德国SITA

CleanoSpector 表面清洁度仪

简版操作说明书

(本说明书由翁开尔公司制作,仅供参考,所有内容以SITA原版英文说明书为准)

目录

- 一、基本按键
- 二、工具箱内容
- 三、确定镜头与被测表面的间距(4.7mm)
- 四、表面清洁度仪CleanoSpector的两种测量模式

五、按键菜单详细说明

- 1、主菜单Menu
- 2、Cleanliness模式下的参数设置
- 3、FluoLevel模式下的参数设置

六、开始测量

七、N0、N1校准头

- (一)、介绍
- (二)、N0、N1校准头的作用——检验设备、校准设备
 - 1、检验设备的功能是否正常(Checking)
 - 2、对设备进行校准(Adjustment)

SITA表面清洁度仪简版操作说明书

-、基本按键

-

基本功能	附加功能
开/关机按键,长按 2秒	按一下返回到上一级菜单
开始或继续测试	返回主界面
开始定位,确定镜 头和被测表面的间 距	用于移动。当需输入数字,按point可将光 标移到左边,所选择的数位将变成高亮黑 色,此时可以输入更改数字。例如要修改输 入确定报警或者警告限制时。
开始或继续校准	用于移动。当需输入数字,按point可将光标移到右边,所选 择的数位将变成高亮黑色,此时可以输入更改数字。例如要 修改输入确定报警或者警告限制时。
选择上一个表面文 件	\
选择下一个表面文 件	\
读取己存储的测量 数据	1)跳到下一行 2)在需要设置或输入数字时,按read键会跳到 最大值处
保存测量数据	 在列表视图中的第一个数据和最后一个数据 之间转变位置的选择。 2)在需要设置或输入数字时,按save键会跳到 最小值处
更改任务(显示符 号)	

二、工具箱内容

1. 传感器

2. 支架杆

- 3. 支架底座
- 5. 磁性支架
- 7. 电源套装

- 4. 设备支架
- 6. 主体设备(基本单元)
- 8. N0校准头(标配)和N1校准头(可选)

9. 间距器1

10. 间距器2

11. 保护盖

三、确定镜头与被测表面的间距(4.7mm)

1、接触式测量的定距——直接使用间距器

直接旋到镜头上即可

2. 非接触式测量的定距

1) 使用按键point来确定距离

对于非接触式的测定,将镜头和平面之间的距离设置成为4.7毫米。将传感器放在测试点的上面,按下指针键point来开始确定目标点。为了达到最适合的距离,改变平面和镜头支架之间的高度,在按了point之后的有效时间内,使传感器头发射出的红点(如图所示12)在零件表面上达到最小的半径,并固定好传感器的位置(此时传感器与表面的距离为4.7mm)。

2) 使用间距器确定距离后取下间距器

使用间距器与表面确定好距离并固定好,然后将传感器从带磁力板的磁性支架上拿下来,拧下间距器。重新将传感器放回磁力板。此时镜头与被测表面之间的距离即为4.7mm。

四、表面清洁度仪CleanoSpector的两种测量模式

	1、Cleanliness模式
两种测量模式:	即清洁度模式,它的数值是以%的形式呈现。 首先在测量之前,需要标定一个绝对干净的表面(或者手动输入一个标定的数值),作为标杆。设备此时将 用做标定的表面定为100%干净。 其次开始测量,所有的测量值都是与标杆值(标定值)进行对比,然后转换为%的读数,0%表示非常脏。 读数越低,表示越脏;读数越高,表示越干净。 2、FluoLevel模式 即荧光值模式,以RFU为读数单位。(RFU=Relative Fluorescence Unit 相对荧光单位) 不需标定,直接测量。 读数越低,表示越干净;读数越高,表示越脏。
	3、说明 两种模式,一个需要标定,一个不需要。一个读数越高表示越干净,而一个读数越高标示越脏,相反的。 两种模式之间可以建立起一定的联系。

五、按键菜单详细说明

1、主菜单Menu

Menu-	profiles –	r edit	编辑	编辑表面文件的参数
菜单	文件	– new	新建	新建一个文件
		– delete profile	删除文件	
		— delete data	删除数据	
		exit	退出	
	device—	— display	显示	改变显示屏对比度、亮度或语言(德语或英语)
	设备	– time	时间	设置数据和内置时间
		– battery	电池	启用或禁用电池充电功能
		– user level	用户级别	选择操作者级别Operator 或管理者级别 Admin
		∟ exit	退出	
	—info		信息	显示主机和传感器的信息
	- Checking		检查	测试传感器的功能是否正常,也即检查设备是否正常(用N0或N1)
	– Adjustme	nt	调校(校准)	校准表面清洁度仪(用NO和N1)
	L _{exit}		退出	

2、Cleanliness模式下的参数设置

Param — average		平均值	假设设置为3,表示同1个扫描点扫描3次(发射出3次光)得出3个数 值,再求平均值,这个平均值就作为该点的读值显示出来。(平均基数
参数	— scan points	扫描点的个数	1个样件上取的扫描点的数量(可取1-32)。
	— calibr. points	标定点的个数	在Cleanliness模式下(%)标定一个绝对干净的表面时,所取标定点的数量(可取1-32)。
	— warning	确定警戒线	
	— alarm	确定报警限	(图形最小值)
	— calibr. value	标定值	可以不采用一个绝对干净的表面做标定,而是在此直接输入标定的数值,但前提是在此之前已经用Fluolevel的模式检测过绝对干净表面的
	— sensitivity	敏感度	将评估荧光度转化为%清洁度值
	— output	输出值	设置选择输出最小值min、最大值max、平均值 0 或过滤平局值 0*。
	— save	如何保存的 设置	选择设置为自动保存/保存前询问/不保存
	🖵 exit	退出	

说明:

sensitivity

敏感度——敏感度有1[~]7个级别可选,1是最低敏感度,7是最高的。出厂默认敏感度值为6(建议不修改此敏感度6,以保持与国内 其他客户的可比性)。在更高的敏感度下,表面上的清洁度有轻微变化就能识别出来。

荧光强度	清洁度(%)				
(RFU)	敏感度6	敏感度4	敏感度3	敏感度2	
5	79.4	95.5	97.7	98.8	
10	63	91.2	95.5	97.7	
20	39.8	83.2	91.2	95.5	
35	20	72.4	85.1	92.2	

如上表,35 RFU 和 5 RFU,在敏感度6时,他们的%读数差距很大。而在敏感度2,他们的百分比读数差距不大。也就是说,在更高的敏感度下,表面上的清洁度有轻微变化就能识别出来。

敏感度可将荧光度Fluolevel和清洁度Cleanliness(%)两种模式建立起关联。

3、FluoLevel模式下的参数设置

Param average	平均值	假设设置为3,表示同1个扫描点扫描3次(发射出3次光)得出3个数 值,再求平均值,这个平均值就作为该点的读值显示出来。(平均基数
sample points	取样的个数	1个样件上取的扫描点的数量(可取1-32)。
— output	输出值	设置选择输出最小值min、最大值max、平均值 0 或过滤平局值 0*。
— BarMin	图形条的最 小值	确定图形条的报警下限
— BarMax	图形条的最 大值	确定图形条报警上限
— min Warn.	警告的最小值	确定最小警告值
— max Warn.	警告的最大值	确定最大警告值
— save	如何保存的 设置	选择设置为自动保存/保存前询问/不保存
└── Fxit	退出	

举例:假设scan point设为5,output输出值设为min,则设备会要求你扫描5个点/次,但设备最后给的数据就是呈现最小值。

六、开始测量

1、根据实际情况选择你需要的测量模式。

新建一个文件: Menu->Profiles->OK->New->OK->Cleanliness/FluoLevel/Cancel->OK->(自动进入参数设置)->(进入测量模式)
 打开已有文件:设备面板的surface键,直接按箭头键(上或下),继续按箭头键到你想选择的文件(Surface指清洁度模式的)

2) 打开口有文件: 反奋面极的surface键, 直接按前关键(上以下), 继续按前关键到你想选择的文件(Surface指有洁度模式的 文件)

2、如何设置参数(三种方式)

1)新建一个文件时,会自动进入参数设置。

2) 已选择好文件后,按Param,修改设置参数。

3) Menu->Profiles->OK->Edit->OK->(自动进入参数设置) (此时默认修改你原先已选择的文件)

3、按面板上的start开始测量。

4、测量完毕后(或者打开已有文件)按read键,可查看所测量的数据。

备注: cleanliness模式下,参数设置中output为min时,则当你按read键,你看到的数据就是最小值。(举例:假设scan point 设为5,output输出值设为最小值min,则设备会要求你扫描5个点/次,但设备最后呈现给的数据就是呈现最小值。如果你想要看 扫描的5个点的详细读数,则需按info。)

七、N0、N1校准头

2

(一)、介绍

1) 种类: NO和N1

N0校准头(蓝色),为标配

N1校准头(金色),为可选件

2) 安装: 直接用手沿顺时针方向拧入到传感器头(见下图)。在拧入前,确保镜头已经先拧下间距器。使用完校准头后,逆时针旋转就可以将其取出。拧入和旋开SITA校准头都不需要多大的力气。

(二)、N0、N1校准头的作用——检验设备、校准设备

1、检验设备的功能是否正常(Checking)

使用SITA N0校准头(标准件)和N1(可选件),就可以对SITA 表面清洁度仪进行检验。这个检验的目的是识别镜头上的污染和 测试SITA表面清洁度仪的正常功能。当SITA使用校准头进行检验时,以下影响可以排除:1)光漂白效果;2)定位公差。这保证 了设备可重复性。

1) 用NO校准头检验

步骤: 旋上校准头 (NO)之后, Menu->Checking->OK->(选择行)Check: ··· ->Continue (SITA表面清洁度仪就用NO校准头开始检测。)

2)用N1校准头检验

步骤: 旋上校准头(N1)之后, Menu->Checking->OK->(选择行)N1(#…) ->Continue (SITA表面清洁度仪就用N1校准头开始检测。)

屏幕会显示N1校准头对应的序列号,这里为:#0052

3)检验结果

成功 OK

结束, 按Done

失败 failed

结束,按Done。如果想对设备进行校准,直接按Adjustment。 如果用两个校准头得不到想要的测试结果,应该先清洗镜头后重复操作测试。另外注意 不要让SITA校准头受污染。校准头受到污染的话,同样会导致结果不通过。

如果清洗镜头后,测试结果还是不通过,就要对SITA表面清洁度仪的进行校准,此时仍需借助校准头。

2、对设备进行校准(Adjustment)

有了N1或N0校准头,被校正过的传感器头得到的特性曲线才是正确的。为了完全消除测量时的系统误差,就要用SITA N0和N1校准头进行校正。(N1和N0都需要)

1) 用N0进行

步骤: Menu->Adjustment->OK-> Adjustment: … -> 旋上校准头NO -> Continue

- 2) 用N1进行
- 步骤: Menu->Adjustment->OK-> N1… ->旋上校准头N1 -> Continue

Adjustment	2/3
Please attach golden 9 standard (#0052) to s head!	SITA N1 Sensor
Continue	Esc

3) 校准结果

Adjustment resul	t 3/3
Adjustment complete	edf
Saving	Abort

成功 Adjustment co	mpleted!
------------------	----------

按saving键完成校准。

按Abort终止校准。

失败 Adjustment failed!

按0K退出。

校准失败, 需先清洁镜头, 然后再重新校准。