

Note 1：Devices also available in $13^{\prime \prime}$ reel．Use suffix＝SCX and SJX．
Note 2：Military grade device with environmental and burn－in processing．Use suffix＝DMQB，FMQB and LMQB．

## Logic Symbols



IEEE／IEC


Connection Diagrams
Pin Assignment DIP，SOIC and Flatpak


TL／F／9479－1

## Pin Assignment

 for LCC$\bar{o}_{2 \mathrm{a}} \bar{o}_{1 \mathrm{a}} \mathrm{NC} \bar{o}_{0 \mathrm{a}} \mathrm{A}_{1 \mathrm{a}}$


TL／F／9479－2

[^0]
## Unit Loading/Fan Out

| Pin Names | Description |  | $54 \mathrm{~F} / 74 \mathrm{~F}$ |  |
| :--- | :--- | :---: | :---: | :---: |
|  |  | U.L. <br> HIGH/LOW | Input $\mathbf{I}_{\mathbf{I H}} / \mathbf{I}_{\mathrm{IL}}$ <br> Output $\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$ |  |
|  | Address Inputs | $1.0 / 1.0$ | $20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$ |  |
| $\overline{\mathrm{E}}$ | Enable Inputs (Active LOW) | $1.0 / 1.0$ | $20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$ |  |
| $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$ | Outputs (Active LOW) | $50 / 33.3$ | $-1 \mathrm{~mA} / 20 \mathrm{~mA}$ |  |

## Functional Description

The 'F139 is a high-speed dual 1-of-4 decoder/demultiplexer. The device has two independent decoders, each of which accepts two binary weighted inputs ( $A_{0}-A_{1}$ ) and provides four mutually exclusive active LOW Outputs ( $\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$ ). Each decoder has an active LOW enable ( $\bar{E}$ ). When $\bar{E}$ is HIGH all outputs are forced HIGH. The enable can be used

## Truth Table

| Inputs |  |  | Outputs |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\mathrm{E}}$ | $\mathrm{A}_{0}$ | $\mathrm{~A}_{1}$ | $\overline{\mathrm{O}}_{0}$ | $\overline{\mathrm{O}}_{1}$ | $\overline{\mathrm{O}}_{2}$ | $\overline{\mathrm{O}}_{3}$ |
| H | X | X | H | H | H | H |
| L | L | L | L | H | H | H |
| L | H | L | H | L | H | H |
| L | L | H | H | H | L | H |
| L | H | H | H | H | H | L |

H $=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial
as the data input for a 4-output demultiplexer application. Each half of the 'F139 generates all four minterms of two variables. These four minterms are useful in some applications, replacing multiple gate functions as shown in Figure 1, and thereby reducing the number of packages required in a logic network.


## Logic Diagram



TL/F/9479-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias Plastic
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output

$$
\begin{aligned}
& \text { in HIGH State (with } \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { ) } \\
& \text { Standard Output } \\
& \text { TRI-STATE }{ }^{\circledR} \text { Output }
\end{aligned}
$$

Current Applied to Output in LOW State (Max) twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
ESD Last Passing Voltage (Min)
4000V
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

## Recommended Operating

 ConditionsFree Air Ambient Temperature

| Military | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Commercial | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Supply Voltage |  |
| Military | +4.5 V to +5.5 V |
| Commercial | +4.5 V to +5.5 V |

## DC Electrical Characteristics

| Symbol | Parameter |  | 54F/74F |  |  | Units | $\mathrm{V}_{\mathrm{cc}}$ | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage |  | 2.0 |  |  | V |  | Recognized as a HIGH Signal |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage |  |  |  | 0.8 | V |  | Recognized as a LOW Signal |
| $\mathrm{V}_{\mathrm{CD}}$ | Input Clamp Diode Voltage |  |  |  | -1.2 | V | Min | $\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$ |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | $\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$ | $\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$ |  |  | V | Min | $\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW <br> Voltage | $\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$ |  |  | $\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$ | V | Min | $\begin{aligned} & \mathrm{IOL}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$ |
| $\mathrm{I}_{\mathrm{H}}$ | Input HIGH Current | $\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$ |  |  | $\begin{gathered} 20.0 \\ 5.0 \\ \hline \end{gathered}$ | $\mu \mathrm{A}$ | Max | $\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$ |
| $\mathrm{I}_{\mathrm{BVI}}$ | Input HIGH Current <br> Breakdown Test | $\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$ |  |  | $\begin{aligned} & 100 \\ & 7.0 \end{aligned}$ | $\mu \mathrm{A}$ | Max | $\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$ |
| $I_{\text {CEX }}$ | Output HIGH <br> Leakage Current | $\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$ |  |  | $\begin{gathered} 250 \\ 50 \end{gathered}$ | $\mu \mathrm{A}$ | Max | $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ |
| $V_{\text {ID }}$ | Input Leakage Test | 74F | 4.75 |  |  | V | 0.0 | $\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ <br> All Other Pins Grounded |
| ${ }_{\text {IOD }}$ | Output Leakage Circuit Current | 74F |  |  | 3.75 | $\mu \mathrm{A}$ | 0.0 | $V_{I O D}=150 \mathrm{mV}$ <br> All Other Pins Grounded |
| $\mathrm{I}_{\mathrm{IL}}$ | Input LOW Current |  |  |  | $-0.6$ | mA | Max | $\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$ |
| los | Output Short-Circuit | urrent | -60 |  | -150 | mA | Max | $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ |
| $\mathrm{I}_{\mathrm{CC}}$ | Power Supply Curre |  |  | 13 | 20 | mA | Max |  |

## AC Electrical Characteristics

| Symbol | Parameter | 74F |  |  | 54F |  | 74F |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \mathrm{T}_{\mathbf{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ |  |  | $\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ |  | $\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ |  |  |
|  |  | Min | Typ | Max | Min | Max | Min | Max |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{A}_{0}$ or $\mathrm{A}_{1}$ to $\overline{\mathrm{O}}_{\mathrm{n}}$ | $\begin{aligned} & 3.5 \\ & 4.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 5.3 \\ & 6.1 \\ & \hline \end{aligned}$ | $\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$ | $\begin{array}{r} 2.5 \\ 3.5 \\ \hline \end{array}$ | $\begin{gathered} 12.0 \\ 9.5 \end{gathered}$ | $\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$ | $\begin{aligned} & 8.5 \\ & 9.0 \\ & \hline \end{aligned}$ | ns |
| $t_{\text {PLH }}$ <br> $t_{\text {PHL }}$ | Propagation Delay $\bar{E}_{1}$ to $\bar{O}_{n}$ | $\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$ | $\begin{aligned} & 5.4 \\ & 4.7 \end{aligned}$ | $\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$ | $\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$ | $\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$ | ns |

## Ordering Information



Physical Dimensions inches (millimeters)


Physical Dimensions inches (millimeters) (Continued)


Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.


[^0]:    TRI－STATE is a registered trademark of National Semiconductor Corporation．

