vice	Э				R	egiste	er									Constant	Index
		Х	Υ	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
Α	Source								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		
n	Table Size																				1 - 64	
В	Pointer								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	0 - 63	
С	Start of table									\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark		

	0500 B00013 500) T-B13
When B011 is ON, the data of XW04 is trans D0500 to D0509 (10 registers size). If the data of BW30 is 8, XW04 data is transf	sferred to the register which is designated by BW30 in the table erred to D0508.
Source XW04 3210	Destination table Pointer D0500 0 D0501 1 0 D0507 7 D0508 3210 8
	D0509 9
Note: If the pointer data designates outside the tak ecuted and the output comes ON. The table must be within the effective range	ole (10 or more in the above example), the transfer is not ex- of the register address.

Instruction-21: Addition

Expression:

Input $-[A + B \rightarrow C]$ Output

Function:

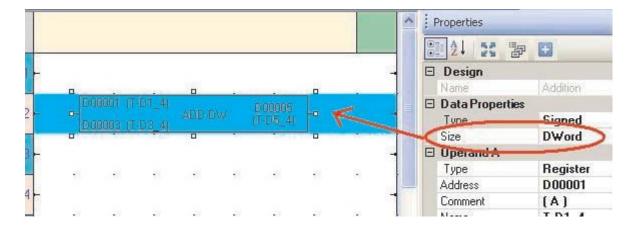
When the input is ON, the data of A and the data of B are added, and the result is stored in C. If the result is greater than 32767, the upper limit value 32767 is stored in C, and the output is turned ON. If the result is smaller than -32768, the lower limit value -32768 is stored in C, and the output is turned ON.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution (Normal)	OFF
	Execution (overflow or underflow occurred)	ON

Operand:

	Name			De	evice	е				R	egiste	er									Constant	Index
		Х	Υ	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
Α	Augend								\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
в	Addent								\checkmark													
С	Sum									\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark


B00005 1000 T-B5 D00100 (T-D100) ADD-W	D00110 (T-D110)	300010 T-B10
When B005 is ON, the data of D0100 a D0110. If the data of D0100 is 12345, the result		
D0100 12345 +	►D0110 13345	B0010 is OFF
If the data of D0100 is 32700, the result B010 is turned ON.	t exceeds the limit value, therefore	32767 is stored in D0110, and
D0100 32700 Ov Constant 1000	▶D0110 32767	B0010 is ON

When user select "Addition" function and place it in logic block, "Property" docker window occurs to the right side of the application window.

Where user can select "Addition" to "Double-word" addition from the Data Proprty selection tab as shown below:

F	Properties		×
•	2↓ <u>55</u> ≣	P 🔛	
Ξ	Design		
	Name	Addition	
E	Data Propertie	8	8
	Туре	Signed	
	Size	DWord	~
E	Operand A	Word	ann an sta
	Туре	DWord	
L	Address	L.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C	_
	Comment	(A)	
	Name	T-D1_4	
Ξ	Operand B		
	Туре	Register	
	Address	D00003	
	Comment	(B)	
	Name	T-D3_4	
Ξ	Operand C		
	Address	D00005	
	Comment	(Result)	
	Name	T-D5_4	

Thus by selcting "Size" type,"Addition" entry can be changed to "Double-word Addition" entry as shown below:

Instruction-22: Double-word Addition

Expression:

Input –[A+1.A D + B+1.B \rightarrow C+1.C]– Output

Function:

When the input is ON, the double-word data of A+1× A and B+1× B are added, and the result is stored in C+1× C. The data range is -2147483648 to 2147483647.

If the result is greater than 2147483647, the upper limit value 2147483647 is stored in C+1× C, and the output is turned ON. If the result is smaller than -2147483648, the lower limit value -2147483648 is stored in C+1× C, and the output is turned ON.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution (Normal)	OFF
	Execution (overflow or underflow occured)	ON

Operand:

	Name			De	evic	е				R	egiste	er									Constant	Index
		Х	Y	В	S	Т.	C.	Μ	XW	YW	ВW	SW	Т	С	D	I	J	Κ	MW	R		
Α	Augend									\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark	
В	Addent								\checkmark				\checkmark	\checkmark	\checkmark							
С	Sum									\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark		

B00005 D00010 (T-D10_4) 1	
stored in D0101×D0100.	and the constant data 100000 is added, and the result is ult 400000 is stored in D0101×D0100, and B010 is turned
D0011.D010 30000 Constant 10000	D0101.D0100 40000 B0010 is OFF

Instruction-23: Float Addition

Expression:

Input – $(A+1.A ADD-F B+1.B \rightarrow C+1.C)$ – Output

Function:

When the input is ON, the float data of A+1× A and B+1× B are added, and the result is stored in C+1× C. The data range is -3.4e+38 to +3.4e+38.

If the result is greater than 3.4e+38, the upper limit value is stored in C+1× C, and the output is turned ON. If the result is smaller than -3.4e+38, the lower limit value is stored in C+1× C, and the output is turned ON.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution (Normal)	OFF
	Execution (overflow or underflow occured)	ON

Operand:

	Name		Device						Register											Constant	Index	
		Х	Y	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	К	MW	R		
Α	Augend										\checkmark									\checkmark	\checkmark	
В	Addent										\checkmark				\checkmark					\checkmark	\checkmark	
С	Sum										\checkmark				\checkmark					\checkmark		

T-B5 300.2	0.0 D-F D00100 T-D100	0 B00010 []	
When B005 is ON, the float data stored in D0101×D0100. If the data of D0011×D0010 is 4			
(No overflow/underflow).			
Constant 300.2	+ [D0101.D0100 700.3	B0010 is OFF

Instruction-24: Subtraction

Expression:

Input $-[A - B \rightarrow C]$ Output

Function:

When the input is ON, the data of B is subtracted from the data of A, and the result is stored in C. If the result is greater than 32767, the upper limit value 32767 is stored in C, and the output is turned ON. If the result is smaller than -32768, the lower limit value -32768 is stored in C, and the output is turned ON.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution (Normal)	OFF
	Execution (overflow or underflow occured)	ON

Operand:

	Name			De	evice	е				Register											Constant	Index
		Х	Υ	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
Α	Minuend								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark
В	Subtrahend			-				-	\checkmark		\checkmark		\checkmark					\checkmark	\checkmark	\checkmark	\checkmark	
С	Difference										\checkmark	\checkmark					\checkmark	\checkmark	\checkmark	\checkmark		\checkmark

	000200 (T-D200) SI 2500	UB-W	BW0050 (T-BW50)			B00010 [] T-B10
BW50.	,					D0200, and the result is stored in 010 is turned OFF.
D0200 Constant	15000 2500		> [BW50 [12500	B0010 is OFF
If the data o and B010 is		, the result	is smaller	than the	e limit value, th	erefore -32768 is stored in BW50,
D0200 Constant	-31000		derflow F	BW50 [-32768	B0010 is ON

When user select "Subtraction" function and place it in logic block, "Property" docker window occurs to the right side of the application window.

Where user can select Size type to "Double-word" addition from the Data Proprty selection tab as shown below:

: F	Properties		×							
•	24 25 29	Đ								
	Design									
	Name	Subtraction								
	Data Properties									
	Туре	Signed								
	Size	Word	~							
Ξ	Operand A	Word								
	Туре	DWord								
	Address	1000001								
	Comment	(A)								
	Name	T-D1								
	Tag Index Type	None								
	Operand B									
	Туре	Register								
	Address	D00003								
	Comment	(B)								
	Name	T-D3								
	Tag Index Type	None								
Ξ	Operand C									
	Address	D00005								
	Comment	(Result)								
	Name	T-D5								
	Tag Index Type	None								

Also user can change "Type" of the data entry to "Signed", "Unsigned" or "Float" type.

_	instruction Propertie										
Ξ	Design										
	Name	Addition									
	Description	Adds data of A and B and									
	Execution Time	3.2 µs (Signed Word)									
	Execution Time Re	ti 1.64734 ms (Signed Wor									
Ð	Data Properties										
	Туре	Float 💊									
Ξ	Operand A	Unsigned									
1	Туре	Signed									
	Address	Float									
5	Comment	181									
	Name	T-D0_4									
Ξ	Operand B										
	Туре	Register									
	Address	D00002									
	Comment	(B)									
	Name	T-D2_4									
Ξ	Operand C										
	Address	D00004									
	Comment	(Result)									
	Name	T-D4 4									

Instruction-25: Double-Word Subtraction

Expression:

Input –[A+1.A D- B+1.B \rightarrow C+1.C]– Output

Function:

When the input is ON, the double-word data of $B+1 \times B$ is subtracted from $A+1 \times A$, and the result is stored in $C+1 \times C$. The data range is -2147483648 to 2147483647. If the result is greater than 2147483647, the upper limit value 2147483647 is stored in $C+1 \times C$, and the output is turned ON. If the result is smaller than -2147483648, the lower limit value -2147483648 is stored in

C+1× C, and the output is turned ON.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution (Normal)	OFF
	Execution (overflow or underflow occured)	ON

Operand:

	Name		Device							R	egiste	er									Constant	Index
		Х	Y	В	S	Т.	C.	М	XW	YW	BW	SW	т	С	D	I	J	Κ	MW	R		
A	Minuend								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark	\checkmark	\checkmark	
В	Subtrahend								\checkmark	\checkmark			\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	
С	Difference										\checkmark	\checkmark	\checkmark						\checkmark	\checkmark		

B00005 D00100 (T-D100_4) D00102 B00010 1 J BW0024 (T-BW24_4 (T-D102_4) T-B10
When B005 is ON, the double-word data of BW25×BW24 is subtracted from the double-word data of D0101×D0100, and the result is stored in D0103×D0102.
If the data of D0101×D0100 is 1580000 and the data of BW25×BW24 is 80000, the result 1500000 is stored in D0103×D0102, and B010 is turned OFF. (No overflow/underflow)
D0101.D0100 1580000 → D0103.D0102 1500000 B0010 is OFF BW25.BW24 80000

Instruction-26: Float Subtraction

Expression:

Input – A+1.A SUB-F B+1.B \rightarrow C+1.C – Output

Function:

When the input is ON, the double-word data of B+1× B is subtracted from A+1× A, and the result is stored in C+1× C. The data range is +/- 3.4e + 38. If the result is greater than +3.4e+38, the upper limit value is stored in C+1× C, and the

output is turned ON. If the result is smaller than -3.4e+38, the lower limit value is stored in C+1× C, and the output is turned ON.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution (Normal)	OFF
	Execution (overflow or underflow occurred)	ON

Operand:

	Name		Device Re							egiste	er					Constant	Index					
		Х	Y	В	s	T.	C.	М	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
Α	Minuend										\checkmark				\checkmark					\checkmark	\checkmark	
В	ubtrahend														\checkmark					\checkmark	\checkmark	
С	Difference										\checkmark				\checkmark					\checkmark		

0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 D00102 T-D102		0 B00010 [] T-B10
When B005 is ON, the float data of BW25 result is stored in D0103×D0102. If the data of D0101×D0100 is 700.12 and is stored in D0103×D0102, and B010 is tu	d the data of BV	/25×BW24 is 300.	02, the result 400.1
D0101.D0100 700.12 BW25.BW24 300.02	D0103.D0102	400.1	B0010 is OFF

Instruction-27: Multiplication

Expression:

Input –[A * B →C+1.C]– Output

Function:

When the input is ON, the data of A is multiplied by the data of B, and the result is stored in double length register C+1×C.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

Operand:

Name		Device							Register												Index
	Х	Υ	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A Multiplicand								\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	
B Multiplier								\checkmark				\checkmark	\checkmark	\checkmark							
CProduct									\checkmark		\checkmark	\checkmark	\checkmark		\checkmark						

	00050 (T-D50) MUL-W w0050 (T-BW50)	D00100 (T-D100)		
length registe	er D0101×D0100 (upper	0 is multiplied by the data o ⁻ 16-bit in D0101 and lower data of BW05 is 20, the res	16-bit in D0100).	e result is stored in double- d in D0101×D0100.
D0050	1500 X -	→ D0101.D0100	30000	
BW0050		D010 D010		(upper 16-bit) (lower 16-bit)

When user select "Multiplication" function and place it in logic block,"Property" docker window occurs to the right side of the application window.

Where user can select data type to "Signed", "Unsigned" or "Float" muhiplication from the Data Proprty selection tab as shown below:

Instruction Properties	
	+
B Design	
Name	Mu!t!p!ication
Desctiptton	Multiplies data of A and B
Execution Time	2.0s.(Si nedW01dl
Execution Time Ret	 2.2 ms (SignedWotd)
B Data Properties	
Туре	Signed 🛛
B OperandA	Unsigned
Туре	Signed
Addtess	Float
Comment	101
Name	T-00
Tag Index Type	None
B Operand 8	
Туре	Register
Addtess	000002
Comment	8
Name	T-02
TagIndex Type	None
B OperandC	
Addtess	000004
Comment	Result)
Name	T-04
TagIndex Type	None
-	

Instruction-28: Unsigned Multiplication

Expression:

Input –[A U* B—→C+1.C]– Output

Function:

When the input is ON, the unsigned data of A and B are multiplied, and the result is stored in double-length register C+1×C. The data range of A and B is 0 to 65535 (unsigned 16-bit data).

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

Operand:

Name	Device							R	egiste		Constant	Index									
	Х	Υ	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A Multiplicand								\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	
B Multiplier								\checkmark		\checkmark	\checkmark	\checkmark	\checkmark								
CProduct									\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark

B00010 D00050 (T-D50) 1 → → T-B10 BW0005 (T-BW5) MUL-W	D00100 (T-D100)	
When B010 is ON, the data of D0050 length register D0101×D0100 (upper If the data of D0050 is 52500 and the	16-bit in D0101 and lower 16-bi	
D0050 52500 X -	► D0101.D0100	1575000
Note: This instruction handles the regi	ister data as unsigned integer.	

Instruction-29: Float Multiplication

Expression:

Input $-[A+1.A MUL-F B+1.B \rightarrow C+1.C]$ Output

Function:

When the input is ON, the data of A is multiplied by the data of B, and the result is stored in double length register C+1×C.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

Operand:

Name			De	vice	Э			Register												Constant	Index
	Х	Y	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A Multiplicand														\checkmark					\checkmark	\checkmark	
B Multiplier										\checkmark				\checkmark					\checkmark	\checkmark	
CProduct														\checkmark					\checkmark		

	0.0 00050 (T-D50_) 0.0 MUL-F w0050 (T-8w50)	0.0 D00100 T-D100		080	
is stored in double-ler	is ON, the data of D005 ngth register D0101×D0 D0050 x D0051 is 1.1 a)100 (upper 16	-bit in D0101 and	l lower 16-bit in D0100).	
D0050 BW0050	1.1 X		D0101.D0100	5.5	

Instruction-31: Division

Expression:

Input $-[A / B \longrightarrow C]$ Output

Function:

When the input is ON, the data of A is divided by the data of B, and the quotient is stored in C and the remainder in C+1.

Execution condition:

Input	Operation	Output	ERF
OFF	No execution	OFF	-
ON	Normal execution (B \neq 0)	ON	-
	No execution $(B = 0)$	OFF	-

Operand:

	Name	ame Device								R	egiste	er								Constant	Index	
		Х	Y	В	S	Τ.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Dividend								\checkmark			\checkmark				\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
В	Divisor								\checkmark		\checkmark					\checkmark		\checkmark		\checkmark	\checkmark	\checkmark
С	Quotient										\checkmark					\checkmark		\checkmark		\checkmark		\checkmark

Example	
	1 B00005 BW0022 (T-BW22) T-B5 325 DIV-W BW0027 (T-BW27)
E	When B005 is ON, the data of BW22 is divided by the constant data 325, and the quotient is stored in BW27 and the remainder is stored in BW28. If the data of BW22 is 2894, the quotient 8 is stored in BW27 and the remainder 294 is stored in BW28.
-	BW022 2894 ÷ → BW027 8 (quotient) Constant 325 BW028 294 (remainder)
1	 Note If divisor (operand B) is 0, ERF (instruction error flag = S0034) is set to ON. The ERF (S0034) can be reset to OFF by user program, e.g. Ä[RST S0034]Ä. If the index register K is used as operand C, the remainder is ignored. If operand A is -32768 and operand B is -1, the data -32768 is stored in C and 0 is stored in C+1.

When user select "Division" function and place it in logic block, "Property" dockerwindow occurs to the right side of the application window.

Where user can select Data type as "Signed", "Unsigned" dwision or "Fioat" division from the Data Proprty selection tab as shown below:

1 Instruction Propertie	es xJ
ua	
El Design	
Name	D•v•s1on
Descn tion	[•Mdes_at.:olbl' B, an
Executron Trroe	9.5 s ISigned'A/ordl
Execution TrmeReto	21 ros (SrgnedWordl
EI DataProperties	
Туре	Signed 🛛 💟
El OperandA	Unsigned
Туре	Signed
Address	Float
Comment	TAT
Name	T-00
Tag Index Type	None
EI Operand 8	
Туре	Register
Address	000002
Comment	8
Name	T-02
Tag Index Type	None
EI Operand C	
Address	000004
Comment	Result
Name	T-04
Tag Index Type	None

Instruction-32: Unsigned Division

Expression:

Input $-[A U/B \rightarrow C]$ Output

Function:

When the input is ON, the unsigned data of A is divided by the unsigned data of B, and the quotient is stored in C and the remainder in C+1. The data range of A and B is 0 to 65535 (unsigned 16-bit data).

Execution condition:

Input	Operation	Output	ERF
OFF	No execution	OFF	-
ON	Normal execution (B \neq 0)	ON	-
	No execution (B = 0)	OFF	Set

Operand:

	Name			R	egiste	er								Constant	Index							
		Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Dividend								\checkmark		\checkmark	\checkmark					\checkmark		\checkmark	\checkmark		\checkmark
В	Divisor								\checkmark		\checkmark	\checkmark					\checkmark		\checkmark	\checkmark		\checkmark
С	Quotient									\checkmark	\checkmark								\checkmark	\checkmark		\checkmark

Example:
B00010 D00030 (T-D30) T-B10 300 DIV-W (T-D50)
When B010 is ON, the data of D0030 is divided by the constant data 300, and the quotient is stored in D0050 and the remainder is stored in D0051. If the data of D0030 is 54321, the quotient 181 is stored in D0050 and the remainder 21 is stored in D0051.
D0030 54321 ∴ → BW027 Constant 300 BW028 21 (remainder)
 Note If divisor (operand B) is 0, ERF (instruction error flag = S0034) is set to ON. The ERF (S0034) can be reset to OFF by user program, e.g[RST S0034] If the index register K is used as operand C, the remainder is ignored. This instruction handles the register data as unsigned integer.

Instruction-33: Unsigned Double / Single Division

Expression:

Input $-[A+1.A / B \rightarrow C]$ Output

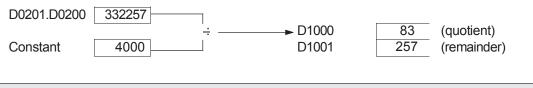
the instruction error flag (ERF = S051) is set to ON.

Function:

When the input is ON, the double-word data of A+1× A is divided by the data of B, and the quotient is stored in C and the remainder in C+1. The data range of A+1× A is 0 to 4294967295, and the data range of B and C is 0 to 65535. If the quotient is greater than 65535 (overflow), the limit value 65535 is stored in C, 0 is stored in C+1, and

Execution condition:

Input	Operation	Output	ERF
OFF	No execution	OFF	-
ON	Normal execution (B 7 0)	ON	-
	Overflow (B ≠ 0)	ON	Set
	No execution (B = 0)	OFF	Set


Operand:

	Name			De	evice	е				R	egiste				Constant	Index						
		Х	Υ	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Dividend								\checkmark	\checkmark	\checkmark	\checkmark							\checkmark	\checkmark		
В	Divisor								\checkmark	\checkmark	\checkmark	\checkmark							\checkmark	\checkmark	\checkmark	
С	Quotient										\checkmark	\checkmark							\checkmark	\checkmark		

Example:

B00010	D00200 (T-D200_4)	D01000	B00014
T-B10	4000 DIV-DW	(T-D1000_4)	T-B14

When B010 is ON, the double-word data of D0201×D0200 is divided by the constant data 4000, and the quotient is stored in D1000 and the remainder is stored in D1001. If the data of D0201×D0200 is 332257, the quotient 83 is stored in D1000 and the remainder 257 is stored in D1001.

Note

- If divisor (operand B) is 0, ERF (instruction error flag = S051) is set to ON. The ERF (S051) can be reset to OFF by user program, e.g. -[RST S051]-.
 If the index register K is used as operand C, the remainder is ignored.
- This instruction handles the register data as unsigned integer.
- I his instruction handles the register data as unsigned integer.

Instruction-34: Float Division

Expression:

Input _{ A+1.A DIV-F B+1.B—+C+1.C]— Output

Function:

When the input is ON, the double-word data of A+1×A is divided by the data of B+1xB, and the result is stored in C.1+C. The data range of A, B and C is 3.4e+38 to 3.4e-38. If the result is greater than 3.4e+38 (overflow), the limit value 3.4e+38 is stored in C.1+C, and the instruction error flag (ERF = S034) is set to ON.

Execution condition:

Input	Operation	Output	ERF
OFF	No execution	OFF	-
ON	Normal execution (B 7 0)	ON	-
	Overflow (B ≠ 0)	ON	Set
	No execution (B = 0)	OFF	Set

Operand:

	Name			De	evic	е				R	egiste	er									Constant	Index
		Х	Υ	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Dividend										\checkmark				\checkmark					\checkmark	\checkmark	
В	Divisor										\checkmark				\checkmark					\checkmark	\checkmark	
С	Quotient										\checkmark				\checkmark					\checkmark		

Example:				
1	0 0010 D00200 (T-D200) -B10 10.0	DIV-F DO	1.0 2004 24_	B00014 T-B14
store	d in D1000xD1001.		D0200 is divided by the c Ilt is stored in D1000xD10	onstant data 10.0, and the result is
D020 Cons	1.D0200 <u>55.5</u> tant <u>10.0</u>	<u>.</u>	⊳ D1000xD1001	5.55
Note	If divisor (operand B		truction error flag = S034) F by user program, e.g	

Instruction-35: Addition with Carry

Expression:

Input $-[A + C B \rightarrow C]$ Output

Function:

When the input is ON, the data of A, B and the carry flag (CF = S0) are added, and the result is stored in C. If carry is occurred in the operation, the carry flag is set to ON. If the result is greater than 32767 or smaller than -32768, the output is turned ON.

This instruction is used to perform unsigned addition or double-length addition.

Execution condition:

Input	Op	peration		Output	CF
OFF	No executi	on		OFF	-
ON	Execution	Normal	No Carry	OFF	Reset
			Carry Occured	OFF	Set
		Overflow /	No carry	ON	Reset
		Underflow	Carry Occured	ON	Set

Operand:

	Name			De	vic	е				R	egiste	er									Constant	Index
		Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
Α	Augend								\checkmark		\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
В	Addend								\checkmark		\checkmark	\checkmark				\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
С	Sum								\checkmark		\checkmark	\checkmark							\checkmark	\checkmark		

Example:

B00013	1000100 (T-D100)	D00200			
T-B13	BW0020 (T-BW20)	(T-D200)	1	2223	100
	D00101 (T-D101)	D00201			
	4 ADDC-W BW0021 (T-BW21)	(T-D201)	and the second	XSIEX	230

When B013 is ON, the data of double-length registers D0100×D0101 and BW20×BW21 are added, and the result is stored in D0201×D0200. The RSTC is a instruction to reset the carry flag before starting the calculation.

If the data of D0100×D0101 is 12345678 and BW20×BW21 is 54322, the result 12400000 is stored in D0201×D0200.

Instruction-36: Subtraction with Carry

Expression:

Input $-[A -C B \rightarrow C]$ Output

Function:

When the input is ON, the data of B and the carry flag (CF = S0) are subtracted from A, and the result is stored in C. If borrow is occurred in the operation, the carry flag is set to ON. If the result is greater than 32767 or smaller than -32768, the output is turned ON.

This instruction is used to perform unsigned subtraction or double-length subtraction.

Execution condition:

Inp	put	Op	eration		Output	CF
OF	FF	No execution	on		OFF	-
ON	N	Execution	Normal	No Borrow	OFF	Reset
				Borrow Occured	OFF	Set
			Overflow /	No Borrow	ON	Reset
			Underflow	Borrow Occured	ON	Set

Operand:

	Name			De	vice	е				R	egiste	er									Constant	Index
		Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
Α	Minuend								\checkmark	\checkmark	\checkmark		\checkmark		\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
В	Subtrahend								\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark
С	Difference									\checkmark	\checkmark	\checkmark			\checkmark				\checkmark	\checkmark		\checkmark

B00013 H H (RSTO) T-B13 BW0022 (T-BW	SUBC-W (T.D.210)	
L D00201 (T-D20 BW0023 (T-BW	SUBC-W (T.D.211)	
D0201×D0200, and the result is before starting the calculation.	stored in D0211×D0210. The R	V22 is subtracted from the data of STC is a instruction to reset the carry flag 2340000, the result 5678 is stored in
D0200.D0201 12345678 BW22.BW23 12340000	D0210.D0211	5678

Instruction-37: Increment

Expression:

|--|--|

Function:

When the input is ON, the data of A is increased by 1 and stored in A.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

Operand:

	Name			De	evice	е				R	egiste	er									Constant	Index
		Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Operation Data									V	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark

	004 ├───│↑ ├── INC ×4	D0050 T-D50	
At the ri D0050.	sing edge of X00	4 changes from OFF t	to ON, the data of D0050 is increased by 1 and stored in
If the da	ata of D0050 is 75	0 before the execution	on, it will be 751 after the execution.
D0050		D0050	
750	+1	▶ 751	
	s no limit value for '68 after the execu		en the data of operand A is 32767 before the execution, it v

Instruction-38: Decrement

Expression:

Input –[-1 A] – Output

Function:

When the input is ON, the data of A is decreased by 1 and stored in A.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

Operand:

	Name			De	vice	е				R	egiste	er									Constant	Index
		Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	peration Data									\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark

	DCR D0050	
At the rising ec D0050.	lge of X005 changes from OFF to	ON, the data of D0050 is decreased by 1 and stored in
	0050 is 1022 before the execution	n, it will be 1021 after the execution.
D0050	D0050	
1022 -1 -	▶ 1021	
Note		the data of operand A is -32768 before the execution,

Instruction-39: Log (10)

Symbol

Expression:

(A) Log 10 (B) -

Function:

This instruction calculates the Log to the base 10 value of the Operand A.1+A and stores the result in Operand in B.1+B. Both the operands are float.

ution con		
Input	Operation	Output
OFF	No execution	OFF
ON	Normal Execution	ON

)pe	rand:																					
	Name			De	vice	е				R	egiste	er									Constant	Index
		Х	Y	В	S	T.	C.	М	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Source										\checkmark				\checkmark					\checkmark	\checkmark	\checkmark
В	Destination										\checkmark											\checkmark

Example :

When B020 is ON, the data of D0100.D0101 is calculated as Log to the base 10, and the result is stored in BW020.BW021

For example, if D0100.D0101 is having value 100, then its Log to the base 10, value 2 will be stored in BW020.BW021.

D0100.D0101	Log 10	BW020.BW021
100		2

Instruction-40: Log (e)

Symbol		
Expression:	- (A) Loge (B)-	

Function:

This instruction calculates the Log to the base e value of the Operand A.1+A and stores the result in Operand in B.1+B. Both the operands are float.

out	Operation	Output
OFF	No execution	OFF
ON	Normal Execution	ON

	Name			De	vice	Э				R	egiste	er									Constant	Index
		Х	Y	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Source										\checkmark				\checkmark						\checkmark	\checkmark
В	Destination																					

Example :

When B020 is ON, the data of D0100.D0101 is calculated as Log to the base "e", and the result is stored in BW020.BW021.

For example, if D0100.D0101 is having value 10, then its Log to the base "e", value 2.3026 will be stored in BW020.BW021.

D0100.D0101	Log e	BW020.BW021
10		2.3026

Instruction-41: Antilog (10)

Symbol		
Expression:	(A) Antilog 10 (B)	

Function:

This instruction calculates the Antilog to the base 10 value of the Operand A.1+A and stores the result in Operand in B.1+B. Both the operands are float.

ecution con	dition:	
Input	Operation	Output
OFF	No execution	OFF
ON	Normal Execution	ON

)pe	rand:																					
	Name			De	vic	е				R	egiste	er									Constant	Index
		Х	Y	В	s	T.	C.	М	XW	YW	BW	SW	Т	С	D	I	J	К	MW	R		
Α	Source										\checkmark										\checkmark	\checkmark
В	Destination																					\checkmark

Example :

When B020 is ON, the data of D0100.D0101 is calculated as Antilog to the base "10", and the result is stored in BW020.BW021.

For example, if D0100.D0101 is having value 2, then its Antilog to the base "10", value 100 will be stored in BW020.BW021.

D0100.D0101	Antilog 10	BW020.BW021
2		100

Instruction-42: Antilog (e)

Symbol		
Expression:	- (A) Antilog e (B)-	

Function:

This instruction calculates the Antilog to the base "e" value of the Operand A.1+A and stores the result in Operand in B.1+B. Both the operands are float.

ution con	dition:	
Input	Operation	Output
OFF	No execution	OFF
ON	Normal Execution	ON

Эре	rand:																					
	Name			De	vice	Э			Register										Constant	Index		
		Х	Y	В	S	Т.	C.	М	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
Α	Source										\checkmark				\checkmark					\checkmark	\checkmark	\checkmark
В	Destination																					\checkmark

Example :

1	0 B00020	0.0 D00100	Autilea a	0.0 BW0020	
1	T-B20	T-D100	Antilog e	T-BW20	

When B020 is ON, the data of D0100.D0101 is calculated as Antilog to the base "e", and the result is stored in BW020.BW021.

For example, if D0100.D0101 is having value 1, then its Antilog to the base "e", value 2.7183 will be stored in BW020.BW021.

D0100.D0101	Antilog e	BW020.BW021
1		2.7183

Instruction-43: Square Root

Symbol					
Expression:	-[A	Square root	в⊢		

Function:

This instruction calculates the Square root value of the Operand A.1+A and stores the result in Operand in B.1+B. Both the operands are float. If source value is negative, the result will be "0" and output will be turned OFF.

ution cond	dition:	
Input	Operation	Output
OFF	No execution	OFF
ON	Normal Execution Source value is negative (No execution)	ON OFF

per	and:																					
	Name			De	vic	е				Register									Constant	Index		
		Х	Y	В	S	Τ.	C.	М	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
Α	Source														\checkmark					\checkmark	\checkmark	\checkmark
B	Destination																					\checkmark

Example :

When B020 is ON, the square root of the flaoting point value in D100.D101 is aclculated, and the result is stored in BW020.BW021.

For example, if D0100.D0101 is having value 25, then its square root value 5.0 will be stored in BW020.BW021.

D0100.D0101	Square root	BW020.BW021
25.0		5.0

Instruction-44: Greater Than

Expression:

La se d		0.1.1
Input	-[A > B	– Output

Function:

When the input is ON, the data of A and the data of B are compared, and if A is greater than B, the output is turned ON.

Execution condition:

Input	Opera	ation	Output
OFF	No execution		OFF
ON	Execution	A > B	ON
		A <u><</u> B	OFF

Operand:

	Name			De	evice	Э				R	egiste	er									Constant	Index
	-	Х	Y	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Compared Data								V	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
В	Reference Data								V	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark

	00125 -D125	>	2500	B00020 [] T-B20
greater than 25	00, R002	0 is turned	ON.	mpared with the constant data 2500, and if the data of D0125 is result is true. Consequently, B0020 is turned ON.
D0125 3000	>	Constant	25	00 B0020 is ON
If the data of DO)125 is -1	00, the con	nparison	result is false. Consequently, B0005 is turned OFF.
D0125 -100	<u><</u>	Constant	25	00 B0020 is OFF
Note This instruction	deals wit	th the data	as signe	d integer (-32768 to 32767).

Instruction-45: Double Word Greater Than

Expression:

D> B]- Output

Function:

When the input is ON, the double-word data of A+1× A and B+1× B are compared, and if A+1× A is greater than B+1× B, the output is turned ON.

Execution condition:

Input	Oper	ation	C)utput
OFF	No execution		C)FF
ON	Execution	A+1.A > B+1.B	C	N
		A+1.A <u><</u> B+1.B	C)FF

Operand:

	Name			De	vice	Э				R	egiste	er									Constant	Index
	-	Х	Y	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Compared Data								V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	
В	Reference Data								\checkmark				\checkmark	\checkmark	\checkmark							

B00010 D00100 T-B10 T-D100_4 >	200000	B00014 []
D0101×D0100 is greater than	200000, B014 is turr	empared with the constant data 200000, and if the data on ned ON. rison result is true. Consequently, B014 is turned ON.
D0101.D0100 250000	> Constan	E 200000 ► B0014 is ON
If the data of D0101×D0100 is	-100, the compariso	on result is false. Consequently, B014 is turned OFF.
D0101.D0100 -100	<u><</u> Constan	200000 → B0014 is OFF
Note This instruction deals with the o	data as double word	integer (-2147483648 to 2147483648).

When user select "Double Word greater Than" function and place it in logic block, "Property" docker window occurs to the right side of the application window; where user can select "Size" Proprty and change "Word" to "DWord" as shown below:

•	2↓ 53 ₽	E						
Ξ	Design							
	Name	Greater than						
	Description	Turns ON output if A is gre						
	Execution Time	2.4 µs (Signed word)						
	Execution Time Ret	1.0975 ms (Signed Word)						
Ξ	Data Properties							
	Type	Signed						
ſ	Size	DWord						
E	Operand A	Word						
	Туре	DWord						
5	Address	000000						
	Comment	(A)						
	Name	T-D0_4						
Ξ	Operand B							
	Туре	Register						
	Address	D00002						
	Comment	(B)						
	Name	T-D2_4						

Then by selecting "Size" property entry can be changed to "Signed", "Unsigned" or "Float" as shown below:

I	nstruction Propertie	s X
•	24 55 7	
Ξ	Design	
	Name	Greater than
	Description	Turns ON output if A is gre
	Execution Time	2.4 µs (Signed word)
	Execution Time Re	h 1.0975 ms (Signed Word)
7	Data Properties)
	Туре	Float 🛛 🚽
Ð	Operand A	Unsigned
	Туре	Signed
	Address	Float
L	Comment	(A)
	Name	T-D0_4
Ξ	Operand B	
	Туре	Register
	Address	D00002
	Comment	(B)
	Name	T-D2 4

Instruction-46: Unsigned Greater Than

Expression:

Function:

When the input is ON, the data of A and the data of B are compared, and if A is greater than B, the output is turned ON.

Execution condition:

Input	Oper	ation	Output
OFF	No execution		OFF
ON	Execution	A > B	ON
		A <u><</u> B	OFF

Operand:

	Name			De	evice	е				R	egiste	er									Constant	Index
	-	Х	Υ	В	S	Т.	C.	М	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Compared Data								V	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
В	Reference Data								\checkmark	V	\checkmark	\checkmark	\checkmark		\checkmark							

B00005 1	> 40000	B00020 [] T-B20
is greater than 40000,	B0020 is turned ON.	d with the constant data 40000, and if the data of D0125 It is true. Consequently, B0020 is turned ON.
D0125 52000 >	Constant 40000 -	→ B0020 is ON
If the data of D0125 is	21000, the comparison resu	It is false. Consequently, B0005 is turned OFF.
D0125 21000 <	Constant 40000 -	► B0020 is OFF
Note This instruction deals	with the data as unsigned int	eger (0 to 65535).

Instruction-47: Float Greater Than

Expression:

Input
$$-[A > B]$$
 — Output

Function:

When the input is ON, the float data of A+1× A and B+1× B are compared, and if A+1× A is greater than B+1× B, the output is turned ON.

Execution condition:

Input	Opera	ation	Out	put
OFF	No execution		OFF	F
ON	Execution	A+1.A > B+1.B	ON	
		A+1.A <u>≤</u> B+1.B	OFF	F

Operand:

	Name			De	evice	е				R	egiste	er									Constant	Index
		Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Compared Data										\checkmark				\checkmark					\checkmark	\checkmark	
В	Reference Data										\checkmark				\checkmark					\checkmark	\checkmark	

B00010 D00100 T-B10 T-D100_4 >	200000	B00014 []
data of D0101×D0100 is greate	er than 2000	00 is compared with the constant data 200000.467, and if the 00.467, B014 is turned ON. , the comparison result is true. Consequently, B014 is turned ON.
D0101.D0100 250000.123	> C	Constant 200000.467 B0014 is ON
If the data of D0101×D0100 is	-100, the co	mparison result is false. Consequently, B014 is turned OFF.
D0101.D0100 -100.012	<u><</u> C	Constant 200000.467 → B0014 is OFF
Note This instruction deals with the	data as floai	t (-3.4e + 38 to 3.4e + 38).

Instruction-48: Greater Than or Equal To

Expression:

Function:

When the input is ON, the data of A and the data of B are compared, and if A is greater than or equal to B, the output is turned ON.

Execution condition:

Input	Opera	ation	Output
OFF	No execution		OFF
ON	Execution	A <u>></u> B	ON
		A < B	OFF

Operand:

	Name			De	vice	е				R	egiste	er									Constant	Index
	-	Х	Y	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Compared Data								\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							
В	Reference Data								\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							

B00005 D00125 T-B5 T-D125	>=	D00020 T-D20	B00020 [] T-B20
greater than or equal to	o the data 3000 and	a of D0020, E d that of D002	mpared with the data of D0020, and if the data of D0125 is 8020 is turned ON. 20 is 3000, the comparison result is true.
D0125 3000	<u>></u>	D0020 30	00 → B020 is ON
If the data of D0125 is turned OFF.	-1500 an	nd that of D00	20 is 0, the comparison result is false. Consequently, B020 is
D0125 -1500	<	D0020)► B020 is OFF
Note This instruction deals v	vith the d	lata as signed	d integer (-32768 to 32767).

Instruction-49: Double Word Greater Than or Equal To

Expression:

Function:

When the input is ON, the data of A+1 X A and the data of B+1 X B are compared, and if A+1.A is greater than or equal to B+1.B, the output is turned ON.

Execution condition:

Input	Opera	ation	O	utput
OFF	No execution		OI	FF
ON	Execution	A+1.A <u>></u> B+1.B	OI	N
		A+1.A < B+1.B	OI	FF

Operand:

	Name			De	vice	е				R	egiste	er									Constant	Index
		Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Compared Data								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark	\checkmark	\checkmark	
В	Reference Data								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark	\checkmark	\checkmark	

B00010 D00100 →	D00250 T-D250_4	B00014 [] T-B14
D0251×D0250, and if the data is turned ON.	of D0101×D0100 is	1×D0100 is compared with the double-word data of s greater than or equal to the data of D0251×D0250, B01 1×D0250 is 200000, B014 is turned ON.
D0101.D100 250000	<u>></u> D0251.[D0250 200000 → B014 is ON
If the data of D0101xD100 is - Consequently, B014 is turned		251xD0250 is 0, the comparison result is false.
D0101.D0100 -100	< D0251.[0 B014 is OFF
Note This instruction deals with the	data as double wor	d integer (-2147483648 to 2147483648).

Instruction-50: Unsigned Greater Than or Equal To

Expression:

Function:

When the input is ON, the data of A and the data of B are compared, and if A is greater than or equal to B, the output is turned ON.

Execution condition:

Input	Oper	ation	Output
OFF	No execution		OFF
ON	Execution	A <u>></u> B	ON
		A < B	OFF

Operand:

Name				De	vice	Э				R	egiste	er									Constant	Index
		Х	Υ	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A Compare Data	ed								\checkmark		\checkmark	\checkmark	\checkmark		\checkmark							
B Reference Data	ce								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark							

B00005 D00125 T-B5 T-D125	>=	D00020 B00020 []- T-D20 T-B20	
greater than or equal	to the data s 40000 ar	D0125 is compared with the data of D0020, and if the data of D0125 of D0020, B020 is turned ON. d that of D0020 is 40000, the comparison result is true. N.	is
D0125 40000	<u>></u>	D0020 40000 → B020 is ON	
If the data of D0125 is B020 is turned OFF.	s 15000 ar	d that of D0020 is 20000, the comparison result is false. Consequer	ıtly,
D0125 15000	<	D0020 20000 → B020 is OFF	
Note This instruction deals	with the d	ata as unsigned integer (0 to 65535).	

Instruction-51: Float Greater Than or Equal To

Expression:

Function:

When the input is ON, the float data of A and the float data of B are compared, and if A is greater than or equal to B, the output is turned ON.

Execution condition:

Input	Oper	ation	Output
OFF	No execution		OFF
ON	Execution	A <u>></u> B	ON
		A < B	OFF

Operand:

	Name			De	vice	Э				R	egiste	er									Constant	Index
		Х	Υ	В	S	Т.	C.	М	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A Co Da	ompared ata										\checkmark				\checkmark					\checkmark	\checkmark	
	eference Data										\checkmark				\checkmark					\checkmark	\checkmark	

B00010 H T-B10	D00100 T-D100_4 >=	D00250 T-D250_4]	B00014 [] T-B14	
D0251×D025 is turned ON	50, and if the data	of D0101×D01	00 is greater than o	mpared with the double-word data of or equal to the data of D0251×D0250, B014 s 200000.123, B014 is turned ON.	4
D0101.D100	250000.123		251.D0250	200000.123	
	D100 is -100.467 a y, B014 is turned (251xD0250 is 0.123	3, the comparison result is false.	
D0101.D0100	-100.467	< D02	251.D0250	0.123	

Instruction-52: Equal

Expression:

Input –[A = B]– Output

Function:

When the input is ON, the data of A and the data of B are compared, and if A is equal to B, the output is turned ON.

Execution condition:

Input	Oper	ation	Output
OFF	No execution		OFF
ON	Execution	A = B	ON
		A # B	OFF

Operand:

	Name			De	evic	е				R	egiste	er									Constant	Index
		Х	Y	В	S	Τ.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	ompared Data								\checkmark	\checkmark	\checkmark	V	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	V	\checkmark
BI	eference Data								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark							

	1125 125 =	D00030 T-D30	B00020 [] T-B20
When B0005 is to the data of D0			mpared with the data of D0030, and if the data of D0125 is equal
If the data of D0 Consequently, B			20 is 3000, the comparison result is true.
D0125 3000	= D0	030 3000 —	— ► B020 is ON
If the data of D0 ⁻ turned OFF.	125 is -150	0 and that of D00	020 is 0, the comparison result is false. Consequently, B020 is
D0125 -1500	≠ D0	030 0 —	—► B020 is OFF
Note This instruction of	deals with t	ne data as signe	d integer (-32768 to 32767).

Instruction-53: Double Word Equal

Expression:

Input –[A D= B]– Output

Function:

When the input is ON, the data of A+1.A and the data of B+1.B are compared, and if A+1.A is equal to B+1.B, the output is turned ON.

Execution condition:

Input	Oper	ation	Output
OFF	No execution		OFF
ON	Execution	A+1.A = B+1.B	ON
		A+1.A # B+1.B	OFF

Operand:

	Name			De	evic	е				R	egiste	er									Constant	Index
	-	Х	Y	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Compared Data								\checkmark	\checkmark	\checkmark	\checkmark			\checkmark				\checkmark			
BI	Reference Data								\checkmark				\checkmark	\checkmark	\checkmark							

$1 \begin{array}{c c} B00010 \\ \hline D00100 \\ \hline T-D100_4 \end{array} = \begin{array}{c} D00250 \\ \hline T-D250_4 \end{array} \qquad \begin{array}{c} B00014 \\ \hline \\ \hline T-B14 \end{array}$
When B010 is ON, the double-word data of D0101×D0100 is compared with the double-word data of D0251×D0250, and if the data of D0101×D0100 is equal to the data of D0251×D0250, B014 is turned ON.
If the data of D0101XD0100 is 250000 and that of D0251XD0250 is 250000, the comparison result is true. Consequently, B014 is turned ON.
D0101.D0100 250000 = D0251.D0250 250000
If the data of D0101x D0100 is -100 and that of D0251xD0250 is 0, the comparison result is false. Consequently, B014 is turned OFF.
D0101.D0100100 ≠ D0251.D0250 0
Note This instruction deals with the data as double word integer (-2147483648 to 2147483648).

Instruction-54: Float Equal

Expression:

Input –[A D= B]– Output

Function:

When the input is ON, the float data of A+1.A and the float data of B+1.B are compared, and if A+1.A is equal to B+1.B, the output is turned ON.

Execution condition:

Input	Oper	ation	Output
OFF	No execution		OFF
ON	Execution	A+1.A = B+1.B	ON
		A+1.A # B+1.B	OFF

Operand:

	Name			De	vic	е				R	egiste	er									Constant	Index
	-	Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Compared Data										\checkmark				\checkmark					\checkmark	V	
В	Reference Data										\checkmark				\checkmark					\checkmark	\checkmark	

	D00100 -D100_4 =	D00250 T-D250_4	[0014]
	,		ompared with the float data al to the data of D0251×D0	
	0101XD0100 is 250 ently, B014 is turne		0251XD0250 is 250000.1	23, the comparison result is
D0101.D0100	250000.123	= D0251.D0250	250000.123	B014 is ON
	0101x D0100 is -10 B014 is turned OF		D0250 is 0, the comparise	on result is false.
D0101.D0100	-100.123 =	D0251.D0250	0.467	B014 is OFF

Instruction-55: Unsigned Equal

Expression:

Input –[A = B]– Output

Function:

When the input is ON, the data of A and the data of B are compared, and if A is equal to B, the output is turned ON.

Execution condition:

Input	Opera	ation	Output
OFF	No execution		OFF
ON	Execution	A = B	ON
		A 🛿 B	OFF

Operand:

Name			De	evic	е				R	egiste	er									Constant	Index
	Х	Y	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A Compared Data								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark
BIReference Data								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
When B0005 is ON, the data of D0125 is compared with the data of D0030, and if the data of D0125 is equal to the data of D0030, B020 is turned ON.
If the data of D0125 is 35000 and that of D0020 is 35000, the comparison result is true. Consequently, B020 is turned ON.
D0125 35000 = D0030 35000 → B020 is ON
If the data of D0125 is 1500 and that of D0020 is 4000, the comparison result is false. Consequently, B020 is turned OFF.
D0125 1500 ≠ D0030 4000 → B020 is OFF
Note This instruction deals with the data as unsigned integer (0 to 65535).

Instruction-56: Not equal

Expression:

Input _[A <> B]- Output

Function:

When the input is ON, the data of A and the data of B are compared, and if A is not equal to B, the output is turned ON.

Execution condition:

Input	Oper	ation	Output
OFF	No execution		OFF
ON	Execution	A # B	ON
		A = B	OFF

Operand:

Name			De	vice	Э				R	egiste	er									Constant	Index
	Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A (Compared Data								\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						
B Reference Data								\checkmark													

B00005 1 ⊣ ⊢ T-B5	- D00125	0		B00020 [] T-B20
	0005 is ON, the) is turned ON.		is compared with the const	ant data 0, and if the data of D0125 is not
If the data	a of D0125 is	10, the comparis	son result is true. Conseque	ntly, B0020 is turned ON.
D0125	10	+	Constant 0 —	→ B0020 is ON
If the data	a of D0125 is	0, the comparise	on result is false. Conseque	ntly, B0020 is turned OFF.
D0125	0	=	Constant 0 —	→ B0020 is OFF
Note This instr	ruction deals v	vith the data as s	signed integer (-32768 to 32	767).

Instruction-57: Double Word Not Equal

Expression:

Input _[A D<> B]- Output

Function:

When the input is ON, the data of A+1.A and the data of B+1.B are compared, and if A+1.A is not equal to B+1.B, the output is turned ON.

Execution condition:

Input	Opera	ation	Output
OFF	No execution		OFF
ON	Execution	A+1.A = B+1.B	ON
		A+1.A = B+1.B	OFF

Operand:

Name			De	vice	Э				R	egiste	er									Constant	Index
	Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A Compared Data								\checkmark				\checkmark	\checkmark	\checkmark							
B IReference Data								\checkmark				\checkmark	\checkmark	\checkmark							

1 B00010 D00 T-B10 T-D1	100 00_4 ↔	D00250 T-D250_4	B00014 [] T-B14
	nd if the data of D0		101×D0100 is compared with the double-word data of 0 is not equal to the data of D0251×D0250,
If the data of D010	01.D0100 is 25000	0 and D025	51xD0250 is 200000, B014 is turned ON.
D0101.D0100	250000	ŧ	D0251.D0250 250000 → B014 is ON
If the data of D010)1.D0100 is -100 a	and D0251.[D0250 is -100, B014 is turned OFF.
D0101.D0100	-100	=	D0251.D0250100 → B014 is OFF
Note This instruction de	als with the data a	as double wo	ord integer (-2147483648 to 2147483648).

Instruction-58: Unsigned Not Equal

Expression:

Input _[A <> B]- Output

Function:

When the input is ON, the data of A and the data of B are compared, and if A is not equal to B, the output is turned ON.

Execution condition:

Input	Oper	ation	(Output
OFF	No execution		(OFF
ON	Execution	A 🛿 B	(NC
		A = B	(OFF

Operand:

Name			De	vice	Э				R	egiste	er									Constant	Index
	Х	Υ	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A Compared Data								\checkmark													
BIReference Data								\checkmark		\checkmark	\checkmark	\checkmark	\checkmark								

1 ⊨ B00005 T-B5	D00125 T-D125	> 0	B00020 []
When B000 0, B0020 is		ta of D0125 i	s compared with the constant data 0, and if the data of D0125 is not
If the data o	f D0125 is 4100	0, the compa	arison result is true. Consequently, B0020 is turned ON.
D0125	41000	ŧ	Constant 0 → B0020 is ON
If the data o	f D0125 is 0, th	e compariso	n result is false. Consequently, B0020 is turned OFF.
D0125	0	=	Constant 0 B0020 is OFF
Note This instruct	tion deals with t	he data as u	nsigned integer (0 to 65535).

Instruction- 59: Float Not Equal

Expression:

Input _[A D<> B]- Output

Function:

When the input is ON, the float data of A+1.A and the float data of B+1.B are compared, and if A+1.A is not equal to B+1.B, the output is turned ON.

Execution condition:

Input	Oper	ation	Output
OFF	No execution		OFF
ON	Execution	A+1.A ≢ B+1.B	ON
		A+1.A = B+1.B	OFF

Operand:

Name			De	vice	Э				R	egiste	er									Constant	Index
	Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A Compared Data										\checkmark				\checkmark					\checkmark		
B Reference Data										\checkmark				\checkmark					\checkmark	\checkmark	

1 B00010 D001 T-B10 T-D10			B00014 [] T-B14
	d if the data of D0101×D		compared with the float data of ot equal to the data of D0251×D0250,
If the data of D010	1.D0100 is 250000 and	D0251xD0	0250 is 200000, B014 is turned ON.
D0101.D0100	250000.123	+	D0251.D0250 200000.467 → B014 is ON
If the data of D010	1.D0100 is -100 and D0	251.D025	0 is -100, B014 is turned OFF.
D0101.D0100	-100.123	=	D0251.D0250100.123 B014 is OFF

Instruction-60: Less than

Expression:

Input –[A < B]– Output

Function:

When the input is ON, the data of A and the data of B are compared, and if A is less than B, the output is turned ON.

Execution condition:

Input	Opera	ation	Output
OFF	No execution		OFF
ON	Execution	A < B	ON
		A <u>≥</u> B	OFF

Operand:

	Name			De	evic	е				R	egiste	er									Constant	Index
	-	Х	Υ	В	S	Τ.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Compared Data								\checkmark													
В	Reference Data								\checkmark													

B0000	- D00125	< D000 T-D4	V275 0	B00020 []
	05 is ON, the dat data of D0040, B		•	I with the data of D0040, and if the data of D0125 is less
If the data turned Of		and that of D(040 is 15,	the comparison result is true. Consequently, B020 is
D0125	10	<	D0040	► B020 is ON
If the data turned Of		nd that of D00)40 is -50, ⁻	the comparison result is false. Consequently, B020 is
D0125	0	<u><</u>	D0040	0 B020 is OFF
Note This instr	uction deals with	the data as s	igned integ	ger (-32768 to 32767).

Instruction-61: Double Word Less Than

Expression:

Input _{ A D < B }_ Output

Function:

When the input is ON, the data of A+1.A and the data of B+1.B are compared, and if A+1.A is less than B+1.B, the output is turned ON.

Execution condition:

Input	Oper	ation	Output
OFF	No execution		OFF
ON	Execution	A+1.A < B+1.B	ON
		A+1.A <u>></u> B+1.B	OFF

Operand:

	Name			De	evic	е				R	egiste	er									Constant	Index
		Х	Υ	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Compared Data								\checkmark				\checkmark	\checkmark								
В	Reference Data								\checkmark				\checkmark	\checkmark	\checkmark							

T-B14
constant data 427780, and if the dat
27780 → B014 is ON
27780 → B014 is OFF
4

Instruction-62: Unsigned Less Than

Expression:

Input –[A < B]– Output

Function:

When the input is ON, the data of A and the data of B are compared, and if A is less than B, the output is turned ON.

Execution condition:

Input	Opera	ation	Output
OFF	No execution		OFF
ON	Execution	A < B	ON
		A <u>≥</u> B	OFF

Operand:

	Name	Device							Register										Constant	Index		
		Х	Υ	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Compared Data								\checkmark													
В	Reference Data								\checkmark													

B0000	- D00125)040)40	B00020 []						
	05 is ON, the data data of D0040, B02		•	d with the data of D0040, and if the data of D0125 is less						
	a of D0125 is 4300 ently, B020 is turne		of D0040 is	45000, the comparison result is true.						
D0125	43000	<	D0040	45000 ► B020 is ON						
If the data of D0125 is 50000 and that of D0040 is 50000, the comparison result is false. Consequently, B020 is turned OFF.										
D0125	50000	<u>></u>	D0040	50000 ► B020 is OFF						
Note This instruction deals with the data as unsigned integer (0 to 65535).										

Instruction-63: Float Less Than

Expression:

Input _[A D< B]_ Output

Function:

When the input is ON, the float data of A+1.A and the float data of B+1.B are compared, and if A+1.A is less than B+1.B, the output is turned ON.

Execution condition:

Input	Opera	ation	Output
OFF	No execution		OFF
ON	Execution	A+1.A < B+1.B	ON
		A+1.A <u>></u> B+1.B	OFF

Operand:

	Name	Device							Register										Constant	Index		
		Х	Y	В	S	Τ.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Compared Data										\checkmark				\checkmark					\checkmark	\checkmark	
В	Reference Data										\checkmark				\checkmark					\checkmark	\checkmark	

B00010 D00 1 H H T-D10 T-B10		427780		B00014 [] T-B14								
	When B010 is ON, the data of D0101.D0100 is compared with the constant data 427780, and if the data of D0101.D0100 is less than the data 427780, B014 is turned ON.											
If the data of D010	If the data of D0101.D0100 is 250000 B014 is turned ON.											
D0101.D100	250000.123	s <	Constant	427780.467 →B014 is ON								
If the data of D0101Xd100 is 430000, B014 is turned OFF.												
D0101.d0100	430000.123	<u><</u>	Constant	427780.467 →B014 is OFF								

Instruction-64: Less Than or Equal

Expression:

Input _[A <= B]_ Output

Function:

When the input is ON, the data of A and the data of B are compared, and if A is less than or equal to B, the output is turned ON.

Execution condition:

Input	Oper	ation	Output
OFF	No execution		OFF
ON	Execution	A <u><</u> B	ON
		A > B	OFF

Operand:

Name	Device							Register												Constant	Index
	Х	Y	В	S	Τ.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A Compared Data								\checkmark	V	\checkmark	V										
B Reference Data								\checkmark	V	\checkmark	\checkmark										

B00005 T-B5	D00125 T-D125	<= -10	0		B00020 [] T-B20
	005 is ON, the da or equal to -100,		•	vith the constant	data -100, and if the data of D0125 is
If the data	of D0125 is -15	0, the comp	arison result is	true. Consequer	tly, B020 is turned ON
D0125	-150	<	Constant	-100	→ B0020 is ON
If the data	of D0125 is 0, th	ne comparis	on result is fals	e. Consequently	v, B0020 is turned OFF.
D0125	0	<u>></u>	Constant	-100	→ B0020 is OFF
Note This instru	ction deals with	the data as	signed integer	(-32768 to 32767	7).

Instruction-65: Double Word Less Than or Equal

Expression:

Input _[A D<= B]- Output

Function:

When the input is ON, the data of A+1.A and the data of B+1.B are compared, and if A+1.A is less than or equal to B+1.B, the output is turned ON.

Execution condition:

Input	Opera	ation	Output
OFF	No execution		OFF
ON	Execution	A+1.A <u><</u> B+1.B	ON
		A+1.A > B+1.B	OFF

Operand:

Name			De	evic	е				R	egiste	er									Constant	Index
	Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A Compared Data								\checkmark				\checkmark	\checkmark	\checkmark							
B Reference Data								\checkmark				\checkmark	\checkmark	\checkmark							

1 B00010 D00100 T-B10 T-D100_4	<=	0		B00014 []
When B010 is ON, the d D0101xD0100 is less the			ompared with the constant d s turned ON.	ata 0, and if the data of
If the data of D0101xD0	100 is -1, the	e compariso	n result is true. Consequently	y, B014 is turned ON.
D0101.D0100	-1	<	Constant 0	► B014 is ON
If the data of D0101.D01	00 is 10000	, B014 is tur	ned OFF.	
D0101.D0100	10000	<u> </u>	Constant 0	──► B014 is OFF
Note This instruction deals wit	h the data a	s double wo	rd integer (-2147483648 to 2	147483648).

Instruction-66: Unsigned Less Than or Equal

Expression:

Input _[A <= B]_ Output

Function:

When the input is ON, the data of A and the data of B are compared, and if A is less than or equal to B, the output is turned ON.

Execution condition:

Input	Operation	ation	Output
OFF	No execution		OFF
ON	Execution	A <u><</u> B	ON
		A > B	OFF

Operand:

Name	Device							Register												Constant	Index
	Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A Compared Data								\checkmark													
B Reference Data								\checkmark													

800005 1 ⊣ ↓ T-B5	D00125 T-D125	<=	35000	B00020 [] T-B20
	05 is ON, the dat n or equal to 350			with the constant data 35000, and if the data of D0125
If the data	of D0125 is 3500	0, the co	mparison result	is true. Consequently, B020 is turned ON
D0125	35000	<u> </u>	Constant	35000 → B0020 is ON
If the data	of D0125 is 0, th	e compar	ison result is fal	se. Consequently, B0020 is turned OFF.
D0125	38000	>	Constant	35000 → B0020 is OFF
Note This instru	ction deals with t	he data a	s unsigned inte	ger (0 to 65535).

Instruction-67: Float Less Than or Equal

Expression:

Input _[A D<= B]- Output

Function:

When the input is ON, the float data of A+1.A and the float data of B+1.B are compared, and if A+1.A is less than or equal to B+1.B, the output is turned ON.

Execution condition:

Input	Opera	ation	(Output
OFF	No execution		(OFF
ON	Execution	A+1.A <u><</u> B+1.B	(ON
		A+1.A > B+1.B	(OFF

Operand:

Name			De	evic	е				R	egiste	er									Constant	Index
	Х	Y	В	S	Τ.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A Compared Data										\checkmark				\checkmark					\checkmark	\checkmark	
B Reference Data										\checkmark				\checkmark					\checkmark	\checkmark	

1 H D0010 T-B10 T-D10		0	B00014 [] T-B14	
When B010 is ON D0101xD0100 is le			compared with the constant data 0, and if the data is turned ON.	of
If the data of D010	1xD0100 is -1, the	e compariso	on result is true. Consequently, B014 is turned ON	
D0101.D0100	-1.123	<u><</u>	Constant 0 B014 is ON	
If the data of D010	1.D0100 is 10000	, B014 is tu	urned OFF.	
D0101.D0100	10000.123	<u><</u>	Constant 0 B014 is OFF	

Instruction-68: Logic AND

Expression:

Function:

When the input is ON, this instruction finds logical AND of A and B, and stores the result in C.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

Operand:

	Name			De	evic	е				R	egiste	er									Constant	Index
		Х	Υ	В	S	T.	C.	М	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Source								\checkmark	\checkmark	\checkmark		\checkmark			\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
В	Source								\checkmark	\checkmark	\checkmark		\checkmark			\checkmark			\checkmark	\checkmark	\checkmark	\checkmark
С	ND									\checkmark	\checkmark		\checkmark			\checkmark		\checkmark	\checkmark	\checkmark		\checkmark

B00012 BW T-B12 12	0012 (T-BW12) D00030 AND-W (T-D30)
	s ON, logical AND operation is executed for the data of BW012 and the constant data 12, is stored in D0030.
If the data of E	W012 is 140, the result 1680 is stored in D0030.
BW012	F E D C B A 9 8 7 6 5 4 3 2 1 0 0 0 1 1 0 0 0 1 0 1 0 3 4 5 6 6 AND AND A <td< td=""></td<>
Constant	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
D0030	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Instruction-69: Logic OR

Expression:

Function:

When the input is ON, this instruction finds logical OR of A and B, and stores the result in C.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

Operand:

	Name			De	vice	Э				R	egiste	er									Constant	Index
		Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
Α	Source								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		\checkmark	\checkmark		\checkmark
В	Source								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark							
С	OR									\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		\checkmark	\checkmark		\checkmark

	1013 (T-BW13) 1020 (T-BW20)	D00031 (T-D31)		4
When B012 is stored in D003	•	ation is executed f	or the data of BW13 and	BW20, and the result is
If the data of B	W13 is H5678 and B	3W20 is H4321, the	e result H5779 is stored i	n D0031.
BW013	F E D C B A 0 1 0 1 0 1 5 6			
BW020		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
D0031	0 1 0 1 0 1 5 7	1 1 0 1 1 1 7 7 7	1 0 0 1 	

Instruction-70: Logic Exclusive OR

Expression:

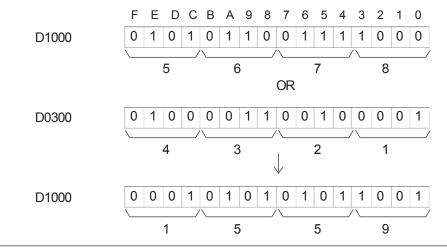
—∎C] Output	
-------------	--

Function:

When the input is ON, this instruction finds logical exclusive OR of A and B, and stores the result in C.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON


Operand:

	Name			De	vic	е				R	egiste	er									Constant	Index
		Х	Υ	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
Α	Source								\checkmark		\checkmark	\checkmark		\checkmark			\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
В	Source									\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
С	OR									\checkmark		\checkmark		\checkmark	\checkmark	\checkmark				\checkmark		\checkmark

Example:

B00012 D01000 (T-D1000) T-B12 D00300 (T-D300) EXOR-W	D01000 (T-D1000)		
When B012 is ON, exclusive OR op stored in D1000.	eration is ex	ecuted for the data of D100	0 and D0300, and the r
If the data of D1000 is H5678 and D	0300 is H432	21, the result H1559 is store	d in D1000.

result is

Instruction-71: Logic Shift - 1 bit Shift Right

Expression:

Function:

When the input is ON, the data of register A is shifted 1 bit to the right (LSB direction). 0 is stored in the left most bit (MSB). The pushed out bit state is stored in the carry flag (CF = S0). After the operation, if the right most bit (LSB) is ON, the output is turned ON.

Execution condition:

Input	Operat	ion	Output	CF
OFF	No execution		OFF	
ON	Execution	When LSB = 1	ON	Set or reset
		When LSB = 0	OFF	Set or reset

Operand:

	Name			De	evice	е				R	egiste	er									Constant	Index
		Х	Υ	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Operation Data								\checkmark													

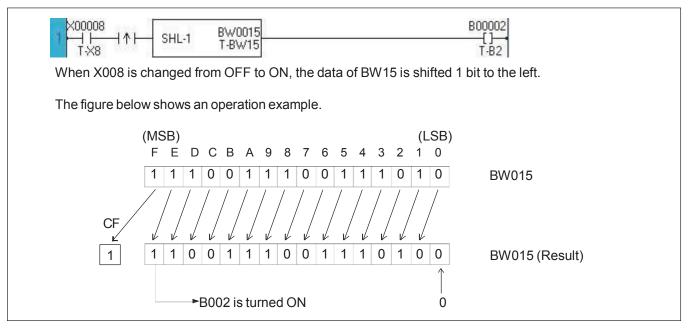
1 ×00007 1 → → ↑ T-×7	HE SHR-1 BW0015 B00001 []- T-BW15 T-B1
When X007 is	changed from OFF to ON, the data of BW15 is shifted 1 bit to the right.
The figure belo	ow shows an operation example.
	(MSB) (LSB) F E D C B A 9 8 7 6 5 4 3 2 1 0
BW015	0 1 0 0 0 1 0 1 0 1 0 1 0 1 0
BW015	0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0
	\uparrow
	0 ►B001 is turned ON

Instruction-72: Logic Shift - 1 bit Shift Left

Expression:

Input	-[SHL-1	AЪ	Output
-------	----------	----	--------

Function:


When the input is ON, the data of register A is shifted 1 bit to the left (MSB direction). 0 is stored in the right most bit (LSB). The pushed out bit state is stored in the carry flag (CF = S0). After the operation, if the left most bit (MSB) is ON, the output is turned ON.

Execution condition:

Input	Opera	tion	Output	CF
OFF	No execution		OFF	
ON	Execution	When MSB = 1	ON	Set or reset
		When MSB = 0	OFF	Set or reset

Operand:

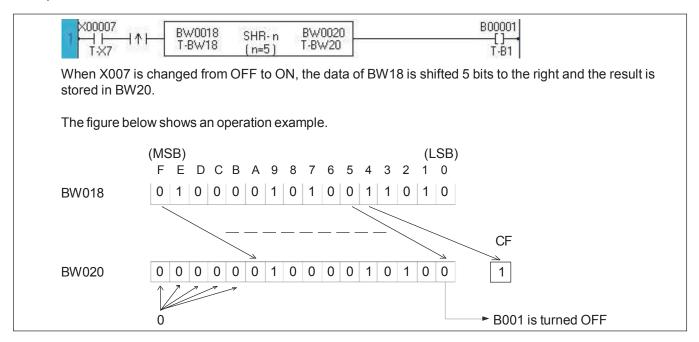
	Name			De	evice	е				R	egiste	er									Constant	Index
		Х	Υ	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	peration Data									\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark

Instruction-73: Logic Shift - n bits Shift Right

Expression:

Input -[A SHR n --->B]- Output

Function:


When the input is ON, the data of register A is shifted n bits to the right (LSB direction) including the carry flag (CF = S0), and stored in B. 0 is stored in upper n bits. After the operation, if the right most bit (LSB) is ON, the output is turned ON.

Execution condition:

Input	Operat	ion	Output	CF
OFF	No execution		OFF	
ON	Execution	When LSB = 1	ON	Set or reset
		When LSB = 0	OFF	Set or reset

Operand:

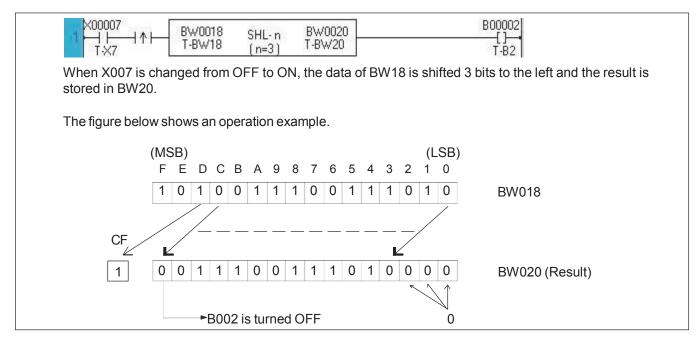
	Name			De	evice	Э				R	egiste	er									Constant	Index
		Х	Υ	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
Α	Source								\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
n	Shift bits																				1 - 16	
В	estination										\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark

Instruction-74: Logic Shift - n bits Shift Left

Expression:

Input – [A SHL n — B]– Output

Function:


When the input is ON, the data of register A is shifted n bits to the left (MSB direction) including the carry flag (CF = S0), and stored in B. 0 is stored in lower n bits. After the operation, if the left most bit (MSB) is ON, the output is turned ON.

Execution condition:

Input	Operat	ion	Output	CF
OFF	No execution		OFF	
ON	Execution	When MSB = 1	ON	Set or reset
		When MSB = 0	OFF	Set or reset

Operand:

	Name			De	vice	Э				R	egiste	er									Constant	Index
		Х	Y	В	S	Т.	C.	М	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Source									\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
n	Shift bits																				1 - 16	
В	estination										\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		

Instruction-75: Shift Register

Expression:

	Output		-D SF -S -E	Data input Shift input Enable input
--	--------	--	-------------------	---

Function:

While the enable input is ON, this instruction shifts the data of the bit table, size n starting with A, 1 bit to the left (upper address direction) when the shift input is ON. The state of the data input is stored in A. The pushed out bit state is stored in the carry flag (CF = S0).

When the enable input is OFF, all bits in the table and the carry flag are reset to OFF.

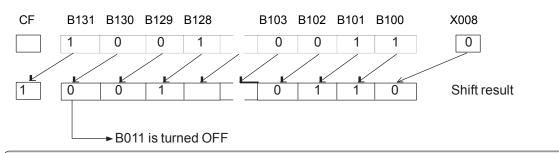
Execution condition:

Input	Operation		Output	CF
OFF	Resets all bits in the bit table		OFF	Reset
ON	When the shift input is ON	Shift execution	ON	Set or reset
	When the shift input is OFF	No execution	OFF	

Operand:

	Name			De	evic	е				R	egiste	er									Constant	Index
		Х	Υ	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Leading Device		\checkmark	V	\checkmark			\checkmark														
n	Device Size																				1 - 64	

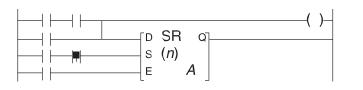
Example:

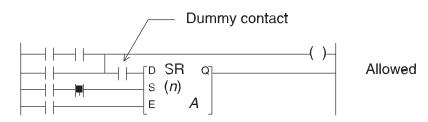

×00008	6	B00100	0						B00011
T-X8	-	T-B100	Q		3		3		. T-B11
X00009 ⊢I	s	Shift Register							
B00010	· F	(Size=32)		•	•	•	8	-	· .

32 devices starting with B100 (B100 to B131) is specified as a shift register.

When B010 is OFF, the data of the shift register is reset to 0. (B100 to B131 are reset to OFF). The carry flag (CF = S0) is also reset to OFF.

While B010 is ON, the data of the shift register is shifted 1 bit to the upper address direction when X009 is changed from OFF to ON. At the same time, the state of X008 is stored in the leading bit (B100). The output (B011) indicates the state of the last bit (B131).


The figure below shows an operation example. (When X009 is changed from OFF to ON).


Note

When the shift input is ON, the shift operation is performed every scan. Use a transitional contact for the shift input to detect the state changing.

For the data input and the shift input, direct linking to a connecting point is not allowed. In this case, insert a dummy contact (always ON special device = S04F, etc.) just before the input.

Not allowed

Instruction-76: Bi-directional Shift Register

Expression:

Data input	Output
Shift input ⊣S (n) Enable input ⊣E	
Direction input – L A	

Function:

While the enable input (E) is ON, this instruction shifts the data of the bit table, size n starting with A, 1 bit when the shift input (S) is ON. The shift direction is determined by the state of the direction input (L). When L is OFF, the direction is right (lower address direction). When L is ON, the direction is left (upper address direction). The state of the data input (D) is stored in the highest bit if right shift, and stored in the lowest bit A if left

shift. The pushed out bit state is stored in the carry flag (CF = S0).

When the enable input (E) is OFF, all bits in the table and the carry flag are reset to OFF.

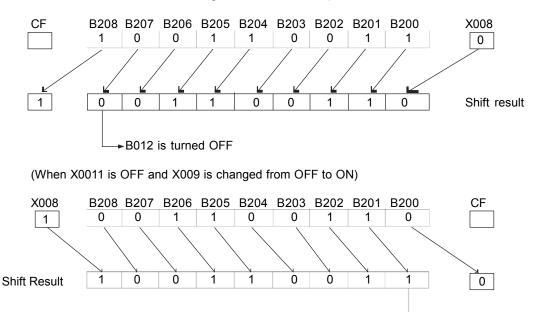
Execution condition:

Input	Оре	eration		Output	CF
OFF	Resets all b	its in the bit table		OFF	Reset
ON	S = ON	L = ON	Shift left execution	Highest bit state	Set or reset
		L = OFF	Shift right execution	Lowest bit state	Set or reset
	S = OFF	No execution		Highest bit state	

Operand:

	Name			De	evice	Э				R	egiste	er									Constant	Index
		Х	Υ	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
Α	Leading Device		\checkmark	\checkmark	\checkmark			\checkmark														
n	Device Size																				1 - 64	

Example:


	B00200 T-B200	q —			B00012
X00009		191		-	. T-B12
	Bidirectional Shift Register (Size=9)	e.			
T-B10 X00011		9	-	-	

9 devices starting with B200 (B200 to B208) is specified as a shift register. When B010 is OFF, the data of the shift register is reset to 0. (B200 to B208 are reset to OFF) The carry flag (CF = S0) is also reset to OFF. While B010 is ON the following operation is enabled.

- When X0011 is ON (shift left), the data of the shift register is shifted 1 bit to the upper address direction when X009 is changed from OFF to ON. At the same time, the state of X008 is stored in the leading bit (B200). The output (B012) indicates the state of the highest bit (B208).
- When X0011 is OFF (shift right), the data of the shift register is shifted 1 bit to the lower address direction when X009 is changed from OFF to ON. At the same time, the state of X008 is stored in the highest bit (B208). The output (B012) indicates the state of the lowest bit (B200).

The figure below shows an operation example.

(When X0011 is ON and X009 is changed from OFF to ON).

Note:

When the shift input is ON, the shift operation is performed every scan. Use a transitional contact for the shift input to detect the state changing.

B012 is turned ON

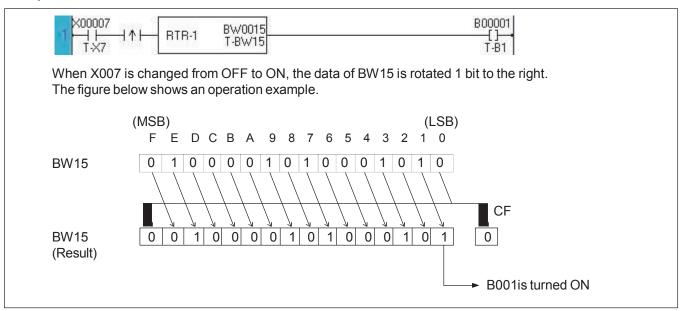
For the data input, the shift input and the enable input, direct linking to a connecting point is not allowed. In this case, insert a dummy contact (always ON special device = S04F, etc.) just before the input.

Instruction-77: 1 bit Rotate Right

Expression:

Input -[RTR1 A]- Output

Function:


When the input is ON, the data of register A is rotated 1 bit to the right (LSB direction). The pushed out bit state is stored in the left most bit (MSB) and in the carry flag (CF = S0). After the operation, if the right most bit (LSB) is ON, the output is turned ON.

Execution condition:

Input	Ope	ration	Output	CF
OFF	No Executio	n	OFF	
ON	Execution	When LSB = 1	ON	Set or reset
		When LSB = 0	OFF	Set or reset

Operand:

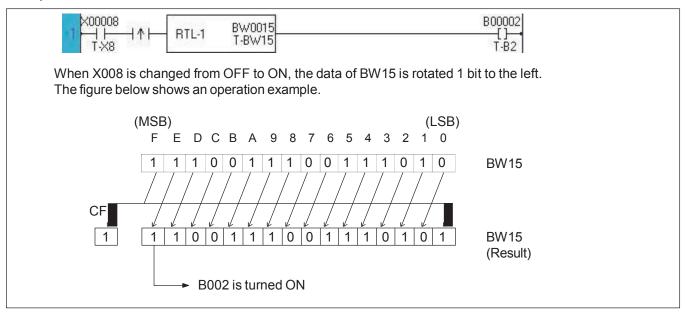
	Name			De	evice	е				R	egiste	er									Constant	Index
		Х	Υ	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	peration Data									\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		

Instruction-78: 1 bit Rotate Left

Expression:

Input -[RTL1 A]- Output

Function:


When the input is ON, the data of register A is rotated 1 bit to the left (MSB direction). The pushed out bit state is stored in the right most bit (LSB) and in the carry flag (CF = S0). After the operation, if the left most bit (MSB) is ON, the output is turned ON.

Execution condition:

Ope	ration	Output	CF
No Executio	1	OFF	
Execution	When MSB = 1	ON	Set or reset
-	When MSB = 0	OFF	Set or reset
	No Execution		No Execution OFF Execution When MSB = 1 ON

Operand:

	Name			De	vice	Э				R	egiste	er									Constant	Index
		Х	Υ	В	S	Τ.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	peration Data									\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark

Instruction-79: n bit Rotate Right

Expression:

Input $-[A RTR n \longrightarrow B] - Output$

Function:

When the input is ON, the data of register A is rotated n bits to the right (LSB direction), and stored in B. After the operation, if the right most bit (LSB) is ON, the output is turned ON.

Execution condition:

Input	Opera	ation	Output	CF
OFF No	Execution		OFF	
ON Ex	ecution	When LSB = 1	ON	Set or reset
		When LSB = 0	OFF	Set or reset

Operand:

	Name			De	vic	е				R	egiste	er									Constant	Index
		Х	Υ	В	S	Τ.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
Α	Source								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark			\checkmark	\checkmark	\checkmark	\checkmark
n	Shift bits																				1 - 16	
В	estination									\checkmark	\checkmark	\checkmark	\checkmark			\checkmark			\checkmark	\checkmark		\checkmark

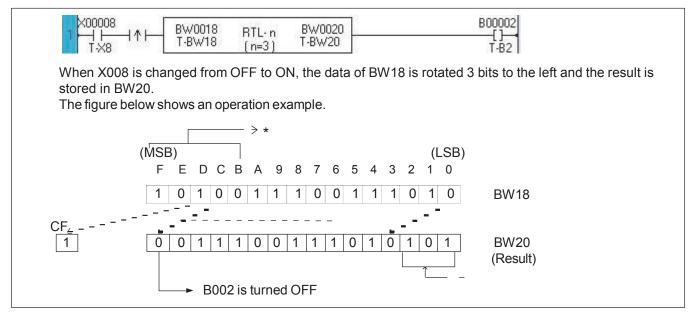
	↑	B00001 []
stored in BV	is changed from OFF to ON, the data of BW1 V20. elow shows an operation example.	8 is rotated 5 bits to the right and the result is
BW18	(MSB) F E D C B A 9 8 7 6 5 4 3 0 1 0 0 0 0 1 0 1 0 0 1 1	<pre>> * (LSB) 2 1 0 1 0</pre>
BW20 (Result)		= = = = = = = = = = = = = = = = = = =
	> >	 B001 is turned OFF

Instruction-80: n bit Rotate Left

Expression:

Input –[A RTL n →B]– Output

Function:


When the input is ON, the data of register A is rotated n bits to the left (MSB direction), and stored in B. After the operation, if the left most bit (MSB) is ON, the output is turned ON.

Execution condition:

Ope	ration	Output	CF
lo Execution	ı	OFF	
Execution	When MSB = 1	ON	Set or reset
-	When MSB = 0	OFF	Set or reset
	lo Executior		lo Execution OFF Execution When MSB = 1 ON

Operand:

	Name			De	vice	Э				R	egiste	er									Constant	Index
		Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
Α	Source								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
n	Shift bits																				1 - 16	
В	Destination									\checkmark		\checkmark										

Instruction-81: Hex to ASCII Conversion

Expression:

Input -[AHTOA (n) B]- Output

Function:

When the input is ON, the hexadecimal data of n registers starting with A is converted into ASCII characters and stored in B and after. The uppermost digit of source A is stored in lower byte of destination B, and followed in this order. The allowable range of n is 1 to 32.

Execution condition:

Input	Operation	Output
OFF	No Execution	OFF
ON	Execution	ON

Operand:

	Name			De	evic	е				R	egiste	er								Constant		
		Х	Υ	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Source								\checkmark	\checkmark			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	
n	Data Size																				1 - 32	
В	Destinatio	I								\checkmark	\checkmark	\checkmark							\checkmark			

	isters starting with D	ata of D0100 to D0103 are 0220.	e converteu in		s, and stored
	F 0			F	8 7
D0100	H0125		D0220	"1"(H31)	"0" (H30)
D0101	H4567	Converted	D0221	"3" (H33)	"2" (H32)
D0102	H89AB		D0222	"5" (H35)	"4" (H34)
D0103	HCDEF		D0223	"7" (H37)	"6" (H36)
			D0224	"9" (H39)	"8" (H38)
			D0225	"B" (H42)	"A" (H41)
			D0226	"D" (H44)	"C" (H43)
			D0227	"F" (H46)	"E" (H45)

Instruction-82: ASCII to Hex Conversion

Expression:

Input -[AATOH (n) B]- Output

Function:

When the input is ON, the ASCII characters stored in n registers starting with A is converted into hexadecimal data and stored in B and after. The lower byte of source A is stored as uppermost digit of destination B, and followed in this order. The allowable ASCII character in the source table is "0" (H30) to "9" (H39) and "A" (H41) to "F" (H46). The allowable range of n is 1 to 64.

Execution condition:

Input	Operation	Output	ERF
OFF	No Execution	OFF	
ON	Normal Execution	ON	
	Conversion Data Error (no execution)	OFF	Set

Operand:

	Name			De	vic	е				R	egiste	er								Constant	Index	
		Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Source								\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
n	Data Size																				1 - 64	
В	Destinatio	1								\checkmark	\checkmark	\checkmark										

Example:

D00011 F				000000
600011	D00300	ASCIL SHEY	BW0040	BUUU22
TOUL	T-D300	ASCIE / HEA	T-BW40	
T-B11 L	1.0000	[n=8]	1.0 17 10	T-B22

When B011 is ON, the ASCII characters stored in 8 words of D0300 to D0307 are converted into hexadecimal data, and stored in 4 words registers starting with BW040.

	F	<u> 8 7 </u>		_F
D0300	"1" (H31)	"0" (H30)	BW040	H0123
D0301	"3" (H33)	"2" (H32)	BW041	H4567
D0302	"5" (H35)	"4" (H34)	BW042	H89AE
D0303	"7" (H37)	"6" (36)	BW043	HCDE
D0304	"9" (H39)	"8" (H38)		L
D0305	"B" (H42)	"A" (H41)		
D0306	"D" (H44)	"C" (H43)		
D0307	"F" (H46)	"E" (H45)		

- If index register (I, J or K) is used for the operand A, only n = 1 is allowed.

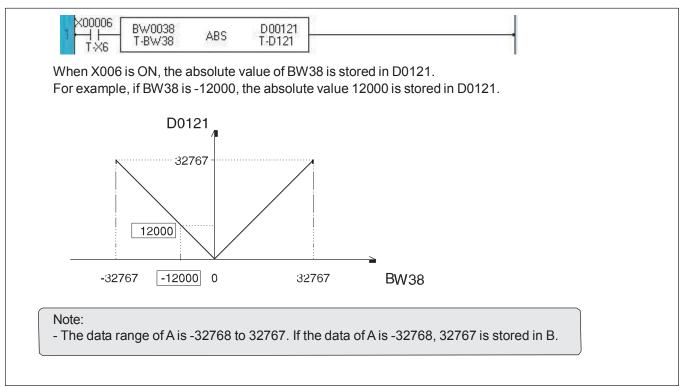
- If n is odd number, lower 2 digits of the last converted data will not be fixed, Use even for n.

Instruction-83: Absolute Value

Expression:

Input -[A ABS B]- Output

Function:


When the input is ON, this instruction finds the absolute value of operand A, and stores it in B.

Execution condition:

Input	Operation	Output
OFF	No Execution	OFF
ON	Execution	ON

Operand:

	Name										egiste	er									Constant	Index
		Х	Y	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Source								\checkmark	\checkmark	\checkmark	\checkmark							\checkmark		\checkmark	
В	Destination									\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark			

Instruction-84: 2's Compliment

Expression:

Input -[A NEG B]- Output

Function:

When the input is ON, this instruction finds the 2's compliment value of A, and stores it in B.

Execution condition:

Input	Operation	Output
OFF	No Execution	OFF
ON	Execution	ON

Operand:

	Name			De	evic	е				R	egiste	er									Constant	Index
		Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Source								\checkmark	\checkmark		\checkmark					\checkmark	\checkmark	\checkmark		\checkmark	
В	Destination									\checkmark	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark			

×00007	BW0039 NEG D00122 T-BW39 NEG T-D122
	07 is ON, the 2's complement value (sign inverted data) of BW39 is stored in D0122. ple, if BW38 is 4660, the 2's complement value -4660 is stored in D0122.
2's compl	lement data is calculated as follows.
	F E D C B A 9 8 7 6 5 4 3 2 1 0
BW39	0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 1 0 1
	Bit Inverse
	1 1 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0
	+1
D0122	1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 (0 0 1 1 0 0 0 0
Note:	a range of A is -32768 to 32767. If the data of A is -32768, the same data -32768 is stored in B.

Instruction-85: Double-Word 2's Compliment

Expression:

Function:

When the input is ON, this instruction finds the 2's complement value of double-word data A+1×A, and stores it in B+1×B.

Execution condition:

Input	Operation	Output
OFF	No Execution	OFF
ON	Execution	ON

Operand:

	Name			De	vic	е				R	egiste	er									Constant	Index
		х	Y	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Source								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark			
В	Destination									\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark			

Example:

X00007	01/00/00		D5//00E0	
	BW0040 T-BW/40	DNEG	BW0050 T-BW50	

When X007 is ON, the 2's complement value (sign inverted data) of double-word register BW41×BW40 is stored in double-word register BW0051×BW0050.

For example, if BW41×BW40 is -1234567890, the 2's complement value 1234567890 is stored in BW0051×BW0050.

Note:

- The data range of A+1× A is -2147483648 to 2147483647. If the data of A+1× A is -2147483648, the same data -2147483648 is stored in B+1× B.

Instruction-86: 7 Segment Decode

Expression:

Input -[A 7SEG B]- Output

Function:

When the input is ON, this instruction converts the lower 4 bits data of A into the 7 segment code, and stores it in B. The 7 segment code is normally used for a numeric display LED.

Execution condition:

Input	Operation	Output
OFF	No Execution	OFF
ON	Execution	ON

Operand:

	Name			De	vice	е				R	egiste	er									Constant	Index
		х	Υ	В	S	Т.	C.	М	XW	YW	BW	SW	Т	С	D	Ι	J	К	MW	R		
Α	Source								\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
В	Destination									\checkmark	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark			

Example:

			0015 W15		7-SE	G		w00' BW1		4 4 4							
stored in	lowe	er 8	bits	of B	W1	0.0	is st	tore	d in	upp	er 8	bits	ofl	BW1	0.		egment code, and the result is F is stored in BW10.
	F	Е	D	С	в	А	9	8	7	6	5	4	3	2	1	0	
BW15	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	(H0009)
		ι	Jppe	er 12	2 bits	s are	ign	ored	d _		-				7 S	Segri	nent decode
BW10	0	0	0	0	0	0	0	0	0	1	1	0	1	1	1	1	(H006F)
	0 is s	store	ed in	upp	er 8	bits	5.										

The 7 segment code conversion table is shown on the next page.

Operand	A (lower 4 bits}	7 seg	ment LED		0	Jerar	nd $B!$	ower	8 bit	ts}		Display
Hex	Binary	corr	position	87	86	85	84	B3	82	81	BO	
0	0000			0	0	1	1	1	1	1	1	ů
1	0001			0	0	0	0	0	1	1	0	I I
L	0010			0	1	0	1	1	0	1	1	:I L
3	0011			0	1	0	0	1	1	1	1	3
4	0100		BO	0	1	1	0	0	1	1	0	Ч
5	0101	95/		0	1	1	0	1	1	0	1	<u>с</u> J
6	0110	85/	₈₆ /81	0	1	1	1	1	1	0	1	5
7	0111		/	0	0	1	0	0	1	1	1	n 1
8	1000	84/	/s2	0	1	1	1	1	1	1	1	8
9	1001			0	1	1	0	1	1	1	1	g
A	1010	5	33	0	1	1	1	0	1	1	1	R
В	1011			0	1	1	1	1	1	0	0	b
C	1100			0	0	1	1	1	0	0	1	Ľ
D	1101			0	1	0	1	1	1	1	0	ជ
E	1110			0	1	1	1	1	0	0	1	Е
F	1111			0	1	1	1	0	0	0	1	F

Instruction-87: ASCII Conversion

Expression:

Input -[A ASC B]- Output

Function:

When the input is ON, this instruction converts the alphanumeric characters into the ASCII codes, and stores them in the register table starting with B. (16 characters maximum).

Execution condition:

Input	Operation	Output
OFF	No Execution	OFF
ON	Execution	ON

Operand:

	Name			De	vice	Э				R								Constant	Index			
		Х	Υ	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Characters																				\checkmark	
В	Start of Destination										\checkmark	\checkmark	\checkmark	\checkmark					\checkmark			

Example:

B0030	ABCDEEGHUKLMN	D0200	
T 000	ABCOLININGREMMASC	T-D200	
T-B30		10200	

When B030 is ON, the characters 'ABCDEFGHIJKLMN' is converted into the ASCII codes, and the result is stored in 8 registers starting with lower 8 bits (byte) of D0200 (D0200 to D0207).

	High		Low	
	F	8 7		0
D0200	H42 (B)) 1	H41 (A)	
D0201	H44 (D)	H43 (C)	
D0202	H46 (F))	H45 (E)	
D0203	H48 (H)	H47 (G)	
D0204	H4A (J)	i	H49 (I)	
D0205	H4C (L)	H4B (K))
D0206	H4E (N) ¦	H4D (M)
D0207				

Note:

Only the number of bytes converted are stored. The rest are not changed. In the above example, 14 characters are converted into 14 bytes of ASCII code, and these ASCII codes are stored in 7 registers (D0200 to D0206). The data of D0207 remains unchanged.

Instruction-88: Binary Conversion

Expression:

Input –[A BIN B]– Output

Function:

When the input is ON, this instruction converts the 4 digits of BCD data of A into binary, and stores in B. If any digit of A contains non-BCD code (other than H0 through H9), the conversion is not executed and the instruction error flag (ERF = S0034) is set to ON.

Execution condition:

Input	Operation	Output	ERF
OFF	No Execution	OFF	
ON	Normal Execution	ON	
-	BCD data error	OFF	Set

Operand:

	Name			De	evice	е				R	egiste	er									Constant	Index
		Х	Y	В	S	T.	C.	М	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Source (BCD)								\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		H000-H9999	
В	Destinatio (Binary)	1								\checkmark	\checkmark	V	\checkmark									

1 H H H	BW028 T-BW28 BIN	D01 T-D1				-		
When B017	is ON, the BCD da	ta of BV	V28 is conv	verted into	binary da	ata, and the	e result is sto	ored in D0127
For exampl	e, if BW28 is H1234	l, the bir	nary data 1	234 is stor	ed in D0′	127.		
BW28	BCD to Binary		D0127					
H1234			1234					
Note:								
	of operand A contair error flag (ERF = S0			.g. H13A6	, the conv	version is r	not executed	l and the
matuction		1004)15	Set to ON.					

Instruction-89: BCD Conversion

Expression:

Input -[A BCD B]- Output

Function:

When the input is ON, this instruction converts the binary data of A into BCD, and stores in B. If the data of A is not in the range of 0 to 9999, the conversion is not executed and the instruction error flag (ERF = S0034) is set to ON.

Execution condition:

Input	Operation	Output	ERF
OFF	No Execution	OFF	
ON	Normal Execution	ON	
	Binary data error	OFF	Set

Operand:

	Name			De	vice	Э				R	egiste	er									Constant	Index
		Х	Υ	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
Α	Source (Binary)								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		0 - 9999	
В	Destinatio (BCD)	1								\checkmark	\checkmark	V	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark			

B0019 1 → 1 → T-B19	D0211 BCD BW022 T-D211 BCD T-BW22
When B0	19 is ON, the data of D0211 is converted into 4-digit BCD, and the result is stored in BW22.
For exam	ple, if D0211 is 5432, the BCD data H5432 is stored in BW22.
D0211	Binary to BCD BW22
5432	► H5432
	of A is smaller than 0 or greater than 9999, the conversion is not executed and the n error flag (ERF = S0034) is set to ON.

Instruction-90: Integer to Float

Expression:

|--|--|

Function:

This instruction converts integer of double word type data into floating point data.

Execution condition:

Input	Operation	Output
OFF	No Execution	OFF
ON	Execution	ON

Operand:

	Name			De	evice	е				R	egiste	er								Constant	Index	
		Х	Υ	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
Α	Source										\checkmark				\checkmark					\checkmark		
В	Destination										\checkmark				\checkmark					\checkmark		

Example:

Xobdoe [0				
T-X6	BW0038 INT -> FLOAT T-BW38	D00012 - T-D12_	5	23	55	23

When X006 is ON, the integer value of BW38, BW39 will be converted into float fomat and will be stored in D0012.

For example, if BW38, BW39 is 12 then it will become 12.0.

Instruction-91: Float to Integer

Expression:

	Output	FLOAT -> INT B]—	Input –[A
--	--------	-------------------	-----------

Function:

This instruction converts floating point data into double word integer.

Execution condition:

Input	Operation	Output
OFF	No Execution	OFF
ON	Execution	ON

Operand:

	Name			De	evice	e Register									Constant	Index						
		Х	Υ	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
Α	Source										\checkmark				\checkmark					\checkmark		
В	Destination										\checkmark				\checkmark					\checkmark		

Example:

Vooooc [0	0		
VODOOD 1		0		
	BW0038 FLOAT -> INT	D00120 -		
T-X6	T-BW38	T-D120		

When X006 is ON, the floating point value of BW38 will be converted into integer fomat and will be stored in D00120, D00121.

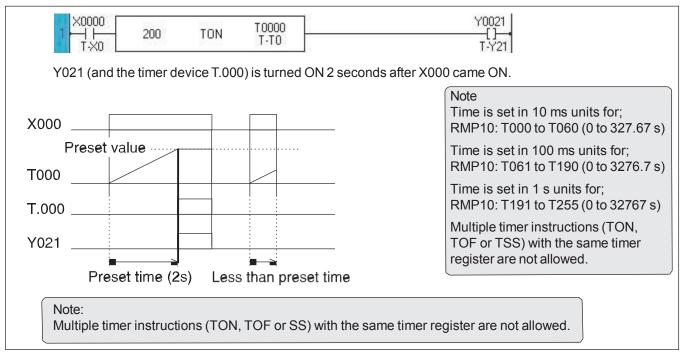
For example, if BW38 is 12.7 then it will become 13. If the value is 12.3, then it becomes 12.

Instruction-92: ON Timer

Expression:

Input --[A TON B]- Output

Function:


When the input is changed from OFF to ON, timer updating for the timer register B is started. The elapsed time is stored in B. When the specified time by A has elapsed after the input came ON, the output and the timer device corresponding to B are turned ON. (Timer updating is stopped) When the input is changed from ON to OFF, B is cleared to 0, and the output and the timer device are turned OFF. The available data range for operand A is 0 to 32767.

Execution condition:

Input	Operation	Output
OFF	No operation (timer is not updating)	OFF
ON	Elapsed time < preset time (timer is updating)	ON
	Elapsed time <pre>> preset time (timer is not updating)</pre>	OFF

Operand:

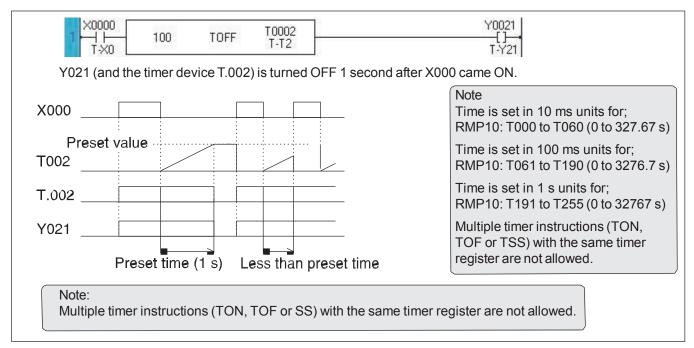
	Name			De	vice	Э				R	egiste	er									Constant	Index
		Х	Υ	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Preset Time								\checkmark	\checkmark		\checkmark		\checkmark		\checkmark		\checkmark	\checkmark		0 - 32767	
В	Elapsed time												\checkmark									

Instruction-93: OFF Timer

Expression:

Input -[A TOFF B]- Output

Function:


When the input is changed from OFF to ON, the output and the timer device corresponding to the timer register B are set to ON. When the input is changed from ON to OFF, timer updating for B is started. The elapsed time is stored in B. When the specified time by A has elapsed after the input came OFF, the output and the timer device are turned OFF. (Timer updating is stopped) The available data range for operand A is 0 to 32767.

Execution condition:

Input	Operation	Output
OFF	Elapsed time < preset time (timer is updating)	ON
	Elapsed time <pre>> preset time (timer is not updating)</pre>	OFF
ON	No operation (timer is not updating)	ON

Operand:

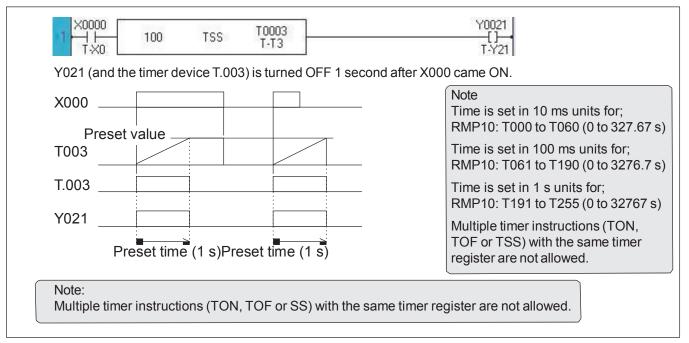
	Name			De	evic	е				R	egiste	er									Constant	Index
		Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Preset Time								\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		0 - 32767	
В	Elapsed time												\checkmark									

Instruction-94: Single Shot Timer

Expression:

Input -{ A TSS B }- Output

Function:


When the input is changed from OFF to ON, the output and the timer device corresponding to the timer register B are set to ON, and timer updating for B is started. The elapsed time is stored in B. When the specified time by A has elapsed after the input came ON, the output and the timer device are turned OFF. (Timer updating is stopped) The available data range for operand A is 0 to 32767.

Execution condition:

Input	Operation	Output
OFF	Elapsed time < preset time (timer is updating)	ON
	Elapsed time <pre>> preset time (timer is not updating)</pre>	OFF
ON	Elapsed time < preset time (timer is updating)	ON
	Elapsed time <u>></u> preset time (timer is not updating)	OFF

Operand:

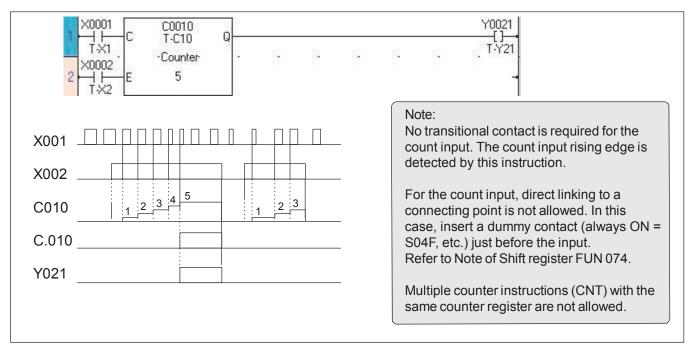
	Name									R	egiste	er									Constant	Index
		Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Preset Time								\checkmark	\checkmark			\checkmark	\checkmark		\checkmark					0 - 32767	
В	Elapsed time												\checkmark									

Instruction-95: Counter

Expression:

Count Input - c CNT Q-	Output
Enable Input _ E A B	

Function:


While the enable input is ON, this instruction counts the number of the count input changes from OFF to ON. The count value is stored in the counter register B. When the count value reaches the set value A, the output and the counter device corresponding to B are turned ON. When the enable input comes OFF, B is cleared to 0 and the output and the counter device are turned OFF. The available data range for operand A is 0 to 65535.

Execution condition:

Input	Operation	Output
OFF	No operation (B is cleared to 0)	OFF
ON	Count value (B) < set value (A)	OFF
	Count value (B) <u>></u> set value (A)	ON

Operand:

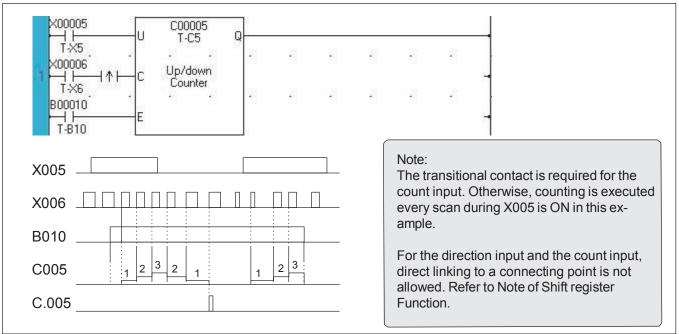
	Name	Device								R								Constant	Index			
		Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
Α	Set Value								\checkmark		\checkmark	\checkmark		0 - 65535								
В	Count Value													\checkmark								

Instruction-96: Up / Down Counter

Expression:

Direction Input	A Q - Output
Count Input C	
Enable InputE	_

Function:


While the enable input is ON, this instruction counts the number of the count input changes from OFF to ON. The count direction (up count or down count) is selected by the state of the direction input. The count value is stored in the counter register A. The count value range is 0 to 65535.
Up count when the direction input is ON
Down count when the direction input is OFF
When the enable input is OFF, the counter register A is cleared to 0.

Execution condition:

Input	Operation	Output
OFF	No operation (A is cleared to 0)	OFF
ON	Count value is not limit value (0 or 65535)	OFF
	Count value is limit value and count input is ON	ON

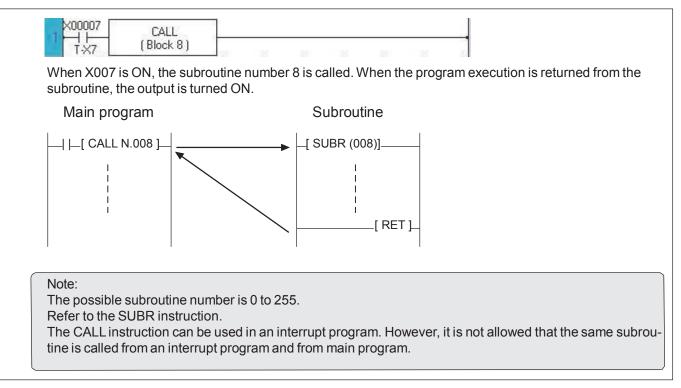
Operand:

Name Device										R							Constant	Index				
		Х	Υ	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Count Value													\checkmark								

Instruction-97: Subroutine Call

Expression:

Function:


When the input is ON, this instruction calls the subroutine number n..

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

Operand:

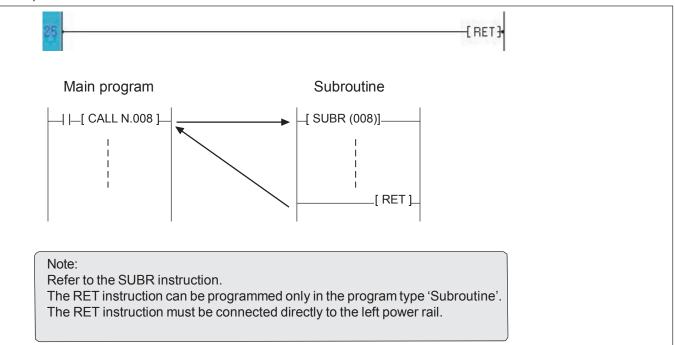
	Name			De	evic	е				R	egiste	er									Constant	Index
		Х	Y	В	s	T.	C.	М	XW	YW	BW	SW	Т	С	D	I	J	К	MW	R		
r	n Subroutine Number																				√(Note)	

Instruction-98: Subroutine Return

Expression:

[RET]

Function:


This instruction indicates the end of a subroutine. When program execution is reached this instruction, it is returned to the original CALL instruction.

Execution condition:

Input Operation	Output
- Execution	-

Operand:

No operand is required.

Instruction-99: FOR (For next loop)

Input – FOR n – Output	

Function:

When the input is ON, the program segment between FOR and NEXT is executed n times repeatedly in a scan.

When the input is OFF, the repetition is not performed. (the segment is executed once).

Execution condition:

Input	Operation	Output
OFF	No Repetition	OFF
ON	Repetition	ON

Operand:

	Name			De	evice	е				R	egiste	er									Constant	Index
		Х	Y	В	S	Т.	C.	М	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
n	epetation Times								\checkmark		\checkmark	\checkmark	\checkmark		1-32767							

Instruction-100: NEXT (FOR-NEXT loop)

Expression:
Input — [NEXT] — Output

Function:

This instruction configures a FOR-NEXT loop. If the input is OFF, The repetition is forcibly broken. and the program execution is moved to the next instruction.

Execution condition:

Input	Operation	Output
OFF	Forcibly breaks the repetition	OFF
ON	Repetition	ON

Operand:

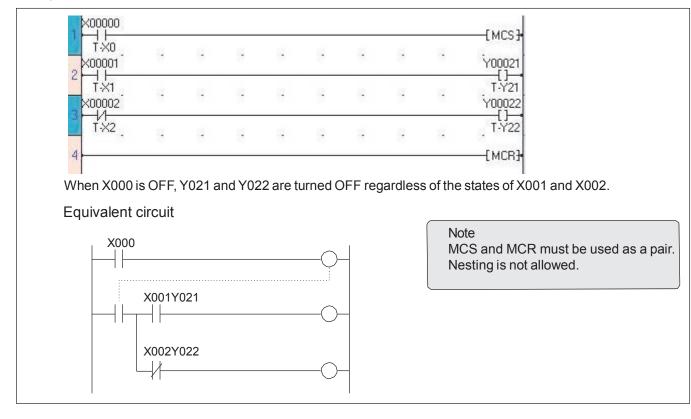
No operand is required.

1- 0 MOV-W D00002+1	
2 B00005 F0B 30	
B00005 D00000 . 1 D00500 . 1	INC 100000
4 (BNEXT)	
	een FOR and NEXT is executed 30 times in a scan. 0 times. As a result, the data of D0000 to D0029 are trans-
loop. The FOR and NEXT instructions cannot be prog	hat is, the FOR instruction cannot be used in a FOR-NEXT
The following connection is not allowed.	
	-[NEXT]

Instruction-101: Master Control Set / Reset

Expression:

Function:


When the MCS input is ON, ordinary operation is performed. When the MCS input is OFF, the state of left power rail between MCS and MCR is turned OFF.

Execution condition:

MCS		
Input	Operation	Output
OFF	Sets OFF the left power rail until MCR	
ON	Ordinary operation	

Operand:

No operand is required.

Instruction-102: Jump Control Set / Reset

Expression:

Function:

When the JCS input is ON, instructions between JCS and JCR are skipped (not executed). When the JCS input is OFF, ordinary operation is performed.

Execution condition:

JCS Input	Operation	Output
OFF	Ordinary operation	
ON	Skip until JCR	

Operand:

No operand is required.

Example:

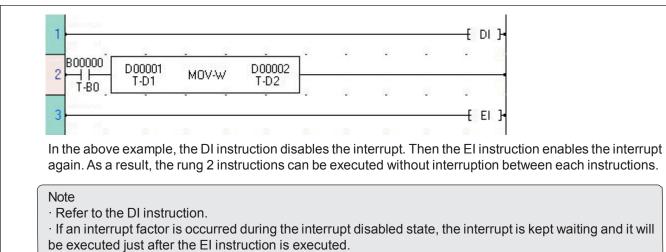
T-X0 X00001			•				Yooo
2	-	-		-	-	-	——[] I·Y

When X000 is ON, the rung 2 circuit is skipped, therefore Y021 is not changed its state regardless of the X001 state. When X000 is OFF, Y021 is controlled by the X001 state.

Note	
JCS and JCR must be used as a pair.	
Nesting is not allowed.	

Instruction-103: Enable Interrupt

Input - EI - Output
Function:
When the input is ON, this instruction enables the execution of user designated interrupt operation, i.e. timer interrupt program and I/O interrupt programs.


Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

Operand:

No operand is required	No c	perand	d is i	requi	red
------------------------	------	--------	--------	-------	-----

Example:

• The El instruction can be used only in the main program.

Instruction-104: Disable Interrupt

Input - DI] Output
Function:	

When the input is ON, this instruction disables the execution of user designated interrupt operation, i.e. timer interrupt program and I/O interrupt programs.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

Operand:

No	operand	ic r	equired
INU	operatio	151	equireu.

Instruction-105: Watchdog Timer Reset

Expression:

Input [WDT n] Output	
-------------------------	--

Function:

When the input is ON,	this instruction extend the scan time over detection time by 200 ms. This instruction
can be used to extend	the detection time by multiple of 1ms.
if n = 1 => 201ms;	if n = 100 => 300ms

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

Operand:

	Name			De	evice	е			Register										Constant	Index		
		Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
<i>n</i> [Extend time																				1-100	

Example:

D0000	
BUU20 WDT	
T-B20 (n=10)	1

When B020 is ON, the scan time detection time is extended by 10x1 ms.

Note

- The operand n specifies the extended time.
- · The normal scan time detection is 200 ms
- · If the ladder scan time (SW0046) exceeds the detection time, the following error bits are set:
- M00018 (MW01_2): Program error M00033 (MW02_1): Ladder scan time error
- The unit does not restart

Instruction-106: Step Sequence Initialize

Expression:

Input -STIZ (n)	A] Output

Function:

When the input is ON, n devices starting with A are reset to OFF, and A is set to ON. This instruction is used to initialize a series of step sequence. The step sequence is useful to describe a sequential operation.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution at the rising edge of the input	ON

Operand:

	Name	Device														Constant	Index					
		Х	Y	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
n	Size of step Sequence																				1-64	
A	Start Device			\checkmark																		

Example:

When B020 is changed from OFF to ON, B400 is set to ON and subsequent 9 devices (B401 to B409) are reset to OFF.

This instruction initializes a series of step sequence, 10 devices starting with B400.

B409	B408	B407	B406	B405	B404	B403	B402 I	B401	B400
OFF	OFF	ON							

10 devices staring with B400

Note

• The STIZ instruction is used together with STIN and STOT instructions to configure the step sequence.

• The STIZ instruction is executed only when the input is changed from OFF to ON.

Instruction-107: Step Sequence Input

Expression:

Input – STIN	A] Output

Function:

When the input is ON and the device A is ON, the output is set to ON.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	When A is ON	ON
	When A is OFF	OFF

Operand:

	Name			De	evic	e				R	egiste	er									Constant	Index
		Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Step Device			\checkmark																		

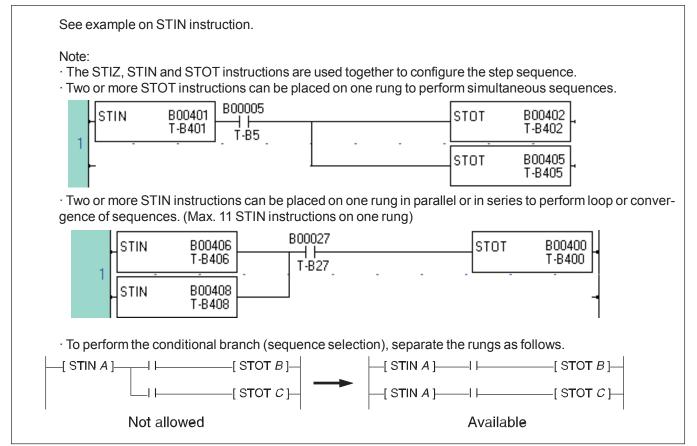
B00021	· · · · ·	- 0 X00004	· · · · · · · · · · · · · · · · · · ·	N consecutive	in a second		
2 T-B21 STIN	B00400 T-B400	T-X4		STOT	B00401 T-B401		
3 B00022 STIN T-B22	B00401 T-B401	X00005 B00022 T-X5 T-B22		STOT	B00402 T-B402		
	changed from	OFF to ON, B400		l and sub	sequent 9 d	levices (B4	01 to B409)
When B020 is or reset to OFF. When X004 co When both X00	mes ON, B40) is set to ON and B401 is s	set to Of	N.	,	01 to B409)
When B020 is or reset to OFF. When X004 co When both X000 B020	mes ON, B40	OFF to ON, B400) is set to ON and B401 is s	set to Of	N.	,	01 to B409)
When B020 is or reset to OFF. When X004 co When both X004 Co B020 X004	mes ON, B40	OFF to ON, B400) is set to ON and B401 is s	set to Of	N.	,	01 to B409)
When B020 is or reset to OFF. When X004 co When both X000 B020 X004 X005	mes ON, B40	OFF to ON, B400) is set to ON and B401 is s	set to Of	N.	,	01 to B409)
When B020 is or reset to OFF. When X004 co When both X000 B020 B020 B022 B022 B022 B022 B022	mes ON, B40	OFF to ON, B400) is set to ON and B401 is s	set to Of	N.	,	01 to B409)
When B020 is or reset to OFF. When X004 co When both X000 B020 X004 X005	mes ON, B40	OFF to ON, B400) is set to ON and B401 is s	set to Of	N.	,	01 to B409)

Instruction-108: Step Sequence Output

Expression:

Input STOT	A Output

Function:


When the input is ON, the device A is set to ON and the devices of STIN instructions on the same rung are reset to OFF.

Execution condition:

Inpu	Operation	Output
OFF	No execution	
ON	Execution	

Operand:

	Name			De	vice	е				R	egiste	er									Constant	Index	
		Х	Y	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R			
A	Step Device			\checkmark																			

Instruction-109: Moving Average

Expression:

Input – A MAVE (n) B → C Output

Function:

When the input is ON, this instruction calculates the average value of the latest n scan's register A data, and stores it in C. The allowable range of n is 1 to 64. This instruction is useful for filtering the analog input signal.

The latest n scan's data of A are stored in n registers starting with B, and C+1 are used as pointer.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

Operand:

	Name			De	vice	Э				R	egiste	er									Constant	Index
		Х	Υ	В	S	T.	C.	М	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Input Data								\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	
n	Data Size																				1 - 64	
В	Start of table									\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark			
С	Output data									\checkmark		\checkmark										

Example:

XW004 (T-XW4)	MAVE	D0010	1
D0900 (T-D900)	(n=5)	(T-D10)	

The latest 5 scan's data of XW04 is stored in D0900 to D0904 (5 registers), and the average value of them is calculated and stored in D0010.

D0011 is used as internal work data.

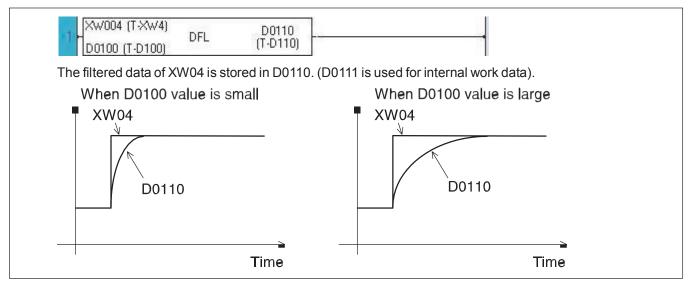
	XW04	D0010	
1st scan	1000	200	= (1000) / 5
2nd scan	1005	401	= (1000 + 1005) / 5
3rd scan	1009	603	= (1000 + 1005 + 1009) / 5
4th scan	1012	805	= (1000 + 1005 + 1009 + 1012) / 5
5th scan	1007	1006	= (1000 + 1005 + 1009 + 1012 + 1007) / 5
6th scan	1004	1007	= (1005 + 1009 + 1012 + 1007 + 1004) / 5
7th scan	998	1006	= (1009 + 1012 + 1007 + 1004 + 998) / 5
8th scan	994	1003	= (1012 + 1007 + 1004 + 998 + 994) / 5

Instruction-110: Digital Filter

Expression:

Input – A	DFL	B →C Output	
Eunction:			

Function:


When the input is ON, this instruction calculates the following formula to perform digital filtering for input data A by filter constant by B, and stores the result in C. Yn = (1 - FL) * Xn + FL * Yn-1 Here; Xn is input data specified by A FL is filter constant, 1/10000 of data specified by B (data range: 0 to 9999) Yn is output data to be stored in C Yn-1 is output data at last scan This instruction is useful for filtering the analog input signal. C+1 is used for internal work data.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution (FL is limited within the range of 0 to 9999)	ON

Operand:

	Name			De	vice	Э				R	egiste	er									Constant	Index
		Х	Y	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	κ	MW	R		
А	Input Data								\checkmark		\checkmark		\checkmark									
В	Filter Constant								\checkmark				\checkmark									
С	Output data									\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark			

Instruction-111: Pre-derivative Real PID1

Evere entered	
EXDRESSION	
Expression:	

PID1 B —→C├ Output

Function:

Using the parameters stored in the 7 registers starting with the register specified by the operand B and previous values stored in the 4 registers following the register specified by the operand C, the PID calculation is executed as described below on the present value P and the set value S stored in the 2 registers starting with the register specified by the operand A. The increments of manipulation value M is calculated and stored in the register specified by the operand C.

Execution condition:

Input	Operation	Output
OFF	No Execution	OFF
ON	Execution KIH and KIL ! = 0	ON
ON	Execution KIH and KIL = 0 (only proportional controller ON)	ON

Operand:

	Name			De	evic	е				R	egiste	er									Constant	Index
		Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Top of Input Data								\checkmark													
В	Top of Parameter								\checkmark													
С	Top of output data									\checkmark												

Example:

1 B00030 BW0010 (T-BW10)	PID1 BW0	
T-B30 BW0020 (T-BW20)	(100	

If the NO-contact B0030 in ON, then, using the contents of the 7 registers starting with the register specified by the operand B [i.e. the contents of BW20 (Kp = 1), of RW21 (Kih = 4), of BW22 (KIL = 10), of BW23 (KDH = 20), of BW24 (KDL = 5), of BW25 (G = 0) and BW26 (L = 100)] - plus the contents of the 4 registers (BW31 to BW34) following the register specified by the operand C (BW30) [i.e. the previous deviation e-1 (78), the previous input value P-1 (22), the input before the previous input P-2 (20), and the remainder data Ir (0)] - the PID calculation is executed on the input data consisting of the contents (P = 25) of the register BW10 and the contents (S = 100) of the register BW11 specified by the operand A. The result (M = 180, e-1 = 75, P-1 = 25, P-2 = 22, Ir = 2) are stored in the 5 registers (BW30 - BW34) starting with the register specified by the operand C. After the calculation, the execution output is switched ON.

If the NO-contact B0030 is OFF, the calculation is not executed and the output is switched OFF. However, M and Ir are set to0, e-1 is set to the value of e (=S-P), ans P-1 and P-2 are set to the value of P.

Present value P	В	Proportional coefficent Kp
et value S	B+1	Integral coefficent KIH
	B+2	Integral coefficent KIL
	B+3	Derivative coffiecient KDH
	B+4	Derivative coefficient KDL
	B+5	Gap constant G
	B+6	Limit constant L

n	Increments of manipulation value. M	
-	Increments of manipulation value M	

+1 Last deviation e-1

+2 Last present value P-1

2+3 present value before p-2

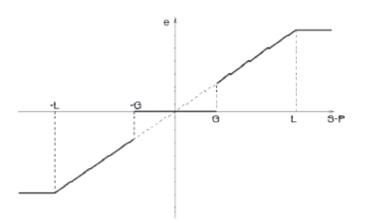
+4 Remainder daaa Ir

PID Calculation:

Here, e is the deviation, and is calculated by applying limit and gap for the value of (S-P). (See diagram below:)

Ir shows the remainder of the following:

I KIL I . e + Ir INT (------) (Initial value of Ir is 0) I KIH I


INT 9a) is the function which produces the quotient from the devision a.

50 18 Example: INT (-----) = 16, INT (-----) = 3 3 5

* The range of data which can be stored in the register specified by the operand A is from -32768 to 32767.

* When the calculated M>32767, or when M<-32768, the limit value is stored in the register of the operand C, and the execution output is switched ON.

* If KIH = 0, or if KDL = 0, the Integral and derivative calculation is not executed.

Instruction-112: Pre-derivative Real PID4

Expression:

_D00100(A) F	0 PID4 D00300		
D00200(B)	C		

Function:

Performs PID (Proportional, Integral, Derivative) control which is a fundamental method of feed-back control. The basic idea behind the a PID controller is to read a sensor, then compute the desired actuator output by calculating proportional, integral, and derivative responses and summing those three components to compute the output.

Using the parameters stored in the 6 registers starting with the register specified by the operand B and previous values stored in the 5 registers following the register specified by the operand C, the PID calculation is executed as described below on the present value P and the set value S stored in the 2 registers starting with the register specified by the operand A. The increments of manipulation value M is calculated and stored in the register specified by the operand C.

Algorithm used:

$$\begin{split} MV_n &= MV_{n-1} \pm \Delta MV_n \\ \Delta MV_n &= K_P \bullet (\Delta P_n + \Delta I_n) + K_D (\Delta D_n) \end{split}$$

Here,

$\Delta P_n = e_n - e_{n-1}$ $e_n = SV_n - PV_n$ $e_n = PV_n - SV_n$	if reverse action if forward action
$\Delta I_n = \left(\frac{e_n}{T_I}\right) \times (T_S + 1)$	

Execution condition:

 $\Delta Dn = e_n - 2e_{n-1} + e_{n-2}$

Input	Operation	Output
OFF	Initialization	OFF
ON	Execute PID every setting interval	ON when execution

Operand:

	Name			De	evice	е				Register									Constant	Index		
		x	Υ	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Top of Input Data								\checkmark													
В	Top of Parameter								\checkmark		\checkmark											
С	Top of output data									\checkmark												

B00030 D00100 (T-D100) 1 → 1 → 1 T-B30 D00200 (T-D200)	PID4	D00300 (T-D300)	•
--	------	--------------------	---

For the above shown sample ladder, data register are assigned as given below.

Input data	Cont	rol Parameters	Output data				
A D100 Process Input value A+1 D101 Set Value	B+1 D201 Ir B+2 D202 D B+3 D203 G B+4 D204 N	Proportional gain (KP) ntegral time (TI) Derivative gain (KD) Gap (dead-band) GP Not used Action Type	C C+1 C+2 C+3	D300 D301 D302 D303	Manipulation Value (MV) Previous error (en-1) Previous error (en-2) Previous MV (MVn-1)		

Parameters Details:

A	Process Input Value	Data Range:	-32768 to +32767
A+1	Set Value	Data Range:	-32768 to +32767
B	Proportional gain	Data Range:	-32768 to +32767
B+1	Integral time (sec)	Data Range:	0 to 32767
B+2	Derivative gain	Data Range:	-32768 to +32767

B+3 Dead band (percentage) Data Range: 0 to 100

Dead band value = DB * SV / 100

Dead band value is expressed as *Dead band (DB)* percentage of *set value (SV)* in execution of PID instruction. PID instruction is executed only if error (en) is less than Dead band value.

When PID instruction is not executed MV is set automatically to 0 or 4095 (MVMAX) depending on compari son between SV and PV.

MV = 4095 if SV > PV MV = 0 if PV >= SV

B+4 Not Used

B+5 Action

Data Range: 0 to 1

0: Direct Action, MV increases when PV is increased.

1: Reverse Action, MV decreases when PV is increased.

С	Manipulation Value	Data Range:	0 to 4095
C+1	Previous error Value (en-1)	Data Range:	-32768 to +32767
C+2	Previous error Value (en-2)	Data Range:	-32768 to +32767
C+3	Previous Manipulation Value	Data Range:	0 to 4095

Note -

Users need to ensure that PID instruction is executed once every scan interval through Ladder Logic.

Precaution -

If both normal program and interrupt program contain this instruction, make sure both not executed simultaneously.

Instruction-113: Upper Limit

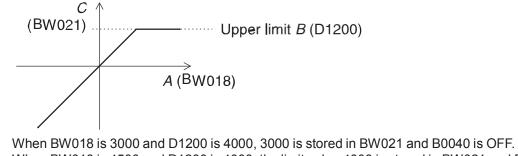
Expression:

Function:

When the input is ON, the following operation is executed. (Upper limit for A by B) If $A \le B$, then C = A. If A > B, then C = B.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution: not limited (A \leq B)	OFF
	Execution: limited (A > B)	ON


Operand:

	Name			De	vice	Э				R	egiste		Constant	Index								
		Х	Υ	В	S	Т.	C.	М	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Operation Data								\checkmark		\checkmark	\checkmark										
В	Upper Limit								\checkmark		\checkmark	\checkmark										
С	Destination									\checkmark			\checkmark									

Example:

B0030 BW018 (T-BW18)	NER	BW021	B0040
T-B30 D1200 (T-D1200)	UL	(T-BW21)	[]

When B030 is ON, the upper limit operation is executed for the data of BW018 by the data of D1200, and the result is stored in BW021.

When BW018 is 4500 and D1200 is 4000, the limit value 4000 is stored in BW021 and B0040 is ON.

Note

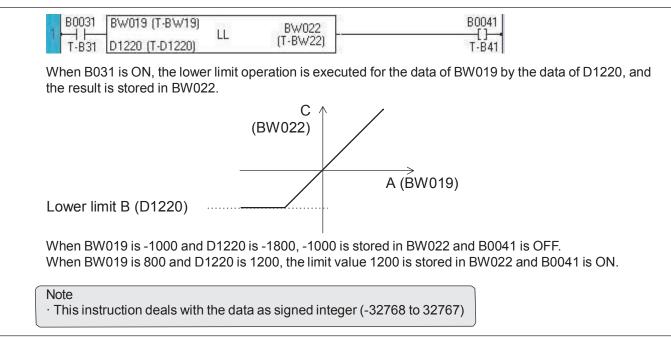
 \cdot This instruction deals with the data as signed integer (-32768 to 32767).

Instruction-114: Lower Limit

Expression:

Input -	[A	LL	B →C _Output	
Function:				

Function:


When the input is ON, the following operation is executed. (Lower limit for A by B) If $A \ge B$, then C = A. If A < B, then C = B.

Execution condition:

Input	Operation	Output
OFF	'	OFF
•••	No execution	
ON	Execution: not limited (A \geq B)	OFF
	Execution: limited (A < B)	ON

Operand:

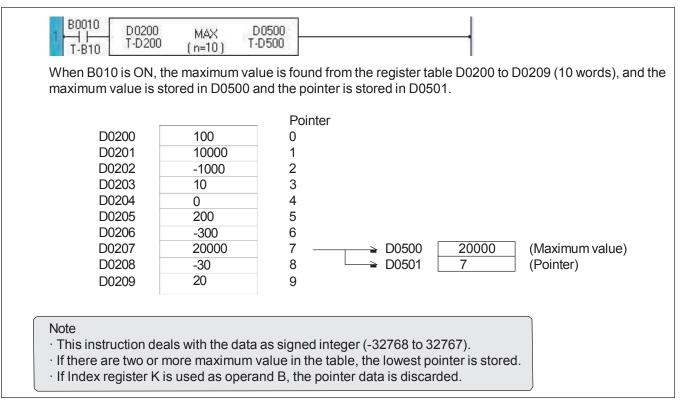
	Name			De	evic	е				R	egiste	er									Constant	Index
		Х	Υ	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Operation Data								\checkmark		\checkmark	\checkmark										
В	Lower Limit								\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark						
С	Destinatior									\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark			\checkmark

Instruction-115: Maximum Value

Expression:	

Input —	A MAX (n) B - Output

Function:


When the input is ON, this instruction searches for the maximum value from the table of size n words starting with A, and stores the maximum value in B and the pointer indicating the position of the maximum value in B+1. The allowable range of the table size n is 1 to 64.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

Operand:

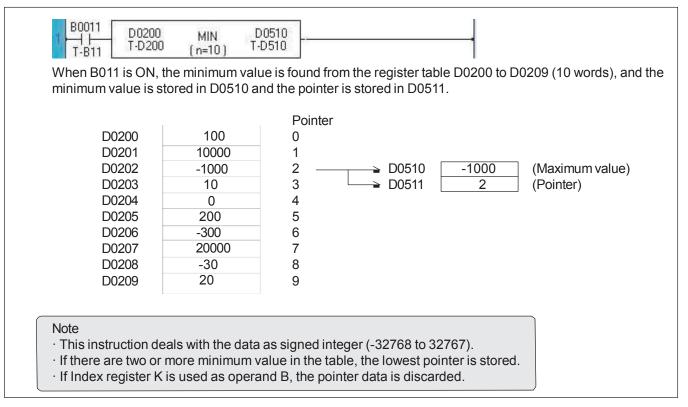
	Name Device									R	egiste	er							Constant	Index		
		Х	Υ	В	s	Т.	C.	М	XW	YW	BW	SW	т	С	D	T	J	к	MW	R		
A	Start of table								\checkmark				\checkmark									
n	Table Size																				1 - 64	
В	Result												\checkmark		\checkmark				\checkmark			

Instruction-116: Minimum Value

_			
ΗY	oress	ะเกท	-
	51000	51011	

-	
Input – A MIN (n) B	Output

Function:


When the input is ON, this instruction searches for the minimum value from the table of size n words starting with A, and stores the minimum value in B and the pointer indicating the position of the minimum value in B+1. The allowable range of the table size n is 1 to 64.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

Operand:

	Name			De	evice	е				R	egiste	er									Constant	Index
		Х	Υ	В	S	Τ.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Start of table								\checkmark				\checkmark									
n	Table Size																				1 - 64	
В	Result									\checkmark												

Instruction-117: Average Value

Expression:

Input – A AVE (n) B – Output

Function:

When the input is ON, this instruction calculates the average value of the data stored in the n registers starting with A, and stores the average value in B. The allowable range of the table size n is 1 to 64.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

Operand:

	Name			De	evic	е				R	egiste	er									Constant	Index
		Х	Y	В	S	Τ.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Start of table								\checkmark				\checkmark									
n	Table Size																				1 - 64	
В	Result										\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark			

B0012 D0200 T-B12 T-D20		D0520 T-D520
When B012 is ON, the average value is		ue of the data stored in the register table D0200 to D0209 (10 words), and 0.
D0200 D0201 D0202 D0203 D0204 D0205 D0206 D0207 D0208 D0209	100 10000 -1000 10 0 200 -300 20000 -30 20	0 1 2 3 4 5 6 7 8 9

Instruction-118: Function Generator

Expression:

Input – A FG (n) B – Ou	ut
-------------------------	----

Function:

When the input is ON, this instruction finds the function value f(x) for A as x, and stores it in C. The function f(x) is defined by the parameters stored in 2 * n registers starting with B.

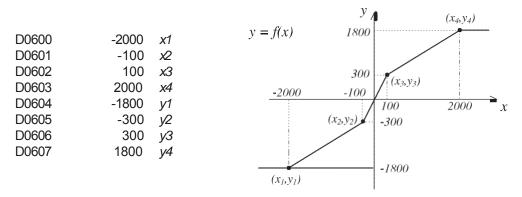
Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

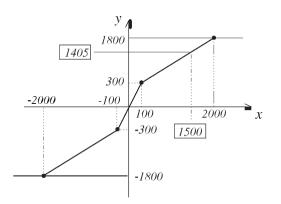
Operand:

	Name			De	vic	е				R	egiste	er									Constant	Index
		Х	Y	В	S	Τ.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Input Value x								\checkmark		\checkmark											
n	Parameter Size																				1 - 32	
	Starts of Parameter	6							\checkmark	\checkmark	\checkmark	V	\checkmark	\checkmark	\checkmark				\checkmark			
	Function Value <i>f(x)</i>									\checkmark												

Example:


B00000 	-2000	MOV-W	D00600 T-D600	100	MOV-W	D0060 T-D601
- +	100	MOV-W	D00602 T-D602	2000	MOV-W	D00603 T-D603
- +	-1800	MOV-W	D00604 T-D604	- 300	MOV-W	D00605 T-D605
_ 1	300	MOV-W	D00606 T-D606	1800	MOV-W	D00607 T-D607

When B010 is ON, the FG instruction finds the function value f(x) for x = XW004, and stores the result in D0100.


The function f(x) is defined by 2 ' 4 = 8 parameters stored in D0600 to D0607. In this example, these parameters are set at the first scan.

Parameter table

4 registers for x parameters and subsequent 4 registers for corresponding f(x) parameters

The FG instruction interpolators f(x) value for x based on the n parameters of (x_i, y_i) . For example, if XW04 is 1500 (x = 1500), the result 1405 (f(x) = 1405) is stored in D0100.

Note

- The order of the *x* parameters should be $x1 \le x2 \le ... \le xi \le ... \le xn$. In the above example, the data of D0600 to D0603 should be D0600 \le D0601 \le D0602 \le D0603.
- · If x is smaller than x1, y1 is given as f(x). In this example, D0604 data (-1800) is stored in D0100 if XW04 is smaller than D0600 (-2000).
- · If x is greater than xn, yn is given as f(x). In this example, D0607 data (1800) is stored in D0100 if XW04 is greater than D0603 (2000).
- The valid data range is -32768 to 32767.

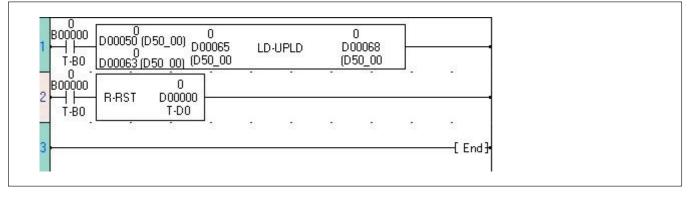
Instruction-119: USB Data log Upload

This ladder instruction is applicable on in FP-HMI with USB port support. Expression:

Input – [A] [C] LD-UPLD [D] [B]	Output
---------------------------------------	--------

Function:

The output of this instruction is a "*.csv" type file which will be uploaded in USB stick. This ladder supports only those units having, USB functionality.


Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

Operand:

	Name			De	evice	Э				R	egiste	er									Constant	Index
		Х	Υ	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Date time tag								V	\checkmark												
В	Group (1-4)								\checkmark													
С	Filename									\checkmark	\checkmark	\checkmark				\checkmark						
D	Status Reg	iste	r							\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			

Example:

Here user needs at least 16 tag registers to execute this task.

In the above shown image, once user defined tag address for "Date Time", the application automatically considers consecutive 12 registers for date and time.

i.e. If tag address D000 is for Date time, then:

D0001 will be for Start Date

D0002 will be for Start Month

D0003 will be for Start Year

D0004 will be for Start Hour

D0005 will be for Start Minute

D0006 will be for Start Second D0007 will be for End Date D0008 will be for End Month D0009 will be for End Year D0010 will be for End Hour D0011 will be for End Minute D0012 will be for End Second.

Apart from this, user needs tag address for group Number (1 - 4).

User also has to defined another tag address for file name. This file name is for "*.csv" output file which can be in ASCII data entry format.

User can also defined file name using a string which should be no longer than 8 characters.

The Status byte will show the respective status code depending on the current status of the Task , like task complete, task is in execution, invalid date, invalid group number, USB stick is absent, invalid entry of File output device etc. etc.

Every time a new file will be created on USB stick. If old file with same name is present it will be overwritten. The data can be sorted according to group number and the Start-End Date- Time only. e.g. the csv file can open in Windows Excel sheet or in Microsoft Word or in notepad.

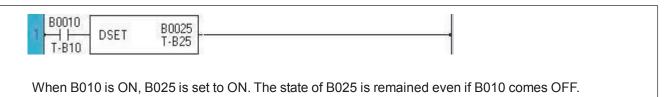
This function can also be carried out as an application task in the OIS PLUS dispays.

Instruction-120: Device Set

Expression:

Input – DSET A – Output	
-------------------------	--

Function:


When the input is ON, the device A is set to ON if A is a device.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

Operand:

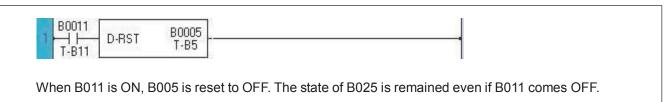
	Name			De	evice	е				R	egiste	er									Constant	Index
		Х	Υ	В	S	Т.	C.	Μ	XW	YW	BW	SW	т	С	D	I	J	Κ	MW	R		
A	Device		\checkmark		\checkmark			\checkmark														

Instruction-121: Device Reset

Expression:

Input – D-RST	A Output	

Function:


When the input is ON, the device A is reset to OFF if A is a device.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

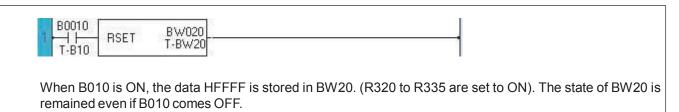
Operand:

	Name			De	vice	Э				R	egiste	er									Constant	Index
		Х	Y	В	S	Τ.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Device				\checkmark			\checkmark														

Instruction-122: Register Set

Expression:		
Input – R-SET	A Output	

Function:


When the input is ON, the data HFFFF is stored in the register A if A is a register.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

Operand:

	Name			De	vice	Э				R	egiste	er									Constant	Index
		Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Register									\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark				

Instruction-123: Register Reset

Expression:			
Input – R-RST	A	Output	
F ()			

Function:

When the input is ON, the data 0 is stored in the register A if A is a register.

Execution condition:

Input	Operation	Output
OFF	No execution	OFF
ON	Execution	ON

Operand:

	Name			De	evice	е				R	egiste	er									Constant	Index
		Х	Y	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Register										\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark				

Instruction-124: Set Carry

Expression

SETC - Output

Function:

When the input is ON, the carry flag (CF = S0) is set to ON.

Execution condition:

Input	Operation	Output	CF
OFF	No execution	OFF	
ON	Execution	ON	Set

Operand:

No operand is required.

Example:

When B011 is changed from OFF to ON, the carry flag S0 is set to ON.

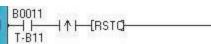
Instruction-125: Reset Carry

Expression:

Input – RSTC – Output

Function:

When the input is ON, the carry flag (CF = S0) is reset to OFF.


Execution condition:

Input	Operation	Output	CF
OFF	No execution	OFF	
ON	Execution	ON	Reset

Operand:

No ope	erand is re	auired
110 000		yuncu.

Example:

When B011 is changed from OFF to ON, the carry flag S0 is reset to OFF.

Instruction-126: Encode

Expression:

Input – A ENC	n) B Output
---------------	-------------

Function:

When the input is ON, this instruction finds the bit position of the most significant ON bit in the bit table, size 2 n bits starting with 0 bit (LSB) of A, and stores it in B.

Execution condition:

Input	Operation	Output	CF
OFF	No execution	OFF	
ON	Normal Execution	ON	
	There is no ON bit (no execution)	OFF	Set

Operand:

	Name			De	vic	е				R	egiste	ər									Constant	Index
		Х	Υ	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Start of Table								\checkmark				\checkmark									
n	Table Size																				1 - 8	
В	Encode Result									\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark			

B0010 BW005 ENC D0010 T-B10 T-BW5 (n=5) T-D10	
2 ⁵ (=32) bits starting with 0 bit of BW05 (B0 When B010 is ON, the most significant ON stored in D0010.	050 to B06F) are defined as the bit table. I (1) bit position in the bit table is searched, and the position is
The following figure shows an operation exa	imple.
BW06	BW05
31 30 29 28 27 26 25 24 23 22 21 20 19 0 0 0 0 1 0 0 1 0 0 1 1	0 0 0 0 1 1 1 0 1 0 0 0 1 0
→ D0010 Note: • If there is no ON bit in the bit table, the inst	26 struction error flag (ERF = S0034) is set to ON.

Instruction-127: Decode

Expression:

Input – A DEC (n) B - Output

Function:

When the input is ON, this instruction sets the bit position which is designated by lower n bits of A to ON in the bit table, size 2ⁿ bits starting with 0 bit (LSB) of B, and resets all other bits to OFF.

Execution condition:

Input	Operation	Output	It
OFF	No execution	OFF	
ON	Execution	ON	

Operand:

	Name			De	vice	Э				R	egiste	er									Constant	Index
		Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	К	MW	R		
A	Decode Source								\checkmark													
n	Table Size																				1 - 8	
В	Start of Table									\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark			

B0011 D0011 DEC T-B11 T-D11 (n=5)	BW005 T-BW5
, , , ,	W05 (B050 to B06F) are defined as the bit table. designated by lower 5 bits of D0011 in the bit table is set to ON, and all DFF.
The following figure shows an operation	ation example.
F E D C B A	9 8 7 6 5 4 3 2 1 0
Ignored	H18 (=24)
	ets ON
√ 31 30 29 28 27 26 25 24 23 22 2	1 20 19 18 17 16 15 14 13 12 11 10 9 3 2 1 0
0 0 0 0 0 1 0 1 0 0	
BW06	BW05

Instruction-128: Bit Count

Expression:

Input	B - Output
-------	------------

Function:

When the input is ON, this instruction counts the number of ON (1) bits of A, and stores the result in B.

Execution condition:

Output
OFF
ON

Operand:

	Name			De	vice	е				R	egiste	er									Constant	Index
		Х	Y	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Source								\checkmark			\checkmark	\checkmark		\checkmark							
В	Count Data											\checkmark			\checkmark				\checkmark			

B002 ⊢⊢ ⊢ T-B2	C104	BW03; T-RW3		BC	2	D01 T-D1									_
When B D0102.	020 is	₃ON,	the nu	ımbeı	r of () NC	1) bi	ts of	the	regi	ster	3W()32 i	is c	counted, and the result is stored in
The follo	wing	figure	shows	s an c	pera	ation	exa	mple) .						
	F	E D	C C	В	A	98	87	76	6 5	6 4	3	2	1	(0
BW032	0	0 1	0	0	1	1	1	0	1 () ^	1	0	0		0
	<u> </u>	C	Counts	the r	numl	ber c	of ON	V (1)	bits	= 7					
	F	ΕD) C	В	А	98	8 7	76	5 5	5 4	3	2	1	(0
D0102	0	0 0		0			0 0) C		_			1
L													1		The result data (7) is stored in binary

Instruction-129: Flip-Flop

Expression:

Set Input -S F/F	Q Output
Reset Input-R A	

Function:

When the set input is ON, the device A is set to ON. When the reset input is ON, the device A is reset to OFF. When both the set and reset inputs are OFF, the device A remains the state. If both the set and reset inputs are ON, the device A is reset to OFF. The state of the output is the same as the device A.

Execution condition:

Set Res input input		Output
OFF OFF ON	No execution (A remains previous state) Resets A to OFF	Same as A
ON OFF	F Sets A to ON Resets A to OFF	

Operand:

	Name			De	evic	е				R	egiste	er									Constant	Index
		Х	Y	В	S	T.	C.	М	XV	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
A	Device							\checkmark														

T-X3 X00004	T-B100 -Flip-Flop	Q -							
	a a								1
When X003 is 0	ON, B10E is	set to 0	DN. Wh	nen X00)4 is Ol	N, B010	00 is re	set to	OFF. If both are ON, B0
reset to OFF.									
An example tim	ing diagram	is shov	vn helo	\ \ /					
X003			VII DCIO	vv.					
X004				į					
B10E									

Instruction-130: Direct I/O

Expression:

Function:

When the input is ON, this instruction immediately updates all external input (XW) and all output (YW) registers of the slot specified by register.

• For XW register ... reads the data from corresponding slot (Base and expansion)

For YW register ... writes the data into corresponding slot (Base and expansion).

Execution condition:

	Input	Operation	Output
	OFF	No execution	OFF
	ON	Execution	ON

Operand:

	Name			De	vice	Э				R	egiste	er									Constant	Index
		Х	Υ	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	Κ	MW	R		
n	Register size																					
	Start of registers								\checkmark	\checkmark												

Example:

When B010 is ON, all registers of slot1 are updated immediately.

Note1:

• In normal execution XW or YW registers (Input and output registers of base and expansion) are updated / written only once in the main scan. (Refer flow chart). But when direct IO instruction is used reading of physical input and writing to physical outputs is carried out at the time of execution of ladder instruction...

Note2:

• The Direct I/O instruction can be programmed in the main program and in the interrupt program. If this instruction is programmed in both, the instruction in the main program should be executed in interrupt disable state. Refer to EI (Enable interrupt) and DI (Disable Interrupt) instructions.

Instruction-131: Set Calendar

Expression:

Input -A CLND-Output

Function:

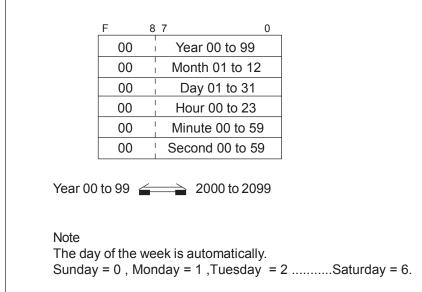
When the input is ON, the built-in clock/calendar is set to the date and time specified by 6 registers starting with A. If an invalid data is contained in the registers, the operation is not executed and the output is turned ON.

Execution condition:

Input	Operation	Output
OFF	No Operation	OFF
ON	Execution (data is valid)	OFF
	No execution (data is not valid)	ON

Operand:

	Name			De	evice	Э				R	egiste	er									Constant	Index
		Х	Υ	В	S	T.	C.	Μ	XW	YW	BW	SW	Т	С	D	I	J	Κ	MW	R		
A	Start of table								\checkmark				\checkmark									


Example:

B0020	D0050	B0031
T-B20	T-D50	T-B31

When B020 is ON, the clock/calendar is set according to the data of D0050 to D0055, and the output is OFF (B0031 is OFF).

If D0050 to D0055 contains invalid data, the setting operation is not executed and the output is turned ON (B0031 comes ON).

D050 (first) to D055 (last) contains

Currently following system registers (SW) are updated after 2 sec

Modbus address	SW	
420011	SW10	Year (00 To 99 <=> 2000 To 2099)
420012	SW11	Month (01 To 12)
420013	SW12	Date (01 To 31)
420014	SW13	Hour (00 To 23)
420015	SW14	Min (00 To 59)
420016	SW15	Sec (00 To 59)
420017	SW16	Day (00 To 07)

If there is any error RTC_Fail Flag is set to ON (SW 03 BIT 02)

Instruction-132: Calendar Operation

Expression:

Input - A CLDS	B – Output
	1

Function:

When the input is ON, this instruction subtracts the date and time stored in 6 registers starting with A from the current date and time, and stores the result in 6 registers starting with B. If invalid data is contained in the registers, the operation is not executed and the output is turned ON.

Execution condition:

Input	Operation	Output
OFF	No operation	OFF
ON	Execution (data is valid)	OFF
	No execution (data is not valid)	ON

Operand:

	Name			De	evic	е				R	egiste	er									Constant	Index
		х	Y	В	S	Т.	C.	Μ	XW	YW	BW	SW	Т	С	D	Ι	J	К	MW	R		
Α	ubtrahend								\checkmark				\checkmark									
В	Result									\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							

Example:

00000 E			1	E SOOT
B0020	D0050		D0100	B0035
	T DE0	CLDS	T D 100	[]=4
T-B20	1-000		1-0100	T-B35

When B020 is ON, the date and time data recorded in D0050 to D0055 are subtracted from the current date and time of clock/calendar, and the result is stored in D0100 to D0105. In normal operation, the output is OFF (B0035 is OFF). If D0050 to D0055 contains invalid data, the operation is not executed and the output is turned ON (B0035 comes ON).

Current date & time

H0098		D0050	H0097	D0100	H0000	(Year)
H0001		D0051	H0010	D0101	H0003	(Month)
H0015	minus	D0052	H0010	→ D0102	H0007	(Day)
H0017		D0053	H0015	D0103	H0001	(Hour)
H0000		D0054	H0030	D0104	H0030	(Minute)
H0000		D0055	H0000	D0105	H0000	(Second)

 \cdot Future date and time cannot be used as subtrahend A.

 \cdot In the calculation result, it means that 1 year is 365 days and 1 month is 30 days.

TOSHIBA INDUSTRIAL PRODUCTS:

- Adjustable Speed Drives
- Motors
- Motor Controls
- PLCs, DCS, & Instrumentation
- Uninterruptible Power Systems

© 2011 Toshiba International Corporation Industrial Division • 13131 West Little York Road Houston, Texas 77041 USA • Tel +713-466-0277 US 1-800-231-1412 •

www.toshiba.com/ind plc@tic.toshiba.com