使用指南

@RISK for Six Sigma

第 5.7 版 2010 年 7 月

Palisade Corporation 798 Cascadilla St. Ithaca, NY 14850 USA +1-607-277-8000 +1-607-277-8001(传真) http://www.palisade.com(网站) sales@palisade.com(邮件)

版权通告 版权所有 © 2010, Palisade Corporation.

商标声明

Microsoft、Excel 和 Windows 是 Microsoft Corporation 的注册商标。 IBM 是 International Business Machines, Inc. 的注册商标。 Palisade、TopRank、BestFit 和 RISKview 是 Palisade Corporation 的注册商标。 RISK 是 Tonka Corporation 的 Parker Brothers 分部的商标,须获得许可才能使用。

欢迎

欢迎使用全球功能最为强大的风险分析工具 @RISK!@RISK 在行业 风险和不确定性分析方面使用已久。它在金融、石油和天然气、保险、 制造、医疗、制药、科学以及其他领域有着广泛的应用,与 Excel 本身 一样灵活。每天,数以万计的专业人士使用 @RISK 评估成本、分析净 现值 (NPV) 和内部收益率 (IRR),研究实物期权、确定价格、勘探石 油和资源等等。

@RISK 的一项重要应用是六西格玛和质量分析。不管是 DMAIC、 六西格玛设计 (DFSS)、精益项目、实验设计 (DOE) 或者其他领域, 不确定性和变量都是六西格玛分析的核心。@RISK 使用蒙特卡罗模拟 法来找出、衡量并根除生产和服务过程中的变动原因。全套能力指标为 您提供快速、准确地使用任何六西格玛方法所需的各种计算。各种图表 明确地显示六西格玛统计量,从而可方便、有效地向管理层展示这种功 能强大的技术。@RISK 正式版增加了 RISKOptimizer 来进行六西格玛分 析,以优化项目选择和资源分配等。

从发动机生产、贵金属、民航到消费品,各行各业每天都在使用 @RISK 改进过程、提高产品和服务质量,并节省大量资金。本指南将带您逐步了解 @RISK 的六西格玛函数、统计量、图表和报表,向您展示怎样在 六西格玛项目的任意阶段采用 @RISK。本指南辅以案例分析,向您提 供可在自己的分析中采用的预建模型。

@RISK 的标准功能也可应用于六西格玛模型,如:输入分布函数、拟合数据分布、运行模拟和进行灵敏度分析。使用 @RISK for Six Sigma 进行建模时,您还需阅读《@RISK for Excel 用户指南》和在线培训资料,以了解上述功能。

第一章:@RISK 和六西格玛方法概述	1
简介	.3
六西格玛方法	.7
@RISK 和六西格玛	.9
第二章:使用 @RISK for Six Sigma 1	3
简介1	5
RiskSixSigma 属性函数1	17
六西格玛统计量函数2	21
六西格玛和"结果摘要"窗口3	33
图表中的六西格玛标记3	35
案例研究 3	37
实例 1 - 实验设计:投射器3	39
实例 2 - 实验设计: 焊接4	13
实例 3 - 优化实验设计4	19
实例 4 - DFSS: 电气设计5	57
实例 5 - 精益六西格玛:当前状态分析 - 报价过程5	59
实例 6 - DMAIC: 滚动合格率分析6	<u>;</u> 9
实例 7 - 供应商选择7	73

实例 8 - 六西格玛 DMAIC 失效率	77
实例 9 - 使用 RiskTheo 确定六西格玛 DMAIC 失效率	81

第一章: @RISK 和六西格玛方法

概述

简介	3
什么是六西格玛? 变动的重要性	3
六西格玛方法	7
六西格玛 / DMAIC 六西格玛设计 (DFSS) 精益或精益六西格玛	7
@RISK 和六西格玛	9
@RISK 和 DMAIC	9
@RISK 和六西格玛设计 (DFSS)	
@RISK 和精益六西格玛	

如今,在充满竞争的商业环境中,质量变得越来越重要。因此请使用 @RISK,它是六西格玛或质控专业人士的绝佳伙伴。这个功能强大的解 决方案可快速分析过程和设计中的变动所产生的影响。

除了六西格玛和质量分析, @RISK 还可用于分析存在不确定性的任何 情况。其应用领域包括 NPV、IRR 和实物期权分析, 成本预测、组合 分析、油气勘探、保险准备金、定价等等。如需了解更多有关 @RISK 在其他领域的应用以及 @RISK 的一般使用信息, 请参考软件附带的 《@RISK 用户指南》。

什么是六西格玛?

六西格玛是一组通过降低过程变动来消除缺陷的系统性过程改进做法。 缺陷是指产品或服务不符合其规范。尽管六西格玛的具体做法最初是由 摩托罗拉在 1980 年代中期规定的,但是这种方法在很大程度上吸收了 之前六十年的质量改进方法,如质量控制、全面质量管理 (TQM) 和零 缺陷。与之前的质量改进方法一样,六西格玛坚持以下观点:

- 不断努力降低过程输出的变动是企业成功的关键
- 制造过程和业务过程可以得到衡量、分析、改进和控制
- 要想成功地持续改进质量,需要整个企业的努力,特别是高层管理 人员的努力

六西格玛受数据的影响,这些数据通常称为"X"变量和"Y"变量。 X 变量是一个输入自变量,它影响输出因变量 Y。六西格玛侧重找出 并控制 X 变量的变动,从而使质量达到最高并将 Y 变量的变动降到最 低。 术语六西格玛(即 6o)非常形象。希腊字母西格玛(o)表示标准差, 这是变动的一个重要度量值。过程变动是指所有结果与平均值的接近 程度。可预测造成某个缺陷的概率,并将其转换为一个"西格玛水平"。 该西格玛水平越高,绩效就越好。六西格玛是指在过程中心平均值和最 近的规范限值或服务水平之间有六个标准差。它可转换为每百万采样数 的缺陷率 (DPMO)低于 3.4。以下为六西格玛的图形表示。

与平均值相差六个西格玛(即标准差)。

企业从实施六西格玛中获得的成本节约和质量改进非常显著。摩托罗拉 自 1980 年代中期实施六西格玛以来,已报告节省了 170 亿美元。洛克 希德·马丁、通用电气、霍尼韦尔以及许多其他公司均从六西格玛中获 益匪浅。

变动的重要性

有太多的六西格玛工作者依靠静态模型,没有计入过程或设计所固有的不 确定性和变动。为了使质量达到最佳,考虑尽可能多的方案非常重要。

这就是 @RISK 发挥作用的地方。@RISK 使用蒙特卡罗模拟法来分析 上千种可能结果,向您展示每种情况发生的可能性。不确定因素由 35 种 以上的概率分布函数定义,这些函数可准确地描述输入项可能采用的值 范围。另外,@RISK 还可以为每个输出项定义规格上下限和目标值, 同时提供这些输出项的各种六西格玛统计量和能力指标。

@RISK 正式版还附带 RISKOptimizer,该工具综合了蒙特卡罗模拟法和基于遗传算法的优化功能。这样您即可解决固有的不确定性等最优化问题,如:

- 配置资源,以使成本降至最低
- 选择项目,以使利润达到最高
- 优化过程设置,以使合格率达到最高,即成本降到最低
- 优化公差分配,以使质量达到最佳
- 优化人员安排,以使服务达到最佳

下图显示了 @Risk 如何帮助您找出、量化和调整过程中的变动。

六西格玛方法

@RISK 可用于各种六西格玛以及相关分析。其三大分析领域是:

- 六西格玛 / 定义、衡量、分析、改进和控制 (DMAIC) / 实验设计 (DOE)
- 六西格玛设计 (DFSS)
- 精益或精益六西格玛

六西格玛 / DMAIC

大多数人提到六西格玛时,实际上指的是 DMAIC 方法。DMAIC 方 法应用于现有产品和过程未达到客户的规范,或者没有充分执行的情形。

DMAIC 侧重对制造和服务过程进行渐进式的持续改进,通常定义为由 以下五个阶段组成:定义、衡量、分析、改进和控制:

- 1) 定义项目目标和客户(内部和外部客户的意见,即 VOC)要求
- 2) 衡量过程以确定当前的绩效
- 3) 分析并确定缺陷的根本原因
- 4) 通过消除缺陷的根本原因来改进过程
- 5) 控制未来过程绩效

六西格玛设计 (DFSS)

DFSS 用于从头至尾设计或重新设计某个产品或服务。一个 DFSS 产品 或服务的期望过程西格玛水平至少为 4.5 (每一千个采样不超过 1 个左 右的缺陷),但根据产品的不同,也可以是 6 个西格玛或更高。要想从 启动产品或服务起就产生如此之低的缺陷水平,意味着必须充分理解客 户的期望和需求(关键质量特性,即 CIQ),然后才能完成和落实设计。 成功的 DFSS 计划可在计划阶段减少不必要的浪费,并更快地将产品 推向市场。 与 DMAIC 方法不同的是, DFSS 的阶段或步骤并没有广泛的共识或 定义,几乎每个公司或培训机构都对 DFSS 有不同的定义。一个较普遍 的六西格玛设计方法称为 DMADV,它与简称 DMAIC 有相同的字数、 阶段和总体感觉。DMADV 的五个阶段定义如下:定义、衡量、分析、 设计和验证:

- 1) 定义项目目标和客户(内部和外部客户的意见,即 VOC)要求
- 2) 衡量并确定客户需求以及规范; 建立竞争对手和行业基准
- 3) 分析过程选项以满足客户需求
- 4) 设计(详细)过程以满足客户需求
- 5) 验证设计性能和满足客户需求的能力

精益或精益六西格玛

"精益六西格玛"将精益生产(最初由丰田公司开发)和六西格玛统计 方法结合为一个综合工具。精益主要是通过减少浪费和消除非增值步骤 来提高过程速度。精益注重客户"拉动"策略,通过"适时"交付的方 法仅生产需要的产品。六西格玛注重从客户的角度理解过程中对质量至 关重要的各个方面,以及消除过程中的变动,从而提高绩效。例如,许多 服务机构已开始将追求更高质量的六西格玛与追求成效的精益融合到精 益六西格玛中。

精益利用"改善活动"(通常为一周的集中改进活动)来迅速找出改进 机会;由于使用了绘制价值流图,它将传统的流程图推进了一步。六西 格玛使用正式的 DMAIC 方法提供可衡量、可重现的结果。

精益和六西格玛是围绕以下观点建立的:企业是由各种过程组成的,这些 过程始于客户需求,应以产品和服务来满足客户而结束。

@RISK 和六西格玛

不管是 DMAIC、实验设计还是精益六西格玛,不确定性和变动都是六 西格玛分析的核心。@RISK 使用蒙特卡罗模拟法来找出、衡量并根除 生产和服务过程中的变动原因。@RISK 可在分析的各个阶段为每种六 西格玛方法带来便利。

@RISK 和 DMAIC

@RISK 可用于 DMAIC 过程的各个阶段,以说明现有产品中的变动并找 出有问题的领域。

- 定义。定义过程改进目标,纳入客户需求和企业战略。可在绘制价值流图、预测成本和确定 CTQ(关键质量特性)时使用 @RISK,以帮助缩小重点和设立目标。@RISK 的灵敏度分析可 注重于那些影响基本盈利能力的 CTQ。
- 2) 衡量。衡量现有绩效水平及其变动。分布拟合及 35 个以上的 概率分布可准确定义绩效变动。从 @RISK 模拟获得的统计量 可提供数据,以与分析阶段的要求进行对比。
- 3) 分析。分析验证关系和导致缺陷的原因,努力确保将所有因素 纳入考量。通过 @RISK 模拟,可确保考虑所有输入因素并提 供所有结果。您可找出引起变动的原因,对风险进行灵敏度分 析以及方案分析,并分析公差。使用 @RISK 六西格玛统计量函 数来计算表示测量值与要求之间差距的能力指标。我们可以从 此处看出产品或过程失效的频率,并得出可靠性判断。
- 4) 改进。根据采用实验设计之类的技术进行的分析,改进或优化 过程。实验设计包括设计所有存在变动的信息收集操作,无论 其是否在实验的完全控制之下。使用 @RISK 模拟,可检验各种 备选设计和过程变更。@RISK 还用于可靠性分析;使用 RISKOptimizer 时,还可在这一阶段进行资源优化。
- 5) 控制。进行控制以确保任何方差在引起缺陷之前得到纠正。 在控制阶段,可进行试运行以建立过程能力,进行生产转化, 随后继续衡量该过程并制定控制机制。@RISK 自动计算过程 能力并验证各种模型,以确保符合质量标准和客户需求。

@RISK 和六西格玛设计 (DFSS)

@RISK 在六西格玛中的一个主要用途是在新项目计划阶段进行 DFSS。 鉴于成本原因,对实际生产或服务模型中的各种过程或实际原型进行检 验并不可行。@RISK 可让工程师对模型模拟上千种不同的结果,而不 会产生实际模拟需要的时间和成本。@RISK 在 DFSS 的每个实施阶段 提供的功能与在 DMAIC 的各个步骤中相同。使用 @RISK 进行 DFSS 可为工程师提供以下便利:

- 利用各种设计/实验设计进行实验
- 找出 CTQ
- 预测过程能力
- 发现产品设计约束条件
- 预测成本
- 选择项目 使用 RISKOptimizer 找出最佳组合
- 分析统计公差
- 分配资源 使用 RISKOptimizer 使效率达到最高

@RISK 和精益六西格玛

@Risk 是精益生产和六西格玛综合工具的绝佳伙伴。"仅侧重质量"的六西格玛模型在用于降低单个过程步骤中的变动及没有为客户增加价值的过程中可能会失效。例如:某个六西格玛分析会建议在生产过程中增加一道检验以找出有缺陷的制品。这虽然消除了加工缺陷制品的浪费,但其代价是增加了一道本身就是浪费的检验。在精益六西格玛分析中, @RISK 可找出此类失效的原因。另外, @RISK 还可计入质量指标(百万分率[ppm])和速度指标(周期时间)中的不确定性。

@RISK 为精益六西格玛分析提供了以下便利:

- 选择项目 使用 RISKOptimizer 找出最佳组合
- 绘制价值流图
- 找出引起变动的 CTQ
- 优化过程
- 找出和减少浪费的过程步骤
- 优化库存 使用 RISKOptimizer 将成本降至最低
- 分配资源 使用 RISKOptimizer 使效率达到最高

第二章:使用 @RISK for Six Sigma

简介	15
RiskSixSigma 属性函数	17
输入 RiskSixSigma 属性函数	
六西格玛统计量函数	21
RiskCp	23
RiskCpm	
RiskCpk	
RiskCpkLower	
RiskCpkUpper	
RiskDPM	
RiskK	
RiskLowerXBound	
RiskPNC	
RiskPNCLower	
RiskPNCUpper	
RiskPPMLower	
RiskPPMUpper	
RiskSigmalLevel	
RiskUpperXBound	
RiskYV	
RiskZlower	
RiskZMin	
RiskZUpper	
· → 西格现和"结甲塔亜"窗口	22
/1919/978 知不順文 図니	
图表中的六西格玛标记	35

简介

@RISK 在用于六西格玛建模时的标准模拟功能,通过添加四项重要功能得以增强。这四项功能是:

- 1) 为模拟输出项输入规格上下限的 RiskSixSigma 属性函数
- 2) 六西格玛统计量函数,包括 RiskCpk、RiskCpm 及其他将六西格 玛模拟结果统计量直接返回电子表格单元的过程能力指数
- 3) 在"结果摘要"窗口生成的新列,它们以表格形式提供六西格 玛模拟结果统计量
- 4) 标记,在模拟结果图上显示规格上下限和目标值

@RISK 的标准功能也可应用于六西格玛模型,如:输入分布函数、拟合数据分布、运行模拟和进行灵敏度分析。使用 @RISK for Six Sigma 进行建模时,您还应该阅读《@RISK for Excel 用户指南》和在线培训资料,以了解上述功能。

RiskSixSigma 属性函数

在 @RISK 模拟中, RiskOutput 函数将电子表格中的一个单元作为模拟 输出项。为所选的每个输出项单元生成一个可能的结果分布。这些概率 分布是通过收集每次模拟迭代时对某个单元计算的值来建立的。

对某个输出项计算六西格玛统计量时,将 RiskSixSigma 属性函数作为 RiskOutput 函数的一个引数输入。此属性函数为输出项的六西格玛计 算指定规格下限 (LSL)、规格上限 (USL)、目标值、长期偏移和标准差值。 这些值用于计算在"结果"窗口和输出项图表上显示的六西格玛统计量。 例如:

RiskOutput("Part Height",,RiskSixSigma(.88,.95,.915,1.5,6))

为输出项 Part Height(零件高度)指定 LSL 为 0.88、USL 为 0.95、 目标值为 0.915、长期偏移为 1.5 以及 6 个标准差值。还可在 RiskSixSigma 属性函数中使用单元引用。

这些值用于计算在"结果"窗口中显示的六西格玛统计量,并在输出项 图表上以标记显示。

当 @RISK 发现输出项中有 RiskSixSigma 属性函数时,会在"结果摘要"窗口中对输出项自动显示可用的模拟结果六西格玛统计量,并对在输出项的模拟结果图中输入的 LSL、USL 和目标值添加标记。

输入 RiskSixSigma 属性函数

RiskSixSigma 属性函数可作为 RiskOutput 函数的一个引数直接输入某个单元的公式中。另外,可使用 Excel 函数向导帮助您在单元公式中直接输入函数。

可使用 @RISK 的**插入函数命令**快速插入一个添加了 RiskSixSigma 属性 函数的 RiskOutput 函数。只需从 @RISK 的"插入函数"菜单中选择 **输出**菜单 RiskOutput (六西格玛格式),即可将适当的函数加入当前 单元的公式中。

输出项属性 -六西格玛选项卡

@Risk 还提供"函数属性"窗口,可用于将 RiskSixSigma 属性函数输入 RiskOutput 函数。此窗口有一个名为"六西格玛"的选项卡,其中含 RiskSixSigma 函数的若干引数条目。单击 @RISK"添加输出项"窗口上的"属性"按钮,进入"RiskOutput 函数属性"窗口。

Ca	100	- (2 -	🔵 🔻 Six Sigm	a DOE.x	ls [兼著]模式] -	Microso	oft Excel			= ×
	开始	插入	页面布局	公式	数据	审阅	视图	加載项	@RISK		■ x
定义	分布 添加蜡	山 顶 推	fx 逆 動入函数 定义相	关 分布	拟合分	之 布大师	● ■■ ■ ■	窗口模	代 拟 2 部 <u>上</u>	1000 1	•
3			1	莫型				20	_		1
	C82		输出項属性: (:82					🛛 ″,,,		‡ ×
	A	E	洗项 收敛	六西格5	3				G		H
79	216		ACT I HAN							1.1	1
80			同计管此经	ะ นาติก่าย	+ 송방성도 Rtz /	(A)					
01			I▲ 11 14 104	nm-waala	EURVEN+(<u>.</u>			1=18-1	¥	
01	48 12.29	FRE (MI)	特定限值						PM 田3	₹ <	
02	Colc E								0.44	+	
0.0	CLAPTS	4X - 55	LSL(B)		85						_
04	C	A 180	(2)		100			<u> </u>			_
86	口名称	(A):	USL(<u>⊂</u>)		125						_
87	저불	с <u>ы</u> , т			-			-			_
88	19		目标(<u>D</u>)		105						_
80			# Juk								_
90			央池								_
91			匠 使用业		->						_
92			1 CHT	C先用平均1994日	5						_
93			转移([5)	1.5						_
94					1						
95			A T' L'ER								
96			标准差	ê倍数(G)	1						
97											
98						1		Tracht			
99						_	傰 定				*
14 4	▶ ► She	et1	XH / U/			1					
就绪							田回巴	100% (9	0	-(+) ,:

六西格玛计算中使用的输出项默认设置均在"六西格玛"选项卡上设置。 这些属性包括:

- **计算此输出项的能力指标。**指定要在输出项报表和图表中显示的能力指标。这些指标将使用输入的 LSL、USL 和目标值。
- LSL、USL 和目标值。为输出项设置 LSL(规格下限)、USL (规格上限)和目标值。
- 使用长期偏移和偏移。指定用于计算长期能力指标的可选偏移。
- X 上/下限。平均值右侧或左侧的标准差值,以计算 X 轴上限 值或 X 轴下限值。

在添加到 RiskOutput 函数中的 RiskSixSigma 属性函数中输入六西格玛 设置结果。在图表和报表中,只有包含 RiskSixSigma 属性函数的输出项 才会显示六西格玛标记和统计量。Excel 工作表中的 @RISK 六西格玛统 计量函数可以引用包含 RiskSixSigma 属性函数的任何输出单元。

注意: @RISK 中所有图表和报表使用的 LSL、USL、目标值、长期偏移 和标准差值均来自模拟开始时指定的 RiskSixSigma 属性函数。如果改变 某个输出项的规格上下限(及其相应的 RiskSixSigma 属性函数),需要 重新运行模拟以查看更改的图表和报表。

六西格玛统计量函数

一组 @RISK 统计量函数返回模拟输出项的期望**六西格玛统计量**。例如: 函数 *RiskCPK(A10)* 对单元 A10 中的模拟输出项返回 CPK 值。这些 函数在运行模拟时实时更新。这些函数与标准 @RISK 统计量函数 (如 RiskMean)的相似之处在于它们都计算模拟结果的统计量;但是, 前者计算的通常是在六西格玛模型中需要的统计量。这些函数可在任意 电子表格单元和模型中的公式中使用。

对于 @RISK 的六西格玛统计量函数, 需要注意的几项重点如下:

- 如果将单元引用输入为统计量函数的第一个引数,且该单元有一个 带 RiskSixSigma 属性函数的 RiskOutput 函数,那么 @RISK 在 计算所需的统计量时,会使用该输出项的 LSL、USL、目标值、长 期偏移和标准差值。
- 如果将单元引用作为第一个引数输入,该单元<u>不必</u>是由 RiskOutput 函数确定的模拟输出项。但是,如果它不是输出项,则需要将可选 的 RiskSixSigma 属性函数添加到统计量函数本身,这样 @RISK 就具有必要的设置来计算所需的统计量。
- 将可选的 RiskSixSigma 属性函数直接输入统计量函数,会使
 @RISK 覆盖在引用模拟输出项的 RiskSixSigma 属性函数中指定的任何六西格玛设置。这样即可在不同的 LSL、USL、目标值、长期偏移和标准差值下为同一个输出项计算六西格玛统计量。
- 如果输入的是名称而不是单元引用,@RISK 会首先检查是否有带该输入名称的输出项,然后读取其 RiskSixSigma 属性函数的设置。用户须确保对统计量函数中引用的输出项指定唯一的名称。
- 输入的 Sim# 引数用于在运行多个模拟的情况下,选择返回的统计量 所针对的模拟。此引数是可选引数,对于单次模拟可以省略。
- 将可选的 RiskSixSigma 属性函数直接输入六西格玛统计量函数时, 会根据要进行的计算使用该属性函数的不同引数。
- 统计量函数在用于生成自定义模拟结果报表的模板工作表中,仅在 模拟结束后进行更新。

输入六西格玛统 计量函数

可使用 @RISK 的**插入函数命令**快速插入六西格玛统计量函数。只需在 @RISK 的"插入函数"菜单上的**统计量函数类别**中选择**六西格玛命令**, 然后选择所需的函数即可。所选择的函数会添加到当前单元的公式中。

RiskCp

描述	RiskCp (<i>cellref or output name, Sim#, RiskSixSigma(LSL,USL, Target,LongTerm Shift,Number of Standard Deviations)</i>) 选择性地 使用 RiskSixSigma 属性函数中的 LSL 和 USL 来计算 Sim#(模拟 编号)中 cellref(单元引用)或 output name(输出项名)的过程能 力。此函数将计算指定输出项的质量水平以及生产的潜力。
实例	RiskCP(A10) 对输出单元 A10 返回过程能力。需要在单元 A10 的 RiskOutput 函数中输入 RiskSixSigma 属性函数。
	RiskCP(A10, ,RiskSixSigma(100,120,110,1.5,6)) 使用 LSL 等于 100、 USL 等于 120,对输出单元 A10 返回过程能力。
原则	需要对 <i>cellref(单元引用)或 output name(输出项名)</i> 输入 RiskSixSigma 属性函数,或者需要包含 RiskSixSigma 属性函数。

RiskCpm

描述	RiskCpm(cellref or output name, Sim#, RiskSixSigma(LSL,USL, Target,LongTerm Shift,Number of Standard Deviations)) 选择性地 使用 RiskSixSigma 属性函数中的 LSL、USL 和目标值,对 Sim#(模 拟编号)中的 cellref(单元引用)或 output name(输出项名)返回 田口能力指数。此函数实质上与 Cpk 相同,但加入了目标值,该目标 值有时候在、也有时候不在规格上下限范围内。
实例	RiskCpm(A10) 对单元 A10 返回田口能力指数。
	RiskCpm(A10,, RiskSixSigma(100, 120, 110, 0, 6)) 使用 USL 等于 120、LSL 等于 100 以及目标值 110 对单元 A10 返回田口能力指数。
原则	需要对 <i>cellref(单元引用)或 output name(输出项名)</i> 输入 RiskSixSigma 属性函数,或者需要包含 RiskSixSigma 属性函数。

RiskCpk

描述	RiskCpk(<i>cellref or output name, Sim#, RiskSixSigma(LSL,USL, Target,LongTerm Shift,Number of Standard Deviations)</i>) 选择性地 使用 RiskSixSigma 属性函数中的 LSL 和 USL,对 Sim # (模拟编号) 中 cellref(单元引用)或 output name(输出项名)计算过程能力 指数。此函数与 Cp 相似,但是考虑了一个 Cp 调整值,以表示非中 心分布的结果。写成公式就是 Cpk = (USL - 平均值) / (3 x 西格玛) 或者 (平均值 - LSL) / (3 x 西格玛),取二者中较小的一个。
实例	RiskCpk(A10) 对输出单元 A10 返回过程能力指数。需要在单元 A10 的 RiskOutput 函数中输入 RiskSixSigma 属性函数。
	RiskCpk(A10, ,RiskSixSigma(100,120,110,1.5,6)) 使用 LSL 等于 100、USL 等于 120,对输出单元 A10 返回过程能力指数。
原则	需要对 <i>cellref(单元引用)或 output name(输出项名)</i> 输入 RiskSixSigma 属性函数,或者需要包含 RiskSixSigma 属性函数。

RiskCpkLower

描述	RiskCpkLower(<i>cellref or output name, Sim#, RiskSixSigma(LSL,USL, Target,LongTerm Shift,Number of Standard Deviations)</i>) 选择性地使用 RiskSixSigma 属性函数中的 LSL,根据 Sim#(模拟编号)中 cellref(单元引用)或 output name(输出项名)的规格下限,计算 单侧能力指数。
实例	RiskCpkLower(A10) 根据输出单元 A10 的规格下限返回单侧能力 指数。需要在单元 A10 的 RiskOutput 函数中输入 RiskSixSigma 属 性函数。
	RiskCpkLower(A10, ,RiskSixSigma(100,120,110,1.5,6)) 使用 LSL 等于 100 对输出单元 A10 返回单侧能力指数。
原则	需要对 <i>cellref(单元引用)或 output name(输出项名)</i> 输入 RiskSixSigma 属性函数,或者需要包含 RiskSixSigma 属性函数。

RiskCpkUpper

描述	RiskCpkUpper(<i>cellref or output name, Sim#, RiskSixSigma(LSL,USL, Target, LongTerm Shift,Number of Standard Deviations)</i>) 选择性地 使用 RiskSixSigma 属性函数中的 USL,根据 Sim#(模拟编号)中 cellref(单元引用)或 output name(输出项名)的规格上限,计算 单侧能力指数。
实例	RiskCpkUpper(A10) 根据输出单元 A10 的规格上限返回单侧能力 指数。需要在单元 A10 的 RiskOutput 函数中输入 RiskSixSigma 属 性函数。
	RiskCpkUpper(A10, ,RiskSixSigma(100,120,110,1.5,6)) 使用 USL 等于 120 对输出单元 A10 返回过程能力指数。
原则	需要对 <i>cellref(单元引用)或 output name(输出项名)</i> 输入 RiskSixSigma 属性函数,或者需要包含 RiskSixSigma 属性函数。

RiskDPM

描述	RiskDPM(<i>cellref or output name, Sim#, RiskSixSigma(LSL,USL, Target,LongTerm Shift,Number of Standard Deviations)</i>) 选择性地使用 RiskSixSigma 属性函数中的 LSL 和 USL,对 Sim#(模拟编号)中 cellref(单元引用)或 output name(输出项名)计算百万分比不良率。
实例	RiskDPM(A10) 对输出单元 A10 返回百万分比不良率。需要在单元 A10 的 RiskOutput 函数中输入 RiskSixSigma 属性函数。
	RiskDPM(A10, ,RiskSixSigma(100,120,110,1.5,6)) 使用 LSL 等于 100、USL 等于 120 对输出单元 A10 返回百万分比不良率。
原则	需要对 <i>cellref(单元引用)或 output name(输出项名)</i> 输入 RiskSixSigma 属性函数,或者需要包含 RiskSixSigma 属性函数。

RiskK

描述	RiskK(<i>cellref or output name, Sim#, RiskSixSigma(LSL,USL, Target,LongTerm Shift,Number of Standard Deviations)</i>) 选择性地使用 RiskSixSigma 属性函数中的 LSL 和 USL,对 Sim#(模拟编号)中 cellref(单元引用)或 output name(输出项名)计算过程中心度量值
	RiskK(A10, , RiskSixSigma(100,120,110,1.5,6))
原则	需要对 <i>cellref(单元引用)或 output name(输出项名)</i> 输入 RiskSixSigma 属性函数,或者需要包含 RiskSixSigma 属性函数。

RiskLowerXBound

描述	RiskLowerXBound (<i>cellref or output name, Sim#, RiskSixSigma(LSL, USL, Target, Long Term Shift, Number of Standard Deviations)</i>)选择性地使用 RiskSixSigma 属性函数中的标准差值,对 Sim#(模拟编号)中 cellref(单元引用)或 output name(输出项名)返回与平均值相差指定数目的标准差的 x 值下限。
实例	RiskLowerXBound(A10) 对单元 A10 返回与平均值相差指定数目 的标准差的 x 值下限。
	RiskLowerXBound(A10,, RiskSixSigma(100, 120, 110, 1.5, 6)) 使用标准差 6,对单元 A10 返回与平均值相差 -6 个标准差的 x 值下限。
原则	需要对 <i>cellref(单元引用)或 output name(输出项名)</i> 输入 RiskSixSigma 属性函数,或者需要包含 RiskSixSigma 属性函数。

RiskPNC

描述	RiskPNC(<i>cellref or output name, Sim#, RiskSixSigma(LSL,USL, Target, Long Term Shift, Number of Standard Deviations))</i> 选择性 地使用 RiskSixSigma 属性函数中的 LSL、USL 和长期偏移,对 Sim# (模拟编号)中 cellref(单元引用)或 output name(输出项名)计算 超出规格上下限的总缺陷概率。
实例	RiskPNC(A10) 对输出单元 A10 返回超出规格上下限的总缺陷概 率。需要在单元 A10 的 RiskOutput 函数中输入 RiskSixSigma 属性 函数。
	RiskPNC(A10, ,RiskSixSigma(100,120,110,1.5,6)) 使用 LSL 等于 100、USL 等于 120 以及长期偏移 1.5 对输出单元 A10 返回超出规 格上下限的缺陷概率。
原则	需要对 <i>cellref(单元引用)或 output name(输出项名)</i> 输入 RiskSixSigma 属性函数,或者需要包含 RiskSixSigma 属性函数。

RiskPNCLower

描述	RiskPNCLower(<i>cellref or output name, Sim#, RiskSixSigma(LSL,USL, Target,LongTerm Shift,Number of Standard Deviations)</i>) 选择性地 使用 RiskSixSigma 属性函数中的 LSL、USL 和长期偏移,对 Sim# (模拟编号)中 cellref(单元引用)或 output name(输出项名)计 算超出规格下限的缺陷概率。
实例	RiskPNCLower (A10) 对输出单元 A10 返回超出规格下限的缺陷概率。 需要在单元 A10 的 RiskOutput 函数中输入 RiskSixSigma 属性函数。 RiskPNCLower(A10, ,RiskSixSigma(100,120,110,1.5,6)) 使用 LSL 等 于 100、USL 等于 120 以及长期偏移 1.5 对输出单元 A10 返回超出规格下限的缺陷概率。
原则	需要对 <i>cellref(单元引用)或 output name(输出项名)</i> 输入 RiskSixSigma 属性函数,或者需要包含 RiskSixSigma 属性函数。

RiskPNCUpper

描述	RiskPNCUpper(<i>cellref or output name, Sim#, RiskSixSigma(LSL,USL, Target,LongTerm Shift,Number of Standard Deviations)</i>) 选择性地使用 RiskSixSigma 属性函数中的 LSL、USL 和长期偏移,对 Sim# (模拟编号)中 cellref(单元引用)或 output name(输出项名)计 算超出规格上限的缺陷概率。
实例	RiskPNCUpper(A10) 对输出单元 A10 返回超出规格上限的缺陷概率。 需要在单元 A10 的 RiskOutput 函数中输入 RiskSixSigma 属性函数。 RiskPNCUpper(A10, ,RiskSixSigma(100,120,110,1.5,6)) 使用 LSL 等于 100、USL 等于 120 以及长期偏移 1.5 对输出单元 A10
	返回超出规格上限的缺陷概率。
原则	需要对 <i>cellref(单元引用)或 output name(输出项名)</i> 输入 RiskSixSigma 属性函数,或者需要包含 RiskSixSigma 属性函数。

RiskPPMLower

描述	RiskPPMLower(<i>cellref or output name, Sim#, RiskSixSigma(LSL,USL, Target,LongTerm Shift,Number of Standard Deviations)</i>) 选择性地 使用 RiskSixSigma 属性函数中的 LSL 和长期偏移,对 Sim#(模拟 编号)中的 cellref(单元引用)或 output name(输出项名)计算 低于规格下限的缺陷数。
实例	RiskPPMLower(A10) 对输出单元 A10 返回低于规格下限的缺陷数。 需要在单元 A10 的 RiskOutput 函数中输入 RiskSixSigma 属性函数。
	RiskPPMLower(A10, ,RiskSixSigma(100,120,110,1.5,6)) 使用 LSL 等于 100 和长期偏移 1.5 对输出单元 A10 返回低于规格下限的缺陷数。
原则	需要对 <i>cellref(单元引用)或 output name(输出项名)</i> 输入 RiskSixSigma 属性函数,或者需要包含 RiskSixSigma 属性函数。

RiskPPMUpper

-	
描述	RiskPPMUpper(<i>cellref or output name, Sim#, RiskSixSigma</i> (<i>LSL,USL, Target,LongTerm Shift,Number of Standard Deviations)</i>) 选择性地使用 RiskSixSigma 属性函数中的 USL 和长期偏移,对 Sim# (模拟编号)中的 cellref(单元引用)或 output name(输出项名) 计算高于规格上限的缺陷数。
实例	RiskPPMUpper(A10) 对输出单元 A10 返回高于规格上限的缺陷数。 需要在单元 A10 的 RiskOutput 函数中输入 RiskSixSigma 属性函数。
	RiskPPMUpper(A10, ,RiskSixSigma(100,120,110,1.5,6)) 使用 USL 等于 120 和长期偏移 1.5 对输出单元 A10 返回高于规格上限的缺陷数。
原则	需要对 <i>cellref(单元引用)或 output name(输出项名)</i> 输入 RiskSixSigma 属性函数,或者需要包含 RiskSixSigma 属性函数。

RiskSigmalLevel

描述	RiskSigmaLevel(<i>cellref or output name, Sim#, RiskSixSigma(LSL,USL, Target,LongTerm Shift,Number of Standard Deviations)</i>) 选择性地使用 RiskSixSigma 属性函数中的 USL、LSL 和长期偏移,对 Sim# (模拟编号)中的 cellref(单元引用)或 output name(输出项名) 计算过程西格玛水平。(注:此函数假定输出项呈正态分布,且在 规格上下限的中心。
实例	RiskSigmaLevel(A10) 对输出单元 A10 返回过程西格玛水平。需要 在单元 A10 的 RiskOutput 函数中输入 RiskSixSigma 属性函数。
	RiskSigmaLevel(A10, ,RiskSixSigma(100,120,110,1.5,6)) 使用 USL 等于 120、LSL 等于 100 和长期偏移 1.5 对输出单元 A10 返回过程 西格玛水平。
原则	需要对 <i>cellref(单元引用)或 output name(输出项名)</i> 输入 RiskSixSigma 属性函数,或者需要包含 RiskSixSigma 属性函数。

RiskUpperXBound

描述	RiskUpperXBound (<i>cellref or output name, Sim#, RiskSixSigma</i> (<i>LSL, USL, Target, Long Term Shift, Number of Standard Deviations</i>))) 选择性地使用 RiskSixSigma 属性函数中的标准差值,对 Sim# (模拟编号)中的 cellref(单元引用)或 output name(输出项名) 返回与平均值相差指定数目的标准差的 X 值上限。
实例	RiskUpperXBound(A10) 对单元 A10 返回与平均值相差指定数目 的标准差的 X 值上限。
	RiskUpperXBound(A10,, RiskSixSigma(100, 120, 110, 1.5, 6)) 使用标准差值 6, 对单元 A10 返回与平均值相差 -6 个标准差的 X 值上限。
原则	需要对 <i>cellref (单元引用)或 output name (输出项名)</i> 输入 RiskSixSigma 属性函数,或者需要包含 RiskSixSigma 属性函数。
RiskYV

描述	RiskYV(<i>cellref or output name, Sim#, RiskSixSigma(LSL,USL, Target,LongTerm Shift,Number of Standard Deviations)</i>) 选择性地使用 RiskSixSigma 属性函数中的 LSL、USL 和长期偏移,对 Sim# (模拟编号)中的 cellref(单元引用)或 output name(输出项名) 计算合格率,即无缺陷过程的百分比。
实例	RiskYV(A10) 对输出单元 A10 返回合格率,即无缺陷过程的百分比。 需要在单元 A10 的 RiskOutput 函数中输入 RiskSixSigma 属性函数。 RiskYV(A10,,RiskSixSigma(100,120,110,1.5,6)) 使用 LSL 等于 100、USL 等于 120 以及长期偏移 1.5 对输出单元 A10 返回合格率, 即无缺陷过程的百分比。
原则	需要对 <i>cellref (单元引用)或 output name (输出项名)</i> 输入 RiskSixSigma 属性函数,或者需要包含 RiskSixSigma 属性函数。

RiskZlower

描述	RiskZlower(<i>cellref or output name, Sim#, RiskSixSigma(LSL,USL, Target,LongTerm Shift,Number of Standard Deviations)</i>) 选择性地 使用 RiskSixSigma 属性函数中的 LSL,对 Sim#(模拟编号)中的 cellref(单元引用)或 output name(输出项名)计算规格下限与平 均值相差多少个标准差。
实例	RiskZlower(A10) 对输出单元 A10 返回规格下限与平均值相差多少 个标准差。需要在单元 A10 的 RiskOutput 函数中输入 RiskSixSigma 属性函数。
	RiskZlower(A10, ,RiskSixSigma(100,120,110,1.5,6)) 使用 LSL 等 于 100 对输出单元 A10 返回规格下限与平均值相差多少个标准差。
原则	需要对 <i>cellref(单元引用)或 output name(输出项名)</i> 输入 RiskSixSigma 属性函数,或者需要包含 RiskSixSigma 属性函数。

RiskZMin

描述	RiskZMin (<i>cellref or output name, Sim#, RiskSixSigma</i> (<i>LSL, USL, Target, LongTerm Shift, Number of Standard Deviations</i>) 选择性地 使用 RiskSixSigma 属性函数中的 USL 和 LSL,对 Sim#(模拟编号) 中的 cellref(单元引用)或 output name(输出项名)计算 Z 下限 和 Z 上限的最小值。				
实例	RiskZMin(A10) 对输出单元 A10 返回 Z 下限和 Z 上限的最小值。 需要在单元 A10 的 RiskOutput 函数中输入 RiskSixSigma 属性函数。				
	RiskZMin(A10, ,RiskSixSigma(100,120,110,1.5,6)) 使用 LSL 等于 100、USL 等于 120 对输出单元 A10 返回 Z 下限和 Z 上限的最小值。				
原则	需要对 <i>cellref(单元引用)或 output name(输出项名)</i> 输入 RiskSixSigma 属性函数,或者需要包含 RiskSixSigma 属性函数。				

RiskZUpper

描述	RiskZUpper (<i>cellref or output name, Sim#, RiskSixSigma</i> (<i>LSL,USL, Target,LongTerm Shift,Number of Standard Deviations)</i>) 选择性地使用 RiskSixSigma 属性函数中的 USL,对 Sim#(模拟编号)中的 cellref(单元引用)或 output name(输出项名)计算规格上限与平 均值相差多少个标准差。
实例	RiskZUpper(A10) 对输出单元 A10 返回规格上限与平均值相差多少 个标准差。需要在单元 A10 的 RiskOutput 函数中输入 RiskSixSigma 属性函数。
	RiskZUpper(A10, ,RiskSixSigma(100,120,110,1.5,6)) 使用 USL 等于 120 对输出单元 A10 返回规格上限与平均值相差多少个标准差。
原则	需要对 <i>cellref(单元引用)或 output name(输出项名)</i> 输入 RiskSixSigma 属性函数,或者需要包含 RiskSixSigma 属性函数。

六西格玛和"结果摘要"窗口

@RISK 结果摘要窗口总结了模型结果,并显示了模拟输出单元和输入 分布的缩略图和摘要统计量。

当 @RISK 在输出项中发现 RiskSixSigma 属性函数时,即自动对表格 中的输出项显示可用的模拟结果六西格玛统计量。这些列可根据需要隐 藏或显示。

自定义显示的 统计量

可自定义"结果摘要"窗口中的列,选择想在结果中显示哪些统计量。 窗口底部的"列"图标显示**表格列**对话框。

如果选择在表格中显示百分位数值,则在输入的百分位数值行中输入实 际的百分位数。

	3 5 6	⇒)∓ Six	Sigma DOE Ca	tapult.xls	[兼容模]	đ] - Mic	rosoft Ex	cel		-	= x
	开始 捐	約 页面	布局 公式	数据	审阅	视图	加載项	@RISH	()	0.	- 🗝 x
定义分析	1000000000000000000000000000000000000	fx [插入函数 定	2011年 1211年 1	合 分布大师	●	* 窗口	迭代 模拟	1000 1	• • २	开始	合模拟 高,
			模型							模拟	2
	ME ORISK	- 结果摘要	Ê						_ 0	×	×
19	输入项	<mark></mark> 选择表相	¥列:结果摘3	ŧ					×		1
20	输出项的	列名	描述						• :07		
21	名称	□ 众数	众数	或最可能的	宜					T,	
22	- Six Sigm	□ 标准差	分布	标准差						_	
23		1 万差	分布	的方差						_	261 552 55
24	组件1/	個反	分布	的條度							, म д П
26		V 1%	输入	的百分位数	宜						
27	绀 (427)	₩ 99 %	输入	的百分位数的	宜						
28	serie (🔲 р1,х1	p1,	x1 值可编辑							
29		🔲 р2,х2	p1、	x2 值可编辑							
30	组件3/	×2-×1	×2 和	1×1 值之差							
31		p2-p1	p2 和	p1 値乙差	-						
32		箱浜	111八	11前面的错误	资X 店 新						
33	组件4/		90025	的細小小細山	祖致				-		
34							确定	HD SH		•	
35	4						NH XE	-4X(F)	_		
36			I multime I					1.1	24.077	1	
37			BI #						天团		
就绪							I I 10	0% 😑	U		• .::

生成 Excel 报表 可将"结果摘要"窗口导出到 Excel 中,以生成一个包含显示的统计量 和图表的报表。要执行此操作,单击窗口底部的复制并导出图标,并选 择在 Excel 中制作报表。

C 4 7 . C			Book3 - Microsoft Excel				_ n x
开始 植入 页面布局 公式	D5 年月 祝田	ADRIA ORISK					🖬 – 🗢 🗙
ELSE SUBST BARS SARA SERIE	965.0 100 000	명사는 1000 영제 1 로 약 로 분 7	Hardin Balant Optimize			第二 学 第月1日・ 16 時間・	
模型			· 國和	45.9	10	4. · · · · ·	
B38 • (A							*
1 @RISK 输出项结果 2 执行人: 新知用 ¹⁰ 3 日期: 2010年6月3日 8:45:00							
5 80	鼻光 義亮	ă÷α ≠	02 8 72 0	tpk Cpk Upper	CpkLower	Cp	Zudder
· ···································	•• `	87.48 13	0.M 137.60 0	0.5581200	1.034334	0.7W2122	14740

图表中的六西格玛标记

@RISK 在输出项中发现 RiskSixSigma 属性函数时,会在该输出项的 模拟结果图表上对输入的 LSL、USL 和目标值自动添加标记。

还可以根据需要使用**图表选项**对话框中的标记选项卡来移除这些标记。 也可以增加其他标记。右键单击图表或者单击"图表选项"图标(图表 窗口底部左边第二个图标)即可显示"图表选项"对话框。

C. 2 .	(% -) ∓	Six Sigma D	OE.xls [兼容樓	武] - Micros	soft Excel			x
开始	插入 页面	布局 公式	数据 审问	司 视图	加戴项	@RISK	0	- 🗝 x
定义分布 添加输	f x 出项 插入函数 定		合 分布大师	₩₩₩ 1	迭代 模拟	1000 1 2 2 2	→ 开始模	以高级分, 、
	🔓 图表选项	Ĩ				☑.	₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹	0 X
C82	分布 标题	│X轴 │Y轴	曲线 图例	定界符 记	号 其他	1	.xSigma(D8 H	2, 🗸
67 喇叭 <u></u>	○ □ 显示记号	<u></u> ₹(<u>D</u>)				1		-
69 70 71 72 73 焊接 74 焊接 75 触发 76 振振 77 频率 78 0 79 0 80 0 81 0 82 焊接 84 Cpk	00 03 03 03 03 03 00 00 格式	重新定义 标记的曲线	 中代 デ4 デ4 5% 98% X1 X2 X3 X4 ✓ ISL ✓ 目标 浅数(M) 1 	立数 均值 +/-1 倍标 。 (六西格玛) (六西格玛) 示 (六西格玛) 示 (六西格玛)	推差		(N) 523 89.5929 11.2195 8.6303 137 0.7725 0.5523 2.0914 196.3504	
85 86 87 88 89 90	文本颜色 背景颜色 字体(E)	1(D) 1(B)	Tahoma	18			€闭	=
H + > N Shee	t1 🕡			确注	Ē	取消		F I
就绪							U	🕀

案例研究

实例 1 - 实验设计:投射器	.39
实例 2 - 实验设计:焊接	.43
实例 3 - 优化实验设计	.49
实例 4 - DFSS: 电气设计	.57
实例 5 - 精益六西格玛:当前状态分析 - 报价过程	.59
实例 6 - DMAIC: 滚动合格率分析	.69
实例 7 - 供应商选择	.73
实例 8 - 六西格玛 DMAIC 失效率	.77
实例 9 - 使用 RiskTheo 确定六西格玛 DMAIC 失效率	.81

实例 1-实验设计:投射器

模型实例: Six Sigma DOE Catapult.xls

投射器(即投石器)模型是用于讲授**实验设计**的一个经典实例,它阐述 了蒙特卡罗模拟法和公差分析。

假定您生产投射器,客户要求投射器抛出标准球的距离为 25 米,前后 可有1米的误差。生产投射器涉及许多设计规格,如:

- 发射角度
- 球的质量
- 牵引距离
- 弹簧常数

输入分布

每个设计因素都包含一个 @RISK 概率分布,表示每个因素的不同可能 取值。可使用 @RISK 的插入函数命令或使用 @RISK 工具栏上的定义分 布图标,将 @RISK 概率分布直接作为公式输入。例如:用一个均匀分布 代表牵引距离的可能值。

输入 RiskSixSigma 属性 输出项是**投射距离**,包含一个定义投射距离规格下限、规格上限以及目标值的 RiskSixSigma 属性函数。与输入项一样,@RISK 输出项也可以输入公式栏,或者使用 @RISK 工具栏上的"添加输出项"按钮,通过对话框来定义。

() · (·	🔵 🗧 Six Sigma DOE	Catapult.xls [#	[容模式] - Mi	crosoft Exce	- = ×
开始 插入	页面布局 公式	数据 审阅	视图 加载	项 @RISK	🕐 – 🖷 🗙
定义分布 添加輸出项	fx / / / / / / / / / / / / / / / / / /	拟合 分布大师	●●● "模型"窗口	迭代 模拟	
1	模型				ŧ
C33	續出項雇性: C33 选项 收敛 [六西格印			19, C	30,C28, 🗘 🗧
21 登计因子 22 角度(度) 23 石块呈量(公)	☑ 计算此输出项的性	:能矩阵(<u>A</u>)			_
24	特定限值				- A
28 大营格玛属性 28<	LSL(<u>B</u>)	24	<u>B</u>		
29 LSL 30 USL	USL(<u>C</u>)	26	<u></u>		
31 32 着出項	目标(<u>D</u>)	25			
33 通出距离(米 34 35 35 大言集張登录	其他				
36 37 Cpk 37 Cpk上展	厂 使用长期转移(E)			
38 Cpk 下展 39 西格玛水平	转移(E)	1.5			TR
40 DPM 41	×上/下限				
42 43	标准差倍数(G)	1			
45					
47 IN ● ▶ N Sheet2	۲	i	确定 取	消	×
就绪			⊞□	% 😑 – U	•

计算投射器的能力指标 Cpk、Cpk 上限、Cpk 下限、西格玛水平和 DPM,以便您决定是否可以进行生产。

35	
36	六西格玛结果
37	Cpk 0.1359
38	Cpk 上限 0.2781
39	Cpk 下限 0.1355
40	西格玛水平 0.5215
41	DPM 602000.00
42	
43	

生成结果图

生成的投射距离分布显示,投射距离约有60%的时间不在规格上下限内。

灵敏度分析确定:影响"投射距离"的最重要的设计因素是"牵引距离", 然后是"球的质量"。

这个模型有助于研究田口方法,即稳健参数设计。田口方法指出,定义 一个系统的变量有两种:影响过程变动的变量及不影响过程变动的变量。 田口设计背后的理念是将第一种变量保持在将总过程变动降到最低的水平。 不影响过程变动的变量用于控制和/或调整过程。

在投射器模型中,可调整不同的设计参数,例如**牵引距离**和**球的质量**, 从而尝试将输出项**投射距离**的变动降到最低。考虑到"投射距离"有 60%的时间不在规格上下限 24-26 米内,所以还有改进的空间。

实例 2-实验设计:焊接

模型实例: Six Sigma DOE.xls

假定您要分析一个金属防爆杯,它通过在一个环上焊一个圆片制成。该产品用作密封及安全装置,因此在常规使用情况下必须承压,如果内部压力超过安全限值,则必须脱离。

此模型考察焊接强度与过程因素和设计因素之间的关系,对每个因素的 变动建模,根据工程设计规范预测产品性能。根据多个因素对响应建模, 通常涉及通过实验设计或多种回归分析生成具有重要统计意义的函数。

设计因素

本例中, @RISK 对每个因素采用正态分布来模拟变动。@RISK 分 布支持单元引用,因此您可以方便地建立一个表模型,该模型可在 产品和过程研发周期内更新。

不确定因素有:

设计变量

- 圆片厚度
- 焊头壁厚
- 焊头长度

过程变量

- 焊接压力
- 焊接时间
- 触发点
- 振幅
- 频率

过程因素

添加分布

只需单击 @RISK 工具栏上的"定义分布"图标,即可方便地向每 个因素添加分布。您可在此处选择"正态分布"并输入其参数或 单元引用,具体如下。您还可以在 Excel 的公式栏中直接为每个输 入项输入公式。例如,焊接压力单元包含公式

=RiskNormal(D73,E73)

六西格玛输出项

输出项是 Design & Process Performance(设计和过程性能)部分 的**焊接强度 (N)**,它包含一个 RiskSixSigma 属性函数,该函数指定 了规格下限 (LSL)、规格上限 (USL)和目标值。与定义输入项分布 一样,您可以直接在输出单元中键入输出项公式,或者使用"添加 输出项"对话框。公式为:

=*RiskOutput*("*Weld Strength* (*N*)",,,*RiskSixSigma*(*D82*,*E82*,105,0,1))+ [*the mathematical calculation*]

"添加输出项"对话框如下所示:

	2 19 · (2 ·	= Six Sig	ma DOE.xl	s [兼容模式]	- Microsoft	t Excel		- =	×
	开始 插入	页面布局	公式	数据 审阅	视图	加載项	@RISK	🛛 – 🖻	х
定义分	布 添加輸出项 指	f: 道 動 國数 定义 れ	【 【 】 分布找	公 分布大师	*模型" 窗[送代	a 🛃	1000 - 1 - E <u>C</u> <u>E</u>	₹,
			模型					1	模
	C82	- (9	<i>f</i> ∗ =Ri	skOutput (*	焊接强度	(N)″,,,	(1	*
A	В		С	D	E	F	G	Н	-
79					(C.S)				
80	<u>/</u>	erisk - æ	加/編輯稿出	i坝: 単元 CE	32		×	-	
81	焊接强度 (N)	名称(<u>A</u>): 世	桿接强度 (N)			fx	進差		
83	Cpk 上限								
84	Cpk下限	🔞 移	除(B)		确定	取消			
85	Cpk		0.01		(235.1				
86	PPM 残次品		56,000	零件成本:	\$0.2	28 每			v
4 4 4	▶ Sheet1 1	莫型/2/				III		•	1
就绪						100% 🤆)	0) .;;

单击属性按钮 (fx) 会显示**输出项属性**对话框的"六西格玛"选项卡。可在此处为输出项输入 LSL、USL、目标值和其他六西格玛属性。这些属性用于计算六西格玛统计量。

0.	B 19 - (2 -	🗧 🕫 🗧	OE.xls [兼窄] -	Microsot	ft Excel		-	= x
00	开始 插入	页面布局 公	式 数据	审阅	视图	加载项	@RISK	0 -	o x
定义。	分布 添加輸出项 指	f x 逆 動函数 定义相关	分布拟合 分	之 布大师	*模型" 著	遊樽	代 拟 같 絕 是	1000 1	•
1		模型				20	_		1
	C82	输出項属性: C82					🔀 [″] ,,,		¢ *
	A E	选项 收敛 六百	西格玛				G		H
79	10 C							1.0	
80		☑ 计算此输出Ⅰ	而的性能矩阵。	(A)					
81							标准差		1
82	焊接强度 (N)	特定限值					8.44	$\langle \langle \rangle$	
83	Cpk 上限								
84	C BRISK - 漆	LSL(<u>B</u>)	85						_
85	C								
86	PI名称(A):	USL(C)	125						
87	残	目标(D)	105			- 1961			
88		H MALES	1						
89		其他							
90									_
91		「 使用长期转	专移(E)						_
92		转移(F)	1.5						
93		111210	11.5						
94		×上/下限							
95		标准差倍数	数(G) 1			- 18			
90			<u> </u>						=
98				-					
99					确定	取消			*
14 4 1	M Sheet1	XH CU/		-		un			▶
就绪						100% (9	0	.::

模拟结果

运行模拟后,使用 @RISK 的 Cpk 上限、Cpk 下限、Cpk 和 PPM 缺陷(即 DPM)六西格玛函数生成六西格玛统计量。还使用标准 @RISK 统计量函数(如: RiskMean)。

79							
80		设计-	与工序性的	能			
81			LSL	USL	平均值	标准差	
82	焊接强度 <mark>(N)</mark>	110.96	85	125	111.00	8.39	
83	Cpk 上限	0.56					
84	Cpk 下限	1.03					
85	Cpk	0.56		E	<u> 成本与数量</u>		
86	PPM 残次品	52,000	零件成本:		\$0.28	每	
87	残次品年成本	\$18,200	每年数量:		1.25	MM	
88							
89							

@RISK 输出项分布根据设计和过程的输入项变动显示期望性能,并显示带标记的 LSL、USL 和目标值。您可使用报表功能或通过 @Risk 函数方便地访问输出项统计量。

@RISK 灵敏度分析明确地反映出"焊接时间"和"振幅"参数会引起"焊接强度"变动。

此问题的下一步包括两个选择:工程师可尝试降低或更好地控制 "焊接时间"和"振幅"的变动,或者使用 RISKOptimizer 找出最 佳过程目标和设计目标,以使合格率达到最高,即降低报废成本。

实例 3 - 优化实验设计

模型实例: Six Sigma DOE Opt.xls

此模型演示如何在实验设计中使用 RISKOptimizer。RISKOptimizer 综合了蒙特卡罗模拟法和基于基因算法的优化。使用这两种技术, RISKOptimizer 能够解决涉及不确定性的复杂优化问题。

有了 RISKOptimizer,您即可对模型中的给定输出项选择最大化、最 小化或逼近目标值。RISKOptimizer 会尝试对您指定的可控输入项进行 若干不同的组合,以达到其目标。每种组合称为一个"解",所有解统 称为"总体"。"突变"是指随机尝试与前一次试验无关的新解的过 程。您还可以设置 RISKOptimizer 在优化期间必须遵守的约束条件。

对于模型中不确定、不可控的因素,可定义 @RISK 概率分布函数。 对于每次尝试的输入项组合,RISKOptimizer 还运行蒙特卡罗模拟,从 @RISK 函数中抽样并记录该次尝试的输出项。RISKOptimizer 可以运 行上千次尝试,以向您提供最佳答案。由于计入了不确定性, RISKOptimizer 比标准优化程序准确得多。

与上例相同,本例要研究的零件是一个金属防爆杯,它通过在一个环上 焊一个圆片制成。该产品用作密封及安全装置,因此在常规使用情况下 必须承压,如果内部压力超过安全限值,则必须脱离。

此模型考察焊接强度与过程因素和设计因素之间的关系,对每个因素的 变动建模,并预测产品性能。RISKOptimizer用于找出过程设置和标称 设计值的最佳组合,从而将报废成本,即模型中的**年缺陷成本**降至最低。 这等同于使合格率达到最高。 RISKOptimizer 要调整的过程和设计变量有:

设计变量

- 圆片厚度
- 焊头壁厚
- 焊头长度

过程变量

- 焊接压力
- 焊接时间
- 触发点
- 振幅
- 频率

所有调整都是为了将输出项"年缺陷成本"降至最低。

RISKOptimizer 工具栏

在 Excel 2007 中, RISKOptimizer 工具栏如下所示:

最优化模型

单击**模型定义**图标会显示以下对话框,可在其中定义要调整的单元、 输出项以及要使用的约束条件。除了以上输入项和输出项以外, 我们还将定义一个使"触发点"必须始终小于或等于"焊接时间" 的约束条件。

Ca	1 - 19 - 12 -	₹ Si	x Sigma DOE	Opt.xls 🌗	[容模式] - Micr	osoft Excel		- =	ı x
	开始 插入	页面布局 公	公式 数据	审阅	视图 加载项	@RISK]	 — 	s x
• X597	新加輸出项 插入	fx 逆 /	和 一 初合 分布大师 -	● "模型" i	迭代 模拟	1000 1 2 2 1	 ▼ 开始模拟 指 #### 	観会析 ・ のptimizer	•
		快 尘					惧拟		
	C66	🌮 RISKOptimiz	er - 模型					05,0,1))+-	₽ ¥
A	В							J K	
20		最优化目标(0)	最小值			-			
21	此模型说明工序	单元(⊆)	=C71						
22	索工序设置和名	统计量(5)	值			•			
23			1			_			
25		可调整单元范围(U)							
26		最小值	范围		最大值	值 🔺	添加(<u>A</u>)		
27		三 12-57 回始序度	_	-D49 <-	E	体查店	册除(L)		
29	· · · · · · · · · · · · · · · · · · ·	- 技巧: 圆环壁厚度	1	-049 <-	5	ITWIE			
30	试验设计矩阵	2 <	=	=D50 <=	10	任意值			=
31		- 技巧: 喇叭长度							
32		100 <	-	=D51 <=	200	整数			
34		三技巧:焊接压力					ettro 1		
35		40 <	= 12	=D57 <=	1500	整数 🔳	*H(G)		
36	您可以让 RISKO	约亩条件(N)							
38	成模拟和最优化	35次3611(四)		小士		光刑	添tm(p)		
39	RISKOptimizer 和	365812		ZA JA	=\$D\$59<=\$D\$58	严格	(曲相(四)		
40	试验验证模型开						3冊7四(<u>上</u>)		
41							册除(I)		
43									
44		in t				-	1		
45						确定	取消		-
14 4 1	▶■ 模型 ∕ 🖓					le			1
就绪							90% 😑) (+

最优化设置

单击**最优化设置**图标会显示以下对话框,可在其中设置如何运行最优化 和模拟的各种条件。

	39-	(° ·)) +	Six Sign	na DOE (Opt.xls	[兼容模式] - Micros	oft Excel			-	= X
	开始	插入	页面布局	公式	数据	审阅	视图	加戴项	@RISK			🥑 -	₫ X
定义分	布 添加輸	出项插	fx 逆 入函数 定义相关	分布拟台	2 分布大师	₱ ″模型	2 窗口	迭代 模拟	1000 1 2	· · · · · · · · · · · · · ·	人 人 高级分析	f RIS Optimi	K, zer *
5			模型	빋						模拟			
ew <u>T</u> ool	ls <u>H</u> elp		🖗 RISKOpt in	nizer -	最优化 i	发置					3		*
21 A		В	常规(G) 运行	时间(R) 1 社	见图(v)] 5	炭(M)						J	-
31 32 33 34 35 36 37 38 39 40 41 42 43 44	忽可以i 成模拟i RISKOpt 试验验i	上 RISKO 印最优f imizer; 正模型:	最优化参数 总体规模(P) 随机数生成 抽样 抽样类型(5) ▽ 每次模拟	器种子(A) 使用相同的	随机数生	拉丁超成器种子(立方体法 (<u>U</u>)	50 自动	•		完		
45			模拟不运行时	,返回分布									
46 47 48 49 50 51	参数 圆盘厚度 圆环壁厚 喇叭长度	【(毫米 [度(聋 【(毫米	○随机值 (數 ○ 随机值 (數	麦特卡罗法 1))(N)	期望值			•		ida	会设计约	已阵
52									确定	取消		-	
14 4 >	▶ 模型	. 2		_	_	_	_	14				-1	× 1
就绪										100% (9		- 🕀 .:

运行最优化

单击"开始最优化",将出现 **RISKOptimizer 进度**窗口,显示分 析状态摘要。

使用放大镜按钮可打开"RISKOptimizer Watcher"对话框,该框显示正在运行的最优化和模拟的更详细信息。以下图表显示了运行的模拟和得出的最佳值。

"摘要"选项卡显示计算的**最佳、初始和最终**值,以及"交叉率"和 "突变率"等最优化参数。

Ca		(* *) =	Six	Sigma DOE (Opt.xls (兼	容模式] - M	licrosoft Ex	cel			- = ×
	开始	插入	页面布局	公式	数据 审	刘 视图	加戴项	@RISK			۲) _ = x
• 2:57	1000 日本 1915 初始出り	J 页插入	E 2010 E 2011 <pe 2011<="" p=""> E 2011 <pe 2011<="" p=""> <pe 2<="" td=""><td>分布拟合:</td><td>2 分布大师 "根</td><td>◆ ■ ■ ■ ■ ■</td><td>迭代 模拟</td><td>1000 1 2 2 2 1</td><td>- 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一</td><td>人 高级分析</td><td>RISK Optimizer *</td><td>》 》说送结果 ,</td></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe></pe>	分布拟合:	2 分布大师 "根	◆ ■ ■ ■ ■ ■	迭代 模拟	1000 1 2 2 2 1	- 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	人 高级分析	RISK Optimizer *	》 》说送结果 ,
			1963	# 	o (# bE	t+trating (s	v) //		(DAG DA)		1)), 00,00	
	C66		• (0	Jx =Risk	Output ()))	(接强度()	N)",,,Kis	KSixSigm:	a (D66, E66	6 , 105,0,	1))+-26+SQ	RLC 28
43	В	-	L	D	EF	G	Н		2	J	n	L _
44		E	ISKOptimi	zer 观察器							1	
45		_	进度(P) 抽要	(S) 日本(1)] ⊜da(m) ≪	推供(m) 停	(H法项(N))					
46),		ALACIE/ Laber	SECT HOLE	1.0214/0/1.22	mar@/1 is	TC/25-X/0/1			1		
47	***		可调整单元店									
49	<u>≫ 50</u> 因盘度度((臺)	-1860E-+-761E									
50	圆环壁厚周	€G	B. (++W+()	模拟	结果	D49	D50	D51	D57	D58		_
51	喇叭长度((臺)	取住有利用	33	8988.0000	2.0314	3.5469	162	400	0.45	E.	-
52			最新模拟	114	377496.00	2.0518	3,6135	162	462	0.65	4 0 4	<u> </u>
53			4		on noncon	210010	010100	100	102			
54												
56	余数		可调整单元组	沿畠								<u> </u>
57	焊接压力((N)		U. at								=
58	焊接时间((ms)	显示的组((3)	D49 (國盘)	享度 }		1	-			
59	触茨点 (m	IS)	交叉案(C)		4			0.500	<u>n</u> [<u> </u>
61	频率 (kHz)		STRUCTURE (MA)		1							
62	W11 (大文章(団)						U			
63												
64	Ú.											
65												
66	月 後 正度	(N) -	<u>al-9</u>	1						-		
68	Cpk 下限	-								刚走		-
14 4 1	▶ 模型	12	/							81		> D
不要在	E关闭 RISKO	Optimi	zer 观察器以前	前编辑工作簿						90%	• V	.::

"多样性"选项卡直观地显示了所计算的不同单元,以及各种可能的解。

模拟并最优化之后, RISKOptimizer 成功地发现了一个将"年缺陷 成本"降到 8,000 元以下的解。

使用 RISKOptimizer 可以节省在改进质量和降低成本方面所用的时间和资源。此问题的下一步是通过实验来验证模型和优化解。

模型实例: Six Sigma Electrical Design.xls

这个简单的直流电路包括两个电压源(一个独立电压源与一个非独立电压源) 和两个电阻。独立电压源的工作功率范围由设计工程师设定为 5500W + 300W。如果独立电压源输出的功率超出以上规格范围,则该电路将有缺陷。 设计性能结果清楚地表明:如果一定比例的电路不在上下限范围内,则该 设计不能正确实现其功能。PNC 值表示在规格上限和下限附近的不 合格品的百分比。

基本的模型逻辑如下:

模型根据已知信息和以下假设计算每个元件的标准差。

- 1) 元件值的平均值位于公差上下限的中心。
- 2) 元件值呈正态分布。请注意:可以使用 @RISK 来拟合一个数据 集的概率分布,如果需要,还可以建立其他类型的概率分布 模型。

输出单元 PowerDEP 中的 RiskSixSigma 属性函数定义计算六西格玛结果时使用的上限、下限和目标值。@RISK 六西格玛函数用来计算 Cpk 下限、Cpk 上限、Cpk、Cp、DPM、PNC 上限和 PNC 下限。

@RISK 灵敏度分析找出引起输出项变动的输入项变量。灵敏度显示两 个电压源是导致功耗变动的主要因素。有了这些信息以后,工程团队即 可集中精力改善电压源而不是电阻。

这个模型可以用来测试不同的元件和公差,通过比较性能及合格率选出 最佳方案,从而使合格率达到最高并降低成本。

灵敏度分析

实例 5 - 精益六西格玛: 当前状态分析 - 报价过程

模型实例: Six Sigma Quotation Process.xls

在通过**精益**和**六西格玛**方法进行持续改进时,一个关键的要求是了解待 研究过程的当前状态。这一过程在实施精益的绘制价值流图阶段,或者 DMAIC 六西格玛过程的定义和衡量阶段初步完成。大多数精益/六西 格玛工作者将过程放在一个或多个改善活动中,进行粗略的研究后, 改善小组就着手给出解决方案了。有一种非常有益但有些耗时的做法, 即对过程建模并证明所提供的数据和假设准确无误。在以下任意一种情 况下,这非常重要:

- 过程对企业成功至关重要(关键使命)
- 对过程需要改进有重大异议
- 改进成本很高
- 持续改进的结果会在日后受到重要审查
- 过程受霍桑效应影响,即我们研究得越多,效果就越好

模拟能够证明对当前状态的初步分析,并显示分析小组遇到的真实情况。 每个地方通常都有三种截然不同的工作过程:我们认为存在的过程; 我们有文档记录的过程;每天实际开展的过程。严密构建的 @RISK 模拟 可记录实际过程并对之后的持续改进过程中的改进影响进行建模。构建 模型非常简单。

建立模型并收集 数据

此实例是某个企业的内部销售报价过程的具体流程,是一个真实的 公司案例。可使用许多工具以图形的方式显示此过程。此处使用的 是**泳道图**。

整个报价过程有超过 36 个单独步骤,受 10 个部门或个人的影响。 粗略数据指示,走完整个报价系统需要四周时间,而对于紧急情况, 可在一周内加急处理完报价。漫长的报价周期阻碍了公司对划算的 紧急产品服务订单进行有效地投标。鉴于可以用四分之一的时间加 急处理报价,管理层认为问题出在个人,而不是过程。分析小组需 要一个工具来证明过程有问题。

画出泳道图后,该小组有一个问题:从接到询价到将全套报价发给 工程部门的报价处理需要多长时间?这是报价过程的第一部分,其数 据相对容易获取,此处得出的结果可应用于整个过程。 这部分报价过程分为四步。首先,收集并输入数据(步骤 A)。然后,按顺序等候客户服务部审核(步骤 B)。审核时,会在表单中进行更正并增加数据,同时分配跟踪号(步骤 C)。最后,整套报价按顺序等候工程部门执行报价活动(步骤 D)。

该小组制作了一份简单的时间表,记录了文档从一个地方到另一个地方 的时间,及其在每一步过程的处理时间。分析小组根据这些数据对这部 分过程的四个步骤进行了一些初步分析。

建立分布并定义 输出项

对于我们而言,简单数据分布就是数据沿一条曲线分布。复杂分布 由几个单独的分布组成,通常较难定义。在该小组收集的数据中包 括以上两种分布。

@RISK 可通过工具栏上的**拟合分布**按钮,找出数据背后的分布。然后,即可将拟合后的分布作为一个分布函数输入电子表格。使用您的 Excel 数据,选择"拟合分布"按钮,然后按照提示操作。@RISK 会分析数据并检查这些数据与一系列分布函数的拟合情况。

对于该小组在步骤 C (审核)中的数据, @RISK 分布拟合结果如下 所示。然后, 会使用"写入单元"按钮将生成的分布直接放在 "C 审核"标题下的电子表格单元中。(该小组选择了正态分布, 而不是拟合得更好一些的威布尔分布,因为对于小数据集, 两种曲线之间的差异可以接受。)

分析小组继续对每一步骤的所有分布执行以上操作。最后,他们将 A-D 所有四步的总时间设为 @RISK 的输出项并运行模拟。

模拟结果说明了一切。处理报价的平均总时间为 1700 分钟左右,多于 一个自然日,实际花费时间从 350 分钟(约6小时)到2个自然日以上 不等。

这些时间中唯一增值的时间是在审核步骤。这一步从 6 分钟到 64 分钟 不等,平均需要 35 分钟完成。该小组将这一结果与受影响的部门和管理 层进行了探讨,他们虽然很意外,不过都同意分析结果。

模拟结果统计量 分析小组还可以使用 @RISK 生成与输出单元关联的基本统计量。例如: 分析小组想将"总时间"输出单元的平均值、最大值、最小值和标准差 添加到电子表格的一个表中。该小组从 @RISK 的插入函数菜单中选择 "统计量"部分的模拟结果。然后从这组函数中选择 RiskMean 函数。 最后选择输出单元"总时间"作为引数。现在,每次运行模拟时, 该单元都会用"总时间"的平均值进行更新。

该小组对最大值、最小值和标准差选择均执行以上操作。

输入六西格玛函数

接下来,分析小组想使用 @RISK 的六西格玛函数对输出单元添加 Cpk 分析。在输出单元"总时间"中,他们输入 RiskSixSigma 函数,其中:

- 有一个识别输出项名所在的标题单元的单元引用
- 有一个识别期望结果的规格下限的单元引用
- 有一个识别期望结果的规格上限的单元引用
- 有一个识别期望结果的目标值的单元引用

可以使用**输出项属性**对话框(单击 @RISK 的**添加/编辑输出项对话** 框中的**函数属性 fx** 图标访问)方便地设置 RiskSixSigma 函数。

The Party of the P	· (****) · 插入 页面布局	Six Sig Qat Refi	ma Quotation Pro 審網 祝園	tosta (Rill)	(兼容模式) - Mie RISK	rosoft Excel			- = ×
建义分布 通知	🚹 🥠 🏹 🧾	5 950 955	10 -1022- 800	通代 1 観沢 1 夏夏夏夏	000 · · · · · · · · · · · · · · · · · ·	IN THE OPTIM	SK pizer -	大田文田学校 大田文田学校	Exce
	8	國			機拟			结單	
K36	- (3)	fe =RiskOutput	(K35, , , RiskSi	xSigna(K41, M	(40, K42, 0, 0))·	+G36+H36+I36+	J36		3
F	CONTRACT. THE			J		К	L	M	N
311 32 33 34 35 36 37 37 38 39 40 41 42 43 44 44 44 45 46 46 47	 特定課題 1.2(0) 1.2(0) 1.2(0) 1.5(0) 第載(0) 7.1(1) 7.1(1) (1) (1)<	0 1440 1220 1.5 0 0	N N N	D - 排队提 241 (1天) (0天) (05天)	2 8806 - 2610/ 28806 - 8710 - 8880	副田崎田市 あた 第(4+0+C+0)(分中 D) 1 1	x36 77 440 0 720	区 配油 取油	

配置了输出项后,该小组想在模拟时计算 @RISK 的六西格玛函数 Cp、 CpkUpper、CpkLower 和 Cpk。要完成此操作,可通过 @RISK 插入函数菜单中"统计量"部分的六西格玛插入正确的函数 (如: RiskCp 和 RiskCpkUpper 等)或在公式栏中输入函数。 每次模拟时都会重新计算这些函数。

IJ	Hit I	EA J		ant be	王 河	RE	tolkin,	ØR	SK	NO ST MARK							v	- 0
194 194	N ISTORECTION	fx mains	i izvilet s	RANA SA	人 (1)	2. ED	送代 便取 全 祭	10	- 00	нака Нанака	A Repar	RISK	anger a	A and A and	대전원 (후) (%)	AR Excel : 授表	C# SMAR	■ 岸・ デ 実用 10 用助
			機能						1	供拉				结果			I	L
_	SUM	+(XVS	=RiskOutp	ut(K35,,	, RiskSi	xSigna	K41, K4	0, K42, 0	, 0))+G3	36+H36+	136+J36	RiskCpl	kLover)			
8	G		н			1			К		L	M	N	0	P	Q	R	8
	10		1440	3	S USL LSL H&	241 USL(1天) LSL(0天) 日存(0.5天))10+Risi	HCpki.oweri) 所改多数 EishCpki.over 数据因 相對編号 大面積石製 曲数		1						2	X
	使用化果 「「「」」」 「 「」 「」 「 「」 「」 「 「」 「 「」 「 「 「」 「 「 「」 「					Γ	积据积机	i TFRG+ML	单侧能力	12. 25.1	。 唐 是要计算大西格玛统计量			制出现成	输入现.			
		4548.22	504		[Cps			-	计算结束	t = Internetion	00					nt.	取消	

生成模拟输出项图

通过 @RISK 的结果图以及直接在图中显示 LSL、USL 和目标值的 六西格玛标记,管理层惊奇地发现,他们平均使用一整天的时间完 成 35 分钟的工作。对于输出项"总时间"以及从"步骤 C-审核" 的输入项分布中抽取的样本值,其模拟结果如下所示。

该小组可以根据模拟来记录实际流程,并详细说明在没有加急处理 报价时的情况。管理层可以看到,如果跟踪并改进整个过程,可能 会有哪些改善。该管理层在项目一开始就做出的投资证明是项目长 期成功的关键所在。

根据这个初步模型,该小组构建了整个过程的完整模型。有了这个模型,该小组就能对项目不同阶段的改进工作建模,并检验改进是 否有正面的成效。将原始数据输入 Excel 后,使用 @RISK 生成初 步模拟和结果的总时间不到一小时。

实例 6 - DMAIC: 滚动合格率分析

模型实例: Six Sigma DMAIC RTY.xls

DMAIC(即定义、衡量、分析、改进和控制)用于改进现有产品或过程。 假定您是一位服饰珠宝制造商,加工范围是在平价的银上镀一层薄金。 您从中国进口原料和零部件。有一小部分零部件总是有缺陷,但您不知 道有多少,或它们损失多少钱。

您收集了本身有缺陷,或在制造过程的各个环节产生缺陷的零部件数量数据。 从表面上看,这些缺陷零件似乎不是什么大问题。在过程的每一阶段, 99% 以上的零部件都是合格的。但是,缺陷零件的综合影响却造成成品 中有 15-20% 的浪费,相当于生产每百万件制品,就有 200,000 件有缺 陷。如果原料是每件 \$ 0.5 美元,则在不计人工、加工时间和其他费用的情 况下,已有100,000美元浪费。

您需要降低生产的缺陷制品数量。但是,整个过程漫长而复杂,您不知 道从哪个阶段开始。使用 @RISK,您可以模拟许多不同的结果,并找 出对质量影响最大的生产阶段。您还可以获得每个阶段和整个过程的关 键过程能力指标,它会帮助您改进质量并减少浪费。@RISK 就是这样 用于 DMAIC 方法的衡量和分析阶段的。@RISK 用于衡量过程的现有 阶段(利用能力指标)以及分析如何对其进行改进(利用灵敏度分析)。 分布拟合

利用从生产过程收集的数据,@RISK 分布拟合功能可定义分布函数, 描述在过程每个阶段(**拆包/检验、切割、清洗和电镀**)的缺陷零件数量。 电镀阶段的分布拟合-威布尔拟合-如下所示。

拟合后的分布直接添加到模型中。电镀分布如下所示。

模拟结果

使用六西格玛的规格上限、规格下限和目标值将每个阶段以及整个过程的百万分比不良率 (DPPM) 定义为 @RISK 输出项。运行模拟后,对每个阶段和整个过程计算各种六西格玛指标。

0	-	- (u -) =		Six Sigma D	MAIC RTY.xls [只读	图 [兼容模式] -	Microsoft Exce	H			-	= x
9	开始	插入 页面布局	公式 数据	审阅 视图	加载项 @RI	SK						e x
定义分	布添加的	▲ ƒ ★ 逆 輸出项 插入函数 定义相关	分布拟合 分布大师	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	迭代 100 模拟 1 2 部 22 里	10 - - - 开始模	NA NA NA NA NA NA NA NA NA NA NA NA NA N	USK Ø		□ 接要 * 定义筛选器 ■ 【】 〒 %	Excel 交换函数 报表	x 11
		模型				模拟			结	果	1	C, Ę
	F47	• (*) f _x	=RiskOutput	(,,,RiskSixS	igma(H47, I47, J	47,0,1))+SUM	(F39:F45)					*
1	A	В	С	D	E	F	G	н	1	J	K L	
49			工序 Cp	工序能力 Cpk	Cpk 下限	Cpk 上限	工序西格玛 水平(使用 正态逼近方 法)	Z下限	乙上限	乙最小值		
51		拆包/检验	1	0	1	0	2	3	3 1	1		
52		切削	0	0	0	0	0	0	0 0	0		
53		清洁	0	0	0	0	1	1	0	0		
54		电极合计	0.59	0.40	0.40	0.77	1.49	1 19	2 32	1 19		_
56		ни	0.00	0.40	0.40	0.77	1.45	1.10	2.52	7.15		-
14 4 1	N II	亨模拟 - 龙卷风 ∕ ♥⊃ ∕					14			11	8	P. I
就结									(III) [[100% (ə 🔍	

DPPM 结果分布如下所示。

最后,灵敏度分析和龙卷风图显示:虽然清洁阶段的一次合格率 (FTY) 更低(更少缺陷),但是**切割阶段**是对整个产品缺陷影响最大的阶段。 尽管切割的 FTY 较高,但切割过程本身不太稳定,比其他过程的变动 更大。

实例7-供应商选择

模型实例: Six Sigma Vendor Selection.xls

假定您要推出一款新产品。在实际推出产品阶段,公司预计每月销售 25,000 件。该产品的一个关键元件通过外包进行精密加工。也就是说, 该元件必须达到特定的要求才能用于您的产品中。尤其是该元件的长度 必须为 66.6 毫米,公差仅为 +/-1 毫米。

目前有三个供应商提供该关键元件。您与每个供应商洽谈的元件单价各 不相同。然而,每个供应商提供的元件质量也各不相同。有些供应元件 不在指定的长度范围内。对于其中的两个供应商,您必须对进货元件进 行全检以确保其符合规格,这增加了过程中的人工成本和报废成本。第三 个供应商经过认证,保证 100%的元件均符合规格,无需检验和报废。 然而,该供应商的单价是三个供应商中最高的。

您总是需要多个供应商以防备其中某个无法供货。但是您想知道哪个供 应商的实际单价成本最高,以便制订一个更加有效的元件采购策略。 对元件长度建模

每个供应商的元件长度由 @RISK 分布函数来描述。还使用 RiskSixSigma 函数将这些单元定义为 @RISK 输出项,以便计算每个供应商的 Cpm,并且生成带有规格标记的元件长度分布图表。RiskSixSigma 函数包括 USL、LSL 和目标值 66.6 毫米,公差仅为 +/-1 毫米。

元件规格(毫米)							
LSL	目标值	USL					
66.5	66.6	66.7					

例如,供应商1的元件长度由 Pert 分布描述,并包含 RiskSixSigma 参数:

= *RiskOutput(,,,RiskSixSigma(B30,D30,C30,0,6))*+*RiskPert(66.4,66.6,66.7)*

模拟结果

模拟结束后,可以看到供应商1的实际单价最低。还使用 RiskMean 函数显示了每个供应商的单价模拟平均值。最后,计算了每个供应商的元件长度 Cpm。

	优良元件的实际 总成本(单件)	Cpm 长度	实际单件总成本的平均值
供应商1	\$6.13	0.553	\$6.16
供应商2	\$6.75	0.472	\$7.03
供应商 3 (经过认证)	\$6.40	0.686	\$6.40

供应商1的质量变动如下图所示。

现在您即可根据得到的成本和质量信息制订一个更有效的采购策略了。 下一步可以分析如何进一步降低成本,例如:通过改善活动来减少内部 检验时间。

实例 8 - 六西格玛 DMAIC 失效率

模型实例: Six Sigma DMAIC Failure.xls

这是一个失效率模型,用于质量控制和计划。您是一个生产商,需要计算缺陷产品的可能百分比。在 DMAIC 方法(即:定义、测量、分析、改进和控制)中,这是测量和分析阶段,在这个阶段希望衡量当前质量状态并分析问题或缺陷原因。

当一个产品中的任何一个元件没有达到要求的公差水平时,该产品即为 缺陷产品。如果元件成品的某些属性(例如它的宽度)落在定义的公差 范围内,则该元件被视为合格。

对元件宽度建模

在"样本"列中,使用正态分布为每个元件成品的属性(例如它的宽度) 建模。

还使用了为每个元件定义 LSL、USL 和目标值的 RiskSixSigma 属性函数将这些单元加入 @RISK 的输出项。元件1的公式如下所示:

=RiskOutput(,,,RiskSixSigma(F26,G26,C26,0,0))+RiskNormal(C26,D26)

这样我们即可看到元件的质量图表,并计算每个元件的六西格玛统计量。

利用 RiskMean 函数得出失效率

元件与累加**失效率**由 **RiskMean** 函数计算得出。该函数是一个 @**RISK** 统计量函数,所以仅在模拟运行后适用。模拟之后,我们还能看到元件 与总计六西格玛统计量 Z 得分和 DPM。

Z最小值	失效频率	DPM
2.999060375	1/334 将失效	3000
2.99523275	1/334 将失效	3000
2.990852805	1/334 将失效	3000
3.492267357	1/1000 将失效	1000
3.002125568	1/1000 将失效	1000
2.945880756	1/91 将失效	11000

元件1的样本图表如下所示,图中标记有 USL、LSL 和目标值。

实例 9 - 使用 RiskTheo 确定六西格玛 DMAIC 失 效率

模型实例: Six Sigma DMAIC Failure RiskTheo.xls

这是 DMAIC 失效模型的扩展,用于质量控制和计划。它包括使用 RiskTheo 函数(这里是 RiskTheoXtoP)确定失效率,而无需实际运行 模拟。RiskTheo 函数返回输入项分布或公式的理论统计量,而不是返 回模拟运行数据的统计量。

您是一个生产商,需要计算缺陷产品的可能百分比。在 DMAIC 方法 (即:定义、测量、分析、改进和控制)中,这是测量和分析阶段, 您在这个阶段希望衡量当前质量状态并分析问题或缺陷原因。

当一个产品中的任何一个元件没有达到要求的公差水平时,该产品即为 缺陷产品。如果元件成品的某些属性(例如它的宽度)落在定义的公差 范围内,则该元件被视为合格。

en Asmon	fx 逆 加入局政 三文相关	2450 SALA	.ett. ett			лында жалын	RISK Optimizer	Alena Alena	SAR Excel (23)	100 日本 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
8.22	- (2 6	-BickOutmut (PlayStyc		22 (22 0 0)	heRd eldlorenal i	(199 899)	, Martin		
A B	C I	D	E	F	6	H	1	1	К	L
	平均值(目标)	标准元	##	公差:下開 (LSL)	公後:上開 (USL)	\$ 27	框拟中的故障 寒(%)	RiskTheo中的故障 家(%)	概拟中的 Z 最小值	机机中的 DPM
邮件1 邮件2 邮件3 邮件4 邮件5	10 5 8 12 6	0.2 0.05 0.1 0.25 0.1	10 5 8 12 6	9.4 4.825 7.6 11.125 5.7	10.6 5.15 8.3 12.875 6.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.40% 0.10% 0.10% 0.00% 0.10%	0.270% 0.158% 0.138% 0.047% 0.135%	2.000363032 2.993195515 3.004525713 3.498559951 2.996287119	4000 1000 1000 0 1000
							175		atter	7000

对元件宽度建模

在"样本"列中,使用正态分布为每个元件成品的属性(例如它的宽度) 建模。

还使用了为每个元件定义 LSL、USL 和目标值的 RiskSixSigma 属性函数将这些单元加入 @RISK 的输出项。元件1的公式如下所示:

=RiskOutput(,,,RiskSixSigma(F26,G26,C26,0,0))+RiskNormal(C26,D26)

这样,如果我们选择运行模拟,即可看到元件的质量图表,并计算每个 元件的六西格玛统计量。 元件与累加失效率由 **RiskTheoXtoP** 计算得出,该函数在"样本"列中呈正态分布。如果选择运行模拟,则还会使用 RiskMean 函数根据模拟计算失效率。这样即可比较模拟失效率和 RiskTheo 失效率。

模拟 (%) 失效率 (%)	RiskTheo 失效率 (%)
0.30%	0.270%
0.20%	0.158%
0.20%	0.138%
0.00%	0.047%
0.10%	0.135%
1%	

模拟之后,我们还能看到元件与总计六西格玛统计量 Z 得分和 DPM。

模拟Z最小值	模拟 DPM
2.998616548	3000
2.997415317	2000
2.997730848	2000
3.49840855	0
3.004560454	1000
3.146403741	8000

利用

RiskTheoXtoP

函数得出失效率