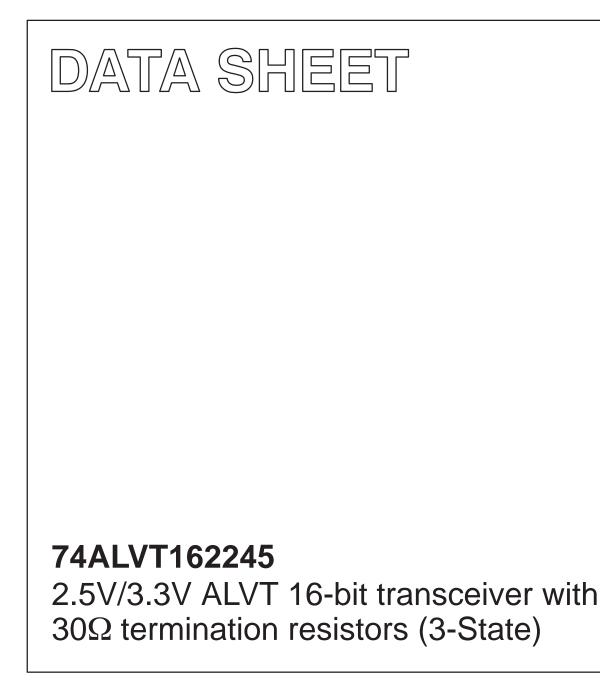
PHILIPS 74ALVT162245 Electronic component datasheet

http://www.manuallib.com/philips/74alvt162245-electronic-component-datasheet.html


The 74ALVT162245 is a high-performance BiCMOS product designed for VCC operation at 2.5V or 3.3V with I/O compatibility up to 5V.

This device is a 16-bit transceiver featuring non-inverting 3-State bus compatible outputs in both send and receive directions. The control function implementation minimizes external timing requirements. The device features an Output Enable (nOE) input for easy cascading and a Direction (DIR) input for direction control. The 74ALVT162245 is designed with 30W series resistance in both the High and Low states of the output. This design reduces line noise in applications such as memory address drivers, clock drivers, and bus transceivers/transmitters.

ManualLib.com collects and classifies the global product instrunction manuals to help users access anytime and anywhere, helping users make better use of products.

http://www.manuallib.com

INTEGRATED CIRCUITS

Product specification Supersedes data of 1996 Mar 05 IC23 Data Handbook 1998 Feb 13

Philips Semiconductors

2.5V/3.3V 16-bit transceiver with 30 Ω termination resistors (3-State)

74ALVT162245

FEATURES

- 16-bit bidirectional bus interface
- 3-State buffers
- 5V I/O compatibile
- Output capability: +12mA/-12mA
- TTL input and output switching levels
- Input and output interface capability to systems at 5V supply
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- Outputs include series resistance of 30Ω making external termination resistors unnecessary
- Power-up 3-State
- No bus current loading when output is tied to 5V bus
- Latch-up protection exceeds 500mA per JEDEC Std 17
- ESD protection exceeds 2000V per MIL STD 883 Method 3015 and 200V per Machine Model

QUICK REFERENCE DATA

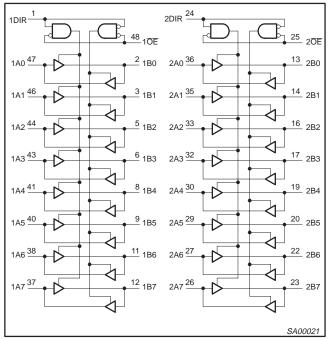
DESCRIPTION

The 74ALVT162245 is a high-performance BiCMOS product designed for $\rm V_{CC}$ operation at 2.5V or 3.3V with I/O compatibility up to 5V.

This device is a 16-bit transceiver featuring non-inverting 3-State bus compatible outputs in both send and receive directions. The control function implementation minimizes external timing requirements. The device features an Output Enable ($n\overline{OE}$) input for easy cascading and a Direction (DIR) input for direction control.

The 74ALVT162245 is designed with 30Ω series resistance in both the High and Low states of the output. This design reduces line noise in applications such as memory address drivers, clock drivers, and bus transceivers/transmitters.

SYMBOL	PARAMETER	CONDITIONS	TYPI	UNIT	
STWBOL	FARAMETER	T _{amb} = 25°C	2.5V	3.3V	UNIT
t _{PLH} t _{PHL}	Propagation delay nAx to nBx or nBx to nAx	C _L = 50pF	2.9 2.4	2.3 2.0	ns
C _{IN}	Input capacitance DIR, OE	$V_{I} = 0V \text{ or } V_{CC}$	3	3	pF
C _{I/O}	I/O pin capacitance	$V_{I/O} = 0V \text{ or } V_{CC}$	9	9	pF
I _{CCZ}	Total supply current	Outputs disabled	40	70	μA


ORDERING INFORMATION

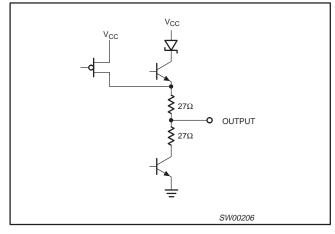
PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
48-Pin Plastic SSOP Type III	-40°C to +85°C	74ALVT162245 DL	AV162245 DL	SOT370-1
48-Pin Plastic TSSOP Type II	-40°C to +85°C	74ALVT162245 DGG	AV162245 DGG	SOT362-1

PIN DESCRIPTION

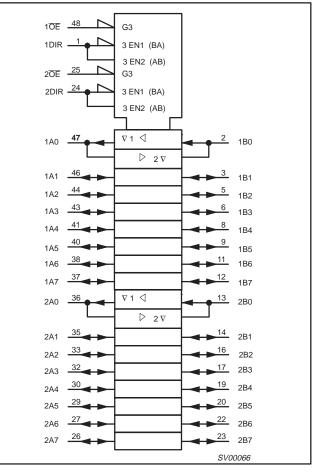
PIN NUMBER	SYMBOL	NAME AND FUNCTION
1, 24	nDIR	Direction control input
47, 46, 44, 43, 41, 40, 38, 37, 36, 35, 33, 32, 30, 29, 27, 26	nA0 – nA7	Data inputs/outputs (A side)
2, 3, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 22, 23	nB0 – nB7	Data inputs/outputs (B side)
25, 48	nOE	Output enable input (active-Low)
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground (0V)
7, 18, 31, 42	V _{CC}	Positive supply voltage

LOGIC SYMBOL

1998 Feb 13


2.5V/3.3V 16-bit transceiver with 30Ω termination resistors (3-State)

74ALVT162245


PIN CONFIGURATION

1DIR 1	48	1 0E
1B0 2	47	1A0
1B1 3	46	1A1
GND 4	45	GND
1B2 5	44	1A2
1B3 6	43	1A3
V _{CC} 7	42	V _{CC}
1B4 8	41	1A4
1B5 9	40	1A5
GND 10	39	GND
1B6 11	38	1A6
1B7 12	37	1A7
2B0 13	36	2A0
2B1 14	35	2A1
GND 15	34	GND
2B2 16	33	2A2
2B3 17	32	2A3
V _{CC} 18	31	V _{CC}
2B4 19	30	2A4
2B5 20	29	2A5
GND 21	28	GND
2B6 22	27	2A6
2B7 23	26	2A7
2DIR 24	25	2 0E
	SW00061	

SCHEMATIC OF EACH OUTPUT

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INP	UTS	INPUTS/C	DUTPUTS
nOE	nDIR	nAx	nBx
L	L	nAx = nBx	Inputs
L	Н	Inputs	nBx = nAx
Н	Х	Z	Z

H = High voltage level

L = Low voltage level

X = Don't care Z = High Impedance "off" state

1998 Feb 13

74ALVT162245

ABSOLUTE MAXIMUM RATINGS^{1,2}

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +4.6	V
I _{IK}	DC input diode current	V ₁ < 0	-50	mA
VI	DC input voltage ³		-0.5 to +7.0	V
I _{OK}	DC output diode current	V _O < 0	-50	mA
V _{OUT}	DC output voltage ³	Output in Off or High state	-0.5 to +7.0	V
	Output in Low state	Output in Low state	128	
lout	DC output current	Output in High state	-64	mA
T _{stg}	Storage temperature range		-65 to +150	°C

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction 2. temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

3.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	2.5V RANGE LIMITS		3.3V RAN	UNIT	
		MIN	MAX	MIN	MAX	UNIT
V _{CC}	DC supply voltage	2.3	2.7	3.0	3.6	V
VI	Input voltage	0	5.5	0	5.5	V
V _{IH}	High-level input voltage	1.7		2.0		V
V _{IL}	Input voltage		0.7		0.8	V
I _{OH}	High-level output current		-8		-12	mA
I _{OL}	Low-level output current		12		12	mA
$\Delta t/\Delta v$	Input transition rise or fall rate; Outputs enabled		10		10	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	-40	+85	°C

2.5V/3.3V 16-bit transceiver with 30Ω termination resistors (3-State)

74ALVT162245

DC ELECTRICAL CHARACTERISTICS (3.3V \pm 0.3V RANGE)

		TEST CONDITIONS			LIMITS		
SYMBOL	PARAMETER			Temp =	-40°C to	+85°C	UNIT
				MIN	TYP ¹	MAX	
V _{IK}	Input clamp voltage	$V_{CC} = 3.0V; I_{IK} = -18mA$			-0.85	-1.2	V
V _{OH}	High-level output voltage	V _{CC} = 3.0V; I _{OH} = -12mA		2.0	2.3		V
V _{OL}	Low-level output voltage	V _{CC} = 3.0V; I _{OL} = 12mA			0.6	0.8	V
		$V_{CC} = 3.6V; V_I = V_{CC} \text{ or } GND$	Control pins		0.1	±1	
1.	Input leakage current	$V_{CC} = 0 \text{ or } 3.6 \text{V}; \text{ V}_{\text{I}} = 5.5 \text{V}$			01.	10	μA
łı I	input leakage current	$V_{CC} = 3.6V; V_{I} = V_{CC}$	Data pins4		0.5	1	μΑ
		$V_{CC} = 3.6V; V_I = 0V$	Data pins		0.1	-5	
I _{OFF}	Off current	$V_{CC} = 0V; V_1 \text{ or } V_0 = 0 \text{ to } 4.5V$			0.1	±100	μA
	Bus Hold current	$V_{CC} = 3V; V_I = 0.8V$		75	130		
I _{HOLD}	Data inputs ⁶	$V_{CC} = 3V; V_I = 2.0V$		-75	-140		μA
	Data inputs	$V_{CC} = 0V \text{ to } 3.6V; V_{CC} = 3.6V$		±500			
I_{EX}	Current into an output in the High state when $V_O > V_{CC}$	V _O = 5.5V; V _{CC} = 3.0V			50	125	μΑ
I _{PU/PD}	Power up/down 3-State output current ³	$V_{CC} \le 1.2V$; $V_0 = 0.5V$ to V_{CC} ; $V_1 = GND$ or V_{CC} OE/OE = Don't care			40	±100	μΑ
I _{ССН}		V_{CC} = 3.6V; Outputs High, V_I = GND or V_{CC} , I_O = 0			0.07	0.1	
I _{CCL}	Quiescent supply current	V_{CC} = 3.6V; Outputs Low, V_I = GND or $V_{CC, IO}$ = 0			3.5	5	mA
I _{CCZ}	1	V_{CC} = 3.6V; Outputs Disabled; V_I = GND or V_{CC} , I_O = 0 ⁵			0.07	0.1	
ΔI_{CC}	Additional supply current per input pin ²	V_{CC} = 3V to 3.6V; One input at V_{CC} -0.6 Other inputs at V_{CC} or GND	V,		0.04	0.4	mA

NOTES:

1. All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.

2. This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND

3. This parameter is valid for any V_{CC} between 0V and 1.2V with a transition time of up to 10msec. From V_{CC} = 1.2V to V_{CC} = $3.3V \pm 0.3V$ a transition time of 100µsec is permitted. This parameter is valid for T_{amb} = 25°C only.

4. Unused pins at V_{CC} or GND.

5. I_{CCZ} is measured with outputs pulled up to V_{CC} or pulled down to ground.

6. This is the bus hold overdrive current required to force the input to the opposite logic state.

AC CHARACTERISTICS (3.3V ±0.3V RANGE)

GND = 0V; $t_R = t_F = 2.5ns$; $C_L = 50pF$; $R_L = 500\Omega$; $T_{amb} = -40^{\circ}C$ to +85°C.

SYMBOL	PARAMETER	WAVEFORM	V _{C0}	$_{\rm C} = 3.3 V \pm 0.00$.3V	UNIT
			MIN	TYP ¹	MAX	
t _{PLH} t _{PHL}	Propagation delay nAx to nBx or nBx to nAx	1	0.5 0.5	2.3 2.0	3.6 3.1	ns
t _{PZH} t _{PZL}	Output enable time to High and Low level	2	1.0 1.0	3.0 2.6	5.0 3.9	ns
t _{PHZ} t _{PLZ}	Output disable time from High and Low Level	2	1.0 1.0	3.6 3.0	5.2 4.6	ns

NOTE:

1. All typical values are at V_{CC} = 3.3V and T_{amb} = 25° C.

2.5V/3.3V 16-bit transceiver with 30Ω termination resistors (3-State)

74ALVT162245

DC ELECTRICAL CHARACTERISTICS (2.5V \pm 0.2V RANGE)

				LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS		TEST CONDITIONS Temp = -40°C to +85°		+85°C	UNIT
				MIN	TYP ¹	MAX	1
VIK	Input clamp voltage	V _{CC} = 2.3V; I _{IK} = -18mA			-0.85	-1.2	V
V _{OH}	High-level output voltage	V _{CC} = 2.3V; I _{OH} = -8mA		1.7			V
V _{OL}	Low-level output voltage	V _{CC} = 2.3V; I _{OL} = 12mA			0.6	0.7	
		$V_{CC} = 2.7V; V_I = V_{CC}$ or GND	Control pins		0.1	±1	
łı	Input leakage current	$V_{CC} = 0 \text{ or } 2.7 \text{V}; \text{ V}_{I} = 5.5 \text{V}$			0.1	10	μA
Ч	input leakage current	$V_{CC} = 2.7V; V_{I} = V_{CC}$	Data pins4		0.1	1	
		$V_{CC} = 2.7V; V_{I} = 0$	Data pins		0.1	-5]
I _{OFF}	Off current	$V_{CC} = 0V$; V_{I} or $V_{O} = 0$ to 4.5V			0.1	±100	μA
luci -	Bus Hold current	$V_{CC} = 2.3V; V_I = 0.7V$			90		μA
HOLD	Data inputs ⁶	V _{CC} = 2.3V; V _I = 1.7V			-75		μΑ
I_{EX}	Current into an output in the High state when $V_O > V_{CC}$	V _O = 5.5V; V _{CC} = 2.3V			20	125	μΑ
I _{PU/PD}	Power up/down 3-State output current ³	$V_{CC} \le 1.2V$; $V_O = 0.5V$ to V_{CC} ; $V_I = GND$ or V_{CC} OE/OE = Don't care			40	100	μΑ
ICCH		V_{CC} = 2.7V; Outputs High, V_{I} = GND or V	$V_{CC, I_O} = 0$		0.04	0.1	
I _{CCL}	Quiescent supply current	V_{CC} = 2.7V; Outputs Low, V_I = GND or V_{CC} , I_O = 0			2.5	4.5	mA
I _{CCZ}	1	V_{CC} = 2.7V; Outputs Disabled; V_I = GND or V_{CC} , I_O = 0 ⁵			0.04	0.1	1
ΔI_{CC}	Additional supply current per input pin ²	V_{CC} = 2.3V to 2.7V; One input at V_{CC} -0. Other inputs at V_{CC} or GND	.6V,		0.05	0.4	mA

NOTES:

1. All typical values are at V_{CC} = 2.5V and T_{amb} = 25°C. 2. This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND

3. This parameter is valid for any V_{CC} between 0V and 1.2V with a transition time of up to 10msec. From V_{CC} = 1.2V to V_{CC} = 2.5V \pm 0.2V a transition time of 100 μ sec is permitted. This parameter is valid for T_{amb} = 25°C only.

4. Unused pins at V_{CC} or GND. 5. I_{CCZ} is measured with outputs pulled up to V_{CC} or pulled down to ground.

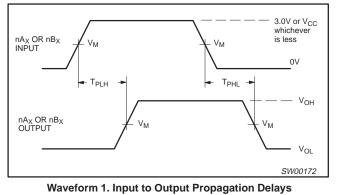
6. Not guaranteed.

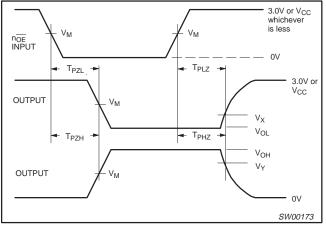
AC CHARACTERISTICS (2.5V ± 0.2V RANGE)

GND = 0V; $t_R = t_F = 2.5ns$; $C_L = 50pF$; $R_L = 500\Omega$; $T_{amb} = -40^{\circ}C$ to +85°C.

				LIMITS		
SYMBOL	PARAMETER	WAVEFORM	V _C	$c = 2.5V \pm 0.00$	2V	UNIT
			MIN	TYP ¹	MAX	
t _{PLH} t _{PHL}	Propagation delay nAx to nBx or nBx to nAx	1	1.5 1.5	2.9 2.4	5.3 4.7	ns
t _{PZH} t _{PZL}	Output enable time to High and Low level	2	1.5 1.5	4.3 3.1	6.3 4.6	ns
t _{PHZ} t _{PLZ}	Output disable time from High and Low Level	2	1.5 1.5	4.2 3.3	6.2 5.1	ns

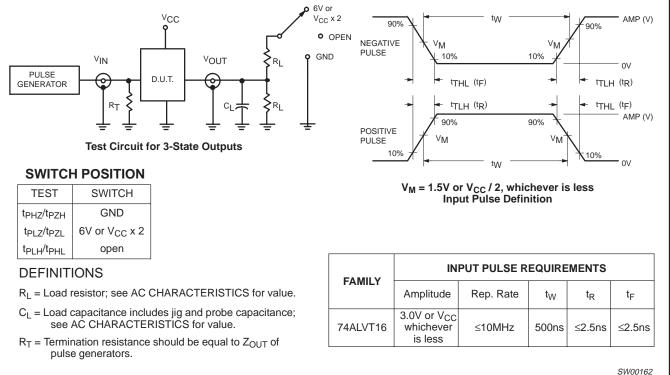
NOTE:

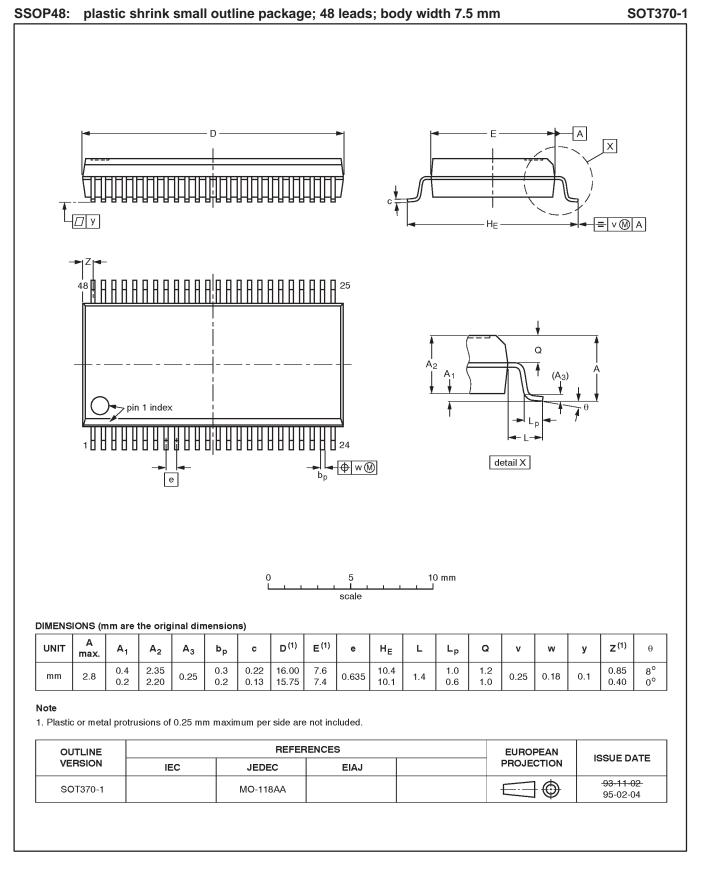

1. All typical values are at V_{CC} = 2.5V and T_{amb} = 25° C.


2.5V/3.3V 16-bit transceiver with 30Ω termination resistors (3-State)

74ALVT162245

AC WAVEFORMS


- NOTES:
- 1. $V_M = 1.5V$ at $V_{CC} \ge 3.0V$, $V_M = V_{CC}/2$ at $V_{CC} \le 2.7V$ 2. $V_X = V_{OL} + 0.3V$ at $V_{CC} \ge 3.0V$, $V_X = V_{OL} + 0.1 \cdot V_{CC}$ at $V_{CC} \le 2.7V$ 3. $V_Y = V_{OH} 0.3V$ at $V_{CC} \ge 3.0V$, $V_Y = V_{OH} 0.1 \cdot V_{CC}$ at $V_{CC} \le 2.7V$


Waveform 2. 3-State Output Enable and Disable Times

2.5V/3.3V ALVT 16-bit transceiver with 30Ω termination resistors (3-State)

74ALVT162245


1998 Feb 13

This Manual:http://www.manuallib.com/philips/74alvt162245-electronic-component-datasheet.html

2.5V/3.3V ALVT 16-bit transceiver with 30Ω termination resistors (3-State)

Product specification

This Manual:http://www.manuallib.com/philips/74alvt162245-electronic-component-datasheet.html

2.5V/3.3V ALVT 16-bit transceiver with 30Ω termination resistors (3-State)

74ALVT162245

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code

Document order number:

Date of release: 05-96 9397-750-03648

Philips Semiconductors

