

HSDSP2812 开发板用户手册

(Ver2.0)

武汉华升泰克电子技术有限公司 WuHang HuaSheng Technology CO.LTD 2012.8

目	录

1.1 产品简介	. 6
1.2 品质保证	8
13 系统资源	8
14 扩展接口	10
15 代码及实验项目	11
1.6 相关资料	12
170 伯久资料	12
1.7 吴主应用	13
1.0	13
1.0 兵他与远能干	15
第二章,学习之前的准备工作	14
2.1 硬件准备	14
2.2 软件准备	15
2.3 元件布局图	16
2.4 跳线说明	16
25连接器说明	17
2.6 硬件资源说明	18
第三章.软件安装及设置	19
3.1 安装步骤简述	19
3.2 CCS 的安装	19
3.3 安装仿直器驱动	19
3.5 CCS 软件简介	19
弗 四草. 谜 件电路分 // 计解	26
4.1 供电电路	26
4.2 复位电路	27
4.3 时钟振荡电路	27
4.4 峰鸣器控制电路	28
4.5 外扩 RAM 电路	28
4.6 外扩 FLASH 电路	29
4.7 DSP JTAG 接口电路	29
4.8 DSP 引脚扩展	30
49 走马灯与按键由路	31
4 10 SCI 串口通讯由路	31
4.10 001 中口過机宅品 / 11 RS_185 通讯由 8	31
4.12 CAN 通讯 按口由 败	32
4.12 为M 运机设立电距	22
4.15	33 22
4.14 // 77天七后	21
4.13 3F1-7// 村沢巴府	34 25
4.10 IIU-EEFKUM 电路	55
4.1/ YWM 电机控制电路	35
4.18	36
4.19 12864 图形 LCD 驱动电路	36
4.20 1602	51

4.21 音频控制电路			
4.22 外部中断控制电路			
4.23 USB DEVICE 控制电路			
4.24 FPGA 外围 IO 扩展电路			
4.25 SDRAM 扩展存储器			
4.26 FPGA 配置电路			
			4 12
第五草:DSF 即力私什头型讲解	•••••••	•••••••	
一.系统资源分配程序(FPGA IP)说明			
二.DSP 软件实验讲解			
5.1 内部定时器 0 实验			
5.2 内部定时器 2 实验			
5.3 事件定时器实验			47
5.4 数码管显示实验			
5.5 蜂鸣器控制实验			
5.6 外部 RAM 读写实验			
5.7 外部 FLASH 读写实验			55
5.8 GP10 控制实验			58
5.9 外部中断控制实验			60
5.10 DA 转换实验			
5.11 RS-232 串口通讯实验			
5.12 RS-485 通讯实验			67
5.13 CAN 总线接口实验			69
5.14 USB 通讯实验			71
5.15 直流电机控制实验			
5.16 步进电机控制实验			
5.17 12864 液晶显示实验			
5.18 1602 液晶实验			
5.19 录音&放音头验	•••••		
5.20 AD-DA 联合实验			83
5.21 IIC-EEPROM 实验	•••••		
5.22. 软件固化到 DSP 内部 FLASH 实验			
1 安装烧写软件 (CCS2.2 安装设置方法)	•••••		
2 安装烧与软件 (CCS3.3 安装设置方法)	•••••		
3 烧与 FLASH			
5.23 FPGA 贫源分配程序烧与头缆			
5.24 SIGNALIAPII 逻辑分析仅观测分析 DSP 端口数据实验			
5.25 DSP&FPGA 联合头验			
第六章 QUARTUSII 安装指南			
一 OUARTUS 安装			98
1.安装 QIARTSII 开发环境			
2.安装 OUARUT 基本开发环境			98
3.安装补丁程序			99
4.破解 OUARTUS			
			100
赤 し早、 ALIEKA QUAI USII 使用汀増		••••••	109
1. 概述			109
2. QUATUSII 设计过程			111
3. 编译综合设计			114

4. 仿真丁程洗择新建OTHER FILES 建立.vmF 文件	
分配设备与管脚分配设备:	
6. 程序下载	
7. 调试与软件逻辑分析仪的使用	
	105
一.实验目的	
二.实验前准备和例程介绍	
实验一 流水灯实验(VERILOG)	
实验二 流水灯实验(VHDL)	
实验三 BCD 七段显示译码器实验	
实验四 分频器实验(VHDL)	
实验五 按键控制 LED 实验	
实验六 音乐演奏实验	
实验七 继电器控制实验	
实验八 步进电机控制实验	
实验九 LCD1602 显示实验	
实验十 LCD12864 汉字中文显示实验(VERILOG)	
实验十一 SDRAM 读写实验(VERILOG)	
实验十二.四位加法器	
头验十二 3/8 译码器	
头验十四 分刻器(VERILOG)	
头短十五、	
头短十七 井山牧中山间勿拴制器	
头短十八 十八进制 BCD 详购器	
-	
关验二 LCD 1002 亚小头逊(VERILOG)	
第九章 SOPC 开发工具说明	
第十章 SOPC 实验指导 NIOS II	
一,头验日的	
头验时准备和例程介绍	
二.创建 HELLO_WORLD 认识基本 NIOS 系统	
头短一 HELLO 头短	
头短LED 头短 1	
头短二 LCD 液晶亚示头短(1002 液晶)	
<u> </u>	
- 矢短八 汝雄江村 LED 头短	
头湿 U FLASH 陕与头型	
<u> 大池/ / ホジビザ大型</u> 家院力 按键由断控制 I FD 家院	
大池/1 」又唯て町152町 LED 大池	
天海」 SRIF目並の大型	
云通 ↓ 1000 (±1) 回10 到中门 1000 (±1) 回10 到中门 1000 (±1) 平位 云画 ↓ 1000 (±1) 回10 到中门 1000 (±1) 平位 云画 ↓ 1000 (±1) 回10 到中门 1000 (±1) 平位 云画 ↓ 1000 (±1) □10 □10 □10 □10 □10 □10 □10 □10 □10 □10	
第十一章 TFT2.8 英寸触摸屏说明和实验指导	160
1. TFT2.8 英寸 LCD 扩展板	

7.参考资料	
附 2:DSP 开发中的常见问题	
— 秋叶怕天问题。	
一 	173
附 1:NIOS 开发中的常见问题	
十、 注意事项	
九、 AD 实验操作步骤	
八、 DA 实验操作步骤	
七、 接口定义	
六、 SIGNALTAP II 波形	
五、 模数转换(AD)电路	
四、 波形展示	
三、 数模转换(DA)电路	
二、 硬件结构	
一、 产品图片	
第十三章 高速 AD/DA 扩展板说明	
3: , カ	
4.1/0 扩展板与 DSP 升发板引脚网络隐射表	
3. 原理图	
2.实验过程说明	
1.扩展板说明	
第十二章 大电流隔离 I/O 控制板测试说明	
5. IFI LCD 与 DSP 极与脚隐射表	
3. 实验程序说明	
2. 连接说明。	

第一章.产品概述

1.1 产品简介

HSDSP2812 开发板是一套基于 TMS320F2812 DSP+EP2C8Q208C8 FPGA 的学习和二次开发平台。

1、提供了大量的 DSP, EDA, SOPC 实验项目,并提供大量的专门为这块开发板录制的是配套视频教程,同时 提供完整的原理图、代码和常用的外围接口,完全可以作为个人、公司、高校和研究所的初学者学习和教学的工具。

2、同时,引出 DSP 所有的控制信号和 FPGA 的 60 个 IO 信号,可以作为二次开发的开发平台。

3、采用 2 层板设计,因为充分考虑了 EMC,EMI 以及散热以及 FPGA 的协同工作和资源分配、安装方面的因素,所以开发运行及其稳定可靠。并最大可能的引出了所有接口,因此他也可作为功能板直接嵌入到用户的产品当中,大大缩短用户的产品开发周期。

注意!

1.由于开发板从 VER1.6 升级到 VER2.0, FPGA 的配置芯片由原来的 EPCS4 升级到 EPCS16,并增加大量的 EDA 和 SOPC 实验项目和配套实验教程,更加适合高校开展教学和科研项目。

2.由于开发板电流比较大,全速运行的时候,所以我们升级到 VER2.0 以后,就直接取消了通过 USB 端口 从 PC 取电的功能,所以只能够通过外接电源供电。原来的 VER1.6 是 2 个继电器减少到一个,这样更加实用。具 体问题请直接联系我们。

http://www.hseda.com Email:<u>hseda@sohu.com</u>

共186页第7页

HSDSP2812 开发板使用说明和实验指导

DSP2812+FPGA+SOPC System structure Diagram

1.2 品质保证

本公司保证所生产制造的产品均经过严格的品质确认,同时保证在出厂壹年内,如有发现产品的施工瑕疵或零件故障,本公司负责免费维修。但是如果使用者有自行更改电路、功能、或自行修理本产品、更换零件或擦伤、损 坏本产品等情况,本公司不提供免费保修服务,得视实际情况收取维修费用。如果未按规定操作而发生异常状况(带 电插拔外扩设备等造成的器件损坏),本公司恕不提供免费保修服务。

本保证不含本产品的附属设备(USB 电缆,资料光盘)等。

在壹年的保修期内,请将故障产品送回本公司维修中心或本公司指定的经销商处,本公司会予以妥善维修。 如果本产品在非正常的使用下、或人为疏忽、或非人力可控制下发生故障,例如地震、水灾、暴动、或火灾等非人 力可控制的因素,本公司不予免费保修服务。

1.3 系统资源

DSP 处理器 TMS320F2812, 32 位定点高速数字处理器,最高工作频率 150M;

片内内置 128K * 16 位 FLASH,利用烧写插件可以方便的固化用户程序,FLASH 可加密;

片内内置 18K * 16 位 SRAM;

片内内置 4K*16 位 BOOT ROM;

- 片内内置 1K*16 位 OTP ROM;
- 扩展 256K * 16 位 SRAM, IS61LV25616;
- 扩展 512K * 16 位 FLASH, SST39VF800, 方便用户烧写较大程序;
- 2个8段数码管;
- 8个 LED 发光管, 方便状态指示;
- 9个独立按键;
- 1个蜂鸣器;
- 1 路 RS-232 接口,可连接 PC 进行实验;
- 1 路 RS-485 接口,方便用户组网,端口有保护措施;
- 1 路 CAN2.0 接口,方便用户组网;

16 路 AD 输入接口(输入范围 0~3V), 其中第 1、2 路可连接 DA 输出做验证实验, 3、4 路 输入加了限流和运放 跟随处理,输入范围 0~3V(注意不要超出范围!);

4 路 DA 输出接口;

1 路 USB 2.0 DEVICE 接口,方案为成熟的 CY7C68013 芯片,提供现成的固件和 PC 调用示例代码,可以方便的同 PC 进行通讯,进行二次开发;

- 耳机插孔,可以方便地实现放音功能;
- 话筒插孔,可以方便地进行录音功能;
- 12864 中文图形液晶接口;
- 1602 字符液晶接口;
- 1个 EEPROM, 芯片为 24LC64, 用与 IIC 总线数据传输实验;
- 直流电机控制接口,防反插设计;
- 步进电机控制接口,防反插设计;
- SPI 接口引出,方便组网;
- 所有 PWM 输出接口都已经引出,用户可以根据具体需求进行使用;
- 外扩2路的非屏蔽中断源输入接口;
- 外扩多达5路的可屏蔽中断源输入接口,其中1路可由按键触发;
- 多达 16 路输入,14 路输出接口,用户可以通过修改我们提供的 FPGA IP 核任意增加和删减扩展 I/O 数量;
- 总线开放,数据线,地址线,控制线、特殊功能引脚全部引出,方便用户二次开发;
- +5V、3.3V、GND 等电源测试点;
- 供电直接由外部稳压电源来提供。
- 独立开关,控制电源,方便操作;
- 四个固定孔,方便用户安装固定;
- 2个数码管,通过 FPGA 与 DSP 进行接口。

8个按键输入,通过 FPGA 与 DSP 进行接口。

提供中断源输入接口。

提供手动自动复位电路,方便调试。

提供总线开放,数据线,地址线,控制线、特殊功能引脚全部引出,方便用户二次开发。

一个蜂鸣器。

供电可以通过跳线选择外部稳压电源还是通过 USB 接口供电。

1个独立的继电器,每一个继电器常开常闭触电都已经引出,方便用户使用。

采用 ALTERA 新一代 cylconeII FPGA EP2C8Q208C8 与 DSP 进行接口和通讯,扩展 I/O 口都已经单独引出。

Logic Cells: 8256

I/O:139

Registers: 8745

Differential I/O pairs. 62

Memory bits: 165,888

M4K RAM Blocks: 36

Speed Grade : 8

Plls: 2

FPGA 配置芯片 EPCS16 16M bit 可以满足大多数配置要求。

SDRAM 8M X16bit 16M byte 存储器,可以保存采集的临时数据。或做 NIOS 实验时候的数据存储之用。

1.4 扩展接口

- DSP 总线、AD、EVA、EVB 等所有功能引脚引出, 4 个 30 针的插座, 管脚间距 2mm, 用户可以扩展使用;
- FPGA 的 16 路输入, 16 路输出 10 接口引出, 管脚间距 2mm;
- 4 路 D/A 输出接口插座,管脚间距 2.54mm;
- SPI 接口引出,管脚间距 2.54mm;
- 符合 IEEE 1149.1 标准的 DSP JTAG 接口, IDC14, 管脚间距 2.54mm, 可以配合市面上所有标准 JTAG 接口仿 真器使用;
- 直流电机接口引出,管脚间距2.54mm;
- 步进电机接口引出,管脚间距2.0mm;
- 12864 中文图形液晶接口引出, 20p 孔座, 管脚间距 2.54mm;
- 1602 字符液晶接口引出, 16p 孔座, 管脚间距 2.54mm;
- 2 路 NMI 和 4 路 EINT 输入接口引出,管脚间距 2.0mm;
- FPGA 的标准 JTAG 接口, IDC10 插座, 管脚间距 2.54mm, 可下载自己编写的 FPGA 代码;

- 1 路耳机插孔;
- 1 路话筒插孔;
- RS-485 接口插座, 2 位蓝色端子, 5.08mm 间距;
- CAN2.0 总线接口插座, 2 位蓝色端子, 5.08mm 间距;
- RS-232 标准 DB9 孔式接口插座;
- 1 路 USB DEVICE B 型接口标准插座;
- DC 5V 外部电源输入接口;
- 扩展引出 USB HOST 接口 (另外选购 USB-NET 扩展板);
- FPGA 扩展引出接口 (可以直接连接高速 ADDA, TFT LCD, 大电流 I/O 模块等);

1.5 代码及实验项目

DSP2812+FPGA+SOPC 开发系统实验例程清单

	DSP 实验			EDA 实验	SO	PC (NIOS II) 实验
编 号	实验例程		编 号	实验例程	编 号	实验例程
1	内部定时器 0 实验		1	流水灯实验(VERILOG)	1	HELLO_WORLD
2	内部定时器 2 实验		2	流水灯实验(VHDL)	2	LED 流水灯实验
3	事件定时器实验		3	BCD 七段显示译码器实验	3	LCD1602 显示实验
4	数码管显示实验		4	分频器实验(VHDL)	4	中断控制
5	蜂鸣器控制实验	6	5	按键控制 LED 实验	5	LED 实验 2
6	外部 RAM 读写实验		6	音乐演奏实验	6	按键控制 LED 实验
7	外部 FLASH 读写实验		7	继电器控制实验	7	FLASH 读写实验
8	GPIO 控制实验		8	步进电机控制实验	8	系统时钟实验
9	外部中断控制实验		9	LCD1602 显示实验	9	按键中断控制 LED 实验
10	DA 转换实验		10	LCD12864 汉字中文显示实验 Verilog	10	数码管显示实验
11	RS-232 串口通讯实验		11	SDRAM 读写实验(VERILOG)	11	NIOS 程序固化到串行 FLASH 实验
12	RS-485 通讯实验		12	四位加法器	12	NIOS 系统全检测实验
13	CAN 总线接口实验		13	3/8 译码器	13	
14	USB 通讯实验		14	分频器(VERILOG)	14	
15	直流电机控制实验		15	比较器	15	
16	步进电机控制实验		16	多路选择器	16	
17	12864 液晶显示实验		17	并口转串口简易控制器	17	
18	1602 液晶实验		18	十六进制 BCD 译码器	18	
19	录音&放音实验		19	LCD12864 汉字中文显示实验(VHDL)	19	
20	AD-DA 联合实验		20	LCD1602显示实验(VERILOG)	20	
21	I2C-EEPROM 实验		21		21	

22	软件固化到 DSP 内部 FLASH 实验	22	22	
23	FPGA 资源分配程序烧写实验	23	23	
24	SignalTapII 逻辑分析仪观 测分析 DSP 端口数据实验	24	24	
25	DSP&FPGA 联合实验	25	25	
				<u> </u>

1.6 相关资料

- 1. 完整的原理图 (PDF 格式,保证与 PCB 完全吻合),快速掌握多项实用接口的应用;
- 2. 所有实验提供 C 语言源代码,均有详细中文注释;
- 3. 在线烧写 FLASH 的方法与工具,用以固化用户自己的程序;
- 4. 芯片手册:提供开发板上全部芯片的芯片资料;
- 5. 送原版 TI DSP 开发环境 CCS3.3;
- 6. 提供仿真器驱动及其他 DSP 书籍光盘相关学习资料;
- 7. 赠送 Acrobat reader、Bushound USB 总线监听软件、Sscom 串口调试助手等调试工具;
- 8. 赠送 Altera 下载线原理图;
- 9. 赠送液晶字模软件;
- 10. 赠送 TCP/IP 协议卷:卷1~3;
- 11. 赠送 USB 规范文档;
- 12. 赠送 CAN2.0 规范文档;
- 13. 赠送 U 盘系统说明文档 ;
- 14. 赠送 FAT16、FAT32 系统说明文档;
- 15. 赠送 UCOS-II 在 F2812 上的移植源码;
- 16. 赠送 FFT、FIR 等算法库;
- 17. 赠送 TI 全系列芯片封装库;
- 18. 用户手册:非常详细,包含电路分析、代码介绍、 CCS3.3 快速入门指导等;
- 19.QUARTUS 8.0+NIOS II IDE 完全破解版。
- 20.VHDL 例程集锦
- 21.VHDL 教程
- 22.VERILOG 例程 135 例
- 23 VERILOG 教程
- 24 送串口监听软件,开发 RS232 必备
- 25 字模提取软件,开发 LCD 显示程序必备

26.USB2.0 上位机程序及其源码 27.完整 FPGA 系统资源分配 IP 核及其源码。 28.大量的 NIOS 学习以及开发资料。 以上赠送资料仅供学习用,请勿用于商业用途!

1.7 典型应用

教学应用、工业自动化控制、UPS、电机控制、机器人; 变频控制、汽车、机械、磁盘驱动、数字滤波; 振动分析、交流伺服、直流电机控制等。

1.8 装箱清单(基本配置)

1.0 其他可选配件

第二章 . 学习之前的准备工作

2.1 硬件准备

在学习之前您首先应该确认您的学习所必须的硬件都已齐备,这主要包括 HSDSP2812 开发板套件、DSP 仿真器,FPGA 下载线(BLASTER II(并口)或是 USB BLASTER 下载线)和一台调试仿真用的 PC。

- (1) HSDSP2812 开发板套件
 - HSDSP2812 开发板;
 - +5V 直流稳压电源,注意连接外接电源时候一定要先用万用表测试一下电压是否为5V,并注意极性为内 正外负。如果电压和极性不对,将会烧毁开发板;
 - 串口直连线(九头针九头孔);;
 - USB 连线;
 - 直流电机;
 - 1602 显示液晶;
- (2) DSP 仿真器

想要深入学习需要有一个 DSP 仿真器,这样才能够进行单步、设断点、观察变量等操作,没有仿真器无法 进行针对硬件的实质性操作,意义不大。

仿真器是个通用设备,市面上的并口仿真器和 USB 接口仿真器都可以用,我们也都有这两种型号的仿真器,

如果需要请和我们联系。

● 并口仿真器

一般包括仿真器、+5V 直流稳压电源、并口连接线和 14Pin 标准 JTAG 调试连线。

● USB 接口仿真器

一般包括仿真器、USB 连接线和 14Pin 标准 JTAG 调试连线。

(3) PC(计算机)

需要有一定的磁盘空间。

(4) 硬件安装注意

将仿真器与PC的并口或USB口相连,仿真器的JTAG插头插在板子上。

请注意正确连接14 针的JTAG 电缆,该电缆接错可能会导致仿真器或目标系统永久损坏;仿真器14 针插头第 六孔应该已经堵死,目标系统14针插座第六针也应该拔掉。

切忌在开发板和仿真器有电的情况下,进行插拔操作。一定关闭电源再连接插拔电缆!

2.2 软件准备

(1) DSP 开发环境

CCS 2.2 FOR C2000 或者安装 CCS3.3,通常我们随盘赠送,仅供学习之用。

(2) 仿真器驱动程序

根据您的仿真器的不同而不同,请咨询您的仿真器供应商。 如果购买我们的仿真器,我们的并口仿真器和 USB 接口均提供相应的驱动程序及 DSP 仿真器用户手册。

注意:光盘代码应该备份到硬盘,同时将文件夹的只读属性去掉!!!如果条件允许,整个光盘最好都备份一下,避免长期使用造成损坏。

(3) 其他工具

认真看一下光盘,结合光盘说明,了解每个目录下的内容,包括 USB 口的驱动序,

Cypress 的控制面板 USBcontrol 和 FPGA 开发软件

2.3 元件布局图

2.4 跳线说明

跳线	功能说明	默认值	备注
J14	1-2 ON :将 DA 输出通道 0 作为 AD 通道 0 的输入	短接	做 AD-DA 实验时需要跳上
J32	1-2 ON :将 DA 输出通道 1 作为 AD 通道 1 的输入 1-2 OFF : AD 通道 1 的输入由外部引入	短接	做 AD-DA 实验时需要跳上
J18	1-2 ON :MP/MC 短接(接地),用来烧写内部 FLASH 1-2 OFF:断开表示烧写内部 FLASH 无效	短接	短接即可烧写 FLASH

J23	1-2 ON : MCLK 与 BCLK 短接 1-2 OFF: 不短接	不短接	
J19	1-2 ON :接通蜂鸣器 1-2 OFF:断开蜂鸣器	短接	蜂鸣器工作必须将此短路子 短接
J21	1-2 ON : ADCLO 接模拟地 1-2 OFF: ADCLO 悬空	短接	

2.5 连接器说明

为方用户查找,下表按板上插座的逆时针方向排序看,从左上开始。

连接器	功能说明	备注
J5	5V 电源接口	接标配电源,内正外负
J2	USB_DEVICE 插座	USB B 型座
J20	RS-232 接口(串口)	标准 DB9 孔插座
J17	CAN 总线接口	接线定义不要接错
J6	485 接口	接线定义不要接错
J29	MIC 输入插座	黑色插座
J28	耳机输出插座	黑色插座
J12	FPGA AS 配置插座	配置烧写 EPCS
J1		调试或 NIOS 仿真,固化 NIOS 软件 一
	FPGA JTAG 插座	用
J31,J30	FPGA I/O 扩展	定义参见原理图
J3	1602 字符液晶接口插座	定义参见原理图
J4	12864 图形液晶接口插座	定义参见原理图
J30	IO 输出插座	参见原理图
J25	步进电机插座	定义参见原理图
J16	直流电机插座	定义参见原理图
J22	DSP JTAG 接口插座	<mark>注意方向</mark> ,定义参见原理图
J8, J9	DSP 所有管脚引出接口 ,用户可在此基础上做各种扩展	定义参见原理图
J10, J11		
J15	DA 输出接口插座	定义参见原理图
J13 http://ww	外部两路 AD 信号输入接口 w.hseda.com Email:hseda@sohu.com	AD2,AD3,定义参见原理图 共 186 页 第 17 页
J26	继电器开闭环接口	定义参见原理图

2.6 硬件资源说明

(因为随着版本的升级,我们会不断更新 FPGA 的 IP 核,因此具体资源分配以 FPGA 内部 IP 核和我们的 DSP 配 套实验例程为准)

外围器件	起 始 地 址	备注
片外 FLASH	0x80000	
片外 RAM	0x100000	
LCD 命令低地址	0x4100	只写(写任一数都行,写一次后 LCD 命令线即拉高)
LCD 命令高地址	0x4200	只写
LCD 数据低地址	0x4300	只写
LCD 数据高地址	0x4400	只写
485 收发控制地址	0x4600	只写, D0 位有效
FPGA 内部 595 输入锁存	0X4500	只写, D0 位有效
USB 读写地址	0x4d00	
单频芯片控制线操作地址	0x4a00	
8 路开关量输入输出	0x4b00	
外部中断地址	0x4c00	读回来一字节数据后,可根据该数判断是哪一路中 断,再回写相应位可清该中断
USB 复位高	0x4d00	只读
USB 复位低	0x4e00	只读(读回来的数可不管,读操作一次即将复位脚拉 低了)
8 个发光二极管地址	0x4100	只写
蜂鸣器地址	0X4000	只写