

MOS INTEGRATED CIRCUIT μ**PD75P238**

4-BIT SINGLE CHIP MICROCOMPUTER

DESCRIPTION

The μ PD75P238 is a version of the μ PD75238 in which the on-chip mask ROM is replaced by one-time PROM or EPROM.

The one-time PROM version can be written to once only, and is useful for short-run and multiple deviceproduction of sets and early start-up. Also, the EPROM version allows programs to be written and rewritten, and is thus ideal for system evaluation.

Functions are described in detail in the following User's Manual, which should be read when carrying out design work.

μPD75238 User's Manual : IEU-731

The μ PD75P238 EPROM product does not provide a level of reliability suitable for use as a volume production product for users' devices. The EPROM product should be used solely for function evaluation in experiments of preproduction.

FEATURES

- o μ PD75238 pin compatible o High-voltage display outputs o On-chip PROM: 32640 × 8 . S0 to S8 & T0 to T9 : Internal pull-down resistors o On-chip RAM: 1024×4
 - . S9, S16 to S23 & T10 to T15: Open-drain

o Drive capability in same supply voltage range as mask version μ PD75238 (2.7 to 6.0 V)

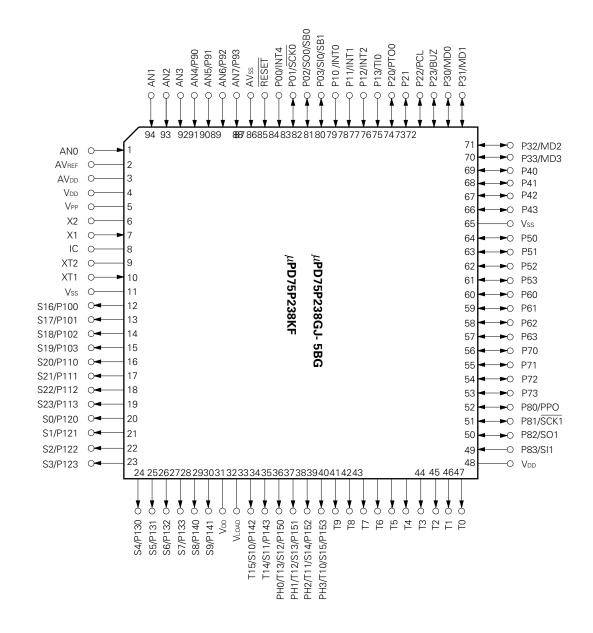
- o Ports 4 & 5: No pull-up resistor
- o Port 7: No pull-down resistor

No internal pull-up and pull-down resistor function by mask option. Note

USE

VCR, Audio-visual, ECR, Microwave oven

ORDERING INFORMATION

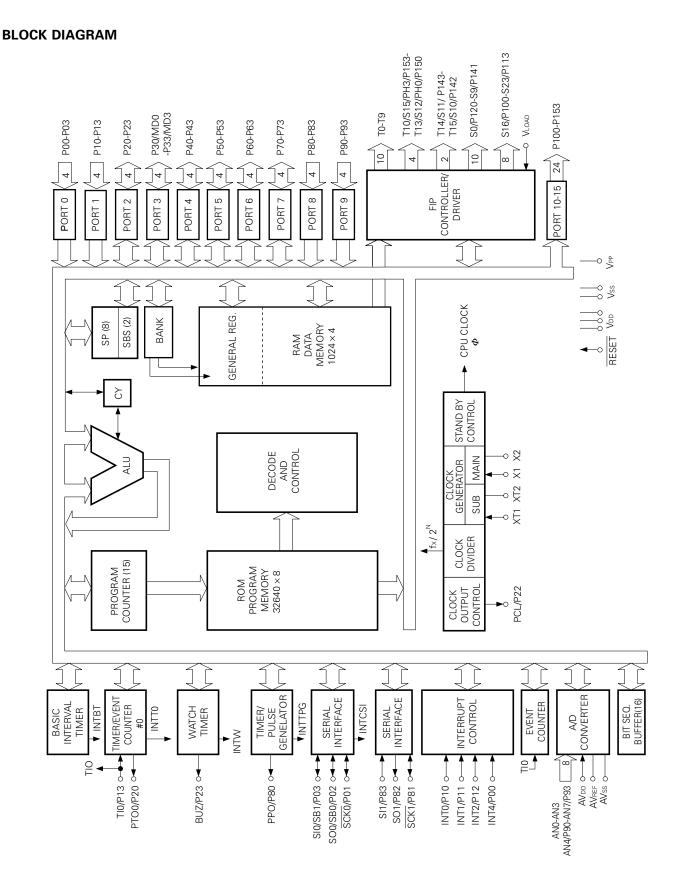

Ordering Code	Package	On-Chip ROM	Quality Grade	
μPD75P238GJ-5BG	94-pin plastic QFP(□20 mm)	One-time PROM	Standard	
μ PD75P238KF	94-pin ceramic WQFN	EPROM	Standard	

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

This manual describes common parts of One-time PROM and EPROM products as PROM.

The information in this document is subject to change without notice.

PIN CONFIGURATION (TOP VIEW)



Remarks IC (Internally Connected) pins should be connected directly to Vss.

PIN NAME

P00 to P03 :	Port0	SCK0, SCK1	:	Serial Clock I/O 0, 1
P10 to P13 :	Port1	SO0, SO1	:	Serial Data Output 0, 1
P20 to P23 :	Port2	SI0, SI1	:	Serial Data Input 0, 1
P30 to P33 :	Port3	SB0, SB1	:	Serial Bus I/O 0, 1
P40 to P43 :	Port4	INTO, INT1, INT4	:	External Vectored Interrupt Input 0, 1, 4
P50 to P53 :	Port5	INT2	:	External Test Input 2
P60 to P63 :	Port6	PPO	:	Programmable Pulse Output
P70 to P73 :	Port7	TIO	:	Timer Input 0
P80 to P83 :	Port8	PTO0	:	Programmable Timer Output 0
P90 to P93 :	Port9	BUZ	:	Buzzer Clock
P100 to P103 :	Port10	PCL	:	Programmable Clock Output
P110 to P113 :	Port11	AN0 to AN7	:	Analog Input 0 to 7
P120 to P123 :	Port12	AVREF	:	Analog Reference Voltage
P130 to P133 :	Port13	AVDD	:	Analog VDD
P140 to P143 :	Port14	AVss	:	Analog Vss
P150 to P153 :	Port15	X1, X2	:	Main System Clock Oscillation 1, 2
PH0 to PH3 :	PortH	XT1, XT2	:	Subsystem Clock Oscillation 1, 2
T0 to T15 :	Digit Output	RESET	:	Reset
S0 to S23 :	Segment Output	Vpp	:	Programming Power Supply
VDD :	Positive Power Supply	MD0 to MD3	:	Mode Selection 0 to 3
Vss :	Ground	IC	:	Internally Connected
VLOAD :	Power Supply for FIP Driver			

1. PIN FUNCTIONS

1.1 PORT PINS (1/2)

Pin Name	Input/Output	Dual-Function Pin	Function	8-Bit I/O	After Reset	Input/Output Circuit Type* 1
P00		INT4				B
P01		SCKO	4-bit input port (PORT0). Internal pull-up resistor specification by			(F) – A
P02	Input	SO0/SB0	software is possible for P01 to P03 as a 3- bit unit.	×	Input	(F) – B
P03		SI0/SB1				(M) – C
P10		INT0	With noise elimination function			
P11		INT1	4-bit input port (PORT1).			
P12	Input	INT2	Internal pull-up resistor specification by software is possible as a 4-bit unit.	×	Input	(B) – C
P13		TIO				
P20		PTO0				
P21		_	4-bit input/output port (PORT2).		Input	
P22	Input/output	PCL	Internal pull-up resistor specification by software is possible as a 4-bit unit.	×		E – B
P23		BUZ				
P30 to P33 * 2	Input/output	MD0 to MD3	Programmable 4-bit input/output port (PORT: Input/output settable bit-wise. Internal pull-up resistor specification by software is possible as a 4-bit unit.	3). ×	Input	E – C
P40 to P43 * 2	Input/output	_	N-ch open-drain 4-bit input/output port (PORT4). Data input/output pins for program memory write/verify (low-order 4 bits).		Input	M – A
P50 to P53 * 2	Input/output	_	N-ch open-drain 4-bit input/output port (PORT5). Data input/output pins for program memory write/verify (high-order 4 bits).	- 0	Input	M – A
P60 to P63	Input/output	_	Programmable 4-bit input/output port (PORTe Input/output settable bit-wise. Internal pull-up resistor specification by software is possible as a 4-bit unit.	s). O	Input	E – C
P70 to P73	Input/output	_	4-bit input/output port (PORT7).		Input	E

- * 1. A circle denotes Schmitt-triggerd input.
 - 2. Direct LED drive capability

1.1 PORT PINS (2/2)

Pin Name	Input/Output	Dual- Function Pin	Function	8-Bit I/O	After Reset	Input/Output Circuit Type* 1
P80	Input/output	PPO				А
P81	Input/output	SCK1				E
P82	Input/output	S01	4-bit input port (PORT8).	×	Input	E
P83	Input	SI1				B
P90 to P93	Input	AN4 to AN7	4-bit input port (PORT9).	×	Input	Y – A
P100 to P103	Output	S16 to S19	P-ch open-drain 4-bit high-voltage output port.		High	
P110 to P113	Output	S20 to S23	P-ch open-drain 4-bit high-voltage output port.	0	impedance	I – D
P120 to P123	Output	S0 to S3	P-ch open-drain 4-bit high-voltage output port. Internal pull-down resistors.	0	VLOAD	I – E
P130 to P133	Output	S4 to S7	P-ch open-drain 4-bit high-voltage output port. Internal pull-down resistors.		level	I – E
P140		S8			Vload Ievel	I – E
P141	Output	S9	P-ch open-drain 4-bit high-voltage output port. Internal pull-down resistor on P140 only.			I – D
P142* 2		S10/T15				
P143* 2		S11/T14		0		
P150* 2		S12/T13/PH0			High impedance	
P151* 2		S13/T12/PH1				
P152* 2	Output	S14/T11/PH2	P-ch open-drain 4-bit high-voltage output port.			I – D
P153* 2		S15/T10/PH3				
PH0		S12/T13/P150				
PH1	Output	S13/T12/P151	P-ch open-drain 4-bit high-voltage output port.		High	
PH2	ουτρατ	S14/T11/P152			impedance	I – D
PH3		S15/T10/P153				

* 1. A circle denotes Schmitt-triggerd input.

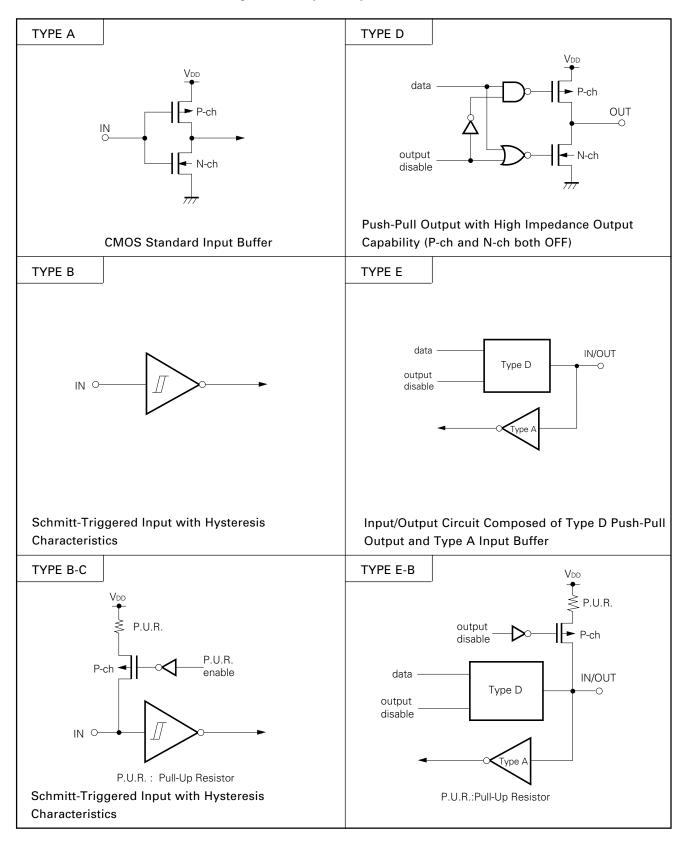
2. Direct LED drive capability.

1.2 NON-PORT PINS (1/2)

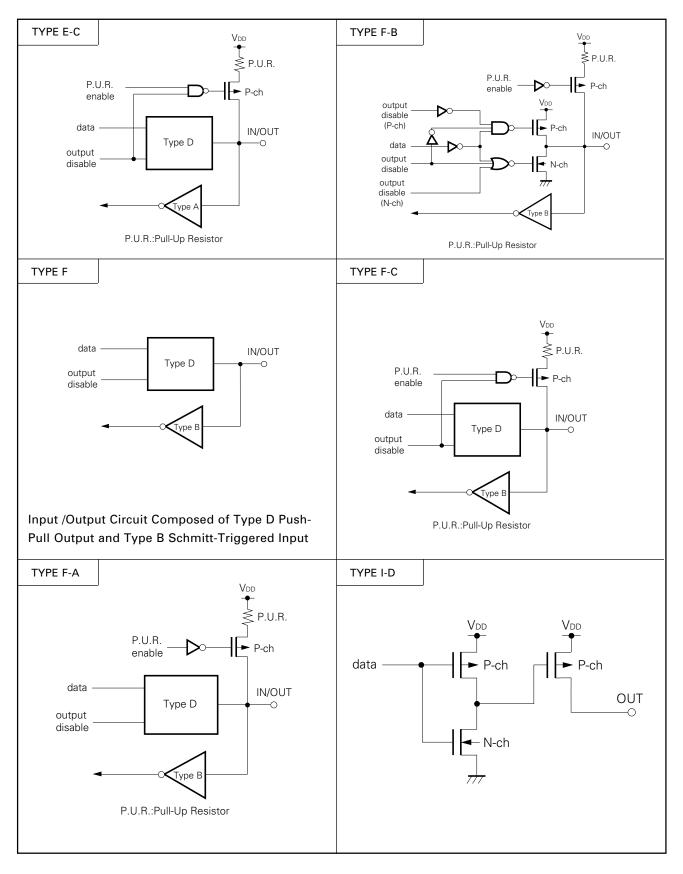
Pin Name	Input/Output	Dual- Function Pin	Function	After Reset	Input/Output Circuit Type*	
PPO	Output	P80	Timer/pulse generator pulse out	Input	А	
TIO	Input	P13	External event pulse input pin fo or event counter #1.	or timer/event counter #0		(B) – C
PTO0	Output	P20	Timer/event counter output pin.		Input	E – B
PCL	Output	P22	Clock output pin.		Input	E – B
BUZ	Output	P23	Fixed-frequency output pin (for trimming use).	buzzer or system clock	Input	E – B
SCK0	Input/output	P01	Serial clock input/output pin.		Input	(F) – A
SO0/SB0	Input/output	P02	Serial data output pin. Serial bus input/output pin.		Input	(F) – В
SI0/SB1	Input/output	P03	Serial data input pin. Serial bus input/output pin.		Input	(M) – C
INT4	Input	P00	Edge-detected vectored interrup or falling edge detection).	t input pin (either rising		B
INTO	Input	P10	Edge-detected vectored interrupt input pin (detected			(B) – C
INT1		P11	edge selectable).	Asynchronous		
INT2	Input	P12	Edge-detection testable input pin (rising edge detection).			(B) – C
SCK1	Input/output	P81	Serial clock input/output pin.	1	Input	F
S01	Output	P82	Serial data output pin.	Serial data output pin.		
SI1	Input	P83	Serial data input pin.		Input	B
AN0 to AN3					Y	
AN4 to AN7	- Input	P90 to P93	A/D converter analog input pin.			Y – A
AVREF	Input		A/D converter reference voltage	input pin.		z
AVDD			A/D converter power supply pin.			
AVss			A/D converter reference GND po	tential pin.		
X1, X2	Input		input. When an external clock is	Main system clock oscillation crystal/ceramic resonator input. When an external clock is used, the clock is input to X1 and the inverted clock to X2.		
XT1	Input		Subsystem clock oscillation crystal resonator input.			
XT2		+ <u> </u>	When an external clock is used, and XT2 is left open.			
RESET	Input		System reset input pin.		B	
MD0 to MD3	Input	P30 to P33	Mode selection pin for program	Mode selection pin for program memory write/verify.		
IC			Internally Connected . Connect t	o Vss directly.		
Vpp			Program voltage application pin write/verify . Connected to Vod in Applies +12.5 V in program men	n normal operation.		

 \star

* A circle denotes Schmitt-triggerd input.


1.2 NON-PORT PINS (2/2)

Pin Name	Input/Output	Dual- Function Pin	Function	After Reset	Input/Output Circuit Type
V _{DD} (3 pins)			Positive power supply pins. Apply +6 V in PROM write/verify.		
Vss (2 pins)			Ground potential pin.		
VLOAD			FIP controller/driver pull-down resistor connection/ power supply pin.		I – D
T0 to T9 *			Digit output high-voltage large large-current output pins.	V _{LOAD} level	I – E
T10/S15 to T13/S12		PH3/P153 to PH0/P150	Digit/segment output dual-function high-voltage large- current output pins. Unused pins usable as Port H. Usable as Port 15 in static mode.	High impedance	I – D
T14/S11		P143	Digit/segment output dual-function high-voltage large- current output pin.	High	I – D
T15/S10		P142	Usable as Port 14 in static mode.	impedance	I - D
S0 to S3 *	Output	P120 to P123		V _{LOAD} Ievel	I – E
S4 to S7 *	Calpar	P130 to P133		V _{LOAD} level	I – E
S8 *		P140	Segment high-voltage output pins. Usable as Port 12 to Port 14 in static mode.	V _{LOAD} level	I – E
S9		P141		High impedance	I – D
S16 to S19		P100 to P103		High impedance	I – D
S20 to S23		P110 to P113	Segment high-voltage output pins. Usable as Port 10 & Port 11 in static mode.	High impedance	I – D


* Internal pull-down resistor

1.3 PIN INPUT/OUTPUT CIRCUITS

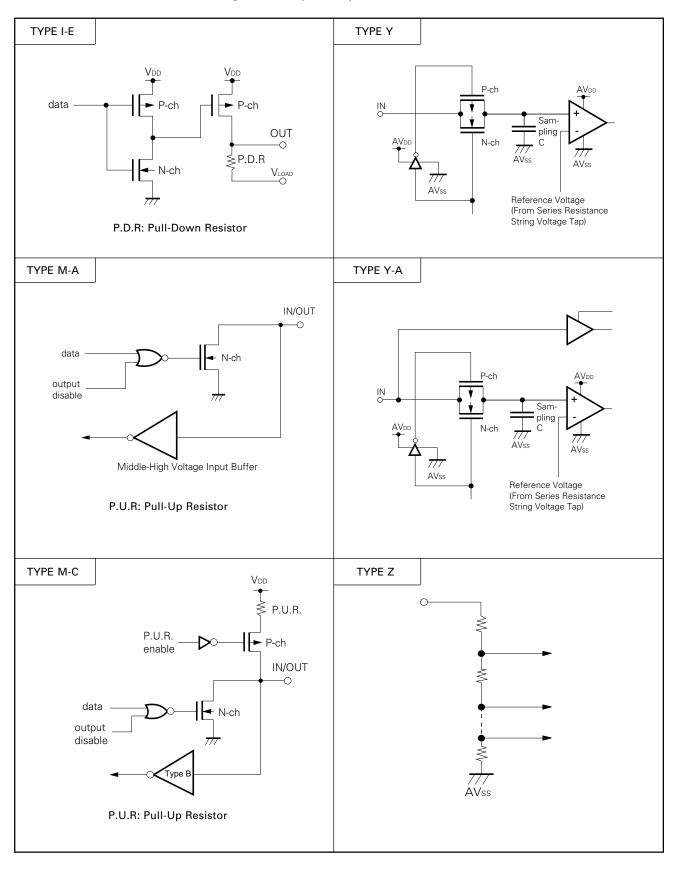

The input/output circuits for each of the pins are shown in Fig. 1-1 in partially simplified form.

Fig. 1-1 Pin Input/Output Circuits (1/3)

Fig. 1-1 Pin Input/Output Circuits (2/3)

Fig. 1-1 Pin Input/Output Circuits (3/3)

1.4 DISPOSITION OF UNUSED PIN

Pin	Recommended Connection
P00/INT4	Connect to Vss.
P01/SCK0	
P02/SO0/SB0	Connect to Vss or VDD.
P03/SI1/SB1	
P10/INT0 to P12/INT2	Connect to Vss.
P13/TI0	
P20/PTO0	
P21	
P22/PCL	
P23/BUZ	
P30 to P33	Input state : Connect to Vss or Vbb. Output state : Leave open.
P40 to P43	
P50 to P53	
P60 to P63	
P70 to P73	
P80 to PPO	
P81 to SCK1	
P82/SO1	Connect to Vss or Vdd.
P83/SI1	
P90/AN4 to P93/AN7	Connect to Vss.

Table 1-2 Recommended Commection of Unused Pins (1/2)

Pin	Recommended Connection		
P100/S16 to P103/S19			
P110/S20 to P113/S23			
P120 to P123	Leave open.		
P130 to P133			
P140 to P143			
P150 to P153			
AN0 to AN3			
AVref	Connect to Vss.		
AVDD	Connect to VDD.		
AVss	Connect to Vss.		
XT1	Connect to Vss or Vbb.		
XT2	Leave open.		
VLOAD	Connect to Vss or leave open.		
IC	Connect to Vss.		

Table 1-2 Recommended Commection of Unused Pins (2/2)

 \star

2. DIFFERENCES BETWEEN μ PD75P238 AND μ PD75238

The μ PD75P238 is a product with the program memory of the μ PD75238 using on-chip mask ROM replaced by one-time PROM or EPROM. Table 2-1 shows differences between μ PD75P238 and μ PD75238. The differences between these products must be thoroughly checked when, for example, switching from use of PROM for application system debugging and reproduction to use of a mask ROM product for volume production.

For details of CPU function and on-chip hardware, refer to the document "µPD75238 User's Manual" (IEU-731).

Product Name Parameter		μPD75238	μPD75P238	
ROM		Mask ROM 32K × 8	One-time PROM, EPROM 32K × 8	
RAM		1K × 4		
FIP controller/	No. of segments	9	9 to 24	
driver	No. of digits	9	9 to16	
Pull-up resistors	Ports 4 & 5		No	
	Port 7		No	
	S0 to S8		On-chip	
	S9	Mask option	No	
Pull-down resistors	S16 to S23		No	
	T0 to T9		On-chip	
	T10 to T15		No	
Pin connection	Pin 5	Vdd	Vpp	
rin connection	Pins 70 to 73	P30 to P33	P30/MD0 to P33/MD3	
Electrical specifica	tions	The mask ROM products and PROM products have different consumption currents, operating temperature range etc. See the Electrical Specifications section in the relevant Data Sheet for details.		
Operating supply v	voltage range	2.7 to	6.0 V	
Subsystem clock feedback resistor		Mask option	On-chip	
Package		94-pin plastic QFP (⊟20 mm)	94-pin plastic QFP (⊟20 mm) 94-pin ceramic WQFN	
Others		The mask ROM products and PROM products have different circuit scales and mask layouts, and therefore differ in terms of noise resistance and noise radiation.		

Table 2-1 Differences between μ PD75P238 and μ PD75238

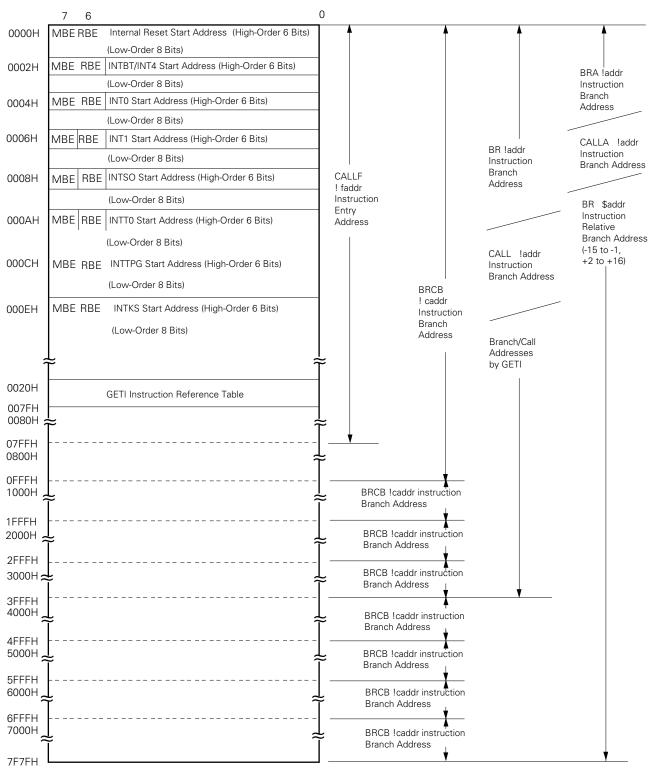
★ Note Noise resistance and noise radiation differs between the PROM products and mask ROM products. When investigating a switch from preproduction to volume production, throughout evaluation should be carried out with the mask ROM CS product (not the ES product).

*

 \star

3. PROGRAM MEMORY (PROM)

The program memory is PROM with a 32640 × 8-bit configuration wich stores program and table tata etc. The program memory is addressed by the program counter. In addition, table data can be referenced by a table referencing instruction (MOVT).


The rage of address to which branch instructions and subroutine call instructions and subroutine call instructions and subroutine call instructions can branch is shown in Fig. 3-1. The entire space comprising 0000H to 7F7FH can be directly branched to by the entire-space branch instruction (BRA !addr1) and the entire-space call instruction (CALLA !addr1). The relative branch instruction (BR \$addr) allows branching to addresses [PC contents -15 to -1 and +2 to +16] irrespective of block boundaries.

In addition, the following addresses are specially allocated (except for 0000H and 0001H, the entire area can be used as ordinary program memory).

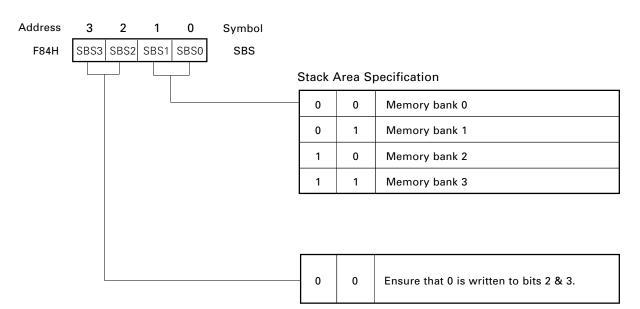
• Addresses 0000H & 0001H

Vector table to which the program start address and MBE & RBE set value upon RESET input are written. Reset servicing can be started from any address in the 16K (000H to 3FFFH).

- Addresses 0002H to 000FH
 Vector table to which the program start address and MBE & RBE set value for the various vectore interrupts are written. Interrupt servicing can be started from any address in the 16K space (0000H to 3FFFH).
- Addresses 0020H to 007FH Table area referenced by GETI instruction*.
- The GETI instruction allows any 2- or 3-byte instruction or any two 1-byte instructions to be implemented as 1 byte, and is used to reduce the number of program steps.

Fig. 3-1 Program Memory Map

Note The above interrupt vector start addresses are 14-bit, and thus should be set in the 16K space (0000H to 3FFFH).


Remarks In addition to the above, branching is possible with the BR PCDE and BR PCXA instructions to addresses with the low-order 8 bits only of the PC modified.

4. STACK BANK SELECTION REGISTER (SBS)

The stack bank selection register specifies one memory bank from memory banks 0 to 3 as the stack area. Its format is shown in Fig. 4-1.

The stack bank selection register is set by a 4-bit memory manipuration instruction. On RESET input bit only is set to "1" and the remaining bits are undefined. Therefore this register must always be initialized to 00××B* at the start of a program.

Fig. 4-1 Stack Bank Selection Register Format

Note After RESET input a subroutine call instruction and interrupt enabling instruction should be executed after setting the stack bank selection register.

* ×× should be set to the desired value.

5. PROGRAM MEMORY WRITE AND VERIFY OPERATIONS

The program memory incorporated in the μ PD75P238 is 32640 × 8-bit electrically writable PROM. Write/verify operations on this PROM are executed using the pins shown in the table below. Address updating is performed by means of clock input from the X1 pin rather than by address input.

Table 5-1 Pins Used for Program Memory Write/Verify

Pin Name	Function
Vpp	Voltage applecation pin for program memory write/verify (normally Vod potential).
X1, X2	Address update clock input for program memory write/verify. Inverse of X1 pin signal is input to X2 pin.
MD0 to MD3	Operating mode selection pin for program memory write/verify.
P40 to P43 (low-order 4 bits) P50 to P53 (high-order 4 bits)	8-bit data input/output pin for progrm memory write/verify.
Vdd	Supply voltage application pin. Applies 2.7 to 6.0 V in normal operation, and 6 V for program memory write/verify.

Note 1. Pins not used in a program memory write/verify operation are handled as follows:

Ports 0 to 2, ports 6 to 15	
T0 to T9, AN0 to AN3, XT1	•••••• Connect to GND
V_{LOAD} , AV_{REF} , AV_{SS} , \overline{RESET}	
AV _{DD} ·····	••••••••••••••••••••••••••••••••••••••
XT2 •••••	· · · · · · · · · · · · · · · · · · ·

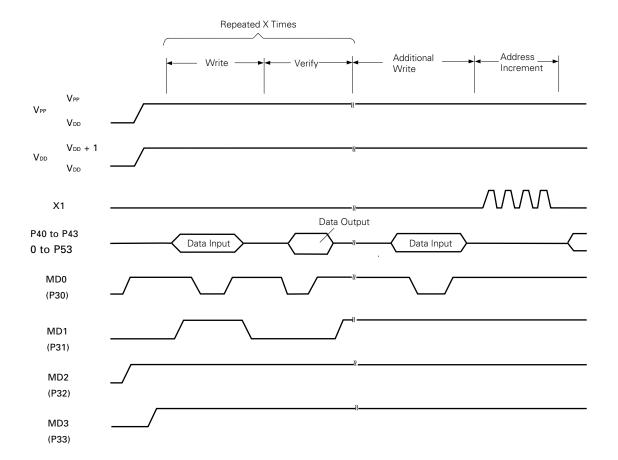
- 2. On the μ PD75P238KF which is equipped with an erase window the shading cover film should be attached except when performing EPROM erasure.
- 3. Since the μPD75P238GJ one-time PROM version is not provided with an erase window, program memory contents cannot be erased.

5.1 PROGRAM MEMORY WRITE/VERIFY OPERATING MODES

When +6 V is applied to the V_{DD} pin and +12.5 V to the V_{PP} pin, the μ PD75P238 enters the program memory write/ verify mode. This mode comprises one of the operating modes shown in Table 5-2 according to the setting of pins MD0 to MD3.

	Opera	ting Mod	Operating Mode				
Vpp	Vdd	MD0	MD1	MD2	MD3	Operating Mode	
		Н	L	Н	L	Program memory address zero-clear	
+ 12.5 V	+ 6 V	L	Н	н	н	Write mode	
1 12.0 V	+ 6 V	L	L	Н	Н	Verify mode	
		н	×	н	Н	Program inhibit mode	

Table 5-2 Program Memory Write/Verify Operating Modes

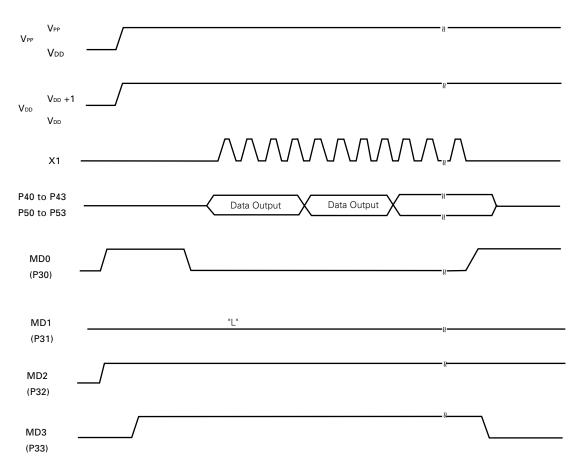

Remarks ×: L or H

5.2 PROGRAM MEMORY WRITE PROCEDURE

The procedure for writing to program memory is as shown below, allowing high-speed writing.

- (1) Unused pins are connected to Vss. The X1 pin is driven low.
- (2) 5 V is supplied to the V_DD and V_PP pins.
- (3) 10 μ s wait.
- (4) Program memory address zero-clear mode.
- (5) 6V is supplied to VDD, 12.5 V to VPP.
- (6) Program inhibit mode.
- (7) Data is written in 1 ms write mode.
- (8) Program inhibit mode.
- (9) Verify mode. If write is successful go to (10), otherwise repeat (7) to (9).
- (10) (Number of times written in (7) to (9): X) \times 1 ms additional writes.
- (11) Program inhibit mode.
- (12) Program memory address is updated (+1) by inputting 4 pulses to the X1 pin.
- (13) Steps (7) to (12) are repeated until the last address.
- (14) Program memory address zero-clear mode.
- (15) VDD / VPP pin voltage is changed to 5 V.
- (16) Power-off.

Steps (2) to (12) of this procedure are shown in Fig. 5-1.


Fig. 5-1 Program Memory Write Timing

5.3 PROGRAM MEMORY READ PROCEDURE

 μ PD75P238 program memory contents can be read using the following procedure. Reading is performed in verify mode.

- (1) Unused pins are connected to Vss. The X1 pin is driven low.
- (2) 5 V is supplied to the VDD and VPP pins.
- (3) 10 μs wait.
- (4) Program memory address zero-clear mode.
- (5) 6 V supplied to VDD, and 12.5 V to VPP.
- (6) Program inhibit mode.
- (7) Verify mode. When clock pulses are input to the X1 pin, data is output sequentially, one address per 4-pulse-input cycle.
- (8) Program inhibit mode.
- (9) Program memory address zero-clear mode.
- (10) V_{DD} / V_{PP} pin voltage is changed to 5 V.
- (11) Power-off.

Steps (2) to (9) of this procedure are shown in Fig. 5-2.

Fig. 5-2 Program Memory Read Timing

5.4 ERASURE (*μ***PD75P238KF ONLY)**

The Programmed data contents of the μ PD75P238KF can be erased by exposure to ultraviolet light through the window in the top.

The ultraviolet wave length which effects erasure is 250 nm, and the quantity of radiation necesary for complete erasure is 15 W•s/ cm² (ultraviolet radiation intensity x erasure time). Using a commercially available ultraviolet lamp (254 nm vavelength, 12 mW/cm² intensity) erasure can be accomplished in approximately 15 to 20 minutes.

- Note 1. Memory contents may also be erased by prolonged exposure to direct sunlight fluorescent lighting. To protect the contents ensure that the top window is masked with the shading cover film. The shading cover film supplied with NEC's UV EPROM products should be used.
 - 2. When carrying out erasure the distance between the ultraviolet lamp and the μ PD75P238KF should normally be no greater than 2.5 cm.
- **Remarks** A longer erasure time may be required if there is deterioration of the ultraviolet lamp, or if the package window is not clean, etc.

6. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

PARAMETER	SYMBOL		TEST COND	ITIONS	RATING	UNIT
	Vdd				-0.3 to +7.0	v
Supply voltage	VLOAD				V_{DD} –40 to V_{DD} +0.3	v
	Vpp				-0.3 to +13.5	V
	VI1	Except ports	4, 5		-0.3 to V _{DD} +0.3	V
Input voltage	Vı2	Ports 4, 5	Open-drain		-0.3 to +11	V
Output voltage	Vo	Pins except d	isplay output	t pins	-0.3 to V _{DD} +0.3	V
Output voltage	Vod	Display outpu	ut pins		V _{DD} -40 to V _{DD} +0.3	V
		1 pin except o	display outpu	ıt pins	-15	mA
Output current high		S0 to S9, S16	to S23 1 pin		-15	mA
	Іон	T0 to T15 1 p	in		-30	mA
		All pins except display output pins			-30	mA
		All display ou	ıtput pins		-120	mA
		1 nin		Peak value	30	mA
		1 pin		Effective value	15	mA
Output current	loL*	Total of part (0 2 2 4	Peak value	100	mA
low	IOL"	Total of port	0, 2, 3, 4	Effective value	60	mA
		Total of parts		Peak value	100	mA
		Total of port	5100	Effective value	60	mA
Operating temperature	T _{opt}			·	-40 to +70	°C
Storage temperature	T _{stg}				-65 to +150	°C

* The Effective value should be calculated as follows. [Effective value] = [Peak value] $\times \sqrt{\text{Duty}}$

Note Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter, or even momentarily. In other words, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute ratings are not exceeded.

 \star

OPERATING SUPPLY VOLTAGE RANGE (Ta = -40 to +70 °C)

PARAMETER	TEST CONDITIONS	MIN.	MAX.	UNIT
CPU* 1		*2	6.0	V
Display controller		4.5	6.0	V
Timer/pulse generator		4.5	6.0	V
Other hardware* 1		2.7	6.0	V

* 1. Except the system clock oscillator, display controller and timer/pulse generator.

2. The operating power supply voltage range varies depending on the cycle time. Refer to the section describing AC characteristics.

RESONATOR	RECOMMENDED CHARACTERISTICS	PARAMETER	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
	X1 X2	Oscillator frequency (f _x)* 1	V _{DD} = Oscillator voltage range	2.0		6.2	MHz
Ceramic resonator		Oscillation stabilization time* 2	After V _{DD} has reached MIN. value of oscillator voltage range.			4	ms
		Oscillator frequency (f _x)* 1		2.0	4.19	6.2	MHz
Crystal resonator		Oscillation stabilization time*2	V _{DD} = 4.5 to 6.0 V			10	ms
						30	ms
	X1 X2	X1 input frequency (f _x)* 1		2.0		6.2	MHz
External Clock		X1 input high and low level width (tхн, tх∟)		81		250	ns

- * **1.** Oscillator frequency and input frequency indicate oscillator characteristics only. Refer to the AC characteristics for the instruction execution time.
 - 2. Oscillation stability time is time required for oscillation to stabilize after VDD has reached the MIN. value in oscillation voltage range or STOP mode has been released.
- Note When the main system clock oscillator is used, the following should be noted concerning wiring in the area in the figure enclosed by a dotted line to prevent the influence of wiring capacitance, etc.
 - The wiring should be kept as short as possible.
 - No other signal lines should be crossed.
 - Keep away from lines caring a high fluctuating current.
 - The oscillator capacitor grounding point should always be at the same potential as Vss. Do not connect to a ground pattern carrying a high current.
 - A signal should not be taken from the oscillator.

★

SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS (Ta = -40 to +70 °C, VDD = 2.7 to 6.0 V)

RESONATOR	RECOMMENDED CHARACTERISTICS	PARAMETER	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Crystal resonator C3	XT1 XT2	Oscillator frequency (fx⊤)* 1		32	32.768	35	kHz
	R R	Oscillation	V _{DD} = 4.5 to 6.0 V		1.0	2	s
		stabilization time* 1				10	S
	XT1 XT2	XT1 input frequency (fxt)* 1		32		100	kHz
External Clock		X1 input high and low level width (txтн, txть)		5		15	μs

- * 1. Oscillator frequency and input frequency indicate oscillator characteristics only. Refer to the AC characteristics for the instruction execution time.
 - 2. Oscillation stability time is time required for oscillation to stabilize after VDD has reached the MIN. value in oscillation voltage range.
- Note When subsystem clock oscillator is used, the following should be noted concerning wiring in the area in the figure enclosed by a dotted line to prevent the influence of wiring capacitance, etc.
 - The wiring should be kept as short as possible.
 - No other signal lines should be crossed.
 - Keep away from lines caring a high fluctuating current.
 - The oscillator capacitor grounding point should always be at the same potential as Vss. Do not
 - connect to a ground pattern carrying a high current.
 - A signal should not be taken from the oscillator.

The subsystem clock oscillator is a low-amplitude circuit in order to achieve a low consumption current, and is more prone to misoperation due to noise than the main system, clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	Cı				15	pF
Output capacitance (Output except display output)	Co	f = 1 MHz			15	pF
Input/output capacitance	Сю	0 V for pins except measured pins			15	pF
Output capacitance (Display output)	Co				35	pF

CAPACITANCE (Ta =25 °C, VDD = 0 V)

RECOMMENDED OSCILLATOR CONTANTS

MAINSYSTEMCLOCK : CERAMIC RESONATOR (Ta = - 40 to + 85 °C)

MAUNFAC- TURER	PRODUCT NAME	FREQUENCY (MHz)	RECOMMENDED OSCILLATOR CONSTANTS(pF)		OSCILLATOR VOLTAGE RANGE(V)		REMARKS
			C1	C2	MIN.	MAX.	
	CSA2.0MG	2.0	30	30			
-	CST2.0MG	2.0	-	_		6.0	On-chip capacitor product
	CSA2.5MG093		30	30	2.7		
	CST2.5MGW093	2.5	_	_			On-chip capacitor product
	CSA4.19MGU		30	30			
Murata Mfg.	CST4.19MGWU	4.19	_	_			On-chip capacitor product
	CSA2.5MG		30	30			
	CST2.5MGW	2.5	_	_	3.0	6.0	On-chip capacitor product
	CSA4.19MG		30	30			
	CST4.19MGW	4.19	_	_	3.3	6.0	On-chip capacitor product
	CSA6.0MG		30	30	10		
	CST6.0MGW	6.00	_	_	4.0	6.0	On-chip capacitor product

MAIN SYSTEM CLOCK : CRYSTAL RESONATOR (Ta = - 20 to + 70 °C)

MAUNFAC- TURER	PRODUCT NAME	FREQUENCY (MHz)	RECOMMENDED OSCILLATO OSCILLATOR VOLTAGE CONSTANTS(pF) RANGE(V)		TAGE	REMARKS	
			C1	C2	MIN.	MAX.	
Kinseki, Ltd.	HC-49/U-S	3.072 to 6.000	22	22	4.0	6.0	

DC CHARACTERISTICS (Ta = -40 to +70 °C, V_{DD} = 2.7 to 6.0 V) (1/3)

PARAMETER	SYMBOL	TEST	T COND	ITIC	NS	MIN.	TYP.	MAX.	UNIT
	VIH1	All ports and listed below.	pins exc	cept	those	0.7 Vdd		Vdd	V
	VIH2	Port 0, 1, RES	ET, P81,	, P8	3	0.8 Vdd		Vdd	V
lnput voltage high	VIH3	X1, X2, XT1				Vdd -0.4		Vdd	V
ingn	VIH4	Port 7		Vdd 6.0	= 4.5 to V	0.65 VDD		Vdd	V
						0.7 VDD		Vdd	V
	Vih5	Port 4, 5		Ор	en-drain	0.7 VDD		10	V
Input voltage	VIL1	All ports and listed below.	pins exc	cept	those	0		0.3 V _{DD}	V
low	VIL2	Port 0, 1, RES	Port 0, 1, RESET, P81, P83			0		0.2 V _{DD}	V
	VIL3	X1, X2, XT1			0		0.4	V	
Output voltage	Vон	All output pins, except	V _{DD} = -		Іон = -1 mA	V _{DD} -1.0			V
high		port 4, 5 and P03	V _{DD} = 2 to 6.0		Іон = –100 μA	V _{DD} -0.5			V
		Ports 3, 4, 5	V _{DD} = -		Іон = 15 mA		0.4	2.0	V
Output voltage		All output	V _{DD} = - to 6.0		lo∟ = 1.6 mA			0.4	V
low	Vol	pins	V _{DD} = 2 to 6.0		lol = 400 μA			0.5	V
		SB0, SB1	Open- pull-u resisto	р				0.2 V _{DD}	V
Input leakage current high	Цинт	All ports and pins except those listed below.	Vin = V	√dd				3	μΑ
ourient nigh	ILIH2	X1, X2, XT1						20	μA
	Ілнз	Ports 4, 5	Vin =	10 \	V			20	μA
Input leakage current low	luc1	All ports and pins except those listed below.	Vin = C	Vin = 0 V				-3	μΑ
		X1, X2, XT1	1					-20	μA

DC CHARACTERISTICS (Ta = -40 to +70 °C, V_{DD} = 2.7 to 6.0 V) (2/3)

PARAMETER	SYMBOL	TEST	CONDITI	ONS	MIN.	TYP.	MAX.	UNIT
Output leakage current high	Ісон1	All ports and pins except those listed below.	Vout = V	DD			3	μΑ
	Ігона	Port 4, 5	Vout = 1	0 V			20	μA
Output leakage current low	Ιίοι	All ports and pins except those listed below.	Vout = 0 V				-3	μΑ
	ILOL2	Display output	$V_{\text{OUT}} = V_{\text{LOAD}} = V_{\text{DD}} - 35 \text{ V}$				-10	μA
Display output current	Гор	S0 to S9, S16 to S23		5 to 6.0 V	-3	-5.5		mA
		T0 to T15	Vod = Vd	d – 2 V	-15	-22		mA
On-chip pull-down resistor (Mask option)	RL	Display output	Vod – Vload = 35 V		25	50	135	kΩ
On-chip pull-up		Port 0, 1, 2, 3,			15	40	80	kΩ
resistor	R∨1	6 (Except P00) V _{IN} = 0 V	$V_{\text{DD}} = 3 \text{ V} \pm 10\%$		30		300	kΩ
			Operat- ing mode	$V_{DD} = 5V \pm 10\%*2$		9	18	mA
		6MHz crystal oscillation		V _{DD} = 3 V ±10%* 3		1	3	mA
		C1 = C2 = 22 pF* 4	HALT	V _{DD} = 5 V ±10%		900	2700	μA
Power supply current*1	IDD2		mode	V _{DD} = 3 V ±10%		300	900	μΑ
			Operat-	$V_{DD} = 5 V \pm 10\%*2$		5	15	mA
	Iddi	4.19MHz crystal	ing mode	V _{DD} = 3 V ±10%* 3		0.9	2.7	mA
-		oscillation C1 = C2 = 22 pF* 4	HALT	V _{DD} = 5 V ±10%		600	1800	μΑ
	IDD2		mode	V _{DD} = 3 V ±10%		200	600	μA

* 1. Current to the on-chip pull-down resistor (pull-up) and power-on reset circuit (mask option) is not included.

2. When the processor clock control register (PCC) is set to 0011 and is operated at high-speed mode.

3. When the PCC register is set to 0000 and is operated in the low-speed mode.

4. Includes the case where the subsystem clock oscillating.

DC CHARACTERISTICS (Ta = -40 to +70 °C, VDD = 2.7 to 6.0 V) (3/3)

PARAMETER	SYMBOL	TEST	TEST CONDITIONS			TYP.	MAX.	UNIT
Power supply	Годз	32 kHz crystal	Operat- ing mode	V _{DD} = 3 V ±10%		100	300	μΑ
	IDD4	oscillation* 2	HALT mode	V _{DD} = 3 V ±10%		20	60	μΑ
current*1			$V_{DD} = 5 V$	±10%		0.5	20	μA
	IDD5	XT1 = 0 V STOP mode	V _{DD} = 3 V	,		0.3	10	μΑ
			±10%	Ta = 25°C			5	μA
	Idd6	32 kHz crystal oscillation *2	STOP mode	V _{DD} = 3 V ±10%		5	15	μΑ

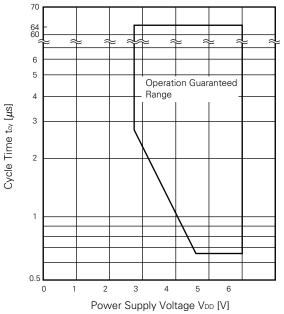
* 1. Current to the on-chip pull-down resistor (pull-up) and power-on reset circuit (mask option) is not included.

2. When the system clock control register (SCC) is set to 1001 and is operated with the subsystem clock with main system clock oscillation stopped.

PARAMETER	SYMBOL	TEST COM	NDITIONS	MIN.	TYP.	MAX.	UNIT
Resolution				8	8	8	bit
Absolute accuracy*1		$2.5 \text{ V} \leq \text{AV}_{\text{REF}} \leq \text{V}_{\text{DD}}$	$-10 \le Ta \le +70^{\circ}C$			±1.5	LSB
			–40 ≤ Ta < −10°C			±2.0	LJD
Conversion time	t CONV	*2			168/fx	μs	
Sampling time	t samp	*3				44/f ×	μs
Analog input voltage	VIAN			AVss		AVREF	v
Analog input impedance	Ran				1000		MΩ
AVREF current	Iaref				1.0	2.0	mA

A/D CONVERTER CHARACTERISTICS (Ta = -40 to +70 °C, Vdd = 2.7 to 6.0 V, AVss = Vss = 0 V, 2.7 \leq AVdd \leq Vdd)

- * 1. Absolute accuracy except quantization error (\pm 1/2 LSB).
 - 2. Time from execution of conversion start instruction to EOC = 1 (28.0 μ s when fx = 6.0 MHz, 40.1 μ s when fx = 4.19 MHz)
 - 3. Time from execution of conversion start instruction to the end of sampling (7.33 μ s when fx = 6.0 MHz, 10.5 μ s when fx = 4.19 MHz)


AC CHARACTERISTICS (Ta = -40 to +70 °C, VDD = 2.7 to 6.0 V)

(1) Basic Operation

PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
CPU clock cycle time (minimum instruction execution time	tcy	Operation with main system clock	VDD = 4.75 to 6.0 V	0.67		64	μs
				2.6		64	μs
= one machine cycle)* 1		Operation with subsystem clock		114	122	125	μs
TI0 input frequency	fтı	V _{DD} = 4.5 to 6.0 V		0		1	MHz
				0		275	kHz
TI0 input high and low-level widths	tтıн, tтıL	VDD = 4.5 to 6.0 V		0.48			μs
				1.8			μs
Interrupt input high and low-level widths	tinth, tintl	INTO		*2			μs
		INT1, 2, 4		10			μs
RESET low level widths	trs∟			10			μs

- * 1. CPU clock (Φ) cycle time is determined by the oscillator for frequency of the connected oscillator, the system clock control register (SCC) and processor clock control register (PCC). The cycle time tcy characteristics for supply voltage VDD when the main system clock is in operation is shown on the right.
 - 2tcy or 128/fx is set by interrupt mode register (IM0) setting.

(2) Serial Transfer Operation

(a) 2-Wired and 3-Wired Serial I/O Modes (SCK ... Internal clock output)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
SCK cycle time	tkcy1	V _{DD} = 4.5 to 6.0 V	fx = 6.0 MHz	1340			ns
			fx = 4.19 MHz	1600			ns
			fx = 6.0 MHz	2680			ns
			fx = 4.19 MHz	3800			ns
SCK high and low level widths	tкl1 tкн1	V _{DD} = 4.5 to 6.0 V		(tксү1/2) -50			ns
				(tксү1/2) -150			ns
SI setup time (to SCK↑)	tsıkı			150			ns
SI hol <u>d time</u> (from SCK↑)	tksi1			400			ns
SO output delay <u>tim</u> e from SCK↓	tkso1	$R_L = 1 k\Omega$,	V _{DD} = 4.5 to 6.0 V			250	ns
		C∟ = 100 pF*				1000	ns

* R_{L} and C_{L} denote load resistor and load capacitance of SO output line.

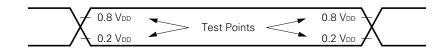
(b) 2-Wired and 3-Wired Serial I/O Modes (SCK ... External clock input)

PARAMETER	SYMBOL	TEST CONI	MIN.	TYP.	MAX.	UNIT	
SCK cycle time	tксү2	V _{DD} = 4.5 to 6.0 V		800			ns
				3200			ns
SCK high and low level widths	tкL2 tкH2	V _{DD} = 4.5 to 6.0 V		400			ns
				1600			ns
SI s <u>etup</u> time (to SCK↑)	tsik2			100			ns
SI hol <u>d tim</u> e (from SCK↑)	tksi2			400			ns
SO output delay <u>tim</u> e from SCK↓	tĸso2	$\label{eq:RL} \begin{array}{l} R_L = 1 \ k\Omega \ , \\ C_L = 100 \ pF* \end{array}$	V _{DD} = 4.5 to 6.0 V			300	ns
						1000	ns

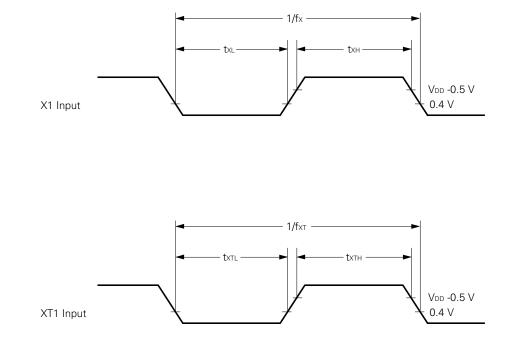
* R_L and C_L denote load resistor and load capacitance of SO output line.

(c) SBI Mode (SCK ... Internal clock output (Master))

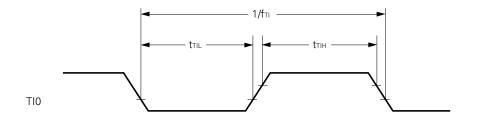
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
SCK cycle time		V _{DD} = 4.5 to 6.0 V	fx = 6.0 MHz	1340			ns
			fx = 4.19 MHz	1600			ns
	tксүз		fx = 6.0 MHz	2680			ns
			fx = 4.19 MHz	3800			ns
 SCK high and low	tкlз	V _{DD} = 4.5 to 6.0 V		tксүз/2-50			ns
level widths	tкнз			tксүз/2-150			ns
SB0 <u>, 1</u> setup time (to SCK ↑)	tsıкз			150			ns
SB0, 1 <u>hol</u> d time (from SCK ↑)	tкsıз			tксүз/2			ns
SB0, 1 output <u>dela</u> y time from SCK↓	tкsoз	R∟ = 1 kΩ, C∟ = 100 pF*	V _{DD} = 4.5 to 6.0 V	0		250	ns
		CL = 100 pr*		0		1000	ns
SB0, 1↓ from SCK ↑	tкsв			tксүз			ns
$\overline{\text{SCK}}$ from SB0, 1 \downarrow	tsвк			tксүз			ns
SB0, 1 low level widths	tsbl			tксүз			ns
SB0, 1 high level widths	tsвн			tксүз			ns


* R_{L} and C_{L} denote load resistor and load capacitance of SO output lines.

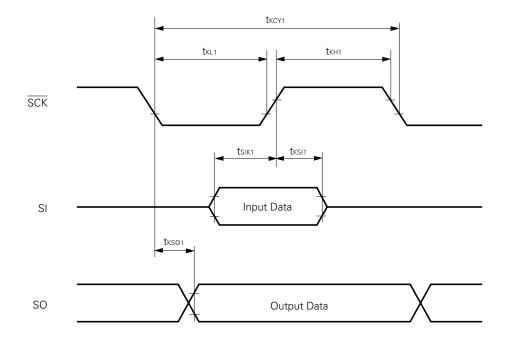
(d) SBI Mode (SCK ... External clock input (Slave))


PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
SCK cycle time	tксү4	V _{DD} = 4.5 to 6.0 V		800			ns
				3200			ns
SCK high and low	tкL4 tкн4	V _{DD} = 4.5 to 6.0 V		400			ns
	LKH4			1600			ns
SB0, 1 setup time (to SCK ↑)	tsik4			100			ns
SB0, 1 <u>hol</u> d time (from SCK ↑)	tksi4			tксү4/2			ns
SB0, 1 output delay time from SCK ↓	tkso4	RL = 1 kΩ CL = 100 pF*	V _{DD} = 4.5 to 6.0 V	0		300	ns
				0		1000	ns
SB0, 1 \downarrow from SCK \uparrow	tкsb			t ксү4			ns
$\overline{\text{SCK}}\downarrow$ from SB0, 1 \downarrow	tsвк			t ксү4			ns
SB0, 1 low level widths	tsbl			t ксү4			ns
SB0, 1 high level widths	tsвн			tkcy4			ns

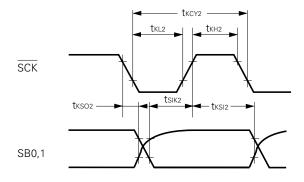
* R_{L} and C_{L} denote load resistor and load capacitance of SO output lines.


AC Timing Test Points (Except X1 and XT1 Inputs)

Clock Timings

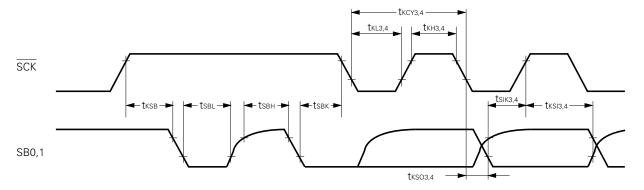


TI0 Timing

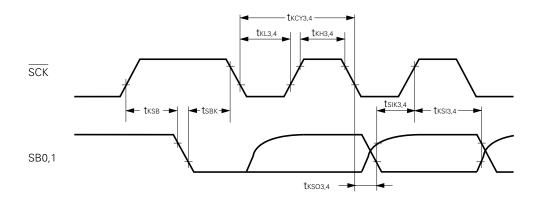


Serial Transfer Timing

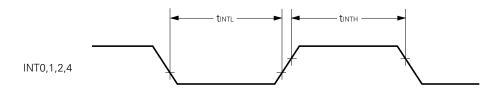
3-wired serial I/O mode:

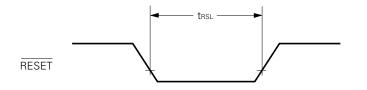


2-wired serial I/O mode:



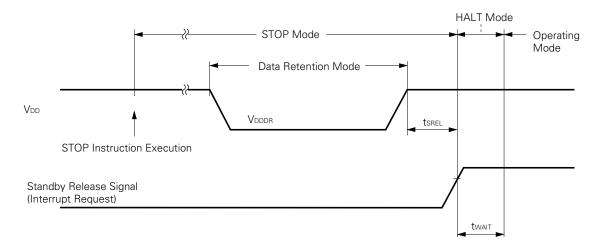
Serial Transfer Timing


Bus release signal transfer:

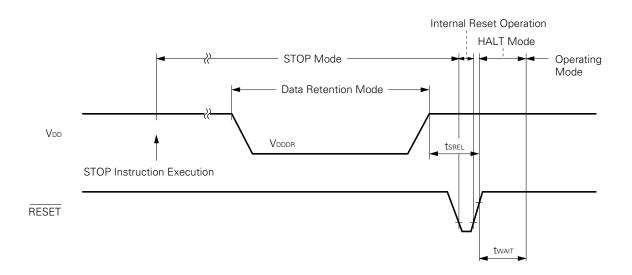

Command signal transfer:

Interrupt Input Timing

RESET Input Timing


DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS (Ta = -40 to 70 °C)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Data retention power supply voltage	Vdddr		2.0		6.0	v
Data retention power supply current* 1	Idddr	VDDDR = 2.0 V		0.1	10	μΑ
Release signal set time	tsrel		0			μs
Oscillation		Release by RESET		2 ¹⁷ /fx		ms
stabilization wait time* 2	twait	Release by interrupt request		*3		ms


- * 1. Current to the on-chip pull-up resistor and power-on reset circuit (mask option) is not included.
 - 2. Oscillation stability wait time is time to stop CPU operation to prevent unstable operation upon oscillation start.
 - **3.** According to the setting of the basic interval timer mode register (BTM). (see below)

втмз	BTM2	BTM1	BTM0	Wait Time		
D I IVI3	D I IVIZ	БТИТ	BINU	Values at fx = 6.0 MHz in Parentheses	Values at fx = 4.19 MHz in Parentheses	
—	0	0	0	2 ²⁰ /fx (approx. 175 ms)	2²º/fx (approx. 250 ms)	
_	0	1	1	2 ¹⁷ /fx (approx. 21.8 ms)	2 ¹⁷ /fx (approx. 31.3 ms)	
_	1	0	1	2 ¹⁵ /fx (approx. 5.46 ms)	2 ¹⁵ /fx (approx. 7.82 ms)	
_	1	1	1	2 ¹³ /fx (approx. 1.37 ms)	2 ¹³ /fx (approx. 1.95 ms)	

Data Retention Timing (STOP mode release by RESET)

Data Retention Timing (Standby release signal: STOP mode release by interrupt signal)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input voltage	VIH1	Except X1 and X2	0.7 Vdd		VDD	V
high	VIH2	X1, X2	VDD -0.5		Vdd	V
Input voltage	VIL1	Except X1 and X2	0		0.3 VDD	V
low	VIL2	X1, X2	0		0.4	v
Input leakage current	lu -	VIN = VIL OR VIH			10	μA
Output voltage high	Vон	Іон = -1 mA	V _{DD} -1.0			V
Output voltage low	Vol	Іон = 1.6 mA			0.4	V
VDD supply current	Іор				30	mA
VPP supply current	Грр	MD0 = VIL, MDI =VIH			30	mA

DC PROGRAMMING CHARACTERISTICS (Ta = 25 \pm 5 °C, Vdd = 6.0 \pm 0.25 V, VpP = 12.5 \pm 0.3 V, Vss = 0 V)

Note 1. VPP, including overshoot, should not exceed +13.5 V.

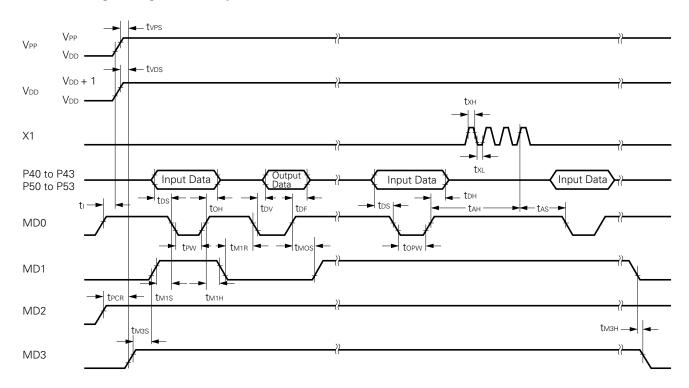
2. VDD should be applied before VPP and cut after VPP.

AC PROGRAMMING CHARACTERISTICS (Ta = 25 \pm 5 °C, Vdd = 6.0 \pm 0.25 V, Vpp = 12.5 \pm 0.3 V, Vss = 0 V) (1/2)

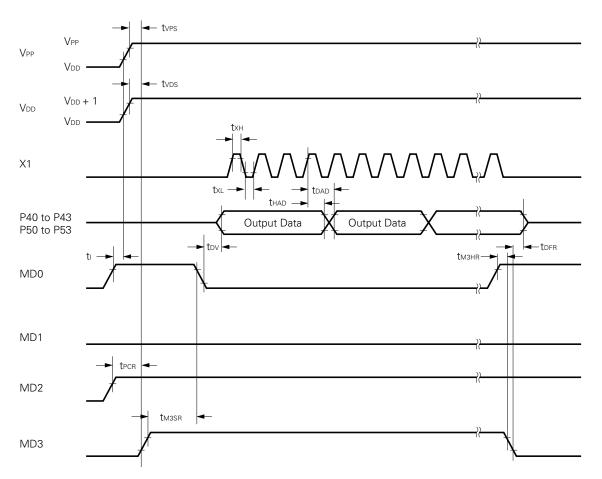
PARAMETER	SYMBOL	*1	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Address setup time* 2 (to MD0 ↓)	tas	tas		2			μs
MD1 setup time (to MD0 \downarrow)	t мıs	toes		2			μs
Data setup time (to MD0 \downarrow)	tos	tos		2			μs
Address hold time* 2 (from MD0 ↑)	tан	tан		2			μs
Data hold time (from MD0 ↑)	tон	tон		2			μs
Data output float delay time from MD0 ↑	t df	t df		0		130	ns
V _{PP} setup time (to MD3 ↑)	tvps	tvps		2			μs
V _{DD} setup time (to MD3 ↑)	tvds	tvcs		2			μs
Initial program pulse widths	tpw	tpw		0.95	1.0	1.05	ms
Additional program pulse widths	topw	topw		0.95		21.0	ms
MD0 setup time (to MD1 \uparrow)	tмos	tces		2			μs
Data output delay time from MD0 \downarrow	tov	tov	MD0 = MD1 = VIL			1	μs

* **1**. The corresponding μ PD27C256 symbol.

^{2.} Internal address signal is incremented by one on the rise of fourth X1 input and is not connected to the pin.

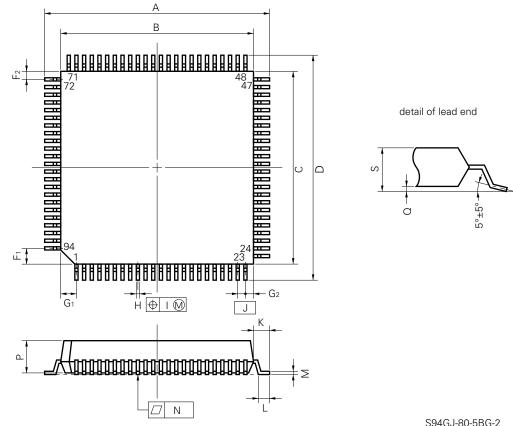

AC PROGRAMMING CHARACTERISTICS (Ta = 25 \pm 5 °C, Vdd = 6.0 \pm 0.25 V, Vpp = 12.5 \pm 0.3 V, Vss = 0 V) (2/2)

PARAMETER	SYMBOL	*1	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
MD1 hold time (from MD0 ↑)	tм1н	tоен		2			μs
MD1 recovered time (to MD0 ↓)	tm1R	tor	tm1h + tm1r ≥ 50 μs	2			μs
Program counter reset time	t PCR			10			μs
X1 input high and low level widths	txн, txL			0.125			μs
X1 input frequency	fx					4.19	MHz
Initial mode set time	tı			2			μs
MD3 setup time (to MD1 1)	tмзs			2			μs
MD3 hold time (from MD1 ↓)	tмзн			2			μs
MD3 setup time (to MD0 \downarrow)	tмзsr		When reading program memory	2			μs
Data output delay time from address*2	t DAD	tacc	When reading program memory	2			μs
Data output hold time from address *2	thad	tон	When reading program memory	0		130	ns
MD3 hold time (from MD0↑)	tмзнк		When reading program memory	2			μs
Data output float delay time from MD3↓	t dfr		When reading program memory	2			μs


* **1**. The corresponding μ PD27C256 symbol.

2. Internal address signal is incremented by one on the rise of fourth X1 input and is not connected to the pin.

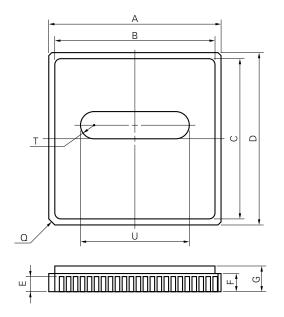
Write Timing of Program Memory

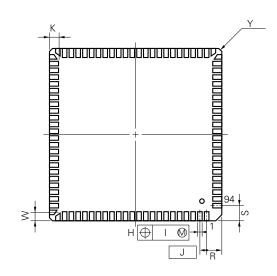


Read Timing of Program Memory

7. PACKAGE INFORMATION

94 PIN PLASTIC QFP (□20)




NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM		S94GJ-80-5BG-2
TIEW	MILLIMETERS	
А	23.2±0.4	$0.913^{+0.017}_{-0.016}$
В	20.0±0.2	0.787 ^{+0.009} 0.008
С	20.0±0.2	0.787 ^{+0.009} 0.008
D	23.2±0.4	0.913 ^{+0.017} 0.016
F1	1.6	0.063
F2	0.8	0.031
G1	1.6	0.063
G2	0.8	0.031
Н	0.35±0.10	0.014 ^{+0.004} 0.005
I	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
К	1.6±0.2	0.063±0.008
L	0.8±0.2	0.031+0.009
М	0.15 +0.10 -0.05	0.006 +0.004 -0.003
N	0.12	0.005
Р	3.7	0.146
Q	0.1±0.1	0.004±0.004
S	4.0 MAX.	0.158 MAX.

94 PIN CERAMIC WQFN

NOTE

Each lead centerline is located within 0.08 mm (0.003 inch) of its true position (T.P.) at maximum material condition.

X94KW-80A-1

ITEM	MILLIMETERS	INCHES
Α	20.0±0.4	0.787 ^{+0.017} -0.016
В	18.0	0.709
С	18.0	0.709
D	20.0±0.4	$0.787^{+0.017}_{-0.016}$
E	1.94	0.076
F	2.14	0.084
G	4.064 MAX.	0.160 MAX.
Н	0.51±0.10	0.020±0.004
I	0.08	0.003
J	0.8 (T.P.)	0.031 (T.P.)
K	1.0±0.2	0.039 ^{+0.009} _{-0.008}
Q	C 1.0	C 0.039
R	1.6	0.063
S	1.6	0.063
Т	R 1.75	0.069
U	11.5	0.453
W	0.75±0.2	0.030+0.008

 \star

8. RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the conditions recommended in the table below. For details of recommended soldering conditions, refer to the **information document "Surface Mount Technol-ogy Manual"** (IEI-1207).

For soldering methods and conditions other than those recommended below, contact our salesman.

Table 8-1 Surface Mount Type Soldering Conditions

μ PD75P238GJ-xxx-5BG : 94-pin plastic QFP (\Box 20 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 230 °C, Duration: 30 sec. max. (at 210 °C or above); Number of times: Once, Time limit: 7 days* (125 °C prebaking requires 10 hours thereafter)	IR30-107-1
VPS	Package peak temperature: 215 °C, Duration: 40 sec. max. (at 200 °C or above); Number of times: Once, Time limit: 7 days* (125 °C prebaking requires 10 hours thereafter)	VP15-107-1
Pin part heating	Pin part temperature: 300 °C max.; Duration: 3 sec. max., (per device side)	

* For the storage period after dry-pack decapsulation, storage conditions are max. 25 °C, 65% RH.

Note Use of more than one soldering method should be avoided (except in the case of pin part heating).

APPENDIX A. DEVELOPMENT TOOLS

The following support tools are available for system development using the μ PD75P238.

	IE-75000-R* 1 IE-75001-R		75X series in-circuit emulator
	IE-75000-R-EM* 2		IE-75000-R/IE-75001-R emulation board
are	EP-75238GJ-R		μPD75P238 emulation probe
Hardware		EV-9200G-94	94-pin conversion socket EV-9200G-94 is provided
Har	PG-1500		PROM programmer
	PA-75P238GJ		PG-1500 connected with μ PD75P238GJ PROM program adapter
	PA-75P238KF		PG-1500 connected with μ PD75P238KF PROM program adapter
ar	IE control progra	im	Host machine
Softwar	PG-1500 controller		PC-9800 series (MS-DOS™ Ver.3.30 to Ver.5.00A *3)
Ň	RA75X relocatable assembler		IBM PC/AT™ (PC DOS™ Ver.3.1)

* 1. Maintenance product

2. Not incorporated in IE-75001-R

3. The task swap function, which is provided with Ver.5.00/5.00A. is not available with this software.

Remarks For development tools manufactured by a third party, see the "75X Series Selection Guide" (IF-151).

APPENDIX B. RELATED DOCUMENTS

Device Related Documents

Document Name	Document No.
User's Manual	
Instruction Application Table	
75X Series Selection Guide	

Development Tools Related Documents

	Document Name	Document No.	
	IE-75000-R/IE-75001-R User's Manual		
are	IE-75000-R-EM User's Manual		
ardware	EP-75238GJ-R User's Manual		
На	PG-1500 User's Manual		
are	PATEX Assembler Paskage Hear's Manual	Operation Volume	
Softwa	RA75X Assembler Package User's Manual		
So	PG-1500 Controller User's Manual		

Other Documents

Document Name	Document No.
Package Manual	
Surface Mount Technology Manual	
Quality Grade on NEC Semiconductor Devices	
NEC Semiconductor Device Reliability & Quality Control	
Electrostatic Discharge (ESD) Test	
Semiconductor Devices Quality Guarantee Guide	
Microcomputer Related Products Guide Other Manufactures Volume	

Note The contents of the above related documents are subjected to change without notice. The latest documents should be used for design, etc.

 \star

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard : Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special : Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

FIP is a trademark of NEC Corporation.MS-DOS is a trademark of MicroSoft Corporation.PC DOS, PC/AT are trademarks of IBM Corporation.

M4 92.6