ABB LS4000 laser analyzer datasheet

http://www.manuallib.com/abb/ls4000-laser-analyzer-datasheet.html

The LS4000 is an in situ crossduct analyzer for measuring gas component concentrations. It applies the highly selective optical measuring principle of tunable diode laser (TDL) ab sorption spectroscopy. The LS4000 is a standalone system and is approved for use in hazardous areas according to international standards.

ManualLib.com collects and classifies the global product instrunction manuals to help users access anytime and anywhere, helping users make better use of products.

http://www.manuallib.com

Measurement made easy

Highest precision under harshest conditions

High precision

- Lowest detection limits, highly accurate measurements
- Highly selective, virtually cross interference free

Suitable for harsh process conditions

- In-situ, direct measurement of hazardous gas streams
- For high pressure, high temperature applications

Fast and direct

- In-situ, no sample transport or conditioning
- Fast response

Safe, compact and easy

- Flameproof housing (Ex-d), no purging
- No nitrogen purging for O₂ measurement
- Compact and lightweight, insensitive to vibrations
- Ease of maintenance

Introduction

Application and design

The LS4000 is an in situ cross-duct analyzer for measuring gas component concentrations. It applies the highly selective optical measuring principle of tunable diode laser (TDL) absorption spectroscopy. The LS4000 is a stand-alone system and is approved for use in hazardous areas according to international standards.

The analyzer consists of a transmitter unit with a laser light source and a receiver unit with a photodetector. Both units are mounted opposite each other on the process pipe or stack and are connected by a junction box.

Measurement principle - TDLAS

The LS4000 employs the optical measuring technique of absorption spectroscopy, which utilizes the fact that a specific gas absorbs specific light wavelengths.

The light beam is emitted from a tunable laser diode located in the transmitter unit. The laser light passes through the process gas and strikes the photodetector in the receiver unit. The measured gas component present in the optical path absorbs the laser light, attenuating the light received.

A sophisticated signal algorithm processes the amount of light attenuation and calculates the gas concentration on the basis of the Beer-Lambert law. The influence of temperature and pressure variations is eliminated by dynamic automatic correction.

Technical data

Sample components and measurement ranges Sample component

 O_2

Min./max. measurement range 0-1/100 vol.%

Max. abs. pressure

2 bar (29 psi) 2 to 20 bar (29 to 290 psi) on request

Max. temperature

800 °C (1472 °F) 800 to 1500 °C (1472 to 2732 °F) on request

Measurement range quantity

1 physical measurement range per sample component, 1 x transmission

Optical path lengths (OPL) Standard optical path lengths

0.5 to 20 m. Other optical path lengths on request.

Remarks

- The analyzer performance characteristics have been determined according to IEC 61207-1:2010 "Expression of performance of gas analyzers – Part 1: General". They are based on nitrogen as the associated gas. Compliance with these characteristics when measuring other gas mixtures can only be assured if their composition is known.
- All specifications refer to an optical path length (OPL) of 1 meter, tested in ABB's test and calibration jig. However, application-dependent variations may occur. The specific detection limit, minimum and maximum measurement range for a specific application will depend on the gas conditions (pressure, temperature and gas composition) and optical path length. Minimum measurement range, maximum pressure and maximum temperature cannot necessarily be realized simultaneously under all conditions.
- The maximum pressure and maximum temperature given are physical (spectroscopic) limits.
- Applications exceeding the above given spectroscopic limitation might be possible on request.

Stability

Performance data below is given at standard conditions. Data may vary depending on the specific application.

Linearity deviation

 \leq 1% of span

Repeatability

< 0.2 % of reading

Zero drift

No zero drift due to the measuring principle

Span drift

<1% of smallest measuring range per week

Output fluctuation (2 σ)

 \leq 0.5 % of smallest measurement range

Detection limit (4 σ)

 \leq 1% of smallest measurement range

Influence effects

For large variations of process temperature and pressure, LS4000 applies an automatic dynamic correction which requires 4–20 mA inputs. Influence effects and necessity for temperature or pressure sensor depend on the specific application and are defined by ABB.

Process temperature

< 1 % of measuring range per 100 K

Process pressure

< 0.0001 % of reading per hPa

Dust load

Instrument remains operable if transmission loss < 97 %.

Accompanying gases/cross sensitivity

No cross sensitivity within normal operation conditions

Flow effect

No effect on the measurement, but the flow will determine the amount of gas needed for process purging.

Ambient temperature

In permissible range: no effect

Dynamic response Warm-up time < 5 min

Response time

Typically 5 sec

Maintenance interval and calibration/validation Maintenance interval Depending on application and dust load

Calibration

Single point calibration with test gas and an external off-line calibration cell (see "Accessories" on page 5)

Calibration/validation interval

Depending on application, typically once a year

Housing

Transmitter and receiver unit	
Protection class	IP65
Material	Stainless steel AISI 304H (1.4308), painted
Weight	4.1 kg each
Color	Light gray (RAL 7035)
Dimensions	See pages 6 to 9

Junction boxes General purpose Protection class IP65 Material Steel, painted Weight 4.7 kg Light gray (RAL 7035) Color Dimensions See page 6 ATEX, IECEx Protection class IP65 Material Aluminum, painted Weight Version without power supply: 4.5 kg, version with power supply: 10 kg Color Light gray (RAL 7035) Dimensions See pages 7 and 8 **CSA Class I** Protection class Type 3, 4X, 7 & 9 Material Copper free aluminum, not painted Weight 28 kg Dimensions See page 9

Process purging

Depending on the application, purging on the process side is typically necessary. It is not required to purge the instrument housing.

Available flange size

DN50/PN10, ANSI 2 inch-150 lb

Material	
Flanges	AISI 316L (1.4404)
O-rings (process)	FPM (standard), FFKM

Weight

3.1 kg

Gas ports for purging

1/4 inch Swagelok[®] hose nozzle with 8 mm inner diameter

Purging medium

Instrument air, dry and oil-free (compliant with standard ISO 8573.1, Class 2–3) Nitrogen (required only for low level O, measurements)

Electrical interfaces

Analog outputs

Up to three 4–20 mA outputs (one for each measuring component and transmission), working resistance max. 500 $\Omega,$ not isolated

Analog inputs

Up to two 4–20 mA inputs for dynamic process temperature and pressure correction, working resistance max. 100 $\Omega,$ not isolated

Digital outputs

Up to two digital outputs, 1 A at 30 V DC/AC, NO, for error and gas alarm

Service port

Ethernet

See pages 6 to 9 for connection drawings

Connections

Terminal	Signal	Function
12	AO1 (4–20 mA)	Analog output 1
13	AO2 (4–20 mA)	Analog output 2
14	AO3 (4–20 mA)	Analog output 3
15	AO GND	Analog outputs GND
16	DO1_A	District and so that
17	DO1_B	
18	DO2_A	Distingly and the set of the
19	DO2_B	Digital output 2
27	T probe in (4–20 mA)	Analog input for dynamic
28	T probe out (4–20 mA)	temperature correction
29	P probe in (4–20 mA)	Analog input for dynamic
30	P probe out (4–20 mA)	pressure correction

Power supply

Without power supply		
Input voltage	DC 24 V nominal (DC 18 to 32 V)	
Power consumption	< 10 W	

With power supply (integrated in the junction box)	
Input voltage	AC 100 to 240 V, ±10 %, 50 to 60 Hz
Output voltage	DC 24 V
Power consumption	30 VA

Installation site requirements

Ambient temperature in operation		
Transmitter and receiver unit,	–20 to +55 °C (–4 to 131 °F)	
General purpose junction box	(no direct solar radiation)	
ATEX, IECEx junction box ¹⁾	–20 to +55 °C (–4 to 131 °F)	
CSA Class I junction box 1)	–25 to +50 °C (–13 to 122 °F)	
Ambient temperature during storage and transport		
Transmitter and receiver unit	–40 to +70 °C (–40 to 158 °F)	

1) The temperature data is given only for information. The documentation of the junction box manufacturer is relevant.

Installation location

The measurement gas must be well stirred at the selected location to produce a representative measurement result. Stratification in the measurement gas path results in erroneous measurement.

Alignment tolerances

Flanges parallel within 1.5°

4 DS/LS4000-EN Rev. B | LS4000

Explosion-proof versions

The type LS4060 gas analyzer is suitable for use in hazardous areas:

Explosion protection to European standards – ATEX		
Transmitter and receiver unit	🚱 II 2(1)G Ex d [op is Ga] IIC T6 Gb	
(Zone 1)	🚱 II 2D Ex tb IIIC T88°C Db	
Transmitter and receiver unit	🚱 II 3(1)G Ex d [op is Ga] IIC T6 Gc	
(Zone 2)	🚱 II 3D Ex tc IIIC T88°C Dc	
Junction box without power	🚱 II 2G Ex e IIC T6 Gb	
supply 1)	🚱 II 2D Ex tb IIIC T80°C Db	
Junction box with built-in	🚱 II 2G Ex d IIC T6	
power supply additionally 1)	🚱 II 2D Ex tD A21 IP66 T85°C	

Explosion protection to international standards – IECEx		
Transmitter and receiver unit	Ex d [op is] IIC T4 Gb	
	Ex tb IIIC T88°C Db	
Junction box without power	Ex e IIC T6 Gb	
supply ¹⁾	Ex tb IIIC T80°C Db	
Junction box with built-in	Ex de IIC T6 Gb	
power supply 1)		

Explosion protection to U.S. and Canadian standards – UL, CSA

Transmitter and receiver unit	Class I, Div. 1, Groups B, C, D;
	Class I, Div. 2, Groups A, B, C, D; T4A
	Class I, Zone 1, AEx d, IIB+H2 T4
Junction box with built-in	Class I, Div. 1, Groups B, C, D
power supply 1)	Class I, Zone 1, Group IIB + H2

 The data regarding the explosion protection of the junction boxes is given only for information. The documentation of the junction box manufacturer is relevant.

Accessories

Calibration cell

The calibration cell is used for calibrating the instrument.

Material

Aluminum (6082-T6) or AISI 316L (1.4404)

Validation cell

The validation cell is permanently mounted between the process pipe and the transmitter/receiver unit and is used for a validation of the instrument.

Material

AISI 316L (1.4404)

Gas ports

1/4 inch Swagelok® hose nozzle with 8 mm inner diameter

Isolation flanges

For applications with high pressure or toxic or flammable gas, isolation flanges may be used to seal the process. The isolation flanges are compliant with PED 97/23/EC.

Available flange size

DN50/PN16, ANSI 2 inch-150 lb

Material	
Flanges	AISI 316L (1.4404)
Window	Pre-stressed hardened borosilicate to DIN 7080,
	Coated with antireflex-coating
Flat gaskets (process)	Graphite

Gas ports for purging

1/4 inch Swagelok® hose nozzle with 8 mm inner diameter

Limitation	
Temperature	max. 300°C (572 °F)
Pressure	max. 16 bar (232 psi) absolute

Insertion tubes

Insertion tubes (length 1 meter) may be used to shorten the optical path length for high dust applications.

Material

AISI 316L (1.4404)

LS4000 with junction box in general purpose version

6 DS/LS4000-EN Rev. B | LS4000

LS4060 with junction box in ATEX/IECEx version without power supply

Dimensions in mm (inch)

LS4000 | DS/LS4000-EN Rev. B 7

LS4060 with junction box in ATEX/IECEx version with power supply

Dimensions in mm (inch)

8 DS/LS4000-EN Rev. B | LS4000

LS4060 with junction box in CSA Class I version

Dimensions in mm (inch)

LS4000 | DS/LS4000-EN Rev. B 9

Certifications

CE conformity

The LS4000 and LS4060 gas analyzers satisfy the requirements of the European directives 2006/95/EC Low voltage directive, 2004/108/EC EMC directive and 94/9/EC ATEX directive.

Compliance with the requirements of directive 2006/95/EC is evidenced by full compliance with European standard EN 61010-1:2010.

Compliance with the requirements of directive 2004/108/EC is evidenced by full compliance with European standards EN 61326-1:2006, EN 61000-3-2:2006 + A1:2009 + A2:2009, EN 61000-3-3: 2008.

Compliance of the explosion protected versions type LS4060 with the requirements of directive 94/9/EC is evidenced by full compliance with the European standards listed in the "Explosion protection to European standards – ATEX" section.

Electrical safety to IECEE CB scheme

The LS4000 and LS4060 gas analyzers are certified to the "IEC system for mutual recognition of test certificates for electrical equipment", evidenced by full compliance with standard IEC 61010-1 (Ed. 3). CB Test Certificate No. DE1-52306

Electrical safety to U.S. and Canadian standards - UL, CSA

The LS4000 and LS4060 gas analyzers are certified for use in general purpose environment, evidenced by full compliance with standards CAN/CSA-C22.2 No. 61010-1-12 and UL Std. No. 61010-1 (3rd Edition). Certificate No. 70001037

Explosion protection to European standards – ATEX

The LS4060 gas analyzer (transmitter and receiver unit) in the version for use in zone 1 satisfies the European standards EN 60079-0:2011, EN 60079-1:2007, EN 60079-28:2007, EN 60079-31:2009.

Designation:

(ⓑ) II 2(1)G Ex d [op is Ga] IIC T6 Gb
(ⓑ) II 2D Ex tb IIIC T88°C Db

EC-Type examination certificate No. BVS 13 ATEX E 008 X The LS4060 gas analyzer (transmitter and receiver unit) in the version for use in zone 2 satisfies the European standards EN 60079-0:2011, EN 60079-1:2007, EN 60079-28:2007, EN 60079-31:2009.

Explosion protection to international standards – IECEx

The LS4060 gas analyzer (transmitter and receiver unit) satisfies the European standards EN 60079-0:2011, EN 60079-1:2007, EN 60079-28:2006, EN 60079-31:2008. Designation: Ex d [op is] IIC T4 Gb Ex tb IIIC T88°C Db Certificate No. IECEx BVS 13.0013X

Explosion protection to U.S. and Canadian standards – UL, CSA

The LS4060 gas analyzer (transmitter and receiver unit) is certified for use in explosion hazard areas Class 1, Div. 1, Groups B, C, D; Class I, Div. 2, Groups A, B, C, D; T4A; Class I, Zone 1, AEx d, IIB+H2 T4 Certificate No. 12.2589676X

Remark

Information regarding the explosion protection of the junction boxes can be found in the documentation of the junction box manufacturer.

Notes

Contact us

ABB Limited Process Automation

Oldends Lane GL10 3TA Stonehouse Gloucestershire, United Kingdom Phone: +44 1 453 826661 Fax: +44 1 453 829671

ABB Pte. Ltd. Process Automation

2 Ayer Rajah Crescent 139935 Singapore, Singapore Phone: +65 6773 5961 Fax: +65 6778 0222

ABB Engineering Ltd. Process Automation

10 Jiuxianqiao Lu 100015 Beijing, China Phone: +86 10 84566688 Ext. 6217 Fax: +86 10 84567650

ABB Inc.

Process Automation

3700 W Sam Houston Parkway South, Suite 600, Houston, TX 77042, USA Phone: +1 713 587 8000

www.abb.com/analytical

ABB Australia Pty Limited Process Automation

Bapaume Road 2170 Moorebank New South Wales, Australia Phone: +61 2 9821 0968 Fax: +61 2 9400 7050

ABB Ltd.

Process Automation 14 Mathura Road 121003 Faridabad, Haryana, India Phone: +91 129 2279627 Fax: +91 129 2279692

ABB Automation GmbH Process Automation

Stierstaedter Strasse 5 60488 Frankfurt am Main, Germany Fax: +49 69 7930-4566 E-mail: cga@de.abb.com

Note

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB.

Copyright© 2014 ABB All rights reserved

Sales

Service

