

ADSL GATEWAY PROCESSOR

DATA BRIEF

1 GENERAL FEATURES

1.1 WAN modem feature set

- Embedded transceiver ANSI T1.413, ITU G.dmt Annex A/B incl. Deutsche Telecom UR-2 compliant, splitterless ITU G.Lite
- ADSL analog front end compatibility:
 - MTC20174, ADSL front end, 7th generation, integrated line driver, DCXO

1.2 WAN connectivity

- Point to point protocol over Ethernet
- Point to point protocol over ATM
- Relay via PPP session control on terminal
- CIP classical IP over Ethernet
- Full ICSA firewall

1.3 Session Control

- PPPoE point to point protocol over Ethernet
- PPPoA point to point protocol over ATM
- PPPoA relay via PPP session control on terminal.

1.4 ATM features

- Adaptation Layers: AAL5 (data), supported in hardware
- Encapsulation: RFC1483 and RFC2684, multi protocol encapsulation over ATM (MPOA) over AAL5 bridged and routed modes
- ATM circuit: 8 PVC
- Available services (Qos): UBR

1.5 LAN feature set

- 1 Ethernet 10/100 MII (HPNA compatible)
- 2 UARTs, Bluetooth compatible
- Bridging: Transparent bridge: IEEE 801.1d, spanning tree, learning/filter bridge in hardware
- Embedded router: RIP1, RIP2, static routing
- NAT/PAT with extended ALG support
- DHCP server/client
- IP protocol: TCP/IP, ARP sharing access, ICMP, IGMP

Figure 1. Package

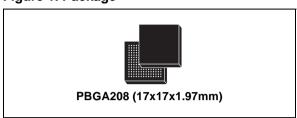


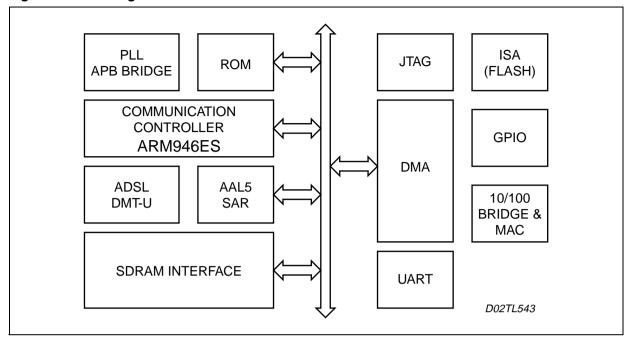
Table 1. Order Codes

Part Number	Package
MTC50150-TB-C2	PBGA208

- Support up to 128 MAC stations.
- Embedded http server for configuration

1.6 Configuration and Provisioning

- Configuration: remote configuration via Java[™] enabled browser
- Firmware update: remote upload via network.
- Management: SNMP, UNI3.1, ILMI 4.0 (management and auto configuration)


1.7 Customization

- Customization with comprehensive API set
- Development tool based on Windows environment on PC
- Exposed BSP layer
- Flexible development licenses based on kernel software in object or source format.

2 APPLICATION

- Low cost ADSL residential gateway
- Residential gateway with broadband ADSL WAN transceiver
- Wan to LAN bridge and router with ADSL WAN transceiver and Ethernet MAC
- Wireless LAN access point with ADSL WAN transceiver and Ethernet MAC

Figure 2. Block diagram

3 DESCRIPTION

The MTC50150 is a low cost ADSL bridge and LAN router. One 10/100Mbits Ethernet port allows the connection of a LAN to the WAN in bridged or routed mode. The data traffic can be routed through a local terminal by using the LAN port. The presence of NAT and DHCP and the API slots for firewall functions allow for a high-speed connection of LAN connected devices, like PC, to the public Internet in an isolated and secure environment.

The chip is built around an ARM946ES RISC processor. It embeds a complete ADSL transceiver and LAN interfaces with an MII allowing multiple medium utilization. A comprehensive software package is available with the SOC solution, which has been developed with customization in mind. Several software license plans are available as well as a user friendly development environment.

4 HARDWARE DESCRIPTION

The MTC50150 processor combines a DynaMiTe™ ADSL transceiver with a dedicated ARM946ES RISC processor. To maintain high data throughput, the RISC processor includes 16Kbyte cache memory for programming and 16Kbyte memory for data. Processing of most of the layer 2 protocols on the ATM (SAR and AAL) and IP (Mac filter and bridge) sides are performed by specific hardware blocks, relieving the processors from these tasks. The chip provides minimal external components and maximum flexibility. In addition, it contains one Ethernet 10/100 Base-T MAC and the exposed MII interface allows the connection to alternate LAN mediums like HPNA, WLAN, and HPLUG. The MTC-50150 device is targeted for low-cost residential gateways. Its primary design goal is to minimize cost. Secondary design goals are:

- Low system cost using a reduced BOM and optimized SOC technology
- Low power to facilitate primary service capabilities and thermal system issues
- Low EMI to simplify packaging and qualification of systems

5 HARDWARE FEATURES

- ARM946ES RISC processor dedicated to network processing, API and DSL modem control
- Hardware ATM processor: SAR function with AAL5 processing
- Hardware packet processor: Ethernet MAC, learning and filter bridge
- One 10/100 Base-T Ethernet MACs with MII interface for external PHY or multi-port switch
- One 8 or 16-bit wide Flash port, ISA compatible for up to 16Mbyte addressable memory
- One 32-bit wide SDRAM interface with 32Mbyte addressable memory
- Interface to MTC20174 DynaMiTe[™] ADSL analog front end (AFE) chip
- Multi-channel DMA engine integrated with peripherals
- Low power: 1.8V +/-10% core voltage, 3.3V +/- 10% I/O voltage
- 128 instructions (32 bits) of boot ROM
- GPIO with support LED
- Cc-based Multi ICE/compiler support with assembler and debugger
- Software chip and system simulators for software development and debug
- JTAG board-level test interface
- 140MHz system clock (processor cycle clock)
- Sleep mode with wake on LAN wake on WAN feature
- Programmable system frequency clock: 140, 105, 70, 35 and 129MHz (fall back mode).

6 SOFTWARE ARCHITECTURE

The software is organized in 5 clusters:

- User interface API
- System services
- Network services
- TCP/IP socket
- ATM encapsulation

A description of the cluster contents is given in the software features section.

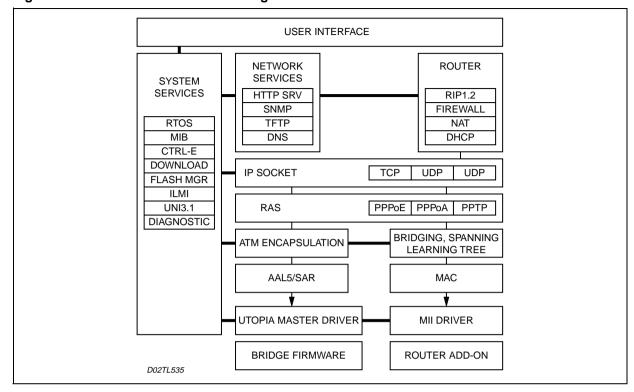


Figure 3. Embedded software block diagram

7 SOFTWARE FEATURES

7.1 User Interface API

A development kit dedicated to the platform allows access through the API to specific code sections to allow software customization. The development kit provides source code for a packet phone application, drivers and diagnostic software. Other stacks are delivered in the object code. A specific development environment is provided. It includes project profiling, managing, C compiler/assembler and tools as well a source level debugger.

7.2 System Services

MAPI offers an easy interface to control the operations necessary to setup the ADSL link and monitor the operation conditions. The software provides an optimized control sequence to insure optimum operation of the DynaMiTeTM chip set.

MIB2: RFC 1213: Management Information Bases (MIB2) is implemented in the device.

RTOS: Implemented RTOS is Posix compliant. The user can access various parts of the software blocks through specific APIs. Alternate RTOS are planned.

Flash Initialization. Software is stored on an external Flash. At boot-up, the stored software is downloaded to the device. By using compilation options, software can be executed from the internal RAM (intensive operations) or executed from the flash. Execution is optimized by the use of an intermediate cache memory.

Startup initialization: Optional software images can be selected at startup of the device.

Broad Support Program: A BSP layer is provided to allow easy porting of proprietary software on the SOC architecture. The BSP provides a unique hardware abstraction layer model valid for the entire product line. This approach allows reuse of the custom solfware through the entire MTC-50xxx product line(*).

(*) starting with MTC-50150

7.3 Network Services

7.3.1 ILMI

Embedded software provides an ILMI 4.0 implementation which handles address registration (switch to end device) and notification (end device to switch) as well as auto-configuration. ILMI uses SNMP over AAL-5 for transport.

7.3.2 UNI Signaling

Stackware includes support for standard ATM UNI signaling standards, including UNI 3.1.

7.3.3 RIP1/RIP2 IP Router

IP router software provides implementations of RIP1 and RIP2. The IP router is an IPv4 router. Support for new station discovery is provided.

7.4 TCP/IP Socket

7.4.1 TCP

Transport Control Protocol (TCP) is accessed using a standard socket interface to allow easy integration of existing Layer 3 and higher software into the basic protocol stack.

7.4.2 IP

Internal protocol: IP and IP routing are both part of the network layer (layer 3). IP is actually responsible for delivering packets for which the router defines the direction.

7.4.3 DHCP RFC 2131, 2132

Dynamic Host Control Protocol (DHCP) provides both client & server functions. The client is typically used to obtain an IP address from an ISP. The DHCP server is used to assign local IP client devices with designated IP addresses. The server lends addresses for a limited time. NAT registers local terminal IP addresses and maintains a translation table to allow sending and receiving data on the public network by sharing only the residential gateway assigned public IP address.

7.4.4 NAT: RFC1631, 2663

The Network Address Translator (NAT) implements Network and Port Address Translation (NAT/PAT). NAT allows a single public IP address on the WAN side to be shared among many devices on the LAN side. Combined with a DHCP server local devices are assigned a private address, hidden to the public internet and changed frequently. The combination of DHCP and NAT provides a powerful isolation barrier to external assault. NAT PAT features a number of AGL.

7.5 ATM Encapsulation and spanning-tree

RFC 1483/2684 provides a simple robust method of connecting end stations over an ATM network. User data in the form of Ethernet packets are encapsulated into AAL-5 PDUs for transport over ATM. RFC 1483/2684 provides no AAA function (authentication, authorization & accounting).

7.5.1 Spanning-tree bridge (802.1d)

Bridge module provides a transparent bridge between two physically disjoint networks with spanning-tree option. The spanning-tree algorithm handles redundancy and also increases robustness. It provides high performance as well as flexibility to group interfaces for example to bridge the WAN only to LAN interfaces but not to other WAN interfaces.

The ATM driver passes data between application software tasks on the processor and a physical AAL5 hardware block.

7.6 Session Control

7.6.1 PPPoA (RFC 2364)

PPP over ATM provides on the CPE side a termination agent for the transportation for IP packets over an ATM segment. A PPP session is established between the CPE and the central office (DSLAM). PPP provides AAA function (authentication, authorization and accounting). The PPP packets encapsulated according to RFC 2364 for transmission over an ATM segment. On the CPE side, the IP data can be delivered to the end user over such technologies as Ethernet.

7.6.2 PPPoE (RFC 2516)

The PPP over Ethernet encapsulation is used to transport Ethernet PPP traffic. The traffic is then transported over the ATM link by encapsulating traffic using RFC1483/2683. There may be multiple PPP sessions, each terminated in the IAD client device. PPPoE relay agent works as a enhanced layer 2 bridge. It determines that which locally originated PPPoE traffic belongs. The relay agent forwards that traffic, without any unnecessary processing, only to the correct destination. Similarly, received data is immediately relayed only to the appropriate LAN client.

8 DEVELOPMENT ENVIRONMENT

The MTC50150 presents a comprehensive set of software features. To allow manufacturers to further customize the system, a set of API functions are made available. This use of the API functions requires the acquisition of a development environment. The development environment is based on the following elements:

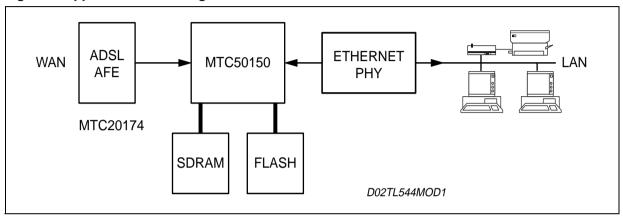
- -ARM Developer Suite (ADS) v1.1
- -ATI Development license
- -ATI EDE (Embedded Development Environment)
- -MS Developer Studio (VC++) v6.0 or higher

Along with the development environment a number of tools are provided to allow the diagnostic and the downloading operation of the executable on the nonvolatile memory of the MTC50150.

9 NOMINAL CHARACTERISTICS

The MTC50150 processor is available in a 208-pin PBGA (plastic ball grid array) package. All I/Os are 3.3V CMOS levels, with all inputs and 3-states having 5V tolerance. Supply voltages are 1.8 and 3.3V. No pins have internal pull-ups and pull-downs.

Supply	Typical power supply voltage 1.8V
	Typical pad power supply voltage 3.3V
Threshold	Input low voltage -0.5V -1.0V
	Input high voltage 2.3V- 5.5V
Consumption	 Core consumption: 1000mW, reduced power mode available.
Environment	- Ambient temperature: 0C - 70C (32F - 158F)
	Industrial grade: -40C - 85C. (-49F - 185F)
Package	- 208-pin plastic BGA package
Technology	- CMOS 0.18 micron


47/

10 APPLICATION EXAMPLE

The example below shows the reference design developed for the evaluation board. It is a complete ADSL-based data gateway that connects to the ADSL enabled phone jack and provides a connection to a 10/100bT Ethernet port. It utilizes a set of two ASSP available from ST.

The MTC50150 kit is composed of the following elements: A DynaMiTe[™] ADSL modem and AFE (MTC20174). Additional components are SDRAM and Flash memory and Ethernet PHY. Discrete components and connectors are not shown on the block diagram. Larger SDRAM and Flash can be connected to the MTC50150 to store and execute additional (custom) application.

Figure 4. Application block diagram

Intensive qualification efforts have been spent on this reference design insuring users of the platform maximum interoperability and smooth, rapid design-in, hence reducing engineering effort and Total Time to Market (TTM).

11 MTC50150 PIN LIST

11.1 PIN DESCRIPTION

The pin list comprises of all functional and power supply pins.

A TBGA-208 package (TB208A) is used.

(I = Input, ID = Input with internal Pull-Down, IU= Input with internal Pull-Up, O = Output, B = Bidirectional, OD = Open Drain, I/OD = Bidirectional with Open Drain output, OZ = High-Z Output, P = Power Supply, FS = Full Scan, NA = not available as pin).

Table 2. MTC50150 Pin list

Name	Pin	В	Buffer Type	Description			
SDRAM Interface (57)							
SD_nRAS	N2	0	PRT08DGZ	SDRAM Row Address Strobe			
SD_CLK	P2	В	PRB08DGZ	SDRAM Clock			
SD_nCAS	N1	0	PRT08DGZ	SDRAM Column Address Strobe			
SD_nWE	N3	0	PRT08DGZ	SDRAM Write Strobe			
SD_D31	R8	В	PRB08DGZ	SDRAM Data Bit 31			
SD_D30	T8	В	PRB08DGZ	SDRAM Data Bit 30			
SD_D29	P8	В	PRB08DGZ	SDRAM Data Bit 29			
SD_D28	N8	В	PRB08DGZ	SDRAM Data Bit 28			
SD_D27	Т9	В	PRB08DGZ	SDRAM Data Bit 27			
SD_D26	R9	В	PRB08DGZ	SDRAM Data Bit 26			
SD_D25	N10	В	PRB08DGZ	SDRAM Data Bit 25			
SD_D24	P10	В	PRB08DGZ	SDRAM Data Bit 24			
SD_D23	T10	В	PRB08DGZ	SDRAM Data Bit 23			
SD_D22	T11	В	PRB08DGZ	SDRAM Data Bit 22			
SD_D21	R11	В	PRB08DGZ	SDRAM Data Bit 21			
SD_D20	N12	В	PRB08DGZ	SDRAM Data Bit 20			
SD_D19	P12	В	PRB08DGZ	SDRAM Data Bit 19			
SD_D18	T12	В	PRB08DGZ	SDRAM Data Bit 18			
SD_D17	R12	В	PRB08DGZ	SDRAM Data Bit 17			
SD_D16	P13	В	PRB08DGZ	SDRAM Data Bit 16			
SD_A0	T7	0	PRT08DGZ	SDRAM Address Bit 00			
SD_A1	N6	0	PRT08DGZ	SDRAM Address Bit 01			
SD_A2	P6	0	PRT08DGZ	SDRAM Address Bit 02			
SD_A3	T6	0	PRT08DGZ	SDRAM Address Bit 03			

Table 2. MTC50150 Pin list (continued)

Name	Pin	В	Buffer Type	Description
SD_A4	R6	0	PRT08DGZ	SDRAM Address Bit 04
SD_A5	T5	0	PRT08DGZ	SDRAM Address Bit 05
SD_A6	R5	0	PRT08DGZ	SDRAM Address Bit 06
SD_A7	N4	0	PRT08DGZ	SDRAM Address Bit 07
SD_A8	T4	0	PRT08DGZ	SDRAM Address Bit 08
SD_A9	P4	0	PRT08DGZ	SDRAM Address Bit 09
SD_A10	R4	0	PRT08DGZ	SDRAM Address Bit 10
SD_A11	T3	0	PRT08DGZ	SDRAM Address Bit 11
SD_A12	R3	0	PRT08DGZ	SDRAM Address Bit 12
SD_A13	T2	0	PRT08DGZ	SDRAM Address Bit 13
SD_A14	T1	0	PRT08DGZ	SDRAM Address Bit 14
SD_D15	G1	В	PRB08DGZ	SDRAM Data Bit 15
SD_D14	G3	В	PRB08DGZ	SDRAM Data Bit 14
SD_D13	G4	В	PRB08DGZ	SDRAM Data Bit 13
SD_D12	H2	В	PRB08DGZ	SDRAM Data Bit 12
SD_D11	H1	В	PRB08DGZ	SDRAM Data Bit 11
SD_D10	НЗ	В	PRB08DGZ	SDRAM Data Bit 10
SD_D9	H4	В	PRB08DGZ	SDRAM Data Bit 09
SD_D8	J4	В	PRB08DGZ	SDRAM Data Bit 08
SD_D7	J2	В	PRB08DGZ	SDRAM Data Bit 07
SD_D6	K4	В	PRB08DGZ	SDRAM Data Bit 06
SD_D5	К3	В	PRB08DGZ	SDRAM Data Bit 05
SD_D4	K1	В	PRB08DGZ	SDRAM Data Bit 04
SD_D3	L4	В	PRB08DGZ	SDRAM Data Bit 03
SD_D2	L3	В	PRB08DGZ	SDRAM Data Bit 02
SD_D1	L1	В	PRB08DGZ	SDRAM Data Bit 01
SD_D0	L2	В	PRB08DGZ	SDRAM Data Bit 00
SD_nCS	P1	0	PRT08DGZ	SDRAM Chip Select
SD_CKE	R1	0	PRT08DGZ	SDRAM Clock Enable
SD_DQM0	M1	0	PRT08DGZ	SDRAM Data Mask 0 (Byte Enable)
SD_DQM1	M2	0	PRT08DGZ	SDRAM Data Mask 1 (Byte Enable)

Table 2. MTC50150 Pin list (continued)

Name	Pin	В	Buffer Type	Description
SD_DQM2	P7	0	PRT08DGZ	SDRAM Data Mask 2 (Byte Enable)
SD_DQM3	N7	0	PRT08DGZ	SDRAM Data Mask 3 (Byte Enable)
	•	ARM/M	iscellaneous Interface (4)
ARMDEBUG	В7	I	PDIDGZ	ARM Debug Test mode (multiplexes the ARM TAP onto the JTAG pins) Tied to '0' in functional mode
FLASHBOOT / PLL_CTR_RUN	A7	I	PDIDGZ	Boot from external Flash PROM rather than from internal ROM Starts/Stops the PLL test counter Tied to '1' in functional mode
BYPASSPLL / FS IN #15	C5	1 / 1	PDIDGZ	Bypass CPU clock generation PLL Tied to '0' in functional mode Full scan input chain 15 (ARM946E)
UTOPIASEL	R13	ID	PDDWDGZ	Select external Utopia Interface of ADSL core (Sachem_ip)
	•	JT	AG/Test Interface (5)	
TCK	E3	IU	PDUWDGZ	Boundary ScanTest Clock
TDI	F3	IU	PDUWDGZ	Boundary Scan Test Data In
TDO	E1	OZ	PRT08DGZ	Boundary Scan Test Data Out
TMS	E4	IU	PDUWDGZ	Boundary Scan Test Mode Shift
NTRST	F4	ID	PDDWDGZ	Boundary Scan Reset
		IS	A-like Interface (42)	
ISA_nCS / TRACEPORT9 / U_NOTRXREF	H15	0	PRT08DGZ	ISA bus Chip Select / Address Enable / ETM9 Trace port 9 / Utopia Receive Reference Clock
ISA_nRD	B13	0	PRT08DGZ	ISA bus Read Strobe / Output Enable
ISA_nWR	C13	0	PRT08DGZ	ISA bus Write Strobe
ROM_nCS	A14	0	PRT08DGZ	Flash PROM Chip Select / Address Enable
ROM_ADDR21 / PLL_DIV_OUT/ TRACEPKT11 / U_RXSOC	D14	0 / 0 / 0 / OZ	PRT08DGZ	Flash PROM Address Bit 21 / Divided clock in PLL test mode / ETM9 Trace packet 11 / Utopia Receive Start Of Cell
ROM_ADDR20 / PLL_NOM_OUT / TRACEPKT10 / U_RXCLAV	E15	0 / 0 / 0 / 0Z	PRT08DGZ	Flash PROM Address Bit 20 / PLL output clock in PLL test mode/ ETM9 Trace packet 10 / Utopia Receive Cell Available
ROM_ADDR19 / TRACEPKT9 / U_TXCLAV	E16	O / O / OZ	PRT08DGZ	Flash PROM Address Bit 19 / ETM9 Trace packet 9 / Utopia Transmit Cell Available

Table 2. MTC50150 Pin list (continued)

Name	Pin	В	Buffer Type	Description
ROM_ADDR18 / TRACEPKT8	E14	0	PRT08DGZ	Flash PROM Address Bit 18 / ETM9 Trace packet 8
ROM_ADDR17 / TRACEPKT7	G14	0	PRT08DGZ	Flash PROM Address Bit 17 / ETM9 Trace packet 7
ROM_ADDR16 / TRACEPKT6	G13	0	PRT08DGZ	Flash PROM Address Bit 16 / ETM9 Trace packet 6
ROM_ADDR15	D13	0	PRT08DGZ	Flash PROM Address Bit 15
ROM_ADDR14 / FS OUT #14	B12	0/	PRT08DGZ	Flash PROM Address Bit 14 Full scan output chain 14
ROM_ADDR13 / FS OUT #13	A12	0/	PRT08DGZ	Flash PROM Address Bit 13 Full scan output chain 13
ROM_ADDR12 / FS OUT #12	C12	0 /	PRT08DGZ	Flash PROM Address Bit 12 Full scan output chain 12
ROM_ADDR11 / FS OUT #11	A11	0 /	PRT08DGZ	Flash PROM Address Bit 11 Full scan output chain 11
ROM_ADDR10 / FS OUT #10	C11	0 /	PRT08DGZ	Flash PROM Address Bit 10 Full scan output chain 10
ROM_ADDR9 / FS OUT #9	B10	0 / 0	PRT08DGZ	Flash PROM Address Bit 9 Full scan output chain 9
ROM_ADDR8 / FS OUT #8	A10	0 /	PRT08DGZ	Flash PROM Address Bit 8 Full scan output chain 8
ROM_ADDR7 / FS OUT #7	C10	0/	PRT08DGZ	Flash PROM Address Bit 7 Full scan output chain 7
ROM_ADDR6 / FS OUT #6	D10	0/	PRT08DGZ	Flash PROM Address Bit 6 Full scan output chain 6
ROM_ADDR5 / FS OUT #5	A9	0/	PRT08DGZ	Flash PROM Address Bit 5 Full scan output chain 5
ISA_ADDR4 / ROM_ADDR4	В9	0	PRB08DGZ	ISA / Flash PROM Address Bit 4
ISA_ADDR3 / ROM_ADDR3 /	C9	0 / 0 /	PRB08DGZ	ISA / Flash PROM Address Bit 3 /
FS IN # 3		Ī		Full scan input chain 3
ISA_ADDR2 / ROM_ADDR2 /	D9	0 / 0 /	PRB08DGZ	ISA / Flash PROM Address Bit 2
TESTSEL106M		-		Test clock select for PLL test mode
ISA_ADDR1 / ROM_ADDR1 / TESTSEL70M	D8	0 / 0 / I	PRB08DGZ	ISA / Flash PROM Address Bit 1 Test clock select for PLL test mode
ISA_ADDR0 /	C8	0/	PRB08DGZ	ISA / Flash PROM Address Bit 0
ROM_ADDR0 / FS IN # 6		0 / I		Full scan input chain 6

Table 2. MTC50150 Pin list (continued)

Name	Pin	В	Buffer Type	Description
ISA_DATA15 / ROM_ADDR23 / PIPESTAT0 / U_RXENB	H13	B/ O/ O/	PRB08DGZ	ISA / Flash PROM Data bus Bit 15 / Flash PROM Address bit 23 in 8 bit mode / ETM9 Trace port Pipe status 0 / Utopia Receive Enable
ISA_DATA14 / ROM_ADDR22/ TRACEPKT4 / U_TXENB	J13	B/ O/ O/	PRB08DGZ	ISA / Flash PROM Data bus Bit 14 / Flash PROM Address bit 22 in 8 bit mode/ ETM9 Trace packet 4 / Utopia Transmit Enable
ISA_DATA13 / GPIO12 / TRACEPKT2 / U_RXADDR2	J14	B / B / O / I	PRB08DGZ	ISA / Flash PROM Data bus Bit 13 / GPIO12 in 8 bit mode / ETM9 Trace packet 2 / Utopia Receive Address Bit 2
ISA_DATA12 / GPIO11 / TRACESYNC / U_RXADDR1	J16	B / B / O / I	PRB08DGZ	ISA / Flash PROM Data bus Bit 12 / GPIO11 in 8 bit mode/ ETM9 Trace Sync signal / Utopia Receive Address Bit 1
ISA_DATA11 / GPIO10 / TRACEPKT3 / U_RXADDR0	J15	B / B / O / I	PRB08DGZ	ISA / Flash PROM Data bus Bit 11 / GPIO10 in 8 bit mode/ ETM9 Trace packet 3 / Utopia Receive Address Bit 0
ISA_DATA10 / GPIO9 / TRACECLK / U_TXADDR2	K13	B / B / O / I	PRB08DGZ	ISA / Flash PROM Data bus Bit 10 / GPIO9 in 8 bit mode/ ETM9 Trace clock / Utopia Transmit Address Bit 2
ISA_DATA9 / GPIO8 / TRACEPKT1 / U_TXADDR1	K14	B / B / O / I	PRB08DGZ	ISA / Flash PROM Data bus Bit 9 / GPIO8 in 8 bit mode/ ETM9 Trace packet 1 / Utopia Transmit Address Bit 1
ISA_DATA8 / GPIO7 / TRACEPKT0 / U_TXADDR0	K16	B / B / O / I	PRB08DGZ	ISA / Flash PROM Data bus Bit 8 / GPIO7 in 8 bit mode/ ETM9 Trace packet 0 / Utopia Transmit Address Bit 0
ISA_DATA7 / FS IN #14	B14	B/ I	PRB08DGZ	ISA / Flash PROM Data bus Bit 7 Full scan input chain 14
ISA_DATA6 / FS IN #13	A15	B / I	PRB08DGZ	ISA / Flash PROM Data bus Bit 6 Full scan input chain 13
ISA_DATA5 / FS IN #12	A16	B/	PRB08DGZ	ISA / Flash PROM Data bus Bit 5 Full scan input chain 12
ISA_DATA4 / FS IN #11	B16	B/	PRB08DGZ	ISA / Flash PROM Data bus Bit 4 Full scan input chain 11
ISA_DATA3 / FS IN #10	C15	B/	PRB08DGZ	ISA / Flash PROM Data bus Bit 3 Full scan input chain 10
ISA_DATA2 / FS IN #9	C16	B/ I	PRB08DGZ	ISA / Flash PROM Data bus Bit 2 Full scan input chain 9

Table 2. MTC50150 Pin list (continued)

Name	Pin	В	Buffer Type	Description
ISA_DATA1 / FS IN #8	D16	B/ I	PRB08DGZ	ISA / Flash PROM Data bus Bit 1 Full scan input chain 8
ISA_DATA0 / FS IN #7	D15	B/ I	PRB08DGZ	ISA / Flash PROM Data bus Bit 0 Full scan input chain 7
	•	Δ	DSL Interface (13)	
AF_RXD3 / FS IN #2	B1	1 / 1	PDIDGZ	ADSL AFE Receive Data Bit 3 / Full scan input chain 2
AF_RXD2	A1	ļ	PDIDGZ	ADSL AFE Receive Data Bit 2
AF_RXD1	A2	I	PDIDGZ	ADSL AFE Receive Data Bit 1
AF_RXD0	В3	I	PDIDGZ	ADSL AFE Receive Data Bit 0
AF_TXD3 / FS OUT #4	E2	0/	PRT08DGZ	ADSL AFE Transmit Data Bit 3 / Full scan output chain 4
AF_TXD2 / FS OUT #3	D4	0/	PRT08DGZ	ADSL AFE Transmit Data Bit 2 / Full scan output chain 3
AF_TXD1 / FS OUT #2	D1	0/	PRT08DGZ	ADSL AFE Transmit Data Bit 1 / Full scan output chain 2
AF_TXD0 / FS OUT #1	D3	0 /	PRT08DGZ	ADSL AFE Transmit Data Bit 0 / Full scan output chain 1
AF_CLWD / FS IN #1	C1	1/	PDIDGZ	ADSL Start Of Word Indication / Full scan input chain 1
AF_CTRLDATA / FS OUT #15	C2	0/	PRT08DGZ	ADSL Serial Data Transmit Channel / Full scan output chain 15 (A946E)
MCLK	B4	ļ	PDISDGZ	ADSL Master Clock
MnRST	А3	ļ	PDISDGZ	ADSL Master (Chip) Reset
AF_nPOWERLOW / FS OUT #16	D2	0/	PRT08DGZ	ADSL Power Down Analog FrontEnd / Full scan output chain 16 (A946E)
		Ethe	rnet MII Interface (18)	
M_TXCLK / U_TXCLK	P15	I	PDISDGZ	Ethernet MII Transmit Clock / Utopia Transmit Clock
M_TXEN / U_RXDATA4	T14	O / OZ	PRT08DGZ	Ethernet MII Transmit Enable / Utopia Receive Data Bit 4
M_TXD3 / U_RXDATA3	R14	O / OZ	PRT08DGZ	Ethernet MII Transmit Data Bit 3 / Utopia Receive Data Bit 3
M_TXD2 / U_RXDATA2	T15	O / OZ	PRT08DGZ	Ethernet MII Transmit Data Bit 2 / Utopia Receive Data Bit 2
M_TXD1 / U_RXDATA1	T16	O / OZ	PRT08DGZ	Ethernet MII Transmit Data Bit 1 / Utopia Receive Data Bit 1
M_TXD0 / U_RXDATA0	R16	O / OZ	PRT08DGZ	Ethernet MII Transmit Data Bit 0 / Utopia Receive Data Bit 0

Table 2. MTC50150 Pin list (continued)

Name	Pin	В	Buffer Type	Description
M_TXER / U_RXDATA5	T13	O / OZ	PRT08DGZ	Ethernet MII Transmit Error / Utopia Receive Data Bit 5
M_CRS / U_TXDATA7	M14	I	PDIDGZ	Ethernet MII Carrier Sense / Utopia Transmit Data Bit 7
M_COL / U_TXDATA6 / FS IN #4	M13	ID / I / I	PDDWDGZ	Ethernet MII Collision Detection / Utopia Transmit Data Bit 6 / Full scan input chain 4
M_RXCLK / U_RXCLK	N15	I	PDISDGZ	Ethernet MII Receive Clock / Utopia Receive Clock
M_RXDV / U_TXDATA4	P16	I	PDIDGZ	Ethernet MII Receive Data Valid / Utopia Transmit Data Bit 4
M_RXD3 / U_TXDATA3	N14	I	PDIDGZ	Ethernet MII Receive Data Bit 3 / Utopia Transmit Data Bit 3
M_RXD2 / U_TXDATA2	N16	I	PDIDGZ	Ethernet MII Receive Data Bit 2 / Utopia Transmit Data Bit 2
M_RXD1 / U_TXDATA1	N13	I	PDIDGZ	Ethernet MII Receive Data Bit 1 / Utopia Transmit Data Bit 1
M_RXD0 / U_TXDATA0	M15	I	PDIDGZ	Ethernet MII Receive Data Bit 0 / Utopia Transmit Data Bit 0
M_RXER / U_TXDATA5	M16	I	PDIDGZ	Ethernet MII Receive Error / Utopia Transmit Data Bit 5
M_MDC / U_RXDATA6	L14	O / OZ	PRT08DGZ	Ethernet MII Management Data Clock / Utopia Receive Data Bit 6
M_MDIO / U_RXDATA7 / FS IN #5	L13	B/ OZ/ I	PRB08DGZ	Ethernet MII Management Data / Utopia Receive Data Bit 7 / Full scan input chain 5
	•		GPIO Interface (7)	
GPIO6 / SER2SI / PIPESTAT2 / U_RXADDR3	H16	B / I / O / I	PRB08DGZ	General Purpose Pin 6 / CleanDMEP Serial Interface 2 – serial input / ETM9 Trace port Pipe status 2 / Utopia Receive Address Bit 3
GPIO5 / SER2SO /	H14	B / O /	PRB08DGZ	General Purpose Pin 5 / CleanDMEP Serial Interface 2 – serial output /
PIPESTAT1 / U_RXADDR4		0 / I		ETM9 Trace port Pipe status 1 / Utopia Receive Address Bit 4
GPIO4 / M_LINK / TRACEPKT15 / U_TXSOC	F16	B / I / O / I	PRB08DGZ	General Purpose Pin 4 / Ethernet Link Status Input / ETM9 Trace packet 15 / Utopia Transmit Start Of Cell
GPIO3 / PB1 / TRACEPKT14 / U_TXADDR3	F14	B / O / O /	PRB08DGZ	General Purpose Pin 3 / Main Clock Control PB1 / ETM9 Trace packet 14 / Utopia Transmit Address Bit 3

Table 2. MTC50150 Pin list (continued)

Name	Pin	В	Buffer Type	Description
GPIO2 / PB0 / FS IN #16	A13	B / O / I	PRB08DGZ	General Purpose Pin 2 / Main Clock Control PB0 / Full scan input chain 16 (A946ES)
GPIO1 / SI_RCLK / SER2nCTS / TRACEPKT13 / U_TXADDR4	F13	B/ I/ I/ O/ I	PRB08DGZ	General Purpose Pin 1 / External UART Clock / CleanDMEP Serial Interface 2 nCTS / ETM9 Trace packet 13 / Utopia Transmit Address Bit 4
GPIO0 / SER2nRTS / TRACEPKT12 / U_NOTTXREF	G16	B / O / O /	PRB08DGZ	General Purpose Pin 0 / CleanDMEP Serial Interface 2 nRTS / ETM9 Trace packet 12 / Utopia Transmit Reference Clock
		SI	Serial Interface (4)	
SI_SIN / SER1SI	C7	I	PDIDGZ	Serial Interface Serial Data Input / CleanDMEP Serial Interface 1 – serial input
SI_SOUT / SER1SO	B8	0	PRT08DGZ	Serial Interface Serial Data Output / CleanDMEP Serial Interface 1 – serial output
SI_nRTS / SER1nRTS	A8	0	PRT08DGZ	Serial Interface Not Ready To Send / CleanDMEP Serial Interface 1 nRTS
SI_nCTS / SER1nCTS	D7	I	PDIDGZ	Serial Interface Not Clear To Send / CleanDMEP Serial Interface 1 nCTS
		Misce	ellaneous Test Pins (2)	
IDDQMode	C6	I	PDIDGZ	IDDQ mode activation
FSSHIFT	A6	ID	PDDWDGZ	Full Scan Shift Enable
		Core Pov	ver Supply Pins (26) [1.8	BV]
VDD_CORE	F2, K2, R2, P5, N9, R10, R15, L15, E13, B15, D12, B6, B2	Р	PVDD1DGZ	1.8V

Table 2. MTC50150 Pin list (continued)

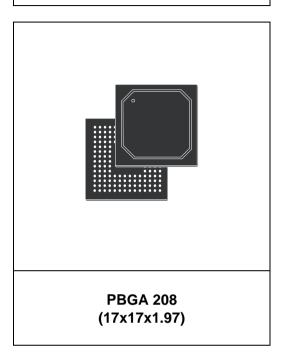
Name	Pin	В	Buffer Type	Description
VSS_CORE	F1, N5, P9, K10, L16, F15, G10, B11, D5, G9, H9, J10, H10	P	PVSS3DGZ	0 V, common with VSS_IO
		I/O Pow	er Supply Pins (28) [3.3V]
VDD_IO	C3, G2, J3, M3, P3, R7, N11, P14, K15, G15, C14, D11,	P	PVDD2DGZ	3.3 V
VSS_IO	H8, H7, J1, M4, K7, K8, P11, J9, G8, G7, J7, J8, K9	P	PVSS3DGZ	0 V, common with VSS_CORE
	PLL Dig	ital and A	nalog Power Supply Pin	s (4) [1.8V]
VDD_DIG_PLL	A5	Р	PVDD1P	1.8V (DVDD)
VSS_DIG_PLL	B5	Р	PVSS1P	0 V (not common with VSS_CORE) (DVSS)
VDD_AN_PLL	A4	Р	PVDD1P	1.8V (AVDD)
VSS_AN_PLL	C4	Р	PVSS1P	0 V (not common with VSS_CORE) (AVSS)
Un	connected	d Pads (0)	(all have an internal pull	-down resistor)
SWMODE0	-	NA	PDDWDGZ	do not bond; '0' default value, bond to nearby VDD_IO to get '1' value

Table 2. MTC50150 Pin list (continued)

Name	Pin	В	Buffer Type	Description
SELECT106M	-	NA	PDDWDGZ	do not bond; '0' default value, bond to nearby VDD_IO to get '1' value (activates 106 MHz CPU clock)
SELECT70M	-	NA	PDDWDGZ	do not bond; '0' default value, bond to nearby VDD_IO to get '1' value (activates 70 MHz CPU clock)
SELRSTDLY	-	NA	PDDWDGZ	do not bond; '0' default value; bond to nearby VDD_IO to get '1' value (activates prolonged external reset delay)

Summary of functional, power supply, and unconnected Pins:

Table 3. Summary of MTC50150 Pin list


Pin Group	Pin Number		
SDRAM	57		
ARM/Misc	4		
JTAG test port	5		
Flash PROM / ISA like interface	42		
ADSL Front End	13		
Ethernet MII	18		
GPIO	7		
Serial Interface	4		
Test pins	2		
I/O supply	26		
Core supply	26		
PLL analog + digital supply	4		
Not Connected	0		
Total (TBGA-208)	208		

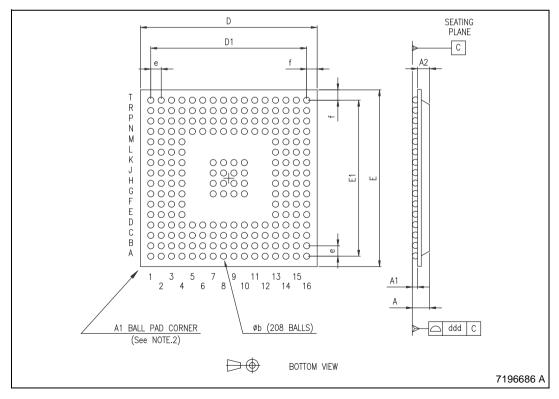


Figure 5. PBGA208 (17x17x1.97mm) Mechanical Data & Package Dimensions

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			1.970			0.077
A1	0.270			0.011		
A2			1.470			0.058
b	0.450	0.500	0.550	0.018	0.020	0.022
D	16.80	17.00	17.20	0.661	0.669	0.677
D1		15.00			0.590	
Е	16.80	17.00	17.20	0.661	0.669	0.677
E1		15.00			0.590	
е	0.950	1.000	1.050	0.037	0.039	0.041
f	0.875	1.000	1.125	0.034	0,039	0.044
ddd			0.200			0.008

OUTLINE AND MECHANICAL DATA

Table 4. Revision History

Date	Revision	Description of Changes	
September 2004 1		First Issue in EDOCS dms.	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

