## PPC-1003

10.4"高亮度液晶低功耗带电阻式触摸屏 平板电脑

版本: A0

### 声明

本手册包含的内容并不代表本公司的承诺,本公司保留对此手册 更改的权利,且不另行通知。对于任何因安装、使用不当而导致的直 接、间接、有意或无意的损坏及隐患概不负责。

EVOC 是研祥智能科技股份有限公司的注册商标。本手册所涉及到的其他商标,其所有权为相应的产品厂家所拥有。

本手册内容受版权保护,版权所有。未经许可,不得以机械的、 电子的或其它任何方式进行复制。

### 安全使用小常识

- 1. 产品使用前,务必仔细阅读产品说明书;
- 为避免人体被电击或产品被损坏,在每次对板卡进行拔插、重新 装配或配置前,须先关闭交流电源或将交流电源线从电源插座中 拔掉;
- 3. 在需对产品进行搬动时,务必先将交流电源线从电源插座中拔掉:
- 4. 当产品需增加/减少板卡时,务必先拔掉交流电源;
- 5. 当需连接或拔除任何信号线前,须确定所有的电源线事先已被拔掉;
- 6. 为避免频繁开关机对产品造成不必要的损伤,关机后,应至少等 待30秒后再开机;
- 7. 如果要进行升级或拆装等动作,须在静电放电工作台上完成所有操作,因为有些精密器件对静电放电(ESD)很敏感;
- 8. 如果没有静电放电工作台,可通过以下方法降低 ESD 可能造成的 危害:
  - a) 戴上一条防静电腕带并与相应产品的金属部分相连;
  - b) 在触摸产品部件前,先触摸相应产品机箱上的金属壳;
  - c) 当插拔部件时,身体最好与产品的金属机箱保持接触,以释放静电;
  - d) 避免不必要的走动;

- e) 拿产品部件(尤其是板卡)时仅拿住边缘;
- f) 将产品部件置于一个接地的无静电的操作平台上。如果可能的话,使用一块导电泡沫垫(非部件的包装材料);
- g) 不要让部件在操作平台上滑动。
- 9. 用十字螺丝刀进行操作,最好是强力螺丝刀(带磁性,避兔螺丝 遗留在机箱内)。要注意的是,一定不要将工具或零件遗漏在机 箱内;
- 10. 保证系统良好的散热与通风。

## 目 录

| 第一 | -章 产品介绍    | 1 |
|----|------------|---|
|    | 简介         | 1 |
|    | 订购信息       | 1 |
|    | 产品配置主要功能介绍 | 1 |
|    | 主要功能介绍     | 2 |
|    | 环境与机械尺寸    | 2 |
|    | 电磁兼容性      | 3 |
|    | 可靠性        | 3 |
|    | 安全性        | 3 |
|    | 环境要求       | 3 |
|    | 运输与贮存要求    | 3 |
|    | 常见故障处理     | 4 |
| 第二 | _章 使用说明    | 5 |
|    | 产品外形图      | 5 |
|    | 产品安装尺寸图    | 6 |
|    | 功能示意图      | 6 |
|    | 装配说明       | 7 |
| 第三 | E章 主板使用说明  | 8 |
|    | 接口示意图      | 8 |

| 跳线功     | 能设置及接口定义9       |
|---------|-----------------|
| 1,      | CMOS 功能9        |
| 2,      | LCDV9           |
| 3、      | LCDB10          |
| 4、      | JPCOM2          |
| 5、      | JP210           |
| 6、      | 电源接口11          |
| 7、      | IDE 接口11        |
| 8,      | DOC 固态电子盘13     |
| 9、      | 程序写入接口13        |
| 10      | USB 接口14        |
| 11      | 并口14            |
| 12      | 串口15            |
| 13      | . 显示接口17        |
| 14      | 网络接口19          |
| 15      | 多功能接口19         |
| 16      | PC104-PLUS 接口20 |
| 17      | CF 卡接口22        |
| 第四章 BIC | S 功能简介23        |
| 附录      |                 |
| Watchd  | og 编程指引24       |

| I/O 口地址映射表 | .28 |
|------------|-----|
| IRQ 中断分配表  | .30 |

### 第一章

### 产品介绍

### 简介

PPC-1003 是一款带触摸 LCD 高亮显示的工业平板电脑。单 12V 电源适配器供电,板载超低功耗 AMD LX800 处理器(500MHz)。3 个串口、2 个 USB2.0、1 个 10/100M 以太网口、音频接口、PC104+接口。

整机结构紧凑,前面板采用铝合金烤漆制造工艺。利用机箱整体进行散热。内部结构合理,方便安装与拆卸,可选装 1.8 寸微型硬盘,整体机箱采用优质铝合金制造。可广泛应用于工业控制,楼宇监控,多媒体会议系统,医疗器械,银行,各类售票处等领域。

### 订购信息

| 型号       | 描述                    |
|----------|-----------------------|
| PPC-1003 | 10.4"高亮度液晶,触摸屏,超薄平板电脑 |

### 产品配置

### 主要功能介绍

- ◆ 触摸式控制
- ◆ 多串口引出
- ◆ 可扩展 PC/104 Plus
- ◆ XPE 操作系统,固态存储器(CF卡)
- ◆ 可附加 1.8 英寸硬盘
- ◆ 采用无风扇散热
- ◆ 壁挂式安装结构, 简易安装
- ◆ 超薄设计
- ◆ 音频输出

### 主要性能指标

采用 PC/104 主板构架, AMD LX800 高性能处理器, 低功耗。 板载 256MB 内存, 提供 1.8 寸硬盘安装位。外置 12V 电源适配器。

### 环境与机械尺寸

- 外形尺寸: 252×188×30mm
- 工作温度: 0~50℃
- 相对湿度: 5%~90%(非凝结状态)
- 储存要求

温度: -10~80℃

湿度: 5%~90%(非凝结状态)

#### 电磁兼容性

- 无线电骚扰限值符合 GB9254-1998 标准 A 级
- 抗扰度符合 GB/T 17618-1998 标准的限值

#### 可靠性

- 平均无故障工作时间: MTBF≥50000h
- 平均维修时间: MTTR≤0.5h

### 安全性

● 满足 GB4943 的基本要求

#### 环境要求

- 抗振动: 5-19Hz/1.0mm 振幅; 19-200Hz/1.0g 加速度
- 抗冲击: 10g 加速度, 11ms 周期

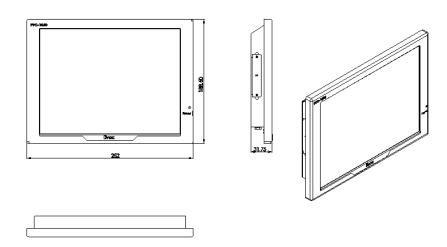
### 运输与贮存要求

#### 运输

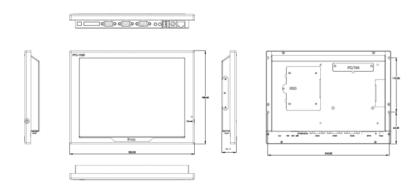
包装好的产品能以任何交通工具,运往任何地点,在长途运输时不得装在敞开的船舱和车厢中,中途转运时不得存放在露天仓库中, 在运输过程中不允许和易燃、易爆、易腐蚀的物品同车(或其他运输 工具)装运,并且产品不允许经受雨、雪或液体物质的淋袭与机械损坏。

#### ● 贮存

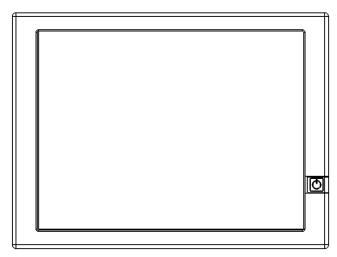
产品贮存时应存放在原包装箱内, 存放产品的仓库环境温度为 0℃~40℃, 相对湿度为 20%~85%. 仓库内不允许有各种有害气体、 易燃、易爆炸的产品及有腐蚀性的化学物品, 并且无强烈的机械振动、 冲击和强磁场作用。包装箱应垫离地面至少 10cm, 距离墙壁、热源、 冷源、窗口或空气入口至少 50cm。


#### 常见故障处理

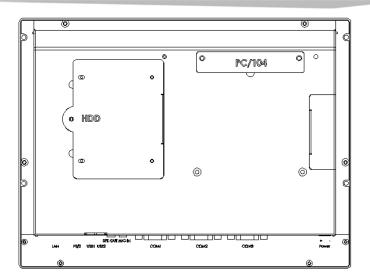
产品的常见故障处理请参见《工业计算机常见故障分析和处理》, 在此不多述说。


## 第二章

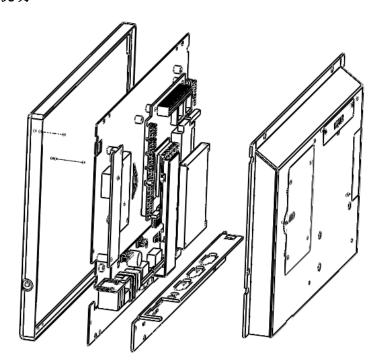
## 使用说明


## 产品外形图




## 产品安装尺寸图

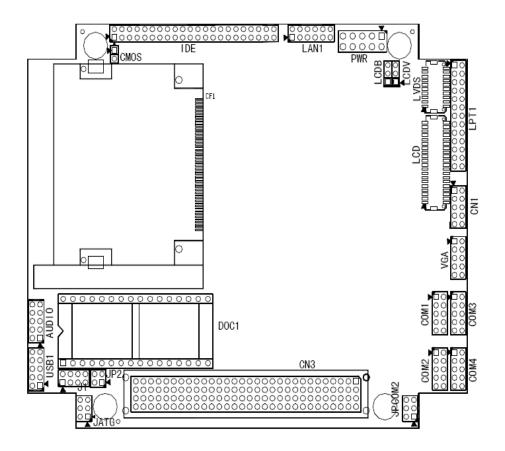



## 功能示意图



- 6 -




## 装配说明



## 第三章

## 主板使用说明

## 接口示意图



- 8 -

### 跳线功能设置及接口定义

### 1、CMOS 功能

通过改变 CMOS 的短接帽所处状态来实现 CMOS 时间与日期清除。

|      | 设置       | CMOS               |
|------|----------|--------------------|
|      | 开路       | [12] (正常工作状态,默认设置) |
| CMOS | 瞬间<br>短路 | [12] (清除 CMOS 内容)  |

#### 2、LCDV: 电压选择

不同的 LVDS 屏电压可能不同,本版提供了 3.3V 和 5V 两种电压 选择,当所选择的 LVDS 电压与所使用的 LVDS 屏的工作电压一致 时,LVDS 屏才能正常显示。

| 3. 3V 设置(缺省值) | 5V 设置      |
|---------------|------------|
| 3 2 1 LCDV    | 3 2 1 LCDV |

### 3、LCDB: LVDS 屏的背光控制

|            | 管脚 | 信号名称        |
|------------|----|-------------|
| ● 3<br>●   | 1  | LVDS_BKLTEN |
| <u>⊔</u> 1 | 2  | +12V        |
| LCDB       | 3  | GND         |

### 4、JPCOM2: COM2 RS-232/422/485 模式选择

|         | JP1 选择    |         | 管   | 却   |
|---------|-----------|---------|-----|-----|
| 1▶□ • 2 | Jr I ZEJF | 1-2     | 3-4 | 5-6 |
| 5 • 6   | RS-232    | ON (默认) | OFF | OFF |
| JPCOM2  | RS-422    | 0FF     | ON  | OFF |
|         | RS-485    | 0FF     | OFF | ON  |

COM2 的管脚定义可见后续串口定义

5、JP2: DOC 地址选择

| \$1 49  | DOC 地址    | 管脚  |     |  |
|---------|-----------|-----|-----|--|
| 1 D 0 2 | DOC JEJI. | 1-2 | 3-4 |  |
| JP2     | C000h     | ON  | 0FF |  |
| J1 Z    | D400h     | OFF | ON  |  |

### 6、电源接口

|         | 管脚 | 信号名称 | 管脚 | 信号名称 |
|---------|----|------|----|------|
| 1 🌘 🗖 2 | 1  | GND  | 2  | +5V  |
|         | 3  | NC   | 4  | +12V |
| 9 10    | 5  | -5V  | 6  | -12V |
| PWR     | 7  | GND  | 8  | +5∀  |
|         | 9  | GND  | 10 | +5V  |

#### 7、IDE 接口

本板提供一组 44 针 IDE 接口,安装 IDE 设备时需注意: IDE 接口可以连接两台 IDE 设备;一台为主设备(Master),一台为从设备(Slave)。设备的连接方法是:主设备接在电缆的末端,从设备接在电缆的中间。(IDE 电缆有红色标示的为第一脚)。

|           | 管脚 | 信号名称      | 管脚 | 信号名称     |
|-----------|----|-----------|----|----------|
|           | 1  | Reset IDE | 2  | GND      |
| 1 🗖 2     | 3  | PDD7      | 4  | PDD8     |
|           | 5  | PDD6      | 6  | PDD9     |
| • •       | 7  | PDD5      | 8  | PDD10    |
|           | 9  | PDD4      | 10 | PDD11    |
| • •       | 11 | PDD3      | 12 | PDD12    |
| • •       | 13 | PDD2      | 14 | PDD13    |
|           | 15 | PDD1      | 16 | PDD14    |
| • •       | 17 | PDD0      | 18 | PDD15    |
| • •       | 19 | GND       | 20 | NC       |
|           | 21 | PDDRQ     | 22 | GND      |
| • •       | 23 | PDIOW     | 24 | GND      |
| • •       | 25 | PDIOR     | 26 | GND      |
|           | 27 | PIORDY    | 28 | Host ALE |
| • •       | 29 | PDDACK    | 30 | GND      |
| • •       | 31 | IRQ14     | 32 | NC       |
|           | 33 | PDA1      | 34 | P66DET   |
| 43 • • 44 | 35 | PDA0      | 36 | PDA2     |
| Reck      | 37 | PDCS0     | 38 | PDCS1    |
| IDE       | 39 | IDELED    | 40 | GND      |
|           | 41 | VCC5      | 42 | VCC5     |
|           | 43 | GND       | 44 | NC       |

- 12 -

### 8、DOC 固态电子盘(DOC1)

|     |      | 管脚 | 信号名称 | 管脚 | 信号名称   |
|-----|------|----|------|----|--------|
|     |      | 1  | VPP  | 17 | SD3    |
|     |      | 2  | NC   | 18 | SD4    |
|     |      | 3  | SA15 | 19 | SD5    |
|     |      | 4  | SA12 | 20 | SD6    |
|     |      | 5  | SA7  | 21 | SD7    |
|     |      | 6  | SA6  | 22 | CS     |
|     |      | 7  | SA5  | 23 | SA10   |
| 32  | 17   | 8  | SA4  | 24 | SMEMRX |
|     |      | 9  | SA3  | 25 | SA11   |
| 1   | 16   | 10 | SA2  | 26 | SA9    |
| l - | DOC1 | 11 | SA1  | 27 | SA8    |
|     |      | 12 | SA0  | 28 | SA13   |
|     |      | 13 | SD0  | 29 | SA14   |
|     |      | 14 | SD1  | 30 | NC     |
|     |      | 15 | SD2  | 31 | SMEMWX |
|     |      | 16 | GND  | 32 | VCC    |

### 9、程序写入接口

用于 CPLD 程序写入及其调试,下面给出了接口的各管脚定义。

|         | 管脚 | 信号名称     | 管脚 | 信号名称     |
|---------|----|----------|----|----------|
| 1 0 0 2 | 1  | VCC3     | 2  | CPLD_TDI |
| 5 ● ● 6 | 3  | CPLD_TD0 | 4  | CPLD_TMS |
| JATG    | 5  | GND      | 6  | CPLD_TCK |

- 13 -

### 10、 USB接口(USB1)

本板提供了一个 2X5Pin 的 USB 设备插针,需使用转接电缆 将 USB 接口信号接到标准 USB 插座。下表给出了 USB 接口的管 脚定义。

| N: 11- | 管脚 | 信号名称 | 管脚 | 信号名称 |
|--------|----|------|----|------|
| 1 0 2  | 1  | +5V  | 2  | +5V  |
|        | 3  | D0-  | 4  | D1-  |
| 9 • 10 | 5  | D0+  | 6  | D1+  |
| USB1   | 7  | GND  | 8  | GND  |
| OBDI   | 9  | NC   | 10 | NC   |

### 11、 并口(LPT1)

本板提供了一组标准的 26 针并行插针,可根据你的需要连接并行接口外设。

|           | 管脚 | 信号名称   | 管脚 | 信号名称  |
|-----------|----|--------|----|-------|
|           | 1  | STROBE | 14 | AFD   |
| 1 🗆 14    | 2  | PDO 0  | 15 | Error |
|           | 3  | PD1 1  | 16 | INIT  |
| • •       | 4  | PD2 2  | 17 | SLIN  |
|           | 5  | PD3 3  | 18 | GND   |
|           | 6  | PD4 4  | 19 | GND   |
| • •       | 7  | PD5 5  | 20 | GND   |
|           | 8  | PD6 6  | 21 | GND   |
| • •       | 9  | PD7 7  | 22 | GND   |
| 13 • • 26 | 10 | ACK    | 23 | GND   |
|           | 11 | Busy   | 24 | GND   |
| LPT1      | 12 | PE     | 25 | GND   |
|           | 13 | SLCT   | 26 | N. C. |

#### 12、 串口

#### (1) 串口: COM1、COM3、COM4

主板上提供四个通讯串行口 COM1、COM3、COM4,可以连接具有 RS-232 标准接口的鼠标、调制解调器、数码相机等设备。

- 15 -

| (a) (b)   | 管脚 | 信号名称 | 管脚 | 信号名称 |
|-----------|----|------|----|------|
| 1 ▶ □ ● 2 | 1  | DCD  | 2  | RXD  |
|           | 3  | TXD  | 4  | DTR  |
| 9 • • 10  | 5  | GND  | 6  | DSR  |
|           | 7  | RTS  | 8  | CTS  |
| COM1~COM4 | 9  | RI   | 10 | N. C |

### (2) 串口: COM2

通过设置 JPCOM2 可使 COM2 工作在 RS-232/RS-422/RS-485 模式, 缺省值是 RS-232。

|          | 管脚    |        | 管 )    | 脚      |
|----------|-------|--------|--------|--------|
|          | E DAY | RS-232 | RS-422 | RS-485 |
|          | 1     | DCD    | TX-    | RTX-   |
| <u> </u> | 2     | RXD    | TX+    | RTX+   |
| 1 0 2    | 3     | TXD    |        |        |
|          | 4     | DTR    |        |        |
| 9 • 10   | 5     | GND    |        |        |
|          | 6     | DSR    |        |        |
| COM2     | 7     | RTS    |        |        |
|          | 8     | CTS    | RX+    | Х      |
|          | 9     | RI     | RX-    | Х      |
|          | 10    | N. C   |        |        |

- 16 -

### 13、 显示接口

### (1) LCD 输出接口

|            | 管脚 | 信号名称   | 管脚 | 信号名称    |
|------------|----|--------|----|---------|
|            | 2  | LCDVDD | 1  | LCDVDD  |
|            | 4  | VCC    | 3  | GND     |
|            | 6  | GND    | 5  | GND     |
|            | 8  | TFT_B0 | 7  | TFT_B1  |
|            | 10 | TFT_B2 | 9  | TFT_B3  |
|            | 12 | TFT_B4 | 11 | TFT_B5  |
| 2 (8 6 - 1 | 14 | TFT_B6 | 13 | TFT_B7  |
| 40         | 16 | TFT_G0 | 15 | TFT_G1  |
| 0000       | 18 | TFT_G2 | 17 | TFT_G3  |
| 00000      | 20 | TFT_G4 | 19 | TFT_G5  |
| 00000      | 22 | TFT_G6 | 21 | TFT_G7  |
| 40 8 39    | 24 | TFT_R0 | 23 | TFT_R1  |
| LCD        | 26 | TFT_R2 | 25 | TFT_R3  |
|            | 28 | TFT_R4 | 27 | TFT_R5  |
|            | 30 | TFT_R6 | 29 | TFT_R7  |
|            | 32 | GND    | 31 | GND     |
|            | 34 | TFTCLK | 33 | VSYNC_C |
|            | 36 | LDEMOD | 35 | HSYNC_C |
|            | 38 | VDDEN  | 37 | DISPEN  |
|            | 40 | VCON   | 39 | GND     |

- 17 -

### (2) LVDS 输出接口

|                    | 管脚 | 信号名称     | 管脚 | 信号名称     |
|--------------------|----|----------|----|----------|
|                    | 1  | LVDSD0+  | 2  | LVDSD0-  |
|                    | 3  | GND      | 4  | GND      |
| 2 (9 • 1           | 5  | LVDSD1+  | 6  | LVDSD1-  |
| 2 0 0 19           | 7  | GND      | 8  | GND      |
| 20 8 8 19          | 9  | LVDSD2+  | 10 | LVDSD2-  |
| 20 (8 8 19<br>LVDS | 11 | GND      | 12 | GND      |
| LVDS               | 13 | LVDSCLK+ | 14 | LVDSCLK- |
|                    | 15 | GND      | 16 | GND      |
|                    | 17 | LVDSD3+  | 18 | LVDSD3-  |
|                    | 19 | LCDVDD   | 20 | LCDVDD   |

### (3) VGA 显示输出接口

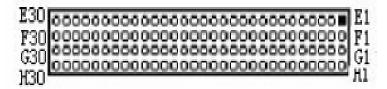
|          | 管脚 | 信号名称    | 管脚 | 信号名称  |
|----------|----|---------|----|-------|
| 1 • 🗖 2  | 1  | VSYNC   | 2  | HSYNC |
|          | 3  | DDCDATA | 4  | RED   |
| 9 • • 10 | 5  | DDCCLK  | 6  | GREEN |
| VGA      | 7  | +5V     | 8  | BLUE  |
|          | 9  | GND     | 10 | GND.  |

- 18 -

#### 14、 网络接口

主板上提供一个 10/100Mbps 以太网接口(LAN1),需使用随机 附带的转换电缆将接口信号接到标准的插座,下表给出了接口的管脚 定义。

|       | 管脚 | 信号名称     | 管脚 | 信号名称     |
|-------|----|----------|----|----------|
| .E.   | 1  | TXD+     | 2  | TXD-     |
|       | 3  | LAN_CON1 | 4  | LAN_CON1 |
|       | 5  | RXD+     | 6  | RXD-     |
| 11 12 | 7  | LAN_CON2 | 8  | LAN_CON2 |
| LAN1  | 9  | ACTLED   | 10 | +3. 3V   |
|       | 11 | LILED    | 12 | +3. 3V   |


### 15、 多功能接口

主板提供了一个多功能接口(CN1),用于连接键盘、鼠标、蜂鸣器和RESET,需要使用随单板电脑配置的多功能接口线连接各接口,以下给出了它各管脚的定义。

|          | 管脚 | 信号名称          | 管脚 | 信号名称           |
|----------|----|---------------|----|----------------|
| 1 10 0 2 | 1  | SPEAK-        | 2  | +5V            |
|          | 3  | Reset         | 4  | GND            |
| 9 • • 10 | 5  | Keyboard Data | 6  | Keyboard Clock |
| CN1      | 7  | GND           | 8  | Mouse Clock    |
|          | 9  | +5V           | 10 | Mouse Data     |

### 16、 PC104-PLUS 接口

支持 PC104-Plus 版本 2.0, PC104-Plus 接口管脚定义见下表。



| 管脚  | 信号名称      | 管脚  | 信号名称   | 管脚   | 信号名称     | 管脚  | 信号名称       |
|-----|-----------|-----|--------|------|----------|-----|------------|
| E1  | GNO       | F1  | NC     | G1   | VCC5     | H1  | AD00       |
| E2  | NC        | F2  | ADO2   | G2   | ADO1     | Н2  | VCC5       |
| E3  | AD05      | F3  | GND    | G3   | ADO4     | Н3  | AD03       |
| E4  | C/BE0#    | F4  | AD07   | G4   | GND      | H4  | AD06       |
| E5  | GND       | F5  | AD09   | G5   | ADO8     | Н5  | GND        |
| E6  | AD11      | F6  | NC     | G6   | AD10     | Н6  | NC         |
| E7  | AD14      | F7  | AD13   | G7   | GND      | Н7  | AD12       |
| E8  | VCC3      | F8  | C/BE1# | G8   | AD15     | Н8  | VCC3       |
| E9  | SERR#     | F9  | GND    | G9   | SBO#(NC) | Н9  | PAR        |
| E10 | GND       | F10 | PERR#  | G10  | VCC3     | H10 | SDONE (NC) |
| E11 | STOP#     | F11 | VCC3   | G11  | LOCK     | H11 | GND        |
| E12 | VCC3      | F12 | TRDY#  | G12  | GND      | H12 | DEVSEL     |
| E13 | FRAME#    | F13 | GND    | G13  | IRDY#    | H13 | VCC3       |
| E14 | GND       | F14 | AD16   | G14  | VCC3     | H14 | C/BE2#     |
| E15 | AD18      | F15 | VCC3   | G15  | AD17     | H15 | GND        |
| E16 | AD21      | F16 | AD20   | G16  | GND      | H16 | AD19       |
| E17 | VCC3      | F17 | AD23   | G17  | AD22     | H17 | VCC3       |
| E18 | IDSEL0    | F18 | GND    | G18  | IDSEL1   | H18 | IDSEL2     |
| E19 | AD24      | F19 | C/BE3# | G19  | NC       | H19 | IDSEL3     |
| E20 | GND       | F20 | AD26   | G20  | AD25     | H20 | GND        |
| E21 | AD29      | F21 | VCC5   | G21  | AD28     | H21 | AD27       |
| E22 | VCC5      | F22 | AD30   | G22  | GND      | H22 | AD31       |
| E23 | REQ0      | F23 | GND    | G23  | REQ1     | H23 | NC         |
| E24 | GND       | F24 | REQ2   | G24  | VCC5     | H24 | GNTO       |
| E25 | GNT1      | F25 | NC     | G25  | GNT2     | H25 | GND        |
| E26 | VCC5      | F26 | CLK0   | G26  | GND      | H26 | CLK1       |
| E27 | CLK2      | F27 | VCC5   | GC27 | CLK3     | H27 | GND        |
| E28 | GND       | F28 | INTD#  | G28  | VCC5     | H28 | RST#       |
| E29 | +12V      | F29 | INTA#  | G29  | INTB#    | H29 | INTC#      |
| E30 | -12V (NC) | F30 | REQ3   | G30  | GNT3     | H30 | GND        |

- 21 -

### 17、 CF 卡接口

COMPACT FLASH 卡是一种快速存储器,体积很小,使用方便,存储量随所用的卡变化,如 1M,256M 等。CF 卡插入时只能以一个方向插入(在板背面:用虚线表示 CF CARD)。

| 管脚 | 信号名称     | 管脚 | 信号名称     |
|----|----------|----|----------|
| 1  | GND      | 26 | NC       |
| 2  | IDESD3   | 27 | IDESD11  |
| 3  | IDESD4   | 28 | IDESD12  |
| 4  | IDESD5   | 29 | IDESD13  |
| 5  | IDESD6   | 30 | IDESD14  |
| 6  | IDESD7   | 31 | IDESD15  |
| 7  | IDESCS0X | 32 | IDESCS1X |
| 8  | GND      | 33 | NC       |
| 9  | GND      | 34 | IDESIORX |
| 10 | GND      | 35 | IDESIOWX |
| 11 | GND      | 36 | VCC3V    |
| 12 | GND      | 37 | IDESINTR |
| 13 | VCC3V    | 38 | VCC3V    |
| 14 | GND      | 39 | GND      |
| 15 | GND      | 40 | NC       |
| 16 | GND      | 41 | RST      |
| 17 | GND      | 42 | RDY      |
| 18 | A2       | 43 | NC       |
| 19 | A1       | 44 | VCC3     |
| 20 | A0       | 45 | LED      |
| 21 | D0       | 46 | CBLID    |
| 22 | D1       | 47 | D8       |
| 23 | D2       | 48 | D9       |
| 24 | NC       | 49 | D10      |
| 25 | NC       | 50 | GND      |

- 22 -

## 第四章

## BIOS 功能简介

主板 BIOS 相关功能简介请参照我公司的《AMI BIOS 设置指南》。

- 23 -

### 附录

#### Watchdog 编程指引

Smsc3114提供一个可按分或按秒计时的,最长达255级的可编程看门狗定时器(以下简称WDT)。通过编程,WDT超时事件可用来将系统复位或者产生一个可屏蔽中断。以下用C语言形式描述了WDT的编程。必须注意:在对WDT进行操作之前,需先进入WDT编程模式;在结束对WDT的操作之后,退出WDT。

对WDT的编程需遵循以下步骤:

进入WDT编程模式

设置WDT工作方式/启动WDT/关闭WDT

退出WDT编程模式

需要include 以下几个文件:

#include <stdio.h>

#include <dos.h>

#include <bios.h>

#include <stdlib.h>

#include <string.h>

# (1) 进入WDT编程模式,取得pm BASE, watchdog 的设置在pm\_base+offset register中。

```
outportb(0x2e,0x55); //进入WDT编程模式,在INDEX PORT 写0x55
//INDEX PORT [4e /2e], DATA PORT[4F/2F]
// INDEX中读入寄存器, DATA 向寄存器写入
数据。
```

outportb(0x2e,0x07); //reg0X07, 用来选择logic device

outportb(0x2f,0x0A); //选择logic deviceA,

outportb(0x2e,0x30); //reg0x30, 设备使能寄存器, 0=disable,

1=enable

outportb(0x2f,0x01); //enable deviceA

unsigned int base addr;

outportb (0x2e, 0x60); //reg60, get high base from this

```
register
base_addr=inportb(0x2f); //and save to global VAR pm_Base
pm_base=base_addr;
outportb(0x2e,0x61);
                      //reg61, get low base from this
register
base addr=inportb(0x2f); //and save to global VAR pm Base
pm_base=pm_base<<8;
pm_base=pm_base+base_addr;
#define WRITEREG(reg, val) {tmp_reg=pm_base+reg;
outportb(tmp_reg, val);}
(2) 设置WDT工作方式,复位或中断方式,选择一种:
a. 配置WDT成复位工作方式
WRITEREG (0x47, 0x0c)
           /* pm_base+offset 0x47
           register 0x47
           bit[0]in/out: 1=input, 0=output
           bit[1]polarity:1=invert , 0=no invert
           bit[3:2]Alternate Function Select
           11=WDT
           10=Either Edge Triggered Interrupt Input
           01=LED1
           00=GPI0
           bit[6:4] Reserved
           bit[7] Output Type Select
           1=Open Drain
           0=Push Pull
           */
b. 配置WDT成中断工作方式
```

irq=irq<<4;

```
WRITEREG(0x47,0x80) // pm_base+offset 0x47
       WRITEREG (0x67, irq)
                          // pm_base+offset 0x47
          /*
          register 0x67
          bit[7:4]WDT interrupt Mapping
          1111=IRQ 15
          . . . . . . .
          0011 = IRQ3
          0010=IRQ2
          0001 = IRQ1
          0000=Disable
其中, IRQ_RESOURCE =0: 禁止使用任何中断
(3) 选择WDT按分或按秒计时,选择一种:
a. 选择WDT按分计时用以下语句:
;假定已处于WDT编程状态
WRITEREG (0x65, 0)
          pm base+offset 0x65
          register 0x65, Watch Dog timeout
          bit[7]WDT timeout value Unit Select
          0=MInutes(default)
          1=Seconds
          */
b. 选择WDT按秒计时以下语句:
;假定已处于WDT编程状态
WRITEREG (0x65, 0x80)
(4) 启动/禁止WDT
;假定已处于WDT编程状态
WRITEREG(0x66, TIME-OUT-VALUE) ;// pm_base+offset 0x66
                                 //写入预设的时间
                             TIME-OUT-VALUE
```

注意: TIME-OUT-VALUE的取值范围从1到255, 计时单位为"分"或"秒"。如果TIME-OUT-VALUE为零,则禁止WDT。

TIME-OUT-VALUE为任何非零值都将启动WDT。

### (5) 退出WDT编程模式

outportb(0x2e, 0x00);

### I/0 口地址映射表

系统 I/O 地址空间总共有 64K,每一外围设备都会占用一段 I/O 地址空间。下表给出了本 CPU 卡部分设备的 I/O 地址分配,由于 PCI 设备 (PCI 网卡)的地址是由软件配置的,表中没有列出。

| 地址          | 设备描述                                      |
|-------------|-------------------------------------------|
| 020h - 021h | 可编程中断控制器#1                                |
| 040h - 043h | 系统计时器                                     |
| 060h - 060h | 标准 101/102 键或 Microsoft 键盘                |
| 064h - 064h | 标准 101/102 键或 Microsoft 键盘                |
| 070h - 071h | 系统 CMOS/实时钟                               |
| 081h - 083h | DMA 控制器#1                                 |
| 087h - 087h | DMA 控制器#2                                 |
| 089h - 08Bh | DMA 控制器#3                                 |
| 08Fh - 08Fh | DMA 控制器#4                                 |
| 0A0h - 0A1h | 可编程中断控制器#2                                |
| OCOh - ODFh | DMA 控制器#5                                 |
| 0F0h - 0FFh | 数据数值处理器                                   |
| 170h - 177h | 从 IDE 通道                                  |
| 1F0h - 1F7h | 主 IDE 通道                                  |
| 2E8h - 2EFh | 串行端口#4(COM4)                              |
| 2F8h - 2FFh | 串行端口#2(COM2)                              |
| 376h - 376h | 从 IDE 通道                                  |
| 378h - 37Fh | 并行端口#1(LPT1)                              |
| 3B0h - 3BAh | Advanced Micro Devices Win 2K/XP Graphics |
|             | Controller                                |
| 3C0h - 3DFh | Advanced Micro Devices Win 2K/XP Graphics |
|             | Controller                                |
| 3E8h - 3EFh | 串行端口#3(COM3)                              |

- 28 -

| 3F6h - 3F6h   | 主 IDE 通道                             |  |
|---------------|--------------------------------------|--|
| 3F8h - 3FFh   | 串行端口#1(COM1)                         |  |
| 480h - 48Fh   | DMA 控制器#6                            |  |
| EE00h - EEFFh | Realtek RTL8139(A) PCI Fast Ethernet |  |
| EF00h - EF7Fh | GeodeLX Audio Driver(WDM)            |  |
| FFE0h - FFEFh | 标准双通道 PCI IDE 控制器                    |  |

- 29 -

### IRQ 中断分配表

在 WINXP 系统中有如下的中断源。有些已被系统设备独占,只有未被独占的中断才可分配给其他设备使用。ISA 设备要求独占使用中断:只有即插即用 ISA 设备才可由 BIOS 或操作系统分配中断。而多个设备可共享同一中断,并由 BIOS 或操作系统分配。

| 级别    | 功能                                                   |
|-------|------------------------------------------------------|
| IRQ0  | 系统计时器                                                |
| IRQ1  | 标准 101/102 键或 Microsoft 键盘                           |
| IRQ3  | 通讯端口 (COM3)                                          |
| IRQ3  | 通讯端口(COM4)                                           |
| IRQ4  | 通讯端口 (COM1)                                          |
| IRQ4  | 通讯端口 (COM2)                                          |
| IRQ5  | Realtek RTL8139 Family PCI Fast Ethernet NIC         |
| IRQ5  | GeodeLX Audio Driver(WDM)                            |
| IRQ6  | Standard floppy disk controller                      |
| IRQ8  | 系统 CMOS/实时时钟                                         |
| IRQ9  | ACPI-Compliant System                                |
| IRQ10 | Advanced Micro Devices Win 2K/XP Graphics Controller |
| IRQ10 | Geode LX AES Crypto Driver                           |
| IRQ11 | Standard OpenHCD USB Host Controller                 |
| IRQ11 | Standard Enhanced PCI to USB Host Controller         |
| IRQ12 | PS/2 兼容型鼠标端口                                         |
| IRQ13 | 数据数值处理器                                              |
| IRQ14 | 主 IDE 通道                                             |

- 30 -