November 1990

MM74C908/MM74C918 Dual CMOS 30V Relay Driver **General Description**

The MM74C908 and MM74C918 are general purpose dual high voltage drivers, each capable of sourcing a minimum of 250 mA at $V_{OUT} = V_{CC} - 3V$, and $T_J = 65^{\circ}C$.

The MM74C908 and MM74C918 consist of two CMOS NAND gates driving an emitter follower Darlington output to achieve high current drive and high voltage capabilities. In the "OFF" state the outputs can withstand a maximum of $-30\mathrm{V}$ across the device. These CMOS drivers are useful in interfacing normal CMOS voltage levels to driving relays, regulators, lamps, etc.

Features

■ Wide supply voltage range

3V to 18V

■ High noise immunity

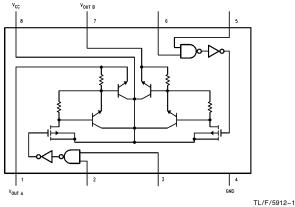
0.45 V_{CC} (typ.)

■ Low output "ON" resistance

 8Ω (typ.)

■ High voltage

-30V

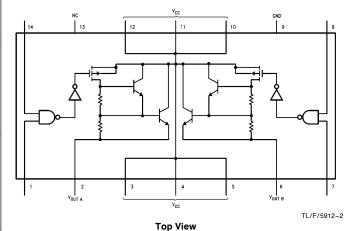

■ High current

250 mA

Connection Diagrams

Dual-In-Line Package

MM74C908



Order Number MM74C908

Top View

Dual-In-Line Package

MM74C918

Order Number MM74C918

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $-0.3 \mbox{V to V}_{\mbox{\footnotesize CC}} + 0.3 \mbox{V}$ Voltage at any Input Pin Voltage at any Output Pin

Operating Temperature Range

MM74C908/MM74C918 -40°C to +85°C Operating V_{CC} Range 4V to 18V Absolute Maximum V_{CC} 19V 500 mA **ISOURCE** Storage Temperature Range (T_S) -65°C to $+150^{\circ}\text{C}$

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

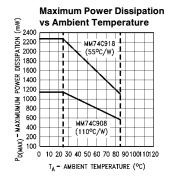
Power Dissipation (P_D) Refer to Maximum Power Dissipation vs Ambient Temperature Graph

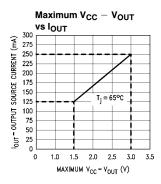
DC Electrical Characteristics Min/Max limits apply across temperature range, unless otherwise noted

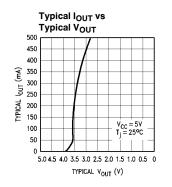
Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO	CMOS		•	•	•	
V _{IN(1)}	Logical "1" Input Voltage	V _{CC} = 5V V _{CC} = 10V	3.5 8.0			V V
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 5V V _{CC} = 10V			1.5 2.0	V V
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		0.005	1.0	μΑ
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μΑ
Icc	Supply Current	V _{CC} = 15V, Outputs Open Circuit		0.05	15	μΑ
	Output "OFF" Voltage	$V_{IN} = V_{CC}$, $I_{OUT} = -200 \mu A$		-30		V
CMOS/LPT	TL INTERFACE		•	•	•	
V _{IN(1)}	Logical "1" Input Voltage MM74C908/MM74C918	V _{CC} = 4.75V	V _{CC} - 1.5			٧
V _{IN(0)}	Logical "0" Input Voltage MM74C908/MM74C918	V _{CC} = 4.75V			0.8	V
OUTPUT D	RIVE			•		
V _{OUT}	Output Voltage	$\begin{array}{c c} I_{OUT} = -300 \text{ mA, V}_{CC} \geq 5\text{V, T}_{J} = 25^{\circ}\text{C} \\ I_{OUT} = -250 \text{ mA, V}_{CC} \geq 5\text{V, T}_{J} = 65^{\circ}\text{C} \\ I_{OUT} = -175 \text{ mA, V}_{CC} \geq 5\text{V, T}_{J} = 150^{\circ}\text{C} \end{array}$	V _{CC} -2.7 V _{CC} -3.0 V _{CC} -3.15	V _{CC} -1.8 V _{CC} -1.9 V _{CC} -2.0		V V V
R _{ON}	Output Resistance	$\begin{array}{l} I_{OUT} = -300 \text{ mA, V}_{CC} \geq 5\text{V, T}_{J} = 25^{\circ}\text{C} \\ I_{OUT} = -250 \text{ mA, V}_{CC} \geq 5\text{V, T}_{J} = 65^{\circ}\text{C} \\ I_{OUT} = -175 \text{ mA, V}_{CC} \geq 5\text{V, T}_{J} = 150^{\circ}\text{C} \end{array}$		6.0 7.5 10	9.0 12 18	$\Omega \\ \Omega \\ \Omega$
	Output Resistance Coefficient			0.55	0.80	%/°C
θ_{JA}	Thermal Resistance MM74C908/MM74C918	(Note 3) (Note 3)		100 45	110 55	°C/W

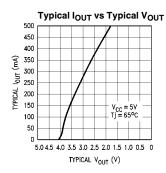
AC Electrical Characteristics*

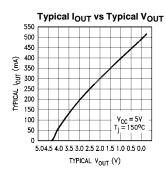
Parameter	Conditions	Min	Тур	Max	Units
Propagation Delay to a Logical "1"	$V_{CC} = 5V, R_L = 50\Omega,$ $C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}$		150	300	ns
	$V_{CC} = 10V, R_L = 50\Omega,$ $C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}$		65	120	ns
Propagation Delay to a Logic "0"	$V_{CC} = 5V, R_L = 50\Omega,$ $C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}$		2.0	10	μs
	$V_{CC} = 10V, R_L = 50\Omega,$ $C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}$		4.0	20	μs
Input Capacitance	(Note 2)		5.0		pF
	Propagation Delay to a Logical "1" Propagation Delay to a Logic "0"	$\begin{array}{lll} \mbox{Propagation Delay} \\ \mbox{to a Logical "1"} & \mbox{$V_{CC} = 5V, R_L = 50\Omega$,} \\ \mbox{$C_L = 50 \ pF, T_A = 25^{\circ}C$} \\ \mbox{$V_{CC} = 10V, R_L = 50\Omega$,} \\ \mbox{$C_L = 50 \ pF, T_A = 25^{\circ}C$} \\ \mbox{Propagation Delay} \\ \mbox{to a Logic "0"} & \mbox{$V_{CC} = 5V, R_L = 50\Omega$,} \\ \mbox{$C_L = 50 \ pF, T_A = 25^{\circ}C$} \\ \mbox{$V_{CC} = 10V, R_L = 50\Omega$,} \\ \mbox{$C_L = 50 \ pF, T_A = 25^{\circ}C$} \\ \mbox{$V_{CC} = 5V, T_A = 25^{\circ}C$}$	$\begin{array}{lll} \mbox{Propagation Delay} \\ \mbox{to a Logical "1"} & V_{CC} = 5V, R_L = 50\Omega, \\ \mbox{$C_L = 50$ pF, $T_A = 25^{\circ}$C} \\ \mbox{$V_{CC} = 10V, R_L = 50\Omega,$} \\ \mbox{$C_L = 50$ pF, $T_A = 25^{\circ}$C} \\ \mbox{Propagation Delay} \\ \mbox{to a Logic "0"} & V_{CC} = 5V, R_L = 50\Omega, \\ \mbox{$C_L = 50$ pF, $T_A = 25^{\circ}$C} \\ \mbox{$V_{CC} = 10V, R_L = 50\Omega,$} \\ \mbox{$C_L = 50$ pF, $T_A = 25^{\circ}$C} \\ \mbox{$V_{CC} = 50$ pF, $T_A = 25^{\circ}$C} \\ \mbox{$V_{CL} =$	$ \begin{array}{c} \text{Propagation Delay} \\ \text{to a Logical "1"} \\ \end{array} \begin{array}{c} \text{V}_{\text{CC}} = 5\text{V}, \text{R}_{\text{L}} = 50\Omega, \\ \text{C}_{\text{L}} = 50\text{pF}, \text{T}_{\text{A}} = 25^{\circ}\text{C} \\ \text{V}_{\text{CC}} = 10\text{V}, \text{R}_{\text{L}} = 50\Omega, \\ \text{C}_{\text{L}} = 50\text{pF}, \text{T}_{\text{A}} = 25^{\circ}\text{C} \\ \end{array} \begin{array}{c} \text{65} \\ \end{array} \\ \text{Propagation Delay} \\ \text{to a Logic "0"} \\ \end{array} \begin{array}{c} \text{V}_{\text{CC}} = 5\text{V}, \text{R}_{\text{L}} = 50\Omega, \\ \text{C}_{\text{L}} = 50\text{pF}, \text{T}_{\text{A}} = 25^{\circ}\text{C} \\ \text{V}_{\text{CC}} = 10\text{V}, \text{R}_{\text{L}} = 50\Omega, \\ \text{C}_{\text{L}} = 50\text{pF}, \text{T}_{\text{A}} = 25^{\circ}\text{C} \\ \end{array} \begin{array}{c} \text{2.0} \\ \text{4.0} \\ \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

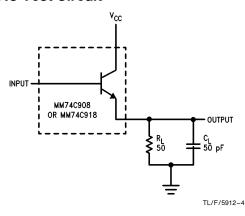

^{*}AC Parameters are guaranteed by DC correlated testing.

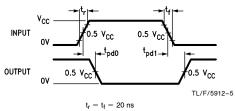

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device


Note 2: Capacitance is guaranteed by periodic testing.


Note 3: $\theta_{\rm JA}$ measured in free air with device soldered into printed circuit board.


Typical Performance Characteristics





TL/F/5912-3

AC Test Circuit

Switching Time Waveforms

Power Considerations

Calculating Output "ON" Resistance ($R_L \ge 18\Omega$)

The output "ON" resistance, $R_{\mbox{ON}}$, is a function of the junction temperature, T_J, and is given by:

$$R_{ON} = 9 (T_J - 25) (0.008) + 9$$
 (1)

and T_J is given by:

$$T_{J} = T_{A} + P_{DAV} \theta_{JA}, \qquad (2)$$

where T_A = ambient temperature, θ_{JA} = thermal resistance, and PDAV is the average power dissipated within the device. P_{DAV} consists of normal CMOS power terms (due to leakage currents, internal capacitance, switching, etc.) which are insignificant when compared to the power dissipated in the outputs. Thus, the output power term defines the allowable limits of operation and includes both outputs, A and B. P_D is given by:

$$P_D = I_{OA}^2 R_{ON} + I_{OB}^2 R_{ON},$$
 (3)

where IO is the output current, given by:

$$I_{O} = \frac{V_{CC} - V_{L}}{R_{ON} + R_{L}} \tag{4}$$

 V_L is the load voltage.

The average power dissipation, PDAV, is a function of the duty cycle:

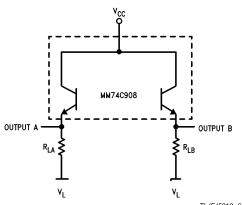
$$P_{DAV} = I_{OA}^{2} R_{ON} (Duty Cycle_{A}) + (5)$$

$$I_{OB}^{2} R_{ON} (Duty Cycle_{B})$$

where the duty cycle is the % time in the current source state. Substituting equations (1) and (5) into (2) yields:

$$T_J = T_A + \theta_{JA} [9 (T_J - 25) (0.008) + 9]$$
 (6a)

 $[I_{OA}^2 (Duty Cycle_A) + I_{OB}^2 (Duty Cycle_B)]$


simplifying:

$$T_{J} = \frac{T_{A} + 7.2 \; \theta_{JA} \; [l_{OA}^{2} \; (\text{Duty Cycle}_{A}) \; + \; l_{OB}^{2} \; (\text{Duty Cycle}_{B})]}{1 - 0.072 \; \theta_{JA} \; [l_{OA}^{2} \; (\text{Duty Cycle}_{A}) \; + \; l_{OB}^{2} \; (\text{Duty Cycle}_{B})]}$$

Equations (1), (4), and (6b) can be used in an iterative method to determine the output current, output resistance and junction temperature.

Applications

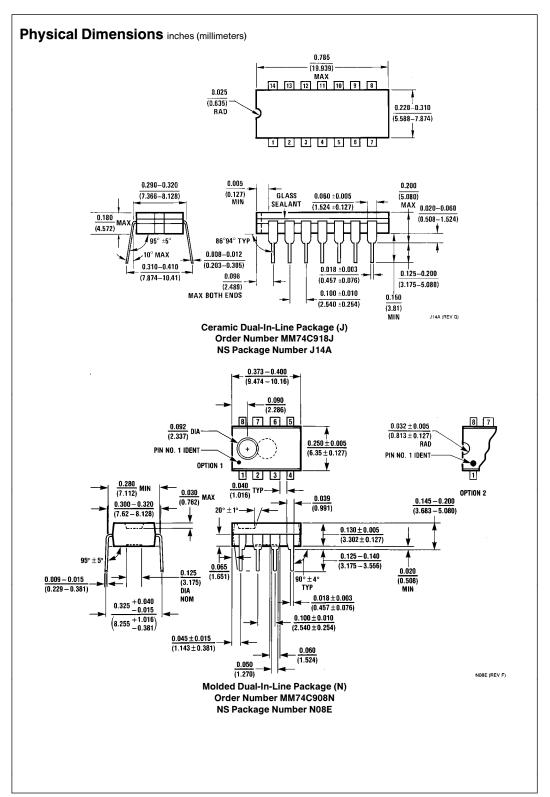
(See AN-177 for applications)

TL/F/5912-6

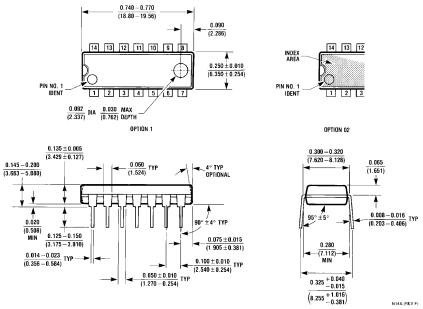
For example, let $V_{CC}=$ 15V, $R_{LA}=$ 100 Ω , $R_{LB}=$ 100 Ω , $V_L = 0V$, $T_A = 25^{\circ}C$, $\theta_{JA} = 110^{\circ}C/W$, Duty Cycle_A = 50%, Duty Cycle_B = 75%.

Assuming $R_{ON} = 11\Omega$, then:

$$I_{OA} = \frac{V_{CC} - V_L}{R_{ON} + R_{LA}} = \frac{15}{11 + 100} = 135.1 \text{ mA},$$


$$I_{OB} = \frac{V_{CC} - V_L}{R_{ON} + R_{LB}} = 135.1 \text{ mA}$$

$$\mathsf{T_{J}} = \frac{\mathsf{T_{A}} + 7.2\,\theta_{\mathsf{JA}}\,[\mathsf{I}_{\mathsf{OA}^{2}}\,(\mathsf{Duty}\,\mathsf{Cycle}_{\mathsf{A}}) + \mathsf{I}_{\mathsf{OB}^{2}}\,(\mathsf{Duty}\,\mathsf{Cycle}_{\mathsf{B}})]}{1 - 0.072\,\theta_{\mathsf{JA}}\,[\mathsf{I}_{\mathsf{OA}^{2}}\,(\mathsf{Duty}\,\mathsf{Cycle}_{\mathsf{A}}) + \mathsf{I}_{\mathsf{OB}^{2}}\,(\mathsf{Duty}\,\mathsf{Cycle}_{\mathsf{B}})]}$$


$$T_{J} = \frac{25 + (7.2) (110) [(0.1351)^{2} (0.5) + (0.1351)^{2} (0.75)]}{1 - (0.072) (110) [(0.1351)^{2} (0.5) + (0.1351)^{2} (0.75)]}$$

 $T_J = 52.6^{\circ}C$

and R
$$_{ON}=9$$
 (T $_{J}-25$) (0.008) $+$ 9
$$=9(52.6-25)~(0.008)+9=11\Omega$$

Physical Dimensions inches (millimeters) (Continued)

Molded Dual-In-Line Package (N) Order Number MM74C918N NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: onlyeg@tevnz.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9860 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408