

User’s Manual

78K0/Kx2

8-Bit Single-Chip Microcontrollers

Flash Memory Self Programming

Document No. U17516EJ1V0UM00 (1st edition)

Date Published August 2005 N CP(K)

 2005
Printed in Japan

µPD78F0500
µPD78F0501
µPD78F0502
µPD78F0503
µPD78F0503D
µPD78F0511
µPD78F0512
µPD78F0513
µPD78F0513D
µPD78F0514
µPD78F0515
µPD78F0515D

µPD78F0521
µPD78F0522
µPD78F0523
µPD78F0524
µPD78F0525
µPD78F0526
µPD78F0527
µPD78F0527D
µPD78F0531
µPD78F0532
µPD78F0533
µPD78F0534
µPD78F0535
µPD78F0536
µPD78F0537
µPD78F0537D

µPD78F0544
µPD78F0545
µPD78F0546
µPD78F0547
µPD78F0547D

2 User’s Manual U17516EJ1V0UM

[MEMO]

 User’s Manual U17516EJ1V0UM 3

1

2

3

4

VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the

CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may

malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,

and also in the transition period when the input level passes through the area between VIL (MAX) and

VIH (MIN).

HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is

possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS

devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed

high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND

via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must

be judged separately for each device and according to related specifications governing the device.

PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as

much as possible, and quickly dissipate it when it has occurred. Environmental control must be

adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that

easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static

container, static shielding bag or conductive material. All test and measurement tools including work

benches and floors should be grounded. The operator should be grounded using a wrist strap.

Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for

PW boards with mounted semiconductor devices.

STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power

source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does

not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the

reset signal is received. A reset operation must be executed immediately after power-on for devices

with reset functions.

POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external

interface, as a rule, switch on the external power supply after switching on the internal power supply.

When switching the power supply off, as a rule, switch off the external power supply and then the

internal power supply. Use of the reverse power on/off sequences may result in the application of an

overvoltage to the internal elements of the device, causing malfunction and degradation of internal

elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related

specifications governing the device.

INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current

injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and

the abnormal current that passes in the device at this time may cause degradation of internal elements.

Input of signals during the power off state must be judged separately for each device and according to

related specifications governing the device.

NOTES FOR CMOS DEVICES

5

6

4 User’s Manual U17516EJ1V0UM

The information in this document is current as of July, 2005. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.
 "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio

and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its

majority-owned subsidiaries.
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as

defined above).

•

•

•

•

•

•

M8E 02. 11-1

 User’s Manual U17516EJ1V0UM 5

Regional Information

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

[GLOBAL SUPPORT]
 http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-558-3737

NEC Electronics Shanghai Ltd.
Shanghai, P.R. China
Tel: 021-5888-5400

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 6253-8311

J05.6

NEC Electronics (Europe) GmbH
Duesseldorf, Germany
Tel: 0211-65030

• Sucursal en España
Madrid, Spain
Tel: 091-504 27 87

Vélizy-Villacoublay, France
Tel: 01-30-67 58 00

• Succursale Française

• Filiale Italiana
Milano, Italy
Tel: 02-66 75 41

• Branch The Netherlands
Eindhoven, The Netherlands
Tel: 040-265 40 10

• Tyskland Filial
Taeby, Sweden
Tel: 08-63 87 200

• United Kingdom Branch
Milton Keynes, UK
Tel: 01908-691-133

Some information contained in this document may vary from country to country. Before using any NEC
Electronics product in your application, pIease contact the NEC Electronics office in your country to
obtain a list of authorized representatives and distributors. They will verify:

6 User’s Manual U17516EJ1V0UM

INTRODUCTION

Readers This manual is intended for users who wish to understand the functions of the flash

memory versions of the 78K0/Kx2 and design application systems using these

microcontrollers.

Purpose This manual is intended to give users an understanding of the usage of the flash

memory self programming sample library which is used when rewriting the 78K0/Kx2

flash memory.

Organization This manual can be generally divided into the following sections.

 • Description of flash environment

 • Description of flash memory self programming sample library

How to Read This Manual It is assumed that the readers of this manual have general knowledge in the fields of

electrical engineering, logic circuits, and microcontrollers.

 To check the hardware functions of the 78K0/Kx2

 → Refer to the user’s manual of each 78k0/Kx2 product.

Conventions Data significance: Higher digits on the left and lower digits on the right

 Active low representation: xxx (overscore over pin or signal name)

 Note: Footnote for item marked with Note in the text

 Caution: Information requiring particular attention

 Remark: Supplementary information

 Numerical representation: Binary … xxxx or xxxxB

 Decimal … xxxx

 Hexadecimal … xxxxH

 User’s Manual U17516EJ1V0UM 7

Terminology The following describes the meanings of certain terms used in this manual.

 • Self programming

Self programming operations are flash memory write operations that are performed

by user programs.

 • Flash memory self programming sample library

This is the library that is provided by the 78K0/Kx2 for flash memory manipulation.

 • Flash environment

This is the environment that supports flash memory manipulations. It has

restrictions that differ from those applied to ordinary program execution.

 • Block number

Block numbers indicate blocks in flash memory. They are used as units during

manipulations such as erasures and blank checks.

 • Boot cluster

This is the area that is used for boot swapping. Boot cluster 0 and boot cluster 1

are provided and the cluster to be booted can be selected.

 • Entry RAM

This is the area in RAM that is used by the flash memory self programming sample

library. The user program reserves this area and specifies the start address of the

specific area to be used when the library is called.

 • Internal verification

After writing to flash memory, signal levels are checked internally to confirm correct

reading of data. When an internal verification error occurs, the corresponding

device is judged as faulty.

User’s Manual U17516EJ1V0UM 8

CONTENTS

CHAPTER 1 GENERAL... 11
1.1 Overview... 11
1.2 Calling Self Programming Sample Library ... 11
1.3 Bank Number and Block Number .. 14
1.4 Processing Time and Acknowledging Interrupt ... 17

CHAPTER 2 PROGRAMMING ENVIRONMENT .. 20
2.1 Hardware Environment.. 20
2.2 Software Environment... 21

2.2.1 Entry RAM ... 22
2.2.2 Stack and data buffer... 23

CHAPTER 3 INTERRUPT SERVICING DURING SELF PROGRAMMING .. 24
3.1 Overview... 24
3.2 Interrupt Response Time... 27
3.3 Description Example ... 29
3.4 Cautions ... 31

CHAPTER 4 BOOT SWAP FUNCTION... 32

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY... 39
5.1 Type of Self Programming Sample Library... 39
5.2 Explanation of Self Programming Sample Library... 40

self programming start library ... 41
initialize library .. 43
mode check library.. 45
block blank check library ... 47
block erase library... 51
word write library... 55
block verify library ... 60
self programming end library .. 64
get information library ... 66
set information library.. 72
EEPROM write library ... 76

CHAPTER 6 DETAILS OF SELF PROGRAMMING CONTROL... 81
6.1 Registers That Control Self Programming .. 81

6.1.1 Flash programming mode control register (FLPMC).. 81
6.1.2 Flash protect command register (PFCMD) .. 83
6.1.3 Flash status register (PFS) .. 84
6.1.4 Self programming control parameters.. 85

APPENDIX A SAMPLE PROGRAM.. 90
A.1 User Program... 90
A.2 Self Programming Library (Normal Model) ... 103
A.3 Self Programming Library (Static Model).. 118
A.4 Boot Swap .. 132
A.5 Compiling the Flash Self Programming Sample Library and Sample Program................ 137

APPENDIX B INDEX.. 138

User’s Manual U17516EJ1V0UM 9

LIST OF FIGURES

Figure 1-1 Flow of Self Programming (rewriting contents of flash memory)... 12
Figure 1-2 Block Numbers and Boot Clusters (flash memory of up to 60 KB) ... 15
Figure 1-3 Block Numbers and Boot Clusters (flash memory of 96 KB or more) ... 16
Figure 2-1 FLMD0 Voltage Generator .. 20
Figure 2-2 Allocation Range of Entry RAM.. 22
Figure 2-3 Allocatable Range for Stack Pointer and Data Buffer ... 23
Figure 3-1 Flow of Processing in Case of Interrupt.. 25
Figure 4-1 Flow of Boot Swapping... 33
Figure 5-1 Flow of Self Programming Start Library.. 42
Figure 5-2 Flow of Initialize Library .. 44
Figure 5-3 Flow of Mode Check Library ... 46
Figure 5-4 Flow of Block Blank Check Library ... 50
Figure 5-5 Flow of Block Erase Library .. 54
Figure 5-6 Flow of Word Write Library ... 59
Figure 5-7 Flow of Block Verify Library... 63
Figure 5-8 Flow of Self Programming End Library ... 65
Figure 5-9 Flow of Get Information Library .. 71
Figure 5-10 Flow of Set Information Library... 75
Figure 5-11 Flow of EEPROM Write Library .. 80
Figure 6-1 Self Programming Operation Mode and Memory Map (µPD78F0545) ... 82
Figure 6-2 Write Protection.. 83

User’s Manual U17516EJ1V0UM 10

LIST OF TABLES

Table 1-1 Processing Time and Acknowledging Interrupt (with internal high-speed oscillator).........................18
Table 1-2 Processing Time and Acknowledging Interrupt (with external system clock used)19
Table 2-1 Software Resources ...21
Table 3-1 Resume Processing Stopped by Interrupt ..26
Table 3-2 Interrupt Response Time (with Internal High-Speed Oscillator) ..27
Table 3-3 Interrupt Response Time (with External System Clock)..28
Table 5-1 Self programming sample library List..39
Table 6-1 Register Bank 3 Parameter List ..86
Table 6-2 Entry RAM Parameter List ..87
Table 6-3 Data Buffer Parameter List..88
Table 6-4 Detailed Flash Information for Get Information Function...89

User’s Manual U17516EJ1V0UM 11

CHAPTER 1 GENERAL

1.1 Overview

The self programming sample library is firmware provided on the 78K0/Kx2, and is software which is used to rewrite

data in the flash memory.

By calling the self programming sample library from a user program, the contents of the flash memory can be

rewritten and, consequently, the period for software development can be substantially shortened.

Cautions 1. Because the self programming sample library rewrites the contents of the flash memory by

using the CPU, registers, and RAM of the 78K0/Kx2, a user program cannot be executed while

processing of the self programming sample library is being executed.

 2. The self programming sample library uses the CPU (register bank 3) and a work area (100

bytes of entry RAM). Therefore, the user must save the data necessary for the user program

in that area immediately before calling the self programming sample library.

1.2 Calling Self Programming Sample Library

The self programming sample library can be called by a user program in C or an assembly language.

If the -SM option (that uses an object as a static model) is specified when a file written in C is complied, use (link)

the library for static models. If the -SM option is not specified, link the library for normal models.

If the file is written in an assembly language, use (link) the library for static models.

CHAPTER 1 GENERAL

User’s Manual U17516EJ1V0UM 12

The following flowchart illustrates how to rewrite the contents of the flash memory by using the self programming

sample library.

Figure 1-1. Flow of Self Programming (rewriting contents of flash memory)

End of self programming

FlashBlockBlankCheck

FlashEnv

FlashBlockErase

FlashWordWrite

CheckFLMD

FlashEnd

FLMD0 pin: Low → High

FLMD0 pin: High → Low

Setting operating environment

Erased?

FlashStart

Normal
completion?

Normal
completion?

Yes

No

No

Yes

Normal
completion?

Yes

No

Normal
completion?

Yes

No

<1>

<2>

<3>

<4>

<5>

<6>

<8>

FlashBlockVerify

No

Yes

<9>

<10>

<11>

<7>

Starting self programming

CHAPTER 1 GENERAL

User’s Manual U17516EJ1V0UM 13

<1> Preprocessing (setting of hardware environment)

As preprocessing, make the FLMD0 pin high (refer to 2.1 Hardware Environment).

<2> Preprocessing (declaring start of self programming)

As preprocessing, call the self programming start library FlashStart to declare the start of self programming.

<3> Preprocessing (setting of software environment)

As preprocessing, save register bank 3 and specify a work area (refer to 2.2 Software Environment).

<4> Preprocessing (initializing entry RAM)

As preprocessing, call the initialize library FlashEnv to initialize the entry RAM.

<5> Preprocessing (checking voltage level)

As preprocessing, call the mode check library CheckFLMD and check the voltage level.

<6> Checking erasing of specified block (1 KB)

Call the block blank check library FlashBlockBlankCheck to check if the specified block (1 KB) has been erased.

<7> Erasing specified block (1 KB)

Call the block erase library FlashBlockErase to erase a specified block (1 KB).

<8> Writing data of 1 to 64 words to specified addresses

Call the word write library FlashWordWrite to write data of 1 to 64 words to specified addresses.

<9> Verifying specified block (1 KB) (internal verification)

Call the block verify library FlashBlockVerify to verify a specified block (1 KB) (internal verification).

<10> Post-processing (declaring end of self programming)

As post-processing, call the self programming end library FlashEnd to declare the end of self programming.

<11> Post-processing (setting of hardware environment)

As post-processing, return the level of the FLMD0 pin to the low level.

CHAPTER 1 GENERAL

User’s Manual U17516EJ1V0UM 14

1.3 Bank Number and Block Number

Products in the 78K0/Kx2 Series having flash memory of up to 60 KB have their flash memory divided into 1 KB

blocks. Erasing, blank checking, and verification (internal verification) for self programming are performed in these

block units. To call the self programming sample library, a block number is specified.

Addresses 0000H to 0FFFH and 1000H to 1FFFH of the 78K0/Kx2 are allocated for boot clusters. A boot cluster is

an area that is used to prevent the vector table data and basic functions of the program from being destroyed, and to

prevent the user program from being unable to start due to a power failure or because the device was reset while an

area including a vector area was being rewritten. For details on the boot cluster, refer to CHAPTER 4 BOOT SWAP

FUNCTION.

Figure 1-2 shows the block numbers and boot clusters of a flash memory of up to 60 KB.

78K0/Kx2 products having flash memory of more than 96 KB have banks in an area that is larger than 32 KB. For

these products, not only a block number but also a bank number must be specified to call the self programming sample

library when performing erasing, blank checking, or verification (internal verification) in the area that is larger than 32

KB during self programming.

Figure 1-3 shows the block numbers and boot clusters of a flash memory of more than 96 KB.

CHAPTER 1 GENERAL

User’s Manual U17516EJ1V0UM 15

Figure 1-2. Block Numbers and Boot Clusters (flash memory of up to 60 KB)

Area subject to boot
swapping

Block 59
EC00H

Internal expansion RAM

F800H

F000H

Block 58
E800H

Block 57
E400H

Block 56
E000H

Block 55
DC00H

Block 54
D800H

Block 53
D400H

Block 52
D000H

Block 51
CC00H

Block 50
C800H

C400H

Block 48
C000H

Block 49

Block 31

Block 30

Block 29

Block 27

Block 28

Block 26

Block 25

Block 24

Block 23

Block 22

Block 21

Block 20

Block 19

7C00H

7800H

7400H

7000H

6C00H

6800H

6400H

6000H

5C00H

5800H

5400H

5000H

4C00H

Block 18

Block 17

Block 15

Block 16

Block 14

Block 13

Block 12

Block 11

Block 10

Block 9

Block 8

Block 7

4800H

4400H

4000H

3C00H

3800H

3400H

3000H

2C00H

2800H

2400H

2000H

1C00H

Block 6

Block 5

Block 4

Block 3

Block 2

Block 1

Block 0

1800H

1400H

1000H

0C00H

0800H

0400H

0000H

8000H

Boot cluster 1

1FFFH

Boot cluster 0

0FFFH

0000H

2000H

Block 47
BC00H

Block 46
B800H

Block 45
B400H

Block 44
B000H

Block 43
AC00H

Block 42
A800H

Block 41

Block 40

A400H

A000H Block 40

Block 39
9C00H

Block 38
9800H

Block 37
9400H

Block 36
9000H

Block 35
8C00H

8800H

Block 33
8400H

Block 32
8000H

Block 34

107FH

Program area

1919 bytes

Option byte

CALLT table 64 bytes

Vector table 64 bytes

CALLF entry

2048 bytes

007FH

Program area

1919 bytes

Option byte

CALLT table 64 bytes

Vector table 64 bytes

CALLF entry

2048 bytes

003FH
0000H

1FFFH

0080H

07FFH

0081H

17FFH

1081H

1080H

0FFFH

0800H

CHAPTER 1 GENERAL

User’s Manual U17516EJ1V0UM 16

Figure 1-3. Block Numbers and Boot Clusters (flash memory of 96 KB or more)

 Area subject to boot
swapping

Internal expansion RAM

F800H

E000H

Use prohibited

DFFFH

C000H

Block 31

Block 30

Block 29

Block 27

Block 28

Block 26

Block 25

Block 24

Block 23

Block 22

Block 21

Block 20

Block 19

7C00H

7800H

7400H

7000H

6C00H

6800H

6400H

6000H

5C00H

5800H

5400H

5000H

4C00H

Block 18

Block 17

Block 15

Block 16

Block 14

Block 13

Block 12

Block 11

Block 10

Block 9

Block 8

Block 7

4800H

4400H

4000H

3C00H

3800H

3400H

3000H

2C00H

2800H

2400H

2000H

1C00H

Block 6

Block 5

Block 4

Block 3

Block 2

Block 1

Block 0

1800H

1400H

1000H

0C00H

0800H

0400H

0000H

8000H

Boot cluster 1

1FFFH

Boot cluster 0

0FFFH

0000H

2000H

Block 47
BC00H

Block 46
B800H

Block 45
B400H

Block 44
B000H

Block 43
AC00H

Block 42
A800H

Block 41

Block 40

A400H

A000H Block 40

Block 39
9C00H

Block 38

Block 37
9400H

Block 36
9000H

Block 35
8C00H

8800H

Block 33
8400H

Block 32
8000H

Block 34

107FH

Program area

1919 bytes

Option byte

Vector table 64 bytes

CALLF entry

2048 bytes

007FH

Program area

1919 bytes

Option byte

CALLT table 64 bytes

Vector table 64 bytes

CALLF entry

2048 bytes

003FH
0000H

1FFFH

0080H

07FFH

0081H

17FFH

1081H

1080H

0FFFH

0800H

B
ank 5

B
ank 4

B
ank 3

B
ank 2

B
ank 1

Bank 0

CHAPTER 1 GENERAL

User’s Manual U17516EJ1V0UM 17

1.4 Processing Time and Acknowledging Interrupt

Table 1-1 and Table 1-2 show the processing time of the self programming sample library and whether interrupts can

be acknowledged. Table 1-1 shows a case where an internal high-speed oscillator is used for the main system clock

and Table 1-2 shows a case where an external system clock is used for the main system clock.

The self programming sample library that can acknowledge interrupts has a function to check if an interrupt is

generated while processing of the self programming sample library is under execution, and a function to perform

post-processing if an interrupt has been generated.

For details on interrupts, refer to CHAPTER 3 INTERRUPT SERVICING DURING SELF PROGRAMMING.

C
H

A
P

T
E

R
 1 G

E
N

E
R

A
L

U

ser’s M
anual U

17516E
J1V

0U
M

 18

Table 1-1. Processing Time and Acknowledging Interrupt (with internal high-speed oscillator)

Processing Time (unit: microseconds)

Outside short direct addressing range In short direct addressing range

Normal model Static model Normal model Static model
Library Name

Min Max Min Max Min Max Min Max

Acknowledging

Interrupt

self programming start library 4.25 Not acknowledged

initialize library 977.75 443.5 Not acknowledged

mode check library 753.875 753.125 219.625 218.875 Not acknowledged

block blank check library 12770.875 12765.875 12236.625 12231.625 Acknowledged

block erase library 36909.5 356318 36904.5 356296.25 36363.25 355771.75 36358.25 355750 Acknowledged

word write library 1214

(1214.375)

2409

(2409.375)

1207

(1207.375)

2402

(2402.375)

679.75

(680.125)

1874.75

(1875.125)

672.75

(673.125)

1867.75

(1868.125)

Acknowledged

block verify library 25618.875 25613.875 25072.625 25067.625 Acknowledged

self programming end library 4.25 Not acknowledged

get information library

(option value: 03H)

871.25

(871.375)

866

(866.125)

337

(337.125)

331.75

(331.875)

Not acknowledged

get information library

(option value: 04H)

863.375

(863.5)

858.125

(858.25)

329.125

(239.25)

323.875

(324)

Not acknowledged

get information library

(option value: 05H)

1042.75

(1043.625)

1037.5

(1038.375)

502.25

(503.125)

497

(497.875)

Not acknowledged

set information library 105524.75 790809.375 105523.75 790808.375 104978.5 541143.125 104977.5 541142.125 Acknowledged

EEPROM write library 1496.5

(1496.875)

2691.5

(2691.875)

1489.5

(1489.875)

2684.5

(2684.875)

962.25

(962.625)

2157.25

(2157.625)

955.25

(955.625)

2150.25

(2150.625)

Acknowledged

Remark Values in parentheses are when the write start address structure is placed outside of internal high-speed RAM.

C
H

A
P

T
E

R
 1 G

E
N

E
R

A
L

U

ser’s M
anual U

17516E
J1V

0U
M

19

Table 1-2. Processing Time and Acknowledging Interrupt (with external system clock used)

Processing Time (unit: microseconds)

Outside short direct addressing range In short direct addressing range

Normal model Static model Normal model Static model
Library Name

Min Max Min Max Min Max Min Max

Acknowledging

Interrupt

self programming start library 34/fXNote Not acknowledged

initialize library 49X
Note + 485.8125 49/fXNote + 224.6875 Not acknowledged

mode check library 35/fXNote + 374.75 29/fXNote + 374.75 35/fXNote + 113.625 29/fXNote + 113.625 Not acknowledged

block blank check library 174/fX
Note + 6382.0625 134/fXNote + 6382.0625 174/fXNote + 6120.9375 134/fXNote + 6120.9375 Acknowledged

block erase library 174/fXNote

+ 31093.875

174/fXNote +

298948.125

134/fXNote

+ 31093.875

134/fXNote

+ 298948.125

174/fXNote

+ 30820.75

174/fXNote

+ 298675

134/fXNote

+ 30820.75

134/fXNote

+ 298675

Acknowledged

word write library 318(321)/fXNote

+ 644.125

318(321)/fXNote

+ 1491.625

262(265)/fXNote

+ 644.125

262(265)/fXNote

+ 1491.625

318(321)/fXNote

+ 383

318(321)/fXNote

+ 1230.5

262(265)/fXNote

+ 383

262(265)/fXNote

+ 1230.5

Acknowledged

block verify library 174/fXNote + 13448.5625 134/fXNote + 13448.5625 174/fXNote + 13175.4375 134/fXNote + 13175.4375 Acknowledged

self programming end library 34X
Note Not acknowledged

get information library

(option value: 03H)

171(172)/fXNote + 432.4375 129(130)/fXNote + 432.4375 171(172)/fXNote + 171.3125 129(130)/fXNote + 171.3125 Not acknowledged

get information library

(option value: 04H)

181(182)/fXNote + 427.875 139(140)/fXNote + 427.875 181(182)/fXNote + 166.75 139(140)/fXNote + 166.75 Not acknowledged

get information library

(option value: 05H)

404(411)/fXNote + 496.125 362(369)/fXNote + 496.125 404(411)/fXNote + 231.875 362(369)/fXNote + 231.875 Not acknowledged

set information library 75/fXNote

+ 79157.6875

75/fXNote

+ 652400

67/fXNote

+ 79157.6875

67/fXNote

+ 652400

75/fXNote

+ 78884.5625

75/fXNote

+ 527566.875

67/fXNote

+ 78884.5625

67/fXNote

+ 527566.875

Acknowledged

EEPROM write library 318(321)/fX Note

+ 799.875

318(321)/fXNote

+ 1647.375

262(265)/fXNote

+ 799.875

262(265)/fXNote

+ 1647.375

318(321)/fXNote

+ 538.75

318(321)/fXNote

+ 1386.25

262(265)/fXNote

+ 538.75

262(265)/fXNote

+ 1386.25

Acknowledged

Note fX: Operating frequency of external system clock

Remark Values in parentheses are when the write start address structure is placed outside of internal high-speed RAM.

User’s Manual U17516EJ1V0UM 20

CHAPTER 2 PROGRAMMING ENVIRONMENT

This chapter explains the hardware environment and software environment necessary for the user to rewrite flash

memory by using the self programming sample library.

2.1 Hardware Environment

To execute self programming, a circuit that controls the voltage on the FLMD0 pin of the 78K0/Kx2 is necessary.

The voltage on the FLMD0 pin must be low while an ordinary user program is being executed (in normal operation

mode) and high while self programming is being executed (in flash rewriting mode).

While the FLMD0 pin is low, the firmware and software for rewriting run, but the circuit for rewriting flash memory

does not operate. Therefore, the flash memory is not actually rewritten.

A self programming sample library that makes the FLMD0 pin high is not provided. Therefore, to rewrite the flash

memory, the voltage level of the FLMD0 pin must be made high by manipulating a port through user program, before

calling the self programming start library.

Here is an example of the circuit that changes the voltage on the FLMD0 pin by manipulating a port.

Figure 2-1. FLMD0 Voltage Generator

FLMD0

Output port

10 kΩ (recommended) 78K0/Kx2

CHAPTER 2 PROGRAMMING ENVIRONMENT

User’s Manual U17516EJ1V0UM 21

2.2 Software Environment

The self programming sample library allocates its program to a user area and consumes about 500 bytes of the

program area. The self programming sample library itself uses the CPU (register bank 3), work area (entry RAM),

stack, and data buffer.

The following table lists the necessary software resources.

Table 2-1. Software Resources

Item Description Restriction

CPU Register bank 3 −

Work area Entry RAM: 100 bytes Internal high-speed RAM outside short addressing range or

internal high-speed RAM in short direct addressing range with

first address as FE20H (Refer to 2.2.1 Entry RAM.)

Stack 39 bytes max.

Remark Use the same stack as for the

user program.

Internal high-speed RAM other than FE20H to FE83H (Refer to

2.2.2 Stack and data buffer.)

Data buffer 1 to 256 bytes

Remark The size of this buffer varies

depending on the writing unit

specified by the user program.

Internal high-speed RAM other than FE20H to FE83H (Refer to

2.2.2 Stack and data buffer.)

Program area Normal model: 525 bytes

Static model: 432 bytes

Remark Supplied as an

assembly-language source.

Within 0000H to 7FFFH (32 KB)

Caution The self programming sample library and the

user program that calls the self programming

sample library must always be located within the

above range, because the firmware built into the

product is allocated to addresses starting from

8000H.

Cautions 1. The self programming operation is not guaranteed if the user manipulates the above

resources. Do not manipulate these resources during a self programming operation.

 2. The user must release the above resources used by the self programming sample library

before calling the self programming sample library.

CHAPTER 2 PROGRAMMING ENVIRONMENT

User’s Manual U17516EJ1V0UM 22

2.2.1 Entry RAM
The self programming sample library uses a work area of 100 bytes. This area is called entry RAM.

As the entry RAM, 100 bytes are automatically allocated, starting from the first address that is specified when the

initialize library is called. Therefore, the first address of the entry RAM can be specified in the range from FB00H to

FE20H.

In addition, a data buffer used by the initialize library to actually write data to the flash memory must be allocated to

an area that is within the range from 1 to 256 bytes and is other than the work area. For details on the data buffer,

refer to 2.2.2 Stack and data buffer.

The range in which the entry RAM can be allocated is shown below.

Figure 2-2. Allocation Range of Entry RAM

Caution The size of the internal expansion high-speed RAM varies depending on the product.

 For the size of the internal expansion high-speed RAM, refer to the user’s manual of each

product.

Internal high-speed RAM
1024 bytes

FFFFH

FF20H
FF00H
FEFFH

FE83H
FE20H

FB00H
FAFFH
FA20H

FA00H
F9FFH

F800H
F7FFH

Entry RAM allocation range

Internal expansion high-speed RAM
1024 bytes

Special function registers (SFRs)
256 bytes

General-purpose registers
32 bytes

Buffer RAM 32 bytes

Use prohibited

Use prohibited

Short direct addressing

CHAPTER 2 PROGRAMMING ENVIRONMENT

User’s Manual U17516EJ1V0UM 23

2.2.2 Stack and data buffer
The self programming sample library writes data to flash memory by using the CPU. Therefore, a self

programming operation is performed by using the stack specified by the user program.

The stack must be allocated by stack processing of the self programming operation so that the entry RAM and the

RAM used by the user are not cleared. Therefore, the stack can be allocated in the internal high-speed RAM at

addresses other than FE20H to FE83H.

A data buffer is automatically allocated from the first address and by the number of data specified when the word

write library is called. Therefore, the first address of the data buffer can be specified in the internal high-speed RAM at

an address other than FE20H to FE83H, just as for the stack pointer.

Note that data to be written to the flash memory must be appropriately set and processed before the word write

library is called.

The following figure shows the range in which the stack pointer and data buffer can be allocated.

Figure 2-3. Allocatable Range for Stack Pointer and Data Buffer

Caution The size of the internal expansion high-speed RAM varies depending on the product.

For the size of the internal expansion high-speed RAM, refer to the user’s manual of each

product.

Internal expansion high-speed RAM
1024 bytes

Buffer RAM 32 bytes

Use prohibited

Use prohibited
FB00H
FAFFH
FA20H

FA00H
F9FFH

F800H
F7FFH

FFFFH

FF20H
FF00H
FEFFH

FE83H
FE20H

Internal high-speed RAM
1024 bytes

General-purpose registers
32 bytes

Special function registers (SFRs)
256 bytes

Use prohibited

Short direct addressing

Range where stack and data buffer can be
allocated (except FE20H to FE83H)

User’s Manual U17516EJ1V0UM 24

CHAPTER 3 INTERRUPT SERVICING DURING SELF
PROGRAMMING

3.1 Overview

An interrupt can be generated, even while self programming is executed, in some self programming sample libraries

of the 78K0/Kx2.

However, unlike the case for an ordinary interrupt, the user must decide whether the processing that has been

interrupted should be resumed, by checking the return value from the self programming sample library.

CHAPTER 3 INTERRUPT SERVICING DURING SELF PROGRAMMING

User’s Manual U17516EJ1V0UM 25

The following figure illustrates the flow of processing if an interrupt is generated while processing of the self

programming sample library is being executed.

Figure 3-1. Flow of Processing in Case of Interrupt

User program Library Interrupt handler

End of self programming

FlashStart

Setting of operating environment

Servicing starts.

Processing is stopped.

Return value
Stopped (= 1FH)

End

Retry?
Yes

No

FLMD0 pin: Low → High

Calling library

FlashEnd

FLMD0 pin: High → Low

Interrupt
occurs.

DI

EI

1

1

Servicing starts.

Servicing ends.

Self programming starts.

CHAPTER 3 INTERRUPT SERVICING DURING SELF PROGRAMMING

User’s Manual U17516EJ1V0UM 26

The following table shows how the processing of the self programming sample libraries that acknowledge interrupts

is resumed after the processing has been stopped by the occurrence of an interrupt.

Table 3-1. Resume Processing Stopped by Interrupt

Library Name Resuming Method

block blank check library Call the block blank check library FlashBlockBlankCheck to resume processing to check

block erasure that has been stopped by the occurrence of an interrupt.

block erase library To resume processing to erase blocks that was stopped by the occurrence of an

interrupt, call the block blank check library FlashBlockBlankCheck and check whether

blocks that should be erased have been erased. Then, call the block erase library

FlashBlockErase.

word write library Call the word write library FlashWordWrite to resume data write processing that was

stopped by the occurrence of an interrupt.

block verify library Call the block verify library FlashBlockVerify to resume block verify processing that was

stopped by the occurrence of an interrupt.

set information library Call the set information library FlashSetInfo to resume flash information setting

processing that was stopped by the occurrence of an interrupt.

EEPROM write library Call the EEPROM write library FlashEEPROMWrite to resume processing to write data

during EEPROM emulation that was stopped by the occurrence of an interrupt.

Remark An interrupt is not acknowledged until all of the processing of the above self programming sample

libraries has been completed, because these libraries execute their processing with interrupts disabled.

CHAPTER 3 INTERRUPT SERVICING DURING SELF PROGRAMMING

User’s Manual U17516EJ1V0UM 27

3.2 Interrupt Response Time

Unlike the case for an ordinary interrupt, generation of an interrupt during execution of self programming is

accomplished via post-interrupt servicing in the self programming sample library (such as setting 0x1F as the return

value from the self programming sample library). Consequently, the response time is longer than that for an ordinary

interrupt.

When an interrupt occurs during self programming execution, both the interrupt response time of the self

programming sample library, as well as the interrupt response time of the device used, are necessary.

Remark For the response time of each device, refer to the user’s manual of each device.

Table 3-2 and Table 3-3 show the interrupt response time of the self programming sample library. Table 3-2 is a

case where the internal high-speed oscillator is used to generate the main system clock, and Table 3-3 is a case where

an external system clock is used as the main system clock.

Table 3-2. Interrupt Response Time (with Internal High-Speed Oscillator)

Interrupt Response Time (Unit: Microseconds)

Entry RAM outside short direct addressing

range

Entry RAM inside short direct addressing

range (from FE20H)
Library Name

Min Max Min Max

block blank check library 391.25 1300.5 81.25 727.5

block erase library 389.25 1393.5 79.25 820.5

word write library 394.75 1289.5 84.75 716.5

block verify library 390.25 1324.5 80.25 751.5

set information library 387 852.5 77 279.5

EEPROM write library 399.75 1395.5 89.75 822.5

Remark An interrupt is not acknowledged until all of the processing of the above self programming sample

libraries has been completed, because these libraries execute their processing with interrupts disabled.

CHAPTER 3 INTERRUPT SERVICING DURING SELF PROGRAMMING

User’s Manual U17516EJ1V0UM 28

Table 3-3. Interrupt Response Time (with External System Clock)

Interrupt Response Time (Unit: Microseconds)

Entry RAM outside short direct addressing

range

Entry RAM inside short direct addressing

range (from FE20H)
Library Name

Min Max Min Max

block blank check library 18/fxNote + 192 28/fxNote + 698 18/fxNote + 55 28/fxNote + 462

block erase library 18/fxNote + 186 28/fxNote + 745 18/fxNote + 49 28/fxNote + 509

word write library 22/fxNote + 189 28/fxNote + 693 22/fxNote + 52 28/fxNote + 457

block verify library 18/fxNote + 192 28/fxNote + 709 18/fxNote + 55 28/fxNote + 473

set information library 16/fxNote + 190 28/fxNote + 454 16/fxNote + 53 28/fxNote + 218

EEPROM write library 22/fxNote + 191 28/fxNote + 783 22/fxNote + 54 28/fxNote + 547

Note fX: Operating frequency of external system clock

Remark An interrupt is not acknowledged until all of the processing of the above self programming sample

libraries has been completed, because these libraries execute their processing with interrupts disabled.

CHAPTER 3 INTERRUPT SERVICING DURING SELF PROGRAMMING

User’s Manual U17516EJ1V0UM 29

3.3 Description Example

This section shows an example of writing a user program that resumes erase processing that was stopped by the

occurrence of an interrupt during execution of a self programming sample library (block erase library).

CHAPTER 3 INTERRUPT SERVICING DURING SELF PROGRAMMING

User’s Manual U17516EJ1V0UM 30

ERS_RTRY:

 ; Main processing

 MOV A, #0 ; Sets 0 as the bank number of the block to be erased.

 MOV B, #10 ; Sets 10 as the block number of the block to be erased.

 DI ; Disables interrupts.

 CALL !_FlashBlockErase ; Calls the block erase library.

 EI ; Enables interrupts.

 CMP A, #1FH ; Checks whether a stop status is set.

 BZ $BLN_RTRY ; If the stop status is set,

 ; jumps to resume processing BLN_RTRY.

 CMP A, #00H ; Checks whether execution has been correctly
completed.

 BNZ $ERS_FALSE_END ; Jumps to abnormal termination ERS_FALSE_END if
execution has not been correctly completed.

 BR ERS_TRUE_END

BLN_RTRY:

 ; Resume processing

 MOV A, #0 ; Sets 0 as the bank number of the block to be
blank-checked.

 MOV B, #10 ; Sets 10 as the block number of the block to be
blank-checked.

 DI ; Disables interrupts.

 ; Calls the block blank check library.

 CALL !_FlashBlockBlankCheck

 EI ; Enables interrupts.

 CMP A, #1FH ; Checks whether a stop status is set.

 BZ $BLN_RTRY ; If the stop status is set,

 ; retries the resume processing.

 CMP A, #00H ; Checks whether execution has been correctly
completed.

 BNZ $ERS_RTRY ; Retries the main processing if execution has not been
correctly completed.

 ; Clears the internal status of the stop processing

 MOVW AX, #EntryRAM ; Sets the first address of entry RAM.

 CALL !_FlashEnv ; Calls the initialize library.

ERS_TRUE_END:

 ; Normal completion

ERS_FALSE_END:

 ; Abnormal termination

Caution It is assumed that the entry RAM has already been set.

CHAPTER 3 INTERRUPT SERVICING DURING SELF PROGRAMMING

User’s Manual U17516EJ1V0UM 31

3.4 Cautions

This section explains points to be noted during interrupt servicing.

− If processing related to self programming is performed or a setting related to it is changed during processing of an

interrupt that has occurred during execution of self programming, then the operation is not guaranteed. Do not

perform processing related to self programming and change settings related to it during interrupt servicing.

− Do not use register bank 3 during interrupt servicing, because self programming uses register bank 3.

− Save and restore registers used for interrupt servicing during interrupt servicing.

− If the set time of the watchdog timer is too short, processing of the set information library may not be completed.

Therefore, do not set a time that is too short to the watchdog timer.

If an interrupt successively occurs during a specific period while processing of the set information library is being

executed, an infinite loop may occur if processing of the set information library is resumed after it has been stopped

by the interrupt, because the processing is started from the beginning. Therefore, do not allow an interrupt to occur

successively at an interval shorter than that within which processing of the set information library is to be completed.

Remark Processing time of set information library (at 8 MHz)

 Min.: 108 milliseconds

Max.: 696 milliseconds

− If multiple interrupts occur during execution of self programming, then the operation is not guaranteed. Disable the

acknowledging of multiple interrupts during execution of self programming.

− If processing of the self programming sample library that was stopped by the occurrence of an interrupt is not

resumed and processing of another block is to be performed, then the initialize library must be called before the

processing of another block is started.

Example To not resume erase processing of block 0 that was stopped and to execute erase processing of block 1,

call the initialize library and then start the erase processing of block 1.

− Do not erase the entry RAM, stack, and data buffer until the series of processing tasks has been completed.

− Allocate an interrupt servicing program in an area other than that of the blocks to be rewritten, just as for the self

programming program.

User’s Manual U17516EJ1V0UM 32

CHAPTER 4 BOOT SWAP FUNCTION

If rewriting of the vector table data, the basic functions of the program, or the self programming area fails because of

a momentary power failure or the occurrence of a reset due to an external cause, then the data being rewritten is lost,

the user program cannot be restarted by a reset, and rewriting can no longer be performed. This problem can be

avoided by using a boot swap function through self programming.

The boot swap function is to replace boot program area, boot cluster 0Note, with the boot swap target area, boot

cluster 1Note.

Before rewrite processing is started, a new boot program is written to boot cluster 1. This boot cluster 1 and boot

cluster 0 are swapped and boot cluster 1 is used as a boot program area.

As a result, even if a power failure occurs while the boot program area is rewritten, the program is executed correctly

because the next reset start program is booted from boot cluster 1. After that, boot cluster 0 can be erased or written

as necessary.

Note Boot cluster 0 (0000H to 0FFFH): Original boot program area

Boot cluster 1 (1000H to 1FFFH): Boot swap target area

CHAPTER 4 BOOT SWAP FUNCTION

User’s Manual U17516EJ1V0UM 33

Figure 4-1 shows the flow of boot swapping by using the self programming sample library.

Figure 4-1. Flow of Boot Swapping

Boot swapping ends

FlashBlockErase

FlashWordWrite

Normal
completion?

Normal
completion?

Yes

No

Normal
completion?

Yes

No

<2> <9>

<3> <10>

<4> <11>

<6> <13>

FlashBlockVerify

No

Yes

Normal
completion?

Yes

No

FlashSetInfo

Reset<7> <14>

<5> <12>

Normal
completion?

Yes

No

FlashGetInfo

Cluster 1
completed?

Yes

No

Boot swapping starts

1

1

<8> <15>

Preprocessing

Post-processing

<1>

<16>

CHAPTER 4 BOOT SWAP FUNCTION

User’s Manual U17516EJ1V0UM 34

<1> Preprocessing

The following preprocessing of boot swapping is performed.

− Setting of hardware environment

− Declaring start of self programming

− Setting of software environment

− Initializing entry RAM

− Checking voltage level

<2> Erasing boot cluster 1

Blocks 4 to 7 are erased by calling the block erase library FlashBlockErase.

Remark The block erase library erases each block one by one.

Program area

1919 bytes
Option byte

CALLT table 64 bytes

Vector table 64 bytes

CALLF entry

2048 bytes

007FH

Program area

003FH
0000H

1FFFH

0080H

07FFH

0081H

1000H
0FFFH

0800H

Program area

1919 bytes
Option byte

CALLT table 64 bytes

Vector table 64 bytes

CALLF entry

2048 bytes

007FH

Block 6 (erased)

Block 5 (erased)

Block 4 (erased)

Block 7 (erased)

003FH
0000H

1FFFH

0080H

07FFH

0081H

1000H
0FFFH

0800H

Normal operation mode

Boot cluster 1

Boot cluster 0

1C00H

1800H

1400H

CHAPTER 4 BOOT SWAP FUNCTION

User’s Manual U17516EJ1V0UM 35

<3> Copying boot cluster 0

The contents of 0000H to 0FFFH are written to 1000F to 1FFFH by calling the word write library FlashWordWrite.

Remark The word write library writes data in word units (256 bytes max.).

<4> Verifying boot cluster 1

Blocks 4 to 7 are verified by calling the block verify library FlashBlockVerify.

Remark The block verify library verifies each block one by one.

<5> Reading set status of boot swapping

The set status of boot swapping can be read by calling the get information library FlashGetInfo.

Program area

1919 bytes
Option byte

CALLT table 64 bytes

Vector table 64 bytes

CALLF entry

2048 bytes

007FH

Copies contents of 0000H

to 0FFFH.

003FH
0000H

1FFFH

0080H

07FFH

0081H

1000H
0FFFH

0800H

CHAPTER 4 BOOT SWAP FUNCTION

User’s Manual U17516EJ1V0UM 36

<6> Setting of boot swap bit

Set the boot swap bit to “execute boot swapping (0)” by calling the set information library FlashSetInfo.

<7> Occurrence of event

Boot cluster 1 is used as a boot program area when an external reset or overflow of the watchdog timer is

generated.

<8> End of swap processing (boot cluster 1)

Operations <2> to <7> complete the swap processing of boot cluster 1

<9> Erasing boot cluster 0

Blocks 0 to 3 are erased by calling the block erase library FlashBlockErase.

Remark The block erase library erases each block one by one.

−

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

− 1 − 1 1 1 0

Bit 0: Executes (0)/Does not execute (1) boot swapping.
Bit 1: Disables (0)/Enables (1) chip erasure.
Bit 2: Disables (0)/Enables (1) block erasure.
Bit 3: Disables (0)/Enables (1) writing.
Bit 5: Disables (0)/Enables (1) boot area rewriting.

Boot program area

107FH

04000H

Program area

1919 bytes
Option byte

CALLT table 64 bytes

Vector table 64 bytes

CALLF entry

2048 bytes

0000H

1FFFH

0800H

17FFH

1081H
1080H

0FFFH

0C00H

Block 2 (erased)

Block 1 (erased)

Block 0 (erased)

Block 3 (erased)

1000H

CHAPTER 4 BOOT SWAP FUNCTION

User’s Manual U17516EJ1V0UM 37

<10> Writing new program to boot cluster 0

The contents of the new program are written to 0000H to 0FFFH by calling the word write library

FlashWordWrite.

Remark The word write library writes the program in word units (256 bytes max.).

<11> Verifying boot cluster 0

Blocks 0 to 3 are verified by calling the block verify library FlashBlockVerify.

Remark The block verify library verifies each block one by one.

<12> Reading set status of boot swapping.

The set status of boot swapping is read by calling the get information library FlashGetInfo.

Boot program area

107FH

04000H

Program area

1919 bytes
Option byte

CALLT table 64 bytes

Vector table 64 bytes

CALLF entry

2048 bytes

0000H

1FFFH

0800H

17FFH

1081H
1080H

0FFFH

0C00H

Block 2 (written)

Block 1 (written)

Block 0 (written)

Block 3 (written)

1000H

CHAPTER 4 BOOT SWAP FUNCTION

User’s Manual U17516EJ1V0UM 38

<13> Setting of boot swap bit

Set the boot swap bit to “not execute boot swapping (1)” by calling the set information library FlashSetInfo.

<14> Occurrence of event

Boot cluster 0 is used as a boot program area when an external reset or overflow of the watchdog timer is

generated.

<15> End of swap processing (boot cluster 0)

Operations <9> to <14> complete the swap processing of boot cluster 0.

<16> Post-processing

As post-processing of boot swapping, the following is performed.

− Declaring end of self programming

− Setting of hardware environment

−

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

− 1 − 1 1 1 1

Bit 0: Executes (0)/Does not execute (1) boot swapping.
Bit 1: Disables (0)/Enables (1) chip erasure.
Bit 2: Disables (0)/Enables (1) block eraure.
Bit 3: Disables (0)/Enables (1) writing.
Bit 5: Disables (0)/Enables (1) boot area rewriting.

User’s Manual U17516EJ1V0UM 39

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

This chapter explains details on the self programming sample library.

For the source program of each library, refer to APPENDIX A SAMPLE PROGRAM.

5.1 Type of Self Programming Sample Library

The self programming sample library consists of the following libraries.

Table 5-1. Self programming sample library List

Call Example (C language)
Library Name

Call Example (assembly language)
Outline

FlashStart(); self programming start library

CALL !_FlashStart

Declares start of self

programming.

FlashEnv(&EntryRAM[0]); initialize library

CALL !_FlashEnv

Initializes entry RAM.

Status = CheckFLMD(); mode check library

CALL !_CheckFLMD

Checks voltage level.

Status = FlashBlockBlankCheck(BlankCheckBANK,

 BlankCheckBlock);

block blank check library

CALL !_FlashBlockBlankCheck

Checks erasing of specified

block (1 KB).

Status = FlashBlockErase(EraseBANK, EraseBlock); block erase library

CALL !_FlashBlockErase

Erases specified library (1

KB).

Status = FlashWordWrite(&WordAddr, WordNumber,

 &DataBuffer);

word write library

CALL !_FlashWordWrite

Writes 1- to 64-word data to

specified address.

Status = FlashBlockVerfy(VerifyBANK, VerifyBlock); block verify library

CALL !_FlashBlockVerify

Verifies specified block (1

KB) (internal verification).

FlashEnd(); self programming end library

CALL !_FlashEnd

Declares end of self

programming.

Status = FlashGetInfo(&GetInfo, ＆DataBuffer); get information library

CALL !_FlashGetInfo

Reads flash information.

Status = FlashSetInfo(SetInfoData); set information library

CALL !_FlashSetInfo

Changes setting of flash

information.

Status = FlashEEPROMWrite(&WordAdder,

 WordNumber, &DataBuffer);

EEPROM write library

CALL !_EEPROMWrite

Writes 1- to 64-word data to

specified address (during

EEPROM emulation).

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 40

5.2 Explanation of Self Programming Sample Library

Each self programming sample library is explained in the following format.

self programming sample library name

[Outline]

Outlines the function of the self programming sample library.

[Format]

Indicates a format to call the self programming sample library from a user program described in C or an assembly

language.

Caution In this manual, the data type name is defined as follows.

Definition Name Data Type

UCHAR unsigned char

USHORT unsigned short

[Argument]

Indicates the argument of the self programming sample library.

[Return value]

Indicates the return value from the self programming sample library.

[Function]

Indicates the function details and points to be noted for the self programming sample library.

[Register status after calling]

Indicates the status of registers after the self programming sample library is called.

[Stack size]

Indicates the size of the stack used by the self programming sample library.

[ROM capacity]

Indicates the ROM capacity necessary for self programming.

[Call example]

Indicates an example of calling the self programming sample library from a user program described in C or an

assembly language.

[Supplement]

Indicates supplementary information on a self programming sample library other than the above.

[Flow]

This indicates the program flow of the self programming sample library.

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 41

self programming start library

[Outline]

Declares the start of self programming.

[Format]

<C language>
void FlashStart(void)

<Assembly language>
CALL !_FlashStart

[Argument]

None

[Return value]

None

[Function]

This self programming sample library declares the start of self programming.

Therefore, call this library first as a self programming operation.

Caution The operation is not guaranteed if this library is called with interrupts enabled. Before calling

this library, execute the DI instruction, and execute the EI instruction after execution of this

library is completed, so that acknowledgment of an interrupt is disabled while this library is

executed.

[Register status after calling]

No register is cleared.

[Stack size]

0 bytes

[ROM capacity]

12 bytes

[Call example]

<C language>
di(); /* Disables interrupts. */

FlashStart(); /* Calls self programming start library. */

ei(); /* Enables interrupts. */

<Assembly language>
DI ; Disables interrupts.

CALL !_FlashStart ; Calls self programming start library.

EI ; Enables interrupts.

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 42

[Flow]

Figure 5-1 shows the flow of the self programming start library.

Figure 5-1. Flow of Self Programming Start Library

FlashStart
library

End

Switch to self
programming mode

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 43

initialize library

[Outline]

Initializes entry RAM.

[Format]

<C language>
void FlashEnv(USHORT EntryRAM)

<Assembly language>
CALL !_FlashEnv

[Argument]

<C language>

Argument Explanation

USHORT EntryRAM First address of entry RAMNote

<Assembly language>

Argument Explanation

AX First address of entry RAMNote

Note For details on entry RAM, refer to 2.2.1 Entry RAM.

[Return value]

None

[Function]

This self programming sample library secures and initializes the entry RAM used for self programming.

As initialize processing, this library secures 100 bytes from an address specified by the parameter as a work area

where the flash memory writing firmware operates, and sets the initial value to the first address +06H to +16H. The

other areas are cleared to 0.

Remark Call this library after calling the self programming start library.

Also call this library to resume processing of a library executing self programming that was stopped by

the occurrence of an interrupt.

[Register status after calling]

No register is cleared.

[Stack size]

30 bytes

[ROM capacity]

11 bytes

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 44

[Call example]

<C language>
USHORT EntryRAM; /* Declares variable. */

FlashEnv(&EntryRAM[0]); /* Calls initialize library. */

<Assembly language>
SELF_RAM DSEG AT 0FDBCH

EntryRAM: DS 100

SELF_PROG CSEG

MOVW AX, #EntryRAM ; Sets first address of entry RAM.

CALL !_FlashEnv ; Calls initialize library.

Caution Allocate the entry RAM at any address of the internal high-speed RAM outside of the short direct

addressing range.

To allocate it in the internal high-speed RAM in the short direct addressing range, the first

address is set to FE20H.

[Flow]

Figure 5-2 shows the flow of the initialize library.

Figure 5-2. Flow of Initialize Library

FlashEnv
library

Save to PSW stack
Set to register bank 3

CALL 8100H

End

Register bank recovery through
PSW recovered from stack

Set entry RAM parameter to HL
register

Set 00H to C register

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 45

mode check library

[Outline]

Checks the voltage level.

[Format]

<C language>
UCHAR CheckFLMD(void)

<Assembly language>
CALL !_CheckFLMD

[Argument]

None

[Return value]

Status Explanation

00H Normal completion

− FLMD0 pin is at high level.

01H Abnormal termination

− FLMD0 pin is at low level.

Remark The status is the UCHAR type in C and is stored in the A register in an assembly language.

[Function]

This library checks the voltage level (high or low) of the FLMD0 pin.

Remark Call this library after calling the self programming start library to check the voltage level of the FLMD0

pin.

Caution If the FLMD0 pin is at low level, operations such as erasing and writing the flash memory cannot

be performed. To manipulate the flash memory by self programming, it is necessary to call this

library and confirm that the FLMD0 pin is at high level.

[Register status after calling]

Memory Model Register Status

Normal model Registers cleared: A, BC

Registers held: X, DE, HL

Static model Registers cleared: A

Registers held: X, BC, DE, HL

[Stack size]

28 bytes

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 46

[ROM capacity]

Memory Model ROM Capacity

Normal model 14 bytes

Static model 11 bytes

[Call example]

<C language>
UCHAR Status; /* Declares variable.*/

Status = CheckFLMD(); /* Calls mode check library and */

 /* stores status information. */

<Assembly language>
SELF_RAM DSEG

Status: DS 1

SELF_PROG CSEG

CALL !_CheckFLMD ; Calls mode check library.

MOV !Status, A ; Stores status information.

[Flow]

Figure 5-3 shows the flow of the mode check library.

Figure 5-3. Flow of Mode Check Library

CheckFLMD
library

Set 0EH to C register

CALL 8100H

End

Save to PSW stack
Set to register bank 3

Set B register in register bank
3 to C register (normal mode)
or A register (static mode) in

register bank

Register bank recovery through
PSW recovered from stack

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 47

block blank check library

[Outline]

Checks erasing of a specified block (1 KB).

[Format]

<C language>
UCHAR FlashBlockBlankCheck(UCHAR BlankCheckBANK, UCHAR BlankCheckBlock)

<Assembly language>
CALL !_FlashBlockBlankCheck

[Argument]

<C language>

Argument Explanation

UCHAR BlankCheckBANK Bank number of block to be blank-checked.

UCHAR BlankCheckBlock Block number of block to be blank-checked.

<Assembly language>

Argument Explanation

A Bank number of block to be blank-checked.

B Block number of block to be blank-checked.

Remark Set the bank number to 0 when a product with which no bank number has to be set is used.

[Return value]

Status Explanation

00H Normal completion

Specified block is blank (erase processing has been completed).

05H Parameter error

Specified bank number or block number is outside the settable range.

1BH Blank check error

Specified block is not blank (erase processing has not been completed).

1FH Processing is stopped because an interrupt occurs.

An interrupt occurs while processing of this library is under execution.

Remark The status is the UCHAR type in C and is stored in the A register in an assembly language.

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 48

[Function]

This library checks if a specified block (1 KB) has been erased.

Remark Because only one block is checked at a time, call this library as many times as required to check two or

more blocks.

Caution The operation is not guaranteed if this library is called with interrupts enabled. Before calling

this library, execute the DI instruction, and execute the EI instruction after execution of this

library is completed, so that acknowledgment of an interrupt is disabled while this library is

executed.

[Register status after calling]

Memory Model Register Status

Normal model Registers cleared: AX, BC

Registers held: DE, HL

Static model Registers cleared: A, BC

Registers held: X, DE, HL

[Stack size]

Memory Model Stack Size

Normal model 37 bytes

Static model 35 bytes

[ROM capacity]

Memory Model ROM Capacity

Normal model 67 bytes (of which 30 bytes are common routine)

Static model 54 bytes (of which 30 bytes are common routine)

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 49

[Call example]

<C language>
UCHAR Status; /* Declares variable. */

UCHAR BlankCheckBANK; /* Declares variable. */

UCHAR BlankCheckBlock; /* Declares variable. */

BlankCheckBANK = 0; /* Sets bank number of block to be blank-checked to 0. */

BlankCheckBlock = 10; /* Sets block number of block to be blank-checked to 10. */

 /* Calls block blank check library and */

 /* stores status information.*/

di(); /* Disables interrupts. */

Status = FlashBlockBlankCheck (BlankCheckBANK, BlankCheckBlock);

ei(); /* Enables interrupts. */

<Assembly language>
SELF_RAM DSEG

Status: DS 1

SELF_PROG CSEG

MOV A, #0 ; Sets bank number of block to be blank-checked to 0.

MOV B, #10 ; Sets block number of block to be blank-checked to 10.

 ; Calls block blank check library.

DI ; Disables interrupts.

CALL !_FlashBlockBlankCheck

MOV !Status, A ; Stores status information.

EI ; Enables interrupts.

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 50

[Flow]

Figure 5-4 shows the flow of the block blank check library.

Figure 5-4. Flow of Block Blank Check Library

FlashBlockBlankCheck
library

Set 08H to C register

CALL 8100H

End

Register bank recovery through
PSW recovered from stack

Save to PSW stack
Set to register bank 3

Calculate block number from
argument’s bank and block number

Set block number to entry
RAM +3

Set B register in register bank
3 to C register (normal mode)
or A register (static mode) in

register bank

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 51

block erase library

[Outline]

Erases a specified block (1 KB).

[Format]

<C language>
UCHAR FlashBlockErase(UCHAR EraseBANK, UCHAR EraseBlock)

<Assembly language>
CALL !_FlashBlockErase

[Argument]

<C language>

Argument Explanation

UCHAR EraseBANK Bank number of block to be erased

UCHAR EraseBlock Block number of block to be erased.

<Assembly language>

Argument Explanation

A Bank number of block to be erased

B Block number of block to be erased.

Remark Set the bank number to 0 when a product with which no bank number has to be set is used.

[Return value]

Status Explanation

00H Normal completion

05H Parameter error

Specified bank number or block number is outside the settable range.

10H Protect error

Specified block is included in the boot area and rewriting the boot area is disabled.

1AH Erase error

An error occurred during processing of this library.

1FH Processing is stopped by the occurrence of an interrupt.

An interrupt occurred while processing of this library was under execution.

Remark The status is the UCHAR type in C and is stored in the A register in an assembly language.

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 52

[Function]

This library erases a specified block (1 KB).

Remark Because only one block is erased at a time, call this library as many times as required to erase two or

more blocks.

Caution The operation is not guaranteed if this library is called with interrupts enabled. Before calling

this library, execute the DI instruction, and execute the EI instruction after execution of this

library is completed, so that acknowledgment of an interrupt is disabled while this library is

executed.

[Register status after calling]

Memory Model Register Status

Normal model Registers cleared: AX, BC

Registers held: DE, HL

Static model Registers cleared: A, BC

Registers held: X, DE, HL

[Stack size]

Memory Model Stack Size

Normal model 39 bytes

Static model 37 bytes

[ROM capacity]

Memory Model ROM Capacity

Normal model 67 bytes (of which 30 bytes are common routine)

Static model 54 bytes (of which 30 bytes are common routine)

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 53

[Call example]

<C language>
UCHAR Status; /* Declares variable. */

UCHAR EraseBANK; /* Declares variable. */

UCHAR EraseBlock; /* Declares variable. */

EraseBANK = 0; /* Sets bank number of block to be erased to 0. */

EraseBlock = 10; /* Sets block number of block to be erased to 10. */

di(); /* Disables interrupts. */

 /* Calls block erase library and stores status */

 /* information. */

Status = FlashBlockErase(EraseBANK, EraseBlock);

ei(); /* Enables interrupts. */

<Assembly language>
SELF_RAM DSEG

Status: DS 1

SELF_PROG CSEG

MOV A, #0 ; Sets bank number of block to be erased to 0.

MOV B, #10 ; Sets block number of block to be erased to 10.

DI ; Disables interrupts.

CALL !_FlashBlockErase ; Calls block erase library.

MOV !Status, A ; Stores status information.

EI ; Enables interrupts.

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 54

[Flow]

Figure 5-5 shows the flow of the block erase library.

Figure 5-5. Flow of Block Erase Library

FlashBlockErase
library

CALL 8100H

End

Register bank recovery through
PSW recovered from stack

Set B register in register bank
3 to C register (normal mode)
or A register (static mode) in

register bank

Save to PSW stack
Set to register bank 3

Calculate block number from
argument’s bank and block number

Set block number to entry
RAM +3

Set 03H to C register

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 55

word write library

[Outline]

Writes 1- to 64-word data to specified addresses.

[Format]

<C language>
UCHAR FlashWordWrite(struct stWordAddress *ptr, UCHAR WordNumber,
 USHORT DataBufferAddress)

<Assembly language>
CALL !_FlashWordWrite

[Argument]

<C language>

Argument Explanation

struct stWordAddress *ptr First address of write start address structure (stWordAddress)Note 1.

This structure must be 3 bytes in size and at a 4-byte boundary and must be secured by

the user.

UCHAR WordNumber Number of data to be written (1 to 64)

USHORT DataBufferAddress First address of write data bufferNote 2

<Assembly language>

Argument Explanation

AX First address of data having structure same as that of write start address structureNote 1 in

C (Refer to APPENDIX A SAMPLE PROGRAM.)

B Number of data to be written (1 to 64)

HL First address of write data bufferNote 2

Notes 1. Write start address structure
struct stWordAddress{

 USHORT WriteAddress; /* Write start address*/

 UCHAR WriteBank; /* Bank number of write start address*/

};

Remarks 1. Specify the write start address as a multiple of 4 bytes.

 2. Set the bank number to 0 when a product with which no bank number has to be set is

used.

Caution Before calling this library, set a value to each member of this structure.

 2. Before calling this library, set write data to the write data buffer (whose first address is indicated by

DataBufferAddress).

Caution Set the write start address and the number of data to be written so that they do not straddle over

the boundary of each block.

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 56

[Return value]

Status Explanation

00H Normal completion

05H Parameter error

− Start address not is a multiple of 1 word (4 bytes).

− The number of data to be written is 0.

− The number of data to be written exceeds 64 words.

− Write end address (Start address + (Number of data to be written × 4 bytes)) exceeds

the flash memory area.

10H Protect error

− Specified range includes the boot area and rewriting the boot area is disabled.

1CH Write error

− Data is verified but does not match after execution of the processing of this library.

1FH Processing is stopped by the occurrence of an interrupt.

− An interrupt occurred while processing of this library was under execution.

Remark The status is the UCHAR type in C and is stored in the A register in an assembly language.

[Function]

This library writes the specified number of data from a specified address.

Set a RAM area containing the data to be written as a data buffer and call this library.

Data of up to 256 bytes can be written (in 4-byte units) at one time.

Remark Call this library as many times as required to write data of more than 256 bytes.

Cautions 1. After writing data, execute verification (internal verification) of the block including the range

in which the data has been written. If verification is not executed, the written data is not

guaranteed.

 2. The operation is not guaranteed if this library is called with interrupts enabled. Before

calling this library, execute the DI instruction, and execute the EI instruction after execution

of this library is completed, so that acknowledgment of an interrupt is disabled while this

library is executed.

[Register status after calling]

Memory Model Register Status

Normal model Registers cleared: AX, BC, DE

Registers held: HL

Static model Registers cleared: AX, C

Registers held: B, DE, HL

[Stack size]

39 bytes

[ROM capacity]

Memory Model ROM Capacity

Normal model 117 bytes (of which 57 bytes are common routine)

Static model 100 bytes (of which 57 bytes are common routine)

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 57

[Call example]

<C language>
struct stWordAddress WordAddr; /* Declares variable. */

UCHAR DataBuffer[4]; /* Declares variable. */

UCHAR WordNumber; /* Declares variable. */

UCHAR Status; /* Declares variable. */

DataBuffer[0] = 0x11; /* Sets data to be written. */

DataBuffer[1] = 0x22; /* Sets data to be written. */

DataBuffer[2] = 0x33; /* Sets data to be written. */

DataBuffer[3] = 0x44; /* Sets data to be written. */

WordNumber = 1; /* Sets number of data to be written. */

WordAddr.WriteAddress = 0xA000; /* Sets 0xA000H as write start address. */

WordAddr.WriteBANK = 0; /* Sets bank number of write start address to 0. */

di(); /* Disables interrupts. */

 /* Calls word write library and stores status */

 /* information. */

Status = FlashWordWrite(&WordAddr, WordNumber, &DataBuffer);

ei(); /* Enables interrupts. */

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 58

<Assembly language>
SELF_RAM DSEG

DataBuffer: DS 4

WordAddr:

WriteAddress: DS 2

WriteBank: DS 1

Status: DS 1

SELF_PROG CSEG

MOV A, #11H

MOV !DataBuffer, A ; Sets data to be written.

MOV A, #22H

MOV !DataBuffer+1, A ; Sets data to be written.

MOV A, #33H

MOV !DataBuffer+2, A ; Sets data to be written.

MOV A, #44H

MOV !DataBuffer+3, A ; Sets data to be written.

MOVW AX, #0A000H

MOVW !WriteAddress, AX ; Sets 0xA000H as write start address.

MOV A, #0

MOV !WriteBANK, A ; Sets bank number of write start address to 0.

MOVW AX, #WordAddr ; Sets first address of write start address
structure.

MOV B, #1 ; Sets number of data to be written.

MOVW HL, #DataBuffer ; First address of write data buffer

DI ; Disables interrupts.

CALL !_FlashWordWrite ; Calls word write library.

MOV !Status, A ; Stores status information.

EI ; Enables interrupts.

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 59

[Flow]

Figure 5-6 shows the flow of the word write library.

Figure 5-6. Flow of Word Write Library

FlashWordWrite
library

Set write start address to entry
RAM +0, +1, and +2

CALL 8100H

End

Register bank recovery through
PSW recovered from stack

Save to PSW stack
Set to register bank 3

Calculate write address from
argument structure member’s

write address and bank

Set argument’s write data count
to entry RAM +3

Set argument’s data buffer start
address to entry RAM +4 and +5

Set 04H to C register

Set B register in register bank
3 to C register (normal mode)
or A register (static mode) in

register bank

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 60

block verify library

[Outline]

Verifies (internal verification) a specified block (1 KB).

Caution Verification (internal verification) is a function to check if data written to the flash memory is

written at a sufficient level, and is different from verification that compares data.

[Format]

<C language>
UCHAR FlashBlockVerify(UCHAR VerifyBANK, UCHAR VerifyBlock)

<Assembly language>
CALL !_FlashBlockVerify

[Argument]

<C language>

Argument Explanation

UCHAR VerifyBANK Bank number of block to be verified

UCHAR VerifyBlock Block number to be verified

<Assembly language>

Argument Explanation

A Bank number of block to be verified

B Block number to be verified

Remark Set the bank number to 0 when a product with which no bank number has to be set is used.

[Return value]

Status Explanation

00H Normal completion

05H Parameter error

Specified bank number or block number is outside the settable range.

1BH Verify (internal verify) error

An error occurs during processing of this library.

1FH Processing is stopped by the occurrence of an interrupt.

An interrupt occurred while processing of this library was under execution.

Remark The status is the UCHAR type in C and is stored in the A register in an assembly language.

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 61

[Function]

This library verifies (internal verification) a specified block (1 KB).

Remark Call this library as many times as required to verify two or more blocks, because only one block is

verified at a time.

Cautions 1. After writing data, verify (internal verification) the block including the range in which the data

has been written. If verification is not executed, the written data is not guaranteed.

 2. The operation is not guaranteed if this library is called with interrupts enabled. Before

calling this library, execute the DI instruction, and execute the EI instruction after execution

of this library is completed, so that acknowledgment of an interrupt is disabled while this

library is executed.

[Register status after calling]

Memory Model Register Status

Normal model Registers cleared: AX, BC

Registers held: DE, HL

Static model Registers cleared: A, BC

Registers held: X, DE, HL

[Stack size]

Memory Model Stack Size

Normal model 37 bytes

Static model 35 bytes

[ROM capacity]

Memory Model ROM Capacity

Normal model 67 bytes (of which 30 bytes are common routine)

Static model 54 bytes (of which 30 bytes are common routine)

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 62

[Call example]

<C language>
UCHAR Status; /* Declares variable. */

UCHAR VerifyBANK; /* Declares variable. */

UCHAR VerifyBlock; /* Declares variable. */

VerifyBANK = 0; /* Sets bank number of block to be verified to 0. */

VerifyBlock = 10; /* Sets block number of block to be verified to 10. */

di(); /* Disables interrupts. */

 /* Calls block verify library and stores */

 /* status information. */

Status = FlashBlockVerify(VerifyBANK, VerifyBlock);

ei(); /* Enables interrupts. */

<Assembly language>
SELF_RAM DSEG

Status: DS 1

SELF_PROG CSEG

MOV A, #0 ; Sets bank number of block to be verified to 0.

MOV B, #10 ; Sets block number of block to be verified to 10.

DI ; Disables interrupts.

CALL !_FlashBlockVerify ; Calls block verify library.

MOV !Status, A ; Stores status information.

EI ; Enables interrupts.

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 63

[Flow]

Figure 5-7 shows the flow of the block verify library.

Figure 5-7. Flow of Block Verify Library

FlashBlockVerify
library

CALL 8100H

End

Register bank recovery through
PSW recovered from stack

Save to PSW stack
Set to register bank 3

Calculate block number from
argument’s bank and block number

Set 06H to C register

Set B register in register bank
3 to C register (normal mode)
or A register (static mode) in

register bank

Set block number to entry
RAM +3

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 64

self programming end library

[Outline]

Declares the end of self programming.

[Format]

<C language>
void FlashEnd(void)

<Assembly language>
CALL !_FlashEnd

[Argument]

None

[Return value]

None

[Function]

This library declares the end of self programming.

It completes writing to the flash memory and restores the normal operation mode.

Remarks 1. Call this library at the end of the self programming operation.

 2. After execution of this library is completed, the level of the FLMD0 pin is returned to low.

Caution The operation is not guaranteed if this library is called with interrupts enabled. Before calling

this library, execute the DI instruction, and execute the EI instruction after execution of this

library is completed, so that acknowledgment of an interrupt is disabled while this library is

executed

[Register status after calling]

No register is cleared.

[Stack size]

0 bytes

[ROM capacity]

12 bytes

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 65

[Call example]

<C language>
di(); /* Disables interrupts. */

FlashEnd(); /* Calls self programming end library. */

ei(); /* Enables interrupts. */

<Assembly language>
DI ; Disables interrupts.

CALL !_FlashEnd ; Calls self programming end library.

EI ; Enables interrupts.

[Flow]

Figure 5-8 shows the flow of the self programming end library.

Figure 5-8. Flow of Self Programming End Library

FlashEnd
library

Switch to normal mode

End

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 66

get information library

[Outline]

Reads flash information.

[Format]

<C language>
UCHAR FlashGetInfo(struct stGetInfo *ptr, USHORT DataBufferAddress)

<Assembly language>
CALL !_FlashGetInfo

[Argument]

<C language>

Argument Explanation

struct stGetInfo *ptr First address of flash information acquisition structure (stGetInfo)Note.

This structure is 3 bytes in size and must be secured by the user.

USHORT DataBufferAddress First address of acquired data storage buffer

<Assembly language>

Argument Explanation

AX First address of data having the same structure as flash information acquisition structure

in CNote (Refer to APPENDIX A SAMPLE PROGRAM.)

BC First address of acquired data storage buffer

Note Flash information acquisition structure
Struct stGetInfo{

 UCHAR OptionNumber; /* Option valueNote */
 UCHAR GetInfoBank; /* Bank number (valid if option value is 05H) */

 UCHAR GetInfoBlock; /* Block number (valid if option value is 05H) */

};

Note Refer to [Supplement].

Remark Set the bank number to 0 when a product with which no bank number has to be set is used.

Cautions 1. Setting of a bank number and a block number is invalid when security flag information

and boot flag information are checked.

 2. Before calling this library, set a value to each member of this structure.

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 67

[Return value]

Status Explanation

00H Normal completion

05H Parameter error

- Specified option value is outside the settable range.

20H Read error

- Security flag is read twice and different data are read when the option value is set to 03H.

Remark The status is the UCHAR type in C and is stored in the A register in an assembly language.

Caution Flash information corresponding to a specified option value is stored in the data buffer. For

details on the flash information, refer to [Supplement].

[Function]

This library reads flash information.

It is used to check the set information (security flag, boot flag information, and last address of a specified block) of

the flash memory.

Caution The operation is not guaranteed if this library is called with interrupts enabled. Before calling

this library, execute the DI instruction, and execute the EI instruction after execution of this

library is completed, so that acknowledgment of an interrupt is disabled while this library is

executed.

[Register status after calling]

Memory Model Register Status

Normal model Registers cleared: AX, BC, DE

Registers held: HL

Static model Registers cleared: AX, BC, HL

Registers held: DE

[Stack size]
38 bytes

[ROM capacity]

Memory Model ROM Capacity

Normal model 161 bytes (of which 30 bytes are common routine)

Static model 148 bytes (of which 30 bytes are common routine)

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 68

[Call example]

<C language>
Struct stGetInfo GetInfo; /* Declares variable. */

UCHAR DataBuffer[3]; /* Declares variable. */

UCHAR Status; /* Declares variable. */

GetInfo.OptionNumber = 5; /* Specifies option value to “get last address */

 /* of specified block”. */

GetInfo.GetInfoBank = 0; /* Sets bank number of block whose flash */

 /* information is to be acquired to 0. */

GetInfo.GetInfoBlock = 10; /* Sets block number of block whose flash */

 /* information is to be acquired to 10. */

di(); /* Disables interrupts. */

 /* Calls get information library and stores status */

 /* information. */

Status = FlashGetInfo(&GetInfo, &DataBuffer);

ei(); /* Enables interrupts. */

<Assembly language>
SELF_RAM DSEG

DataBuffer: DS 3

GetInfo:

OptionNumber: DS 1

GetInfoBank: DS 1

GetInfoBlock: DS 1

Status: DS 1

SELF_PROG CSEG

MOV A, #5

MOV OptionNumber, A ; Specifies option value to “get last address of

MOV A, #0 ; specified block”.

MOV GetInfoBank, A ; Sets bank number of block whose flash

MOV A, #10 ; information is to be acquired to 0.

MOV GetIngoBlock, A ; Sets block number of block whose flash

 ; information is to be acquired to 10.

MOVW AX, #GetInfo

MOVW BC, #DataBuffer

DI ; Disables interrupts.

CALL !_FlashGetInfo ; Calls get information library.

MOV !Status, A ; Stores status information.

EI ; Enables interrupts.

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 69

[Supplement]

The flash information that can be acquired differs depending on the option value specified by the flash information

acquisition structure.

The information corresponding to each option value is shown below.

Option Value Information Acquired

03H Security flag information (2 bytes)

04H Boot flag information (1 byte)

05H Last address of specified block (3 bytes)

Each piece of information is detailed below.

(1) Security flag information (option value: 03H)

The setting status of the security flag is stored as data of 2 bytes in the data buffer from its beginning.

Offset Contents

+0 Security flag information Note

+1 Last block number of boot area (fixed to 03H)

Note Details on security flag information

Security Flag Contents

Bit 0 Chip erase enable flag

0: Disabled

1: Enabled

Bit 1 Block erase enable flag

0: Disabled

1: Enabled

Bit 2 Write enable flag

0: Disabled

1: Enabled

Bit 4 Boot area rewrite disable flag

0: Disabled

1: Enabled

Other than above Always 1

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 70

(2) Boot flag information (option value: 04H)

The boot flag information (setting status of boot swapping) is stored in the data buffer as data of 1 byte.

Offset Contents

+0 Boot flag informationNote

Note Details on boot flag information

Offset Contents

00H Boot areas are not swapped.

(Reset and started from address 0000H)

01H Boot areas are swapped.

(Reset and started from address 1000H)

(3) Last address of specified block (option value: 05H)

The last address of the specified block is stored in the data buffer from its beginning as data of 3 bytes.

Offset Contents

+0 Block last address (Low)

+1 Block last address (High)

+2 Bank number

Example Where the last address for block of block number 00H is 0003FFH

+00H +01H +02H +03H +04H +05H +06H +07H +08H +09H ⋅ ⋅ ⋅

FFH 03H 00H xxx xxx xxx xxx xxx xxx xxx ⋅ ⋅ ⋅

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 71

[Flow]

Figure 5-9 shows the flow of the get information library.

Figure 5-9. Flow of Get Information Library

End

Save to PSW stack
Set to register bank 3

FlashGetInfo
library

Set 09H to C register

CALL 8100H

Register bank recovery through PSW
recovered from stack

Save to PSW stack
Set to register bank 3

Argument’s
structure member option

number = 5?

Calculate block number from
argument structure member’s bank

and block number

Set block number to entry RAM +0

Yes

No

Set argument’s data buffer start
address to entry RAM +4 and +5

Set argument’s structure member
option number to entry RAM +3

Set B register in register bank 3 to
C register (normal mode) or A

register (static mode) in register
bank

Option number = 5?

Yes

No

Write to the data buffer the bank
and address value that was

calculated from the address value
stored in the data buffer

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 72

set information library

[Outline]

Changes setting of flash information.

[Format]

<C language>
UCHAR FlashSetInfo(UCHAR SetInfoData)

<Assembly language>
CALL !_FlashSetInfo

[Argument]

<C language>

Argument Explanation

UCHAR SetInfoData Flash information dataNote

<Assembly language>

Argument Explanation

A Flash information dataNote

Note Details on flash information data

Flash Information Data Contents

Bit 0 0: Swaps boot areas.

1: Does not swap boot areas.

Bit 1 0: Disables chip erasure.

1: Enables chip erasure.

Bit 2 0: Disables block erasure.

1: Enables block erasure.

Bit 3 0: Disables writing.

1: Enables writing.

Bit 5 0: Disables writing boot area.

1: Enables writing boot area.

Other than above Always 1

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 73

[Return value]

Status Explanation

00H Normal completion

05H Parameter error

Bit 0 of the information flag value was cleared to 0 for a product that does not support boot

swapping.

10H Protect error

- Attempt was made to enable a flag that has already been disabled.

- Attempt was made to change the boot area swap flag while rewriting of the boot area

 was disabled.

1AH Erase error

- An erase error occurred while processing of this library was under execution.

1BH Verify (internal verify) error

- A verify error occurred while processing of this library was under execution.

1CH Write error

- A write error occurred while processing of this library was under execution.

1FH Processing is stopped by the occurrence of an interrupt.

- An interrupt occurred while processing of this library was under execution.

Remark The status is the UCHAR type in C and is stored in the A register in an assembly language.

[Function]

This library changes the setting of the flash information.

It is used to change the set information (security flag and boot flag information) of the flash memory.

Cautions 1. A flag that has already disabled processing cannot be changed to enable the processing.

 2. The operation is not guaranteed if this library is called with interrupts enabled. Before

calling this library, execute the DI instruction, and execute the EI instruction after execution

of this library is completed, so that acknowledgment of an interrupt is disabled while this

library is executed.

[Register status after calling]

Memory Model Register Status

Normal model Registers cleared: A, BC

Registers held: X, DE, HL

Static model Registers cleared: A

Registers held: X, BC, DE, HL

[Stack size]

37 bytes

[ROM capacity]

Memory Model ROM Capacity

Normal model 27 bytes

Static model 23 bytes

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 74

[Call example]

<C language>
UCHAR Status; /* Declares variable. */

UCHAR SetInfoData; /* Declares variable. */

SetInfoData = 0b11111101; /* Sets flash information data to “disable chip erase”.*/

di(); /* Disables interrupts. */

 /* Calls set information library and stores status */

 /* information. */

Status = FlashSetInfo(SetInfoData);

ei(); /* Enables interrupts. */

<Assembly language>
SELF_RAM DSEG

Status: DS 1

SELF_PROG CSEG

MOV A, #11111101B ; Sets flash information data to “disable chip erase”.

DI ; Disables interrupts.

CALL !_FlashSetInfo ; Calls set information library.

MOV !Status, A ; Stores status information.

EI ; Enables interrupts.

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 75

[Flow]

Figure 5-10 shows the flow of the set information library.

Figure 5-10. Flow of Set Information Library

FlashSetInfo
library

Set 0AH to C register

CALL 8100H

End

Register bank recovery through
PSW recovered from stack

Save to PSW stack
Set to register bank 3

Store argument’s flash
information data setting to stack

Set the address of flash
information data saved to the

stack to entry RAM +4 and +5,
with this address as the data

buffer’s start address

Set B register in register bank
3 to C register (normal mode)
or A register (static mode) in

register bank

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 76

EEPROM write library

[Outline]

Writes 1 to 64 word data to a specified address (during EEPROM emulation).

[Format]

<C language>
UCHAR EEPROMWrite(struct stWordAddress *ptr, UCHAR WordNumber,
 USHORT DataBufferAddress)

<Assembly language>
CALL !_EEPROMWrite

[Argument]

<C language>

Argument Explanation

struct stWordAddress *ptr First address of write start address structure (stWordAddress)Note 1.

This structure must be 3 bytes in size and at a 4-byte boundary, and must be secured by

the user.

UCHAR WordNumber Number of data to be written (1 to 64)

USHORT DataBufferAddress First address of write data bufferNote 2

<Assembly language>

Argument Explanation

AX First address of data having the same structure as the write start address structureNote 1 in

C (Refer to APPENDIX A SAMPLE PROGRAM.)

B Number of data to be written (1 to 64)

HL First address of write data bufferNote 2

Notes 1. Write start address structure
Struct stWordAddress{

 USHORT WriteAddress; /* Write start address*/

 UCHAR WriteBANK; /* Bank number of write start address */

};

Remarks 1. Set the write start address as a multiple of 4 bytes.

 2. Set the bank number to 0 when a product with which no bank number has to be set is

used.

Caution Set a value to each member of this structure before calling this library.

 2. Set write data to the write data buffer (first address indicated by DataBufferAddress) before calling this

library.

Caution Set the write start address and the number of data to be written so that they do not straddle over

the boundary of each block.

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 77

[Return value]

Status Explanation

00H Normal completion

05H Parameter error

− Start address is not a multiple of 1 word (4 bytes).

− The number of data to be written is 0.

− The number of data to be written exceeds 64 words.

− Write end address (Start address + (Number of data to be written x 4 bytes))

exceeds the flash memory area.

10H Protect error

− A boot area is included in the specified range and rewriting of the boot area is

disabled.

1CH Write error

− Data cannot be written correctly.

1DH Verify (MRG12) error

− Data is verified but does not match after it has been written.

1EH Blank error

− Area equal to the number of data to be written was not a vacant area.

1FH Processing is stopped by the occurrence of an interrupt.

− An interrupt occurred while processing of this library was under execution.

Remark The status is the UCHAR type in C and is stored in the A register in an assembly language.

[Function]

This library writes the specified number of data to the flash memory starting from a specified address during

EEPROM emulation. Set a RAM area storing the data to be written as a data buffer and call this library.

Data of up to 256 bytes can be written (in 4-byte units) at one time.

Remark Call this library as many times as required to write data of more than 256 bytes.

Caution The operation is not guaranteed if this library is called with interrupts enabled. Before calling

this library, execute the DI instruction, and execute the EI instruction after execution of this

library is completed, so that acknowledgment of an interrupt is disabled while this library is

executed.

[Register status after calling]

Memory Model Register Status

Normal model Registers cleared: AX, BC, DE

Registers held: HL

Static model Registers cleared: AX, C

Registers held: B, DE, HL

[Stack size]

36 bytes

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 78

[ROM capacity]

Memory Model ROM Capacity

Normal model 117 bytes (of which 57 bytes are common routine)

Static model 100 bytes (of which 57 bytes are common routine)

[Call example]

<C language>
Struct stWordAddress WordAddr; /* Declares variable. */

UCHAR DataBuffer[4]; /* Declares variable. */

UCHAR WordNumber; /* Declares variable. */

UCHAR Status; /* Declares variable. */

DataBuffer[0] = 0x11; /* Sets data to be written. */

DataBuffer[1] = 0x22; ; /* Sets data to be written. */

DataBuffer[2] = 0x33; ; /* Sets data to be written. */

DataBuffer[3] = 0x44; ; /* Sets data to be written. */

WordNumber = 1; /* Sets number of data to be written. */

WordAddr.WriteAddress = 0xA000; /* Sets 0xA000 to write start address.* /

WordAddr.WriteBANK = 0; /* Sets bank number of write start address to 0. */

di(); /* Disables interrupts. */

 /* Calls EEPROM write library and stores status */

 /* information.*/

Status = EEPROMWrite(&WordAddr, WordNumber, &DataBuffer);

ei(); /* Enables interrupts. */

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 79

<Assembly language>
SELF_RAM DSEG

DataBuffer: DS 4

WordAddr:

WriteAddress: DS 2

WriteBank: DS 1

Status: DS 1

SELF_PROG CSEG

MOV A, #11H

MOV !DataBuffer, A ; Sets data to be written.

MOV A, #22H

MOV !DataBuffer+1, A ; Sets data to be written.

MOV A, #33H

MOV !DataBuffer+2, A ; Sets data to be written.

MOV A, #44H

MOV !DataBuffer+3, A ; Sets data to be written.

MOVW AX, #0A000H

MOVW !WriteAddress, AX ; Sets A000H to write address.

MOV A, #0

MOV !WriteBANK, A ; Sets bank number of write start address to 0.

MOVW AX, #WordAddr ; Sets address of write start address structure.

MOV B, #4 ; Sets number of data to be written.

MOVW HL, #DataBuffer ; Sets first address of write data buffer.

DI ; Disables interrupts.

CALL !_EEPROMWrite ; Calls EEPROM write library.

MOV !Status, A ; Stores status information.

EI ; Enables interrupts.

CHAPTER 5 SELF PROGRAMMING SAMPLE LIBRARY

User’s Manual U17516EJ1V0UM 80

[Flow]

Figure 5-11 shows the flow of the EEPROM write library.

Figure 5-11. Flow of EEPROM Write Library

EEPROMWrite
library

Set 17H to C register

CALL 8100H

End

Register bank recovery through
PSW recovered from stack

Save to PSW stack
Set to register bank 3

Calculate write address from
argument structure member’s

write address and bank

Set write start address to entry
RAM +0, +1, and +2

Set argument’s write data count
to entry RAM +3

Set argument’s data buffer start
address to entry RAM +4 and +5

Set B register in register bank
3 to C register (normal mode)
or A register (static mode) in

register bank

User’s Manual U17516EJ1V0UM 81

CHAPTER 6 DETAILS OF SELF PROGRAMMING CONTROL

This chapter describes the registers that are used to control flash memory access, and the entry RAM.

6.1 Registers That Control Self Programming

6.1.1 Flash programming mode control register (FLPMC)
This register is used to enable/disable flash memory access (write, erase, etc.), and indicate the self programming

operation mode.

A particular sequence must be used when writing to this register, in order to prevent inadvertent settings due to

noise or manipulation errors. For the specific sequence, refer to 6.1.2 Flash protect command register (PFCMD).

 After reset: 08H R/WNote

 Symbol 7 6 5 4 3 2 1 0

 FLPMC 0 0 0 0 FWEDIS FWEPR FLSPM1 FLSPM0

Note Bit 2 is a read-only bit.

[FWEDIS]

This flag is used to control flash memory access (write, erase, etc.) enable/disable through software. The initial

value of this flag is 1, and flash memory access is enabled by writing 0 to this flag.

FWEDIS Function

0 Enable write/erase

1 Disable write/erase

[FWEPR]

This flag is used to control flash memory access (write, erase, etc.) enable/disable through hardware. It directly

reflects the voltage of the FLMD0 pin.

FLMD0 Pin Voltage FWEPRNote Function

Low level (VSS) 0 Disable write/erase

High level (VDD) 1 Enable write/erase

Note The FWEPR bit is a read-only bit. Its value cannot be changed by software.

However, when using ICE, the value can be changed even by overwriting.

Flash memory access can be enabled through the combination of FWEDIS and FWEPR.

FWEDIS FWEPR Flash Memory Write/Erase Enable

0 1 Enable write/erase

Other than above Disable write/erase

Cautions 1. When executing flash memory write/erase, be sure to set FWEDIS to 0.

 2. In the normal mode, be sure to set FWEDIS to 1.

CHAPTER 6 DETAILS OF SELF PROGRAMMING CONTROL

User’s Manual U17516EJ1V0UM 82

[FLSPM0 and FLSPM1]

These control flags are used to select the self programming operation mode.

FLSPM1 FLSPM0 Mode Selection

0 0 Normal mode

• Access (instruction fetch, data read) to the entire address

 range of flash memory is possible.

0 1 Self programming mode

• Self programming by “CALL #8100H” is possible.

• Access (instruction fetch, data read) to flash memory (in

 products with 32 KB or more of ROM, 0000H to 7FFFH) is

 possible.

Caution Setting FLSPM1, FLSPM0 = 1, 0 or 1, 1 is prohibited.

Figure 6-1 shows the self programming operation mode and memory map.

Figure 6-1. Self Programming Operation Mode and Memory Map (µPD78F0545)

SFR SFR

Internal high-speed
RAM

Internal expansion
RAM

Flash memory
(user area)

Use prohibited

Use prohibited

Buffer RAM

Normal mode

Internal high-speed
RAM

Internal expansion
RAM

Flash memory
(user area)

Use prohibited

Use prohibited

Buffer RAM

Self programming mode

Access prohibited

FFFFH
F F 0 0 H
FEFFH

F B 0 0 H
FAFFH
FA 2 0 H
FA 1 F H
FA 0 0 H
F 9 F F H
F 8 0 0 H
F 7 F F H

F 0 0 0 H
EFFFH

0 0 0 0 H

FFFFH
F F 0 0 H
FEFFH

F B 0 0 H
FAFFH
FA 2 0 H
FA 1 F H
FA 0 0 H
F 9 F F H
F 8 0 0 H
F 7 F F H

F 0 0 0 H
EFFFH

0 0 0 0 H

8 0 0 0 H
7 F F F H

Caution Place the program that controls the self programming in the address range of 0000H to 7FFFH.

CHAPTER 6 DETAILS OF SELF PROGRAMMING CONTROL

User’s Manual U17516EJ1V0UM 83

6.1.2 Flash protect command register (PFCMD)
To prevent erroneous flash memory write or erase caused by an inadvertent program loop, etc., protection is

implemented by this register for flash programming mode control register (FLPMC) write.

The FLPMC register is a special register that is valid for write operations only when the write operations are

performed via following special sequence.

<1> Write a specified value (= A5H) to the PFCMD register.

<2> Write the value to be set to the FLPMC register (writing is invalid at this step).

<3> Write the inverted value of the value to be set to the FLPMC register (writing is invalid at this step).

<4> Write the value to be set to the FLPMC register (writing is valid at this step).

Caution The above sequence must be executed every time the value of the FLPMC register is changed.

 After reset: Undefined W

 Symbol 7 6 5 4 3 2 1 0

 PFCMD REG7 REG6 REG5 REG4 REG3 REG2 REG1 REG0

<Coding example of special sequence>

When writing 05H to FLPMC register:

 MOV PFCMD, #0A5H ; Writes A5H to PFCMD

 MOV FLPMC, #05H ; Writes 05H to FLPMC

 MOV FLPMC, #0FAH ; Writes 0FAH (inverted value of 05H) to FLPMC

 MOV FLPMC, #05H ; Writes 05H to FLPMC

Figure 6-2. Write Protection

<1> PFCMD
= A5H

Protection circuit

<2> FLPMC
= xxH

<3>FLPMC
= inverted
value of xxH

<4> FLPMC
= xxH

FLPMC register

Writing to the FLPMC register
is performed after the four
conditions are cleared.

CHAPTER 6 DETAILS OF SELF PROGRAMMING CONTROL

User’s Manual U17516EJ1V0UM 84

6.1.3 Flash status register (PFS)
If the flash programming mode control register (FLPMC) is not written in the correct sequence, the FLPMC register

is not set and a protection error occurs. At this time, bit 0 (FPRERR) of the PFS register is set to 1.

This flag is a cumulative flag.

 After reset: 00H R/W

 Symbol 7 6 5 4 3 2 1 0

 PFS 0 0 0 0 0 0 0 FPRERR

The FPRERR flag’s operation conditions are as follows.

<Setting conditions>

• When the PFCMD register is written to at a time when the store instruction’s operation for the latest peripheral

register was not a write operation to the PFCMD register using a specified value (A5H)

• When the first store instruction operation after <1> above is for a peripheral register other than the FLPMC

register

• When the first store instruction operation after <2> above is for a peripheral register other than the FLPMC

register

• When the first store instruction operation after <2> above writes a value other than the inverted value of the

value to be set to the FLPMC register

• When the first store instruction operation after <3> above is for a peripheral register other than the FLPMC

register

• When the first store instruction operation after <3> above writes a value other than the value (write value in

<2>) to be set to the FLPMC register.

Remark The numbers shown in angle brackets above correspond to the numbers shown in angle brackets in

section 6.1.2 above.

<Reset conditions>

• When 0 is written to bit 0 (FPRERR) in the PFS register.

• When a system reset is performed.

CHAPTER 6 DETAILS OF SELF PROGRAMMING CONTROL

User’s Manual U17516EJ1V0UM 85

6.1.4 Self programming control parameters
The self programming operation includes setting the FLMD0 pin to 1, setting the required values to the FLPMC

register, and setting up entry RAM, after which the function number (refer to Table 6-1) is set to register bank 3’s C

register and CALL8100H processing is performed.

The parameters involved in this operation are described below.

(1) Register bank 3’s parameters

In the self programming sample library, register bank 3’s C register is used to select functions to control self

programming, while its B register is used to store execution results and the HL register is used to specify the

start address of entry RAM.

Since settings to register bank 3 are all performed within a library, register bank 3 should be included in user

programs.

CHAPTER 6 DETAILS OF SELF PROGRAMMING CONTROL

User’s Manual U17516EJ1V0UM 86

Table 6-1. Register Bank 3 Parameter List

 Register

Function Name

C register

Function

Number

B Register

Return Value

HL Register AX/DE Register

Initialize 00H 00H: Normal completion

Block erase 03H 00H: Normal completion

05H: Parameter error

10H: Protect error

1AH: Erase error

1FH: Stopped

Word write 04H 00H: Normal completion

05H: Parameter error

10H: Protect error

1CH: Write error

1FH: Stopped

Block verify 06H 00H: Normal completion

05H: Parameter error

1BH: Verify (internal verify) error

1FH: Stopped

Block blank check 08H 00H: Normal completion

05H: Parameter error

1BH: Blank check error

1FH: Stopped

Get information 09H 00H: Normal completion

05H: Parameter error

20H: Read error

Set information 0AH 00H: Normal completion

05H: Parameter error

10H: Protect error

1AH: Erase error

1BH: Verify (internal verify) error

1CH: Write error

1FH: Stopped

Mode check 0EH 00H: Normal completion

01H: Error

EEPROM write 17H 00H: Normal completion

05H: Parameter error

10H: Protect error

1CH: Write error

1DH: Verify (MRG12) error

1EH: Blank error

1FH: Stopped

Start address of

entry RAMNote

Not used

(used by self

programming sample

library)

Note Entry RAM can be allocated to any address in the internal high-speed RAM except in the short direct

addressing area (entry RAM can be allocated to addresses in the internal high-speed RAM within the short

direct addressing area only when the start address is FE20H).

CHAPTER 6 DETAILS OF SELF PROGRAMMING CONTROL

User’s Manual U17516EJ1V0UM 87

(2) Entry RAM

Entry RAM is a 100-byte RAM area that is used for self programming. Parameters that control self

programming are set six bytes from the start address of the entry RAM area. Once these parameters have

been set, the self programming sample library is called to begin controlling self programming operations. The

placement of the parameters for various functions relative to the start of the entry RAM area is listed in Table

6-2 below.

Allocate the Entry RAM to any address in the high-speed RAM area except in the short direct addressing area

(it is possible to allocate the entry RAM to addresses in internal high-speed RAM within the short direct

addressing area only when the start address is FE20H).

Entry RAM is used as a work area for self programming. Consequently, nothing in the entry RAM area except

for parameters should be changed during self programming operations.

Table 6-2. Entry RAM Parameter List

 Offset Value

Function Name
+00H +01H +02H +03H +04H, +05H

+06H to

+99H

Initialize − − − − − −

Block erase − − − Block

number

− −

Word write Start address

lower bits

Start address

higher bits

Start address

MSB

Number of

words

Data buffer

start address

−

Block verify − − − Block

number

− −

Block blank check − − − Block

number

− −

Get information Block

number

− − Option value Data buffer

start address

−

Set information − − − − Data buffer

start address

−

Mode check − − − − − −

EEPROM write Start address

lower bits

Start address

higher bits

Start address

MSB

Number of

words

Data buffer

start address

−

Remark Do not modify the content of any single description.

CHAPTER 6 DETAILS OF SELF PROGRAMMING CONTROL

User’s Manual U17516EJ1V0UM 88

(3) Data buffer

The data buffer is used to pass data and setting-related information written to flash memory; its specific

contents depend on the self programming function being used. The data buffer can be placed at any address

in internal high-speed RAM, and its start address is specified in the entry RAM. The data buffer’s size also

depends on the function, but it must be in range from 1 to 256 bytes.

Table 6-3. Data Buffer Parameter List

Data Buffer Contents Function

Data Buffer

Size (Bytes)

+00H +01H +02H +03H +04H

to

+FFH

Initialize − − Not used

Block erase − − Not used

Word write 4 to 256 Write data Write data

Block verify − − Not used

Block blank check − − Not used

Get information 1 to 8 Flash

information

Flash information (refer to Table 6-4 for details)

Set information 1 Information

flag

Bit 0: Execute boot swap (0)/

 Do not execute (1)

Bit 1: Prohibit chip erase (0)/Enable (1)

Bit 2: Prohibit block erase (0)/Enable (1)

Bit 3: Prohibit write (0)/Enable (1)

Bit 5: Prohibit boot area overwrite (0)/

 Enable (1)

Not used

Mode check − − Not used

EEPROM write 4 to 256 Write data Write data

Remark If a function is used with an area marked as “not used”, the area cannot be used as a data buffer.

CHAPTER 6 DETAILS OF SELF PROGRAMMING CONTROL

User’s Manual U17516EJ1V0UM 89

Table 6-4. Detailed Flash Information for Get Information Function

Data Buffer’s Offset Value Flash Information

Type

Option

Value +00H +01H +02H +03H +04H +05H +06H +07H

Security

flag

information

Boot area’s

final block

number

Not used Security flag 03H

<Security flag information: Details>

Bit 1: Chip erase enable flag (0: Prohibit, 1: Enable)

Bit 2: Block erase enable flag (0: Prohibit, 1: Enable)

Bit 3: Write enable flag (0: Prohibit, 1: Enable)

Bit 4: Boot area overwrite prohibit flag (0: Prohibit, 1: Enable)

Bits 3, 5, 6, and 7 are always 1.

<Boot area’s final block number>

03H (fixed)

Boot flag

information

Not used Boot flag 04H

<Boot flag information: details>

00H: Boot area is not being switched

01H: Boot area is being switched

Block’s end address Last address of

specified block

05H

Lower bits Higher bits MSB

Not used

Remark If a function is used with an area marked as “not used”, the area cannot be used as a data buffer.

User’s Manual U17516EJ1V0UM 90

APPENDIX A SAMPLE PROGRAM

This appendix shows the sample program provided.

Caution This sample program must be used at the user’s own risk. Correct operation is not guaranteed

if this sample program is used.

A.1 User Program
<sample.c>
/*+++

* System : Sample program that uses self programming sample library

* File name : sample.c

* Target CPU : 78K0/Kx2

* Last updated : 2005/02/25

++/

/*---

* Expanded functions

--/

#pragma sfr

#pragma DI

#pragma EI

#pragma NOP

/*---

* Type declarations

--/

typedef unsigned char UCHAR;

typedef unsigned short USHORT;

/*---

* Constant definitions

--/

#define STATE_OF_ABORT (0x1F) /* State of abort */

#define FLASHFIRM_NORMAL_END (0x00) /* Normal completion */

#define FLASHFIRM_ABNORMAL_END (0xFF) /* Abnormal completion */

#define TRUE (0x00) /* Normal */

#define FALSE (0xFF) /* Abnormal */

#define PARAMETER_ERROR (0x05) /* Parameter error */

#define BANKNUM (5) /* Bank number */

#define BLOCK (32) /* Block number */

#define ADDR (0x8000) /* Write Address */

struct stWordAddress{

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 91

 USHORT WriteAddress;

 UCHAR WriteBank;

};

struct stWordWriteData{

 UCHAR WordNumber;

 UCHAR WriteDataBuffer[256];

 USHORT WriteAddressData;

 UCHAR WriteBankData;

};

struct stGetInfo{

 UCHAR OptionNumber;

 UCHAR GetInfoBank;

 UCHAR GetInfoBlock;

};

struct stGetInfoData{

 UCHAR OptionNumberData;

 UCHAR GetInfoBankData;

 UCHAR GetInfoBlockData;

};

/*---

* Prototype declarations

--/

extern void FlashStart(void);

extern void FlashEnd(void);

extern void FlashEnv(USHORT EntryRAM);

extern UCHAR FlashBlockErase(UCHAR EraseBank, UCHAR EraseBlock);

extern UCHAR FlashWordWrite(struct stWordAddress *ptr, UCHAR WordNumber, USHORT
DataBufferAddress);

extern UCHAR FlashBlockVerify(UCHAR VerifyBank, UCHAR VerifyBlock);

extern UCHAR FlashBlockBlankCheck(UCHAR BlankCheckBank, UCHAR BlankCheckBlock);

extern UCHAR FlashGetInfo(struct stGetInfo *ptr, USHORT DataBufferAddress);

extern UCHAR FlashSetInfo(UCHAR SetInfoData);

extern UCHAR CheckFLMD(void);

UCHAR FlashBlockErase_Call(UCHAR EraseBank, UCHAR EraseBlock);

UCHAR FlashWordWrite_Call(struct stWordAddress *ptr1, USHORT DataBufferAddress,
struct stWordWriteData *ptr2);

UCHAR FlashBlockVerify_Call(UCHAR VerifyBank, UCHAR VerifyBlock);

UCHAR FlashBlockBlankCheck_Call(UCHAR BlankCheckBank, UCHAR BlankCheckBlock);

UCHAR FlashGetInfo_Call(struct stGetInfo *ptr1, USHORT DataBufferAddress, struct
stGetInfoData *ptr2);

UCHAR FlashGetInfo_Call5(struct stGetInfo *ptr1, USHORT DataBufferAddress, struct
stGetInfoData *ptr2);

UCHAR FlashSetInfo_Call3(UCHAR SetInfoData, struct stGetInfo *ptr, USHORT

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 92

DataBufferAddress);

UCHAR FlashSetInfo_Call4(UCHAR SetInfoData, struct stGetInfo *ptr, USHORT
DataBufferAddress);

UCHAR CheckFLMD_Call(void);

/* FlashEnv */

sreg UCHAR EntryRAM[100];

/*---

* Sample program

--/

void main(void){

 USHORT i;

 UCHAR Status;

 /* FlashBlockErase */

 UCHAR EraseBank;

 UCHAR EraseBlock;

 /* FlashBlockVerify */

 UCHAR VerifyBank;

 UCHAR VerifyBlock;

 /* FlashBlockBlankCheck */

 UCHAR BlankCheckBank;

 UCHAR BlankCheckBlock;

 /* FlashWordWrite */

 struct stWordAddress WordAddr;

 UCHAR DataBuffer[256];

 struct stWordWriteData WordWriteData;

 DI();

 IMS = 0xCC;

 IXS = 0x00;

 PCC = 0x00; /* Clock select(division ratio) */

 /* -> IN: 5MHZ = OUT: 5MHZ */

 MSTOP = 0; /* MOC.bit7:X1 oscillator operation */

 OSTS = 0x05; /* Oscillation stabilization time */

 while(OSTC.0 == 0);

 MCM0 = 0;

 XSEL = 0;

 while(MCS == 1);

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 93

 RSTOP = 1;

 LVIM = 0x00; /* Prohibits low voltage detection */

 LVIS = 0x00;

 EI();

 /* FlashStart(Self programming start library) call processing */

 FlashStart();

 /* FlashEnv(Initialization library) call processing */

 FlashEnv((USHORT)&EntryRAM);

 /* CheckFLMD(Mode check library) call processing */

 Status = CheckFLMD_Call();

 if(Status == TRUE){

 while(1){

 /* FlashBlockBlankCheck call processing */

 BlankCheckBank = BANKNUM;

 BlankCheckBlock = BLOCK;

 /* Block blank check library */

 Status = FlashBlockBlankCheck_Call(BlankCheckBank,
BlankCheckBlock);

 if(Status == TRUE){

 break;

 }else if (Status == PARAMETER_ERROR){

 break;

 /* Abnormal end */

 }else{

 /* FlashBlockErase call processing */

 EraseBank = BANKNUM;

 EraseBlock = BLOCK;

 /* Block erase library */

 Status = FlashBlockErase_Call(EraseBank, EraseBlock);

 if(Status != TRUE){

 break;

 /* Abnormal end */

 }

 }

 }

 }

 if(Status == TRUE){

 /* FlashWordWrite call processing */

 for(i=0; i<=255; i++){

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 94

 WordWriteData.WriteDataBuffer[i] = (UCHAR)i;

 }

 WordWriteData.WordNumber = 64;

 WordWriteData.WriteAddressData = ADDR;

 WordWriteData.WriteBankData = BANKNUM;

 Status = FlashWordWrite_Call(&WordAddr, (USHORT)&DataBuffer,
&WordWriteData); /* Word write library */

 if(Status == TRUE){

 /* FlashBlockVerify call processing */

 VerifyBank = BANKNUM;

 VerifyBlock = BLOCK;

 /* Block verify library */

 Status = FlashBlockVerify_Call(VerifyBank, VerifyBlock);

 }

 }

 if(Status == TRUE){

 /* FlashEnd(Self programming end library) call processing */

 FlashEnd();

 /* Normal end */

 }else{

 /* FlashEnd(Self programming end library) call processing */

 FlashEnd();

 /* Abnormal end */

 }

 while(1){

 NOP();

 NOP();

 }

}

/* Call processing in each library */

/*---

* Function name : FlashBlockErase_CALL

* Input : EraseBank = Erase bank

* EraseBlock = Erase block number

* Output : Status = Return value from firm

* (When the retry time exceeds 10 times,

* return PARAMETER ERROR from this function)

* Summary : FlashBlockErase library call processing.

---/

UCHAR FlashBlockErase_Call(UCHAR EraseBank, UCHAR EraseBlock){

 UCHAR Status;

 UCHAR Counter;

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 95

 Counter = 0; /* Retry counter reset */

 while(1){

 Counter++; /* When the retry time exceeds 10 times, it ends. */

 if(Counter >= 10){

 Status = FLASHFIRM_ABNORMAL_END;

 break;

 }

 DI();

 /* Erase library call */

 Status = FlashBlockErase(EraseBank, EraseBlock);

 EI();

 if(Status == STATE_OF_ABORT){ /* State of abort?, YES */

 while(1){

 DI();

 /* Block blank check library call */

 Status = FlashBlockBlankCheck(EraseBank, EraseBlock);

 EI();

 /* State of abort?, NO */

 if(Status != STATE_OF_ABORT){

 break;

 }

 }

 /* Normal completion?, YES */

 if(Status == FLASHFIRM_NORMAL_END){

 /* Initialization library call */

 FlashEnv((USHORT)&EntryRAM);

 break;

 }

 }else{

 break;

 }

 }

 return(Status); /* Return value = Status */

}

/*---

* Function name : FlashWordWrite_CALL

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 96

* Input : *ptr1 = Address of writing beginning address structure

* DataBufferAddress = Address in writing data buffer

* ptr2 = Address of writing beginning address structure

* (Member of structure ... Number of writing data

* Writing starting address

* Bank of writing starting address)

* Output : Status = Return value from firm

* Summary : WordWrite library call processing.

---/

UCHAR FlashWordWrite_Call(struct stWordAddress *ptr1, USHORT DataBufferAddress,
struct stWordWriteData *ptr2){

 UCHAR Status;

 USHORT i;

 UCHAR *p;

 p = (UCHAR *)DataBufferAddress;

 /* Writing data setting to data buffer. */

 for(i=0; i<=(ptr2->WordNumber)*4-1; i++){

 *p = ptr2->WriteDataBuffer[i];

 p++;

 }

 /* Writing address and the bank are set to writing beginning address structure.
*/

 ptr1->WriteAddress = ptr2->WriteAddressData;

 ptr1->WriteBank = ptr2->WriteBankData;

 while(1){

 DI();

 /* Word write library call */

 Status = FlashWordWrite(ptr1, ptr2->WordNumber, DataBufferAddress);

 EI();

 if(Status != STATE_OF_ABORT){ /* State of abort?, NO */

 break;

 }

 }

 return(Status); /* Return value = Status */

}

/*---

* Function name : FlashBlockVerify_CALL

* Input : VerifyBank = Verify bank

* VerifyBlock = Verify block number

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 97

* Output : Status = Return value from firm

* Summary : FlashBlockVerify library call processing.

---/

UCHAR FlashBlockVerify_Call(UCHAR VerifyBank, UCHAR VerifyBlock){

 UCHAR Status;

 while(1){

 DI();

 /* Block verify library call */

 Status = FlashBlockVerify(VerifyBank, VerifyBlock);

 EI();

 if(Status != STATE_OF_ABORT){ /* State of abort?, NO */

 break;

 }

 }

 return(Status); /* Return value = Status */

}

/*---

* Function name : FlashBlockBlankCheck_CALL

* Input : BlankCheckBank = Blank check bank

* BlankCheckBlock = Blank check block number

* Output : Status = Return value from firm

* Summary : FlashBlockBlankCheck library call processing.

---/

UCHAR FlashBlockBlankCheck_Call(UCHAR BlankCheckBank, UCHAR BlankCheckBlock){

 UCHAR Status;

 while(1){

 DI();

 /* Block blank check library call */

 Status = FlashBlockBlankCheck(BlankCheckBank, BlankCheckBlock);

 EI();

 if(Status != STATE_OF_ABORT){ /* State of abort?, NO */

 break;

 }

 }

 return(Status); /* Return value = Status */

}

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 98

/*---

* Function name : FlashGetInfo_CALL

* Input : *ptr1 = Address of flash information acquisition structure

* DataBufferAddress = The first address in buffer where get data is
stored

* *ptr2 = Address of flash information acquisition structure

* (Member of structure ... Option number)

* Output : Status = Return value from firm

* Summary : FlashGetInfo library call processing.

* (When Security flag information or Boot flag information is
acquired)

---/

UCHAR FlashGetInfo_Call(struct stGetInfo *ptr1, USHORT DataBufferAddress, struct
stGetInfoData *ptr2){

 UCHAR Status;

 /* Setting of option number of flash information acquisition structure */

 ptr1->OptionNumber = ptr2->OptionNumberData;

 /* Get information library call */

 Status = FlashGetInfo(ptr1, DataBufferAddress);

 return(Status); /* Return value = Status */

}

/*---

* Function name : FlashGetInfo_CALL5

* Input : *ptr1 = Address of flash information acquisition structure

* DataBufferAddress = The first address in buffer where get data is stored

* *ptr2 = Address of flash information acquisition structure

* (Member of structure ... Option number

* Bank

* Block number)

* #Option Number=Only 05H#

* Output : Status = Return value from firm

* Summary : FlashGetInfo library call processing.

* (When block final address information is acquired)

---/

UCHAR FlashGetInfo_Call5(struct stGetInfo *ptr1, USHORT DataBufferAddress, struct
stGetInfoData *ptr2){

 UCHAR Status;

 /* Setting of data of flash information acquisition structure */

 ptr1->OptionNumber = ptr2->OptionNumberData;

 ptr1->GetInfoBank = ptr2->GetInfoBankData;

 ptr1->GetInfoBlock = ptr2->GetInfoBlockData;

 /* Get information library call */

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 99

 Status = FlashGetInfo(ptr1, DataBufferAddress);

 return(Status); /* Return value = Status */

}

/*---

* Function name : FlashSetInfo_CALL3

* Input : SetInfoData=Flash information data

* *ptr = Address of flash information acquisition structure(For
GetInfo)

* DataBufferAddress=The first address in buffer where get data is
stored(For GetInfo)

* Output : Status = Return value from firm

* Summary : FlashSetInfo library call processing

* (When security flag information is set)

---/

UCHAR FlashSetInfo_Call3(UCHAR SetInfoData, struct stGetInfo *ptr, USHORT
DataBufferAddress){

 UCHAR Status;

 UCHAR SecurityFlag;

 UCHAR *p;

 p = (UCHAR *)DataBufferAddress;

 while(1){

 DI();

 while(1){

 ptr->OptionNumber = 0x03; /* Security flag information acquisition */

 /* Get information library call */

 Status = FlashGetInfo(ptr, DataBufferAddress);

 if(Status == FLASHFIRM_NORMAL_END){

 /* The state of a present security flag is maintained */

 /* in the variable. */

 SecurityFlag = *p;

 break;

 }

 }

 /* Set information library call */

 Status = FlashSetInfo(SetInfoData);

 EI();

 if(Status == STATE_OF_ABORT){ /* State of abort?, YES */

 while(1){

 ptr->OptionNumber = 0x03;

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 100

 /* Get information library call */

 Status = FlashGetInfo(ptr, DataBufferAddress);

 /* Normal completion?, YES */

 if(Status == FLASHFIRM_NORMAL_END){

 break;

 }

 }

 /* Flash information rewriting completion?, YES */

 if(SecurityFlag != *p){

 break;

 }

 }else{

 break;

 }

 }

 return(Status); /* Return value = Status */

}

/*---

* Function name : FlashSetInfo_CALL4

* Input : SetInfoData = Flash information data

* *ptr = Address of flash information acquisition structure(For
GetInfo)

* DataBufferAddress = The first address in buffer where get data is
stored(For GetInfo)

* Output : Status = Return value from firm

* Summary : FlashSetInfo library call processing

* (When boot flag information is set)

---/

UCHAR FlashSetInfo_Call4(UCHAR SetInfoData, struct stGetInfo *ptr, USHORT
DataBufferAddress){

 UCHAR Status;

 UCHAR BootFlag;

 UCHAR *p;

 p = (UCHAR *)DataBufferAddress;

 while(1){

 DI();

 while(1){

 /* Boot flag information acquisition */

 ptr->OptionNumber = 0x04;

 /* Get information library call */

 Status = FlashGetInfo(ptr, DataBufferAddress);

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 101

 if(Status == FLASHFIRM_NORMAL_END){

 /* The state of a present boot flag */

 /* is maintained in the variable. */

 BootFlag = *p;

 break;

 }

 }

 /* Set information library call */

 Status = FlashSetInfo(SetInfoData);

 EI();

 if(Status == STATE_OF_ABORT){ /* State of abort ?, YES */

 while(1){

 ptr->OptionNumber = 0x04;

 /* Get information library call */

 Status = FlashGetInfo(ptr, DataBufferAddress);

 /* Normal completion?, YES */

 if(Status == FLASHFIRM_NORMAL_END){

 break;

 }

 }

 if(BootFlag != *p){

 break;

 }

 }else{

 break;

 }

 }

 return(Status); /* Return value = Status */

}

/*---

* Function name : CheckFLMD_CALL

* Input : None

* Output : Status = Return value from firm

* Summary : CheckFLMD library call processing.

---/

UCHAR CheckFLMD_Call(void){

 UCHAR Status;

 Status = CheckFLMD(); /* Mode check library call */

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 102

 return(Status); /* Return value = Status */

}

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 103

A.2 Self Programming Library (Normal Model)
<SelfLibrary_normal.asm>
;+++

; System : Self programming library(Normal model)

; File name : SelfLibrary_normal.asm

; Version : 2.00

; Target CPU : 78K0/Kx2

; Last updated : 2005/07/08

;+++

PUBLIC _FlashStart

PUBLIC _FlashEnd

PUBLIC _FlashEnv

PUBLIC _FlashBlockErase

PUBLIC _FlashWordWrite

PUBLIC _FlashBlockVerify

PUBLIC _FlashBlockBlankCheck

PUBLIC _FlashGetInfo

PUBLIC _FlashSetInfo

PUBLIC _CheckFLMD

PUBLIC _EEPROMWrite

;---

; EQU settings

;---

FLASH_ENV EQU 00H ; Initialization

FLASH_BLOCK_ERASE EQU 03H ; Block erace

FLASH_WORD_WRITE EQU 04H ; Word write

FLASH_BLOCK_VERIFY EQU 06H ; Block verify

FLASH_BLOCK_BLANKCHECK EQU 08H ; Block blank check

FLASH_GET_INF EQU 09H ; Flash memory information read

FLASH_SET_INF EQU 0AH ; Flash memory information setting

FLASH_CHECK_FLMD EQU 0EH ; Mode check

FLASH_EEPROM_WRITE EQU 17H ; EEPROM write

FLASHFIRM_PARAMETER_ERROR EQU 05H ; Parameter error

BANK_BLC_ERROR EQU 0FFH ; Bank number error(BLOCK)

BANK_ADDR_ERROR EQU 0FFFFH ; Bank number error(ADDRESS)

SELF_PROG CSEG

;---

; Function name : _FlashStart

; Input : None

; Output : None

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 104

; Destroyed register : None

; Summary : Self programming start processing.

;---

_FlashStart:

 MOV PFCMD, #0A5H ; PFCMD register control

 MOV FLPMC, #001H ; FLPMC register control (set value)

 MOV FLPMC, #0FEH ; FLPMC register control (inverted set value)

 MOV FLPMC, #001H ; FLPMC register control (set value)

 RET

;---

; Function name : _FlashEnd

; Input : None

; Output : None

; Destroyed register : None

; Summary : Self programming end processing.

;---

_FlashEnd:

 MOV PFCMD, #0A5H ; PFCMD register control

 MOV FLPMC, #000H ; FLPMC register control (set value)

 MOV FLPMC, #0FFH ; FLPMC register control (inverted set value)

 MOV FLPMC, #000H ; FLPMC register control (set value)

 RET

;---

; Function name : _FlashEnv

; Input : AX = Entry RAM address

; Output : None

; Destroyed register : None

; Summary : Initialization processing of self programming.

;---

_FlashEnv:

; Initialization processing

 PUSH PSW ; Save register bank in STACK.

 PUSH AX

 SEL RB3 ; Sets to register bank 3.

 POP HL ; Sets Entry RAM address to HL register

 MOV C, #FLASH_ENV ; Sets function number to C register

 CALL !8100H ; Calls flash firmware

 MOV A, #09H

 MOV [HL+13H], A ; Set Block Erase Retry Number

 MOV [HL+14H], A ; Set Chip Erase Retry Number

 POP PSW ; Restores register bank from STACK.

 RET

;---

; Function name : _FlashBlockErase

; Input : AX = Erase bank

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 105

; STACK = Erase block number

; Output : BC = Status

; Destroyed register : AX,BC

; Summary : Erases of specified block (1Kbyte).

;---

_FlashBlockErase:

 PUSH HL

; Calculate Erase block number from block number and bank.

 MOVW BC, AX

 MOVW AX, SP

 MOVW HL, AX

 MOV A, [HL+4] ; Read STACK data(= Erase block number)

 MOV B, A

 MOV A, C ; A ... Erase bank, B ... Erase block number

 ; Block number is calculated from block number and bank.

 ; (Return A = Erase block number after it calculates)

 CALL !ExchangeBlockNum

 BZ $FBE_PErr ; It is error if the bank number is outside the range.

; Block erase processing

 PUSH PSW ; Save register bank in STACK.

 PUSH AX

 SEL RB3 ; Sets to register bank 3.

 POP AX

 MOV [HL+3], A ; Sets entry RAM+3 to Erase block number

 ; after it calculates

 MOV C, #FLASH_BLOCK_ERASE ; Sets function number to C register

 CALL !8100H ; Calls flash firmware

 POP PSW ; Restores register bank from STACK.

; Get flash firmware error information

 MOV A,0FEE3H ; Sets flash firmware error information to return value

 ; (0FEE3H = B register of Bank 3)

 BR FlashBlockErase00

; Parameter error

FBE_PErr:

 MOV A, #FLASHFIRM_PARAMETER_ERROR ; Sets parameter error to

 ; return value

FlashBlockErase00:

 MOV C, A

 MOV B, #00H

 POP HL

 RET

;---

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 106

; Function name : _FlashWordWrite

; Input : AX = Address of writing beginning address structure

; (Member of structure ...

; Writing starting address

; Bank of writing starting addres)

; STACK1 = Number of writing data

; STACK2 = Address in writing data buffer

; Output : BC = Status

; Destroyed register : AX, BC, DE

; Summary : Data on RAM is written in the flash memory.

; 256 bytes or less (Every 4 bytes) are written at a time.

;---

_FlashWordWrite:

 PUSH HL

; Calculate Writing address from writing address and bank.

 MOVW DE, AX

 MOVW AX, SP

 MOVW HL, AX

 MOV A, [HL+4] ; Read STACK data(=Number of writing data)

 MOV B, A

 MOV A, [HL+6] ; Read STACK data(=Address in writing data buffer)

 XCH A, X

 MOV A, [HL+7]

 MOVW HL, AX

 MOVW AX, DE ; AX ... Address of writing beginning address

 ; structure address,

 ; B ... Number of writing data,

 ; HL ... Address in writing data buffer

 CALL !ExchangeAddress ; Writing address is calculated from structure

 ; member's writing address and bank

 ; (Return AX=Writing address)

 BZ $FWW_PErr ; It is error if the bank number is outside the range.

; Word write processing

 PUSH PSW ; Save register bank in STACK.

 PUSH AX

 PUSH BC

 PUSH HL

 SEL RB3 ; Sets to register bank 3.

 POP AX

 MOV [HL+5], A ; Sets entry RAM+5 to higher address in writing data buffer

 MOV A, X

 MOV [HL+4], A ; Sets entry RAM+4 to lower address in writing data buffer

 POP AX

 MOV [HL+3], A ; Sets entry RAM+3 to Number of writing data

 MOV A,X

 MOV [HL+0], A ; Sets entry RAM+0 to Writing address lower bytes

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 107

 POP AX

 MOV [HL+2], A ; Sets entry RAM+2 to Writing address most higher bytes

 MOV A, X

 MOV [HL+1], A ; Sets entry RAM+1 to Writing address higher bytes

 MOV C, #FLASH_WORD_WRITE ; Sets function number to C register

 CALL !8100H ; Calls flash firmware

 POP PSW ; Restores register bank from STACK.

; Get flash firmware error information

 MOV A, 0FEE3H ; Sets flash firmware error information to return value

 ;(0FEE3H = B register of Bank 3)

 BR FlashWordWrite00

; Parameter error

FWW_PErr:

 MOV A, #FLASHFIRM_PARAMETER_ERROR ; Sets parameter error to

 ; return value

FlashWordWrite00:

 MOV C, A

 MOV B, #00H

 POP HL

 RET

;---

; Function name : _FlashBlockVerify

; Input : AX = Verify bank

; STACK = Verify block number

; Output : BC = Status

; Destroyed register : AX, BC

; Summary : Internal verify of specified block (1Kbyte).

;---

_FlashBlockVerify:

 PUSH HL

; Calculate Verify block number from block number and bank.

 MOVW BC, AX

 MOVW AX, SP

 MOVW HL, AX

 MOV A, [HL+4] ; Read STACK data(=Verify block number)

 MOV B, A

 MOV A, C ; A ... Verify bank, B ... Verify block number

 CALL !ExchangeBlockNum ; Block number is calculated from block number

 ; and bank.

 ; (Return A=Verify block number after

 ; it calculates)

 BZ $FBV_PErr ; It is error if the bank number is outside

 ; the range.

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 108

; Block verify processing

 PUSH PSW ; Save register bank in STACK.

 PUSH AX

 SEL RB3 ; Sets to register bank 3.

 POP AX

 MOV [HL+3], A ; Sets entry RAM+3 to Verify block

 ; number after it calculates

 MOV C, #FLASH_BLOCK_VERIFY ; Sets function number to C register

 CALL !8100H ; Calls flash firmware

 POP PSW ; Restores register bank from STACK.

; Get flash firmware error information

 MOV A, 0FEE3H ; Sets flash firmware error information to return value

 ; (0FEE3H = B register of Bank 3)

 BR FlashBlockVerify00

; Parameter error

FBV_PErr:

 MOV A, #FLASHFIRM_PARAMETER_ERROR ; Sets parameter error to return

 ; value

FlashBlockVerify00:

 MOV C, A

 MOV B, #00H

 POP HL

 RET

;---

; Function name : _FlashBlockBlankCheck

; Input : AX = Blank check bank

; STACK = Blank check block number

; Output : BC = Status

; Destroyed register : AX, BC

; Summary : Blank check of specified block (1Kbyte).

;---

_FlashBlockBlankCheck:

 PUSH HL

; Calculate Blank check block number from block number and bank.

 MOVW BC, AX

 MOVW AX, SP

 MOVW HL, AX

 MOV A, [HL+4] ; Read STACK data(=Blank check block number)

 MOV B, A

 MOV A, C ; A ... Blank check bank, B ... Blank check block number

 CALL !ExchangeBlockNum ; Block number is calculated from block

 ; number and bank.

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 109

 ; (Return A = Blank check block number after it calculates)

 BZ $FBBC_PErr ; It is error if the bank number is outside the range.

; Block blank check processing

 PUSH PSW ; Save register bank in STACK.

 PUSH AX

 SEL RB3 ; Sets to register bank 3.

 POP AX

 MOV [HL+3], A ; Sets entry RAM+3 to Blank check
block number after it calculates

 MOV C, #FLASH_BLOCK_BLANKCHECK ; Sets function number to C register

 CALL !8100H ; Calls flash firmware

 POP PSW ; Restores register bank from STACK.

; Get flash firmware error information

 MOV A, 0FEE3H ; Sets flash firmware error information to return value

 ; (0FEE3H = B register of Bank 3)

 BR FlashBlockBlankCheck00

;Parameter error

FBBC_PErr:

 MOV A, #FLASHFIRM_PARAMETER_ERROR ; Sets parameter error to return

 ; value

FlashBlockBlankCheck00:

 MOV C, A

 MOV B, #00H

 POP HL

 RET

;---

; Function name : _FlashGetInfo

; Input : AX = Address of flash information acquisition structure

; (Member of structure ... Option number

; Bank

; Block number)

; STACK = The first address in buffer where get data is stored

; Output : BC = Status

; Destroyed register : AX,BC,DE

; Summary : The set up information of the flash memory is read.

;---

_FlashGetInfo:

 PUSH HL

; Check of Option number

 MOVW BC, AX

 MOVW AX, SP

 MOVW HL, AX

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 110

 MOV A, [HL+4] ; Read STACK data(=The first address in buffer

 ; where get data is stored)

 XCH A, X

 MOV A, [HL+5]

 XCHW AX, BC ; AX ... Address of flash information

 ; acquisition structure

 ; BC ... The first address in buffer where get data

 ; is stored

 MOVW HL, AX

 MOVW AX, BC

 MOVW DE, AX

 MOV A, [HL+0] ; Read data from flash information acquisition

 ; structure(=Option number)

 CMP A, #05H ; Option number = 5 ?

 BNZ $FlashGetInfo10 ; NO

; Calculate Block number from block number and bank.

 MOV X, A

 MOV A, [HL+2] ; Read data from flash information acquisition

 ; structure(=Block number)

 MOV B, A

 MOV A, [HL+1] ; Read data from flash information acquisition

 ; structure(=Bank)

 ; A...Bank, B...Block number

 CALL !ExchangeBlockNum ; Block number is calculated from block number

 ; and bank.

 ; (Return A = Block number after it calculates)

 BZ $FlashGetInfo20 ; It is error if the bank number is outside

 ; the range.

 XCH A, X ; A...Option number, X...Block number

; Get info processing(When Option number = 5)

 PUSH PSW ; Save register bank in STACK.

 PUSH DE

 PUSH AX

 SEL RB3 ; Sets to register bank 3.

 POP AX

 XCH A, X

 MOV [HL+0],A ; Sets entry RAM+0 to Block number

 MOV A, X ; A...Option number

 BR FlashGetInfo40

; Check of Option number error

FlashGetInfo10:

 CMP A, #03H ; Option number = 3 ?

 BZ $FlashGetInfo30 ; YES

 CMP A, #04H ; Option number = 4?

 BZ $FlashGetInfo30 ; YES

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 111

FlashGetInfo20:

 MOV A, #FLASHFIRM_PARAMETER_ERROR ; The parameter error is returned,

 ; except when option NO is 3, 4,

 ; and 5.

 BR FlashGetInfo50

; Get info processing(When Option number = 3, 4)

FlashGetInfo30:

 PUSH PSW ; Save register bank in STACK.

 PUSH DE

 PUSH AX

 SEL RB3 ; Sets to register bank 3.

 POP AX

FlashGetInfo40:

 MOV [HL+3], A ; Sets entry RAM+3 to Option number

 POP AX

 MOV [HL+5], A ; Sets entry RAM+5 to Storage buffer higher address

 MOV A, X

 MOV [HL+4], A ; Sets entry RAM+4 to Storage buffer lower address

 MOV C, #FLASH_GET_INF ; Sets function number to C register

 CALL !8100H ; Calls flash firmware

 POP PSW ; Restores register bank from STACK.

; Calculate Address from Storage buffer and bank. Nothing to do

; when Option number = 3or4 or Bank = 0 or Block number(Previous) < 32

; or Block number(Previous) >= 48.

; A = Option number, B = Bank, C ... Block number(Previous),

; DE = Storage buffer first address of get data

 CMP A, #05H ; Option number = 5?

 BNZ $ReturnAddress_end ; NO

 MOV A, B

 CMP A, #0 ; Bank = 0 ?

 BZ $ReturnAddress_end ; YES

 XCH A, C

 CMP A, #32 ; Block number(Previous) < 32?

 BC $ReturnAddress_end ; YES

 CMP A, #48 ; Block number(Previous) >= 48?

 BNC $ReturnAddress_end ; YES

 MOV A, C

; Calculation of address(40H*Bank is pulled from address in two high rank bytes.

; Lower address is the state as it is.)

 XCHW AX, DE

 MOVW HL, AX

 MOV A, [HL+1]

 MOV X, A

 MOV A, [HL+2] ; A ... Most higher address, X ... Higher address

 XCHW AX, DE ; A ... Bank, D ... Most higher address,

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 112

 ; E ... Higher address

 MOV [HL+2], A ; Sets Storage buffer+2 to Bank.

 MOV X, #0

 ROL A, 1

 ROL A, 1

 ROL A, 1

 ROL A, 1

 ROL A, 1

 ROLC A, 1

 XCH A, X

 ROLC A, 1 ; AX = 40H*Bank

 XCHW AX, DE

 XCH A, X

 SUB A, E

 XCH A, X

 SUBC A, D

 MOV A, X

 MOV [HL+1], A ; Sets Storage buffer+1 to Calculated

 ; address(higher).

ReturnAddress_end:

; Get flash firmware error information

 MOV A, 0FEE3H ; Sets flash firmware error information to

 ; return value

 ;(0FEE3H = B register of Bank 3)

FlashGetInfo50:

 MOV C, A

 MOV B, #00H

 POP HL

 RET

;---

; Function name : _FlashSetInfo

; Input : AX = Flash information data

; Output : BC = Status

; Destroyed register : A, BC

; Summary : Setting of flash information.

;---

_FlashSetInfo:

; Set infomation processing

 MOV A, X

 PUSH AX ; Save Flash information data in STACK.

 PUSH PSW ; Save register bank in STACK.

 SEL RB3 ; Sets to register bank 3.

 MOVW AX, SP

 ADDW AX, #2

 MOV [HL+5], A ; Sets entry RAM+5 to higher address of flash

 ; information data secured for stack

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 113

 MOV A, X

 MOV [HL+4], A ; Sets entry RAM+4 to lower address of flash

 ; information data secured for stack

 MOV C, #FLASH_SET_INF ; Sets function number to C register

 CALL !8100H ; Calls flash firmware

 POP PSW ; Restores register bank from STACK.

 POP AX

; Get flash firmware error information

 MOV A, 0FEE3H ; Sets flash firmware error information to return value

 ; (0FEE3H = B register of Bank 3)

 MOV C, A

 MOV B, #00H

 RET

;---

; Function name : _CheckFLMD

; Input : None

; Output : BC = Status

; Destroyed register : A, BC

; Summary : Checks voltage level of FLMD pin.

;---

_CheckFLMD:

; Set infomation processing

 PUSH PSW ; Save register bank in STACK.

 SEL RB3 ; Sets to register bank 3.

 MOV C, #FLASH_CHECK_FLMD ; Sets function number to C register

 CALL !8100H ; Calls flash firmware

 POP PSW ; Restores register bank from STACK.

; Get flash firmware error information

 MOV A, 0FEE3H ; Sets flash firmware error information to return value

 ; (0FEE3H = B register of Bank 3)

 MOV C, A

 MOV B, #00H

 RET

;---

; Function name : _EEPROMWrite

; Input : AX = Address of writing beginning address structure

; (Member of structure ... Writing starting address

; Bank of writing starting address)

; STACK1 = Number of writing data

; STACK2 = Address in writing data buffer

; Output : BC=Status

; Destroyed register : AX,BC,DE

; Summary : Data on RAM is written in the flash memory.

; 256 bytes or less (Every 4 bytes) are written at a time.

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 114

;---

_EEPROMWrite:

 PUSH HL

; Calculate Writing address from writing address and bank.

 MOVW DE, AX

 MOVW AX, SP

 MOVW HL, AX

 MOV A, [HL+4] ; Read STACK data(=Number of writing data)

 MOV B, A

 MOV A, [HL+6] ; Read STACK data(=Address in writing data buffer)

 XCH A, X

 MOV A, [HL+7]

 MOVW HL, AX

 MOVW AX, DE ; AX ... Address of writing beginning address

 ; structure address,

 ; B ... Number of writing data,

 ; HL ... Address in writing data buffer

 CALL !ExchangeAddress ; Writing address is calculated from structure

 ; member's writing address and bank

 ; (Return AX = Writing address)

 BZ $EW_PErr ; It is error if the bank number is outside

 ; the range.

; EEPROM write processing

 PUSH PSW ; Save register bank in STACK.

 PUSH AX

 PUSH BC

 PUSH HL

 SEL RB3 ; Sets to register bank 3.

 POP AX

 MOV [HL+5], A ; Sets entry RAM+5 to higher address in writing data buffer

 MOV A, X

 MOV [HL+4], A ; Sets entry RAM+4 to lower address in writing data buffer

 POP AX

 MOV [HL+3], A ; Sets entry RAM+3 to Number of writing data

 MOV A, X

 MOV [HL+0], A ; Sets entry RAM+0 to Writing address lower bytes

 POP AX

 MOV [HL+2], A ; Sets entry RAM+2 to Writing address most higher bytes

 MOV A, X

 MOV [HL+1], A ; Sets entry RAM+1 to Writing address higher bytes

 MOV C, #FLASH_EEPROM_WRITE ; Sets function number to C register

 CALL !8100H ; Calls flash firmware

 POP PSW ; Restores register bank from STACK.

; Get flash firmware error information

 MOV A,0FEE3H ; Sets flash firmware error information to return value

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 115

 ;(0FEE3H = B register of Bank 3)

 BR EEPROMWrite00

; Parameter error

EW_PErr:

 MOV A, #FLASHFIRM_PARAMETER_ERROR ; Sets parameter error to return

 ; value

EEPROMWrite00:

 MOV C, A

 MOV B, #00H

 POP HL

 RET

;---

; Function name : ExchangeBlockNum

; Input : A = Bank

; B = Block number

; Output : A = Block number(New)

; B = Bank

; C = Block number(Previous)

; Summary : Block number is converted into the real address

; from bank information.

;---

ExchangeBlockNum:

; It calculates from 32 to 47 block number.

 XCH A, B

 CMP A, #32

 BC $EBN_end

 CMP A, #48

 BNC $EBN_end

; Calculation of block number(Bank*16 is added to block number.)

 XCH A, B

 MOV C, A ; C ... Bank

 CMP A, #6

 BNC $EBN_error_end

 ROL A, 1

 ROL A, 1

 ROL A, 1

 ROL A, 1 ; A = 16*Bank

 ADD A, B

 XCH A, C

 XCH A, B

 XCH A, C ; A = Block number after it calculates, B = Bank,

 ; C = Block number before it calculates

 BR EBN_end

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 116

; Bank error

EBN_error_end:

 MOV A, #BANK_BLC_ERROR ; Return error number

EBN_end:

 CMP A, #BANK_BLC_ERROR ; Bank error?

 RET

;---

; Function name : ExchangeAddress

; Input : AX = Address of writing beginning address structure

; (Member of structure ... Writing starting address

; Bank of writing starting address)

; Output : AX = Writing starting address(Address in two high rank bytes)

; C = Writing starting address(Lower address)

; Summary : Writing starting address of structure is converted

; into the real address from bank information.

;---

ExchangeAddress:

 PUSH HL

; It calculates from 8000H to BFFFH address.

 MOVW HL, AX

 MOV A, [HL+0] ; Read data from writing beginning address

 ; structure(=Write address)

 MOV X, A

 MOV A, [HL+1]

 CMPW AX, #8000H

 BC $EA_end

 CMPW AX, #0C000H

 BNC $EA_end

; Calculation of address(Bank*40H is added to address in two high rank bytes.

; Lower address is the state as it is.)

 MOV D, A

 XCH A, X

 MOV C, A

 MOV X, #0

 MOV A, [HL+2] ; Read data from writing beginning address structure

 ; (=Bank of writing starting address)

 CMP A, #6

 BNC $EA_error_end

 ROL A, 1

 ROL A, 1

 ROL A, 1

 ROL A, 1

 ROL A, 1

 ROLC A, 1

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 117

 XCH A, X

 ROLC A, 1 ; AX=40H*Bank

 XCH A, X

 ADD A, D ; Addition of Higher address

 XCH A, X

 ADDC A, #0 ; Addition of Most higher address

 ; A ... Most higher address after it calculates

 ; X ... higher address after it calculates,

 ; C ... Lower address

 BR EA_normal_end

; Bank error

EA_error_end:

 MOVW AX, #BANK_ADDR_ERROR

 BR EA_normal_end

EA_end:

 XCH A, X

 MOV C, A

 MOV A, #0 ; A ... Most higher address after it calculates

 ; X ... higher address after it calculates,

 ; C ... Lower address

EA_normal_end:

 POP HL

 CMPW AX, #BANK_ADDR_ERROR ; Bank error?

 RET

 END

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 118

A.3 Self Programming Library (Static Model)
<SelfLibrary_static.asm>
;+++

; System : Self programming library(Static model)

; File name : SelfLibrary_static.asm

; Version : 2.00

; Target CPU : 78K0/Kx2

; Last updated : 2005/07/08

;+++

PUBLIC _FlashStart

PUBLIC _FlashEnd

PUBLIC _FlashEnv

PUBLIC _FlashBlockErase

PUBLIC _FlashWordWrite

PUBLIC _FlashBlockVerify

PUBLIC _FlashBlockBlankCheck

PUBLIC _FlashGetInfo

PUBLIC _FlashSetInfo

PUBLIC _CheckFLMD

PUBLIC _EEPROMWrite

;---

; EQU settings

;---

FLASH_ENV EQU 00H ; Initialization

FLASH_BLOCK_ERASE EQU 03H ; Block erace

FLASH_WORD_WRITE EQU 04H ; Word write

FLASH_BLOCK_VERIFY EQU 06H ; Block verify

FLASH_BLOCK_BLANKCHECK EQU 08H ; Block blank check

FLASH_GET_INF EQU 09H ; Flash memory information read

FLASH_SET_INF EQU 0AH ; Flash memory information setting

FLASH_CHECK_FLMD EQU 0EH ; Mode check

FLASH_EEPROM_WRITE EQU 17H ; EEPROM write

FLASHFIRM_PARAMETER_ERROR EQU 05H ; Parameter error

BANK_BLC_ERROR EQU 0FFH ; Bank number error(BLOCK)

BANK_ADDR_ERROR EQU 0FFFFH ; Bank number error(ADDRESS)

SELF_PROG CSEG

;---

; Function name : _FlashStart

; Input : None

; Output : None

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 119

; Destroyed register : None

; Summary : Self programming start processing.

;---

_FlashStart:

 MOV PFCMD, #0A5H ; PFCMD register control

 MOV FLPMC, #001H ; FLPMC register control (set value)

 MOV FLPMC, #0FEH ; FLPMC register control (inverted set value)

 MOV FLPMC, #001H ; FLPMC register control (set value)

 RET

;---

; Function name : _FlashEnd

; Input : None

; Output : None

; Destroyed register : None

; Summary : Self programming end processing.

;---

_FlashEnd:

 MOV PFCMD, #0A5H ; PFCMD register control

 MOV FLPMC, #000H ; FLPMC register control (set value)

 MOV FLPMC, #0FFH ; FLPMC register control (inverted set value)

 MOV FLPMC, #000H ; FLPMC register control (set value)

 RET

;---

; Function name : _FlashEnv

; Input : AX = Entry RAM address

; Output : None

; Destroyed register : None

; Summary : Initialization processing of self programming.

;---

_FlashEnv:

; Initialization processing

 PUSH PSW ; Save register bank in STACK.

 PUSH AX

 SEL RB3 ; Sets to register bank 3.

 POP HL ; Sets Entry RAM address to HL register

 MOV C,#FLASH_ENV ; Sets function number to C register

 CALL !8100H ; Calls flash firmware

 MOV A, #09H

 MOV [HL+13H], A ; Set Block Erase Retry Number

 MOV [HL+14H], A ; Set Chip Erase Retry Number

 POP PSW ; Restores register bank from STACK.

 RET

;---

; Function name : _FlashBlockErase

; Input : A = Erase bank

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 120

; B = Erase block number

; Output : A = Status

; Destroyed register : A, BC

; Summary : Erases of specified block (1Kbyte).

;---

_FlashBlockErase:

; Calculate Erase block number from block number and bank.

 CALL !ExchangeBlockNum ; Block number is calculated from block

 ; number and bank.

 ; (Return A = Erase block number after it calculates)

 BZ $FBE_PErr ; It is error if the bank number is outside the range.

; Block erase processing

 PUSH PSW ; Save register bank in STACK.

 PUSH AX

 SEL RB3 ; Sets to register bank 3.

 POP AX

 MOV [HL+3], A ; Sets entry RAM+3 to Erase block number after

 ; it calculates

 MOV C, #FLASH_BLOCK_ERASE ; Sets function number to C register

 CALL !8100H ; Calls flash firmware

 POP PSW ; Restores register bank from STACK.

; Get flash firmware error information

 MOV A, 0FEE3H ; Sets flash firmware error information to return value

 ; (0FEE3H = B register of Bank 3)

 BR FlashBlockErase00

; Parameter error

FBE_PErr:

 MOV A, #FLASHFIRM_PARAMETER_ERROR ; Sets parameter error to return

 ; value

FlashBlockErase00:

 RET

;---

; Function name : _FlashWordWrite

; Input : AX = Address of writing beginning address structure

; (Member of structure ...

; Writing starting address

; Bank of writing starting address)

; B = Number of writing data

; HL = Address in writing data buffer

; Output : A = Status

; Destroyed register : AX, C

; Summary : Data on RAM is written in the flash memory.

; 256 bytes or less (Every 4 bytes) are written at a time.

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 121

;---

_FlashWordWrite:

 PUSH DE

; Calculate Writing address from writing address and bank.

 CALL !ExchangeAddress ; Writing address is calculated from structure

 ; member's writing address and bank

 ; (Return AX = Writing address)

 BZ $FWW_PErr ; It is error if the bank number is outside

 ; the range.

; Word write processing

 PUSH PSW ; Save register bank in STACK.

 PUSH AX

 PUSH BC

 PUSH HL

 SEL RB3 ; Sets to register bank 3.

 POP AX

 MOV [HL+5],A ; Sets entry RAM+5 to higher address in writing

 ; data buffer

 MOV A,X

 MOV [HL+4],A ; Sets entry RAM+4 to lower address in writing

 ; data buffer

 POP AX

 MOV [HL+3],A ; Sets entry RAM+3 to Number of writing data

 MOV A,X

 MOV [HL+0],A ; Sets entry RAM+0 to Writing address lower bytes

 POP AX

 MOV [HL+2],A ; Sets entry RAM+2 to Writing address most

 ; higher bytes

 MOV A,X

 MOV [HL+1],A ; Sets entry RAM+1 to Writing address higher bytes

 MOV C,#FLASH_WORD_WRITE ; Sets function number to C register

 CALL !8100H ; Calls flash firmware

 POP PSW ; Restores register bank from STACK.

; Get flash firmware error information

 MOV A,0FEE3H ; Sets flash firmware error information to

 ; return value

 ; (0FEE3H = B register of Bank 3)

 BR FlashWordWrite00

; Parameter error

FWW_PErr:

 MOV A,#FLASHFIRM_PARAMETER_ERROR ; Sets parameter error to return

 ; value

FlashWordWrite00:

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 122

 POP DE

 RET

;---

; Function name : _FlashBlockVerify

; Input : A = Verify bank

; B = Verify block number

; Output : A = Status

; Destroyed register : A, BC

; Summary : Internal verify of specified block (1Kbyte).

;---

_FlashBlockVerify:

; Calculate Verify block number from block number and bank.

 CALL !ExchangeBlockNum ; Block number is calculated from block number

 ; and bank.

 ; (Return A = Verify block number after it

 ; calculates)

 BZ $FBV_PErr ; It is error if the bank number is outside

 ; the range.

; Block verify processing

 PUSH PSW ; Save register bank in STACK.

 PUSH AX

 SEL RB3 ; Sets to register bank 3.

 POP AX

 MOV [HL+3], A ; Sets entry RAM+3 to Verify block number

 ; after it calculates

 MOV C, #FLASH_BLOCK_VERIFY ; Sets function number to C register

 CALL !8100H ; Calls flash firmware

 POP PSW ; Restores register bank from STACK.

; Get flash firmware error information

 MOV A, 0FEE3H ; Sets flash firmware error information to return value

 ; (0FEE3H = B register of Bank 3)

 BR FlashBlockVerify00

; Parameter error

FBV_PErr:

 MOV A, #FLASHFIRM_PARAMETER_ERROR ; Sets parameter error to return

 ; value

FlashBlockVerify00:

 RET

;---

; Function name : _FlashBlockBlankCheck

; Input : A = Blank check bank

; B = Blank check block number

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 123

; Output : A = Status

; Destroyed register : A, BC

; Summary : Blank check of specified block (1Kbyte).

;---

_FlashBlockBlankCheck:

; Calculate Blank check block number from block number and bank.

 CALL !ExchangeBlockNum ; Block number is calculated from block number

 ; and bank.

 ; (Return A = Blank check block number after

 ; it calculates)

 BZ $FBBC_PErr ; It is error if the bank number is outside

 ; the range.

; Block blank check processing

 PUSH PSW ; Save register bank in STACK.

 PUSH AX

 SEL RB3 ; Sets to register bank 3.

 POP AX

 MOV [HL+3], A ; Sets entry RAM+3 to Blank check

 ; block number after it calculates

 MOV C, #FLASH_BLOCK_BLANKCHECK ; Sets function number to C register

 CALL !8100H ; Calls flash firmware

 POP PSW ; Restores register bank from STACK.

; Get flash firmware error information

 MOV A, 0FEE3H ; Sets flash firmware error information to return value

 ; (0FEE3H = B register of Bank 3)

 BR FlashBlockBlankCheck00

; Parameter error

FBBC_PErr:

 MOV A, #FLASHFIRM_PARAMETER_ERROR ; Sets parameter error to return

 ; value

FlashBlockBlankCheck00:

 RET

;---

; Function name : _FlashGetInfo

; Input : AX = Address of flash information acquisition structure

; (Member of structure ... Option number

; Bank

; Block number)

; BC = The first address in buffer where get data is stored

; Output : A = Status

; Destroyed register : AX, BC, HL

; Summary : The set up information of the flash memory is read.

;---

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 124

_FlashGetInfo:

 PUSH DE

; Check of Option number

 MOVW HL, AX

 MOVW AX, BC

 MOVW DE, AX

 MOV A, [HL+0] ; Read data from flash information acquisition

 ; structure(=Option number)

 CMP A, #05H ; Option number = 5 ?

 BNZ $FlashGetInfo10 ; NO

; Calculate Block number from block number and bank.

 MOV X, A

 MOV A, [HL+2] ; Read data from flash information acquisition
structure(=Block number)

 MOV B, A

 MOV A, [HL+1] ; Read data from flash information acquisition
structure(=Bank)

 ; A ... Bank, B ... Block number

 CALL !ExchangeBlockNum ; Block number is calculated from block number

 ; and bank.

 ; (Return A=Block number after it calculates)

 BZ $FlashGetInfo20 ; It is error if the bank number is outside

 ; the range.

 XCH A, X ; A ... Option number, X ... Block number

; Get info processing(When Option number = 5)

 PUSH PSW ; Save register bank in STACK.

 PUSH DE

 PUSH AX

 SEL RB3 ; Sets to register bank 3.

 POP AX

 XCH A, X

 MOV [HL+0], A ; Sets entry RAM+0 to Block number

 MOV A, X ; A ... Option number

 BR FlashGetInfo40

; Check of Option number error

FlashGetInfo10:

 CMP A, #03H ; Option number = 3?

 BZ $FlashGetInfo30 ; YES

 CMP A, #04H ; Option number = 4?

 BZ $FlashGetInfo30 ; YES

FlashGetInfo20:

 MOV A, #FLASHFIRM_PARAMETER_ERROR ; The parameter error is returned,

 ; except when option NO is 3, 4,

 ; and 5.

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 125

 BR FlashGetInfo50

; Get info processing(When Option number = 3, 4)

FlashGetInfo30:

 PUSH PSW ; Save register bank in STACK.

 PUSH DE

 PUSH AX

 SEL RB3 ; Sets to register bank 3.

 POP AX

FlashGetInfo40:

 MOV [HL+3], A ; Sets entry RAM+3 to Option number

 POP AX

 MOV [HL+5], A ;S ets entry RAM+5 to Storage buffer higher address

 MOV A, X

 MOV [HL+4], A ; Sets entry RAM+4 to Storage buffer lower address

 MOV C, #FLASH_GET_INF ; Sets function number to C register

 CALL !8100H ; Calls flash firmware

 POP PSW ; Restores register bank from STACK.

; Calculate Address from Storage buffer and bank.Nothing to do

; when Option number = 3or4 or Bank = 0 or Block number(Previous) < 32

; or Block number(Previous) >= 48.

; A = Option number, B = Bank, C ... Block number(Previous),

; DE = Storage buffer first address of get data

 CMP A, #05H ; Option number = 5?

 BNZ $ReturnAddress_end ; NO

 MOV A, B

 CMP A, #0 ; Bank = 0 ?

 BZ $ReturnAddress_end ; YES

 XCH A, C

 CMP A, #32 ; Block number(Previous) < 32?

 BC $ReturnAddress_end ; YES

 CMP A, #48 ; Block number(Previous) >= 48?

 BNC $ReturnAddress_end ; YES

 MOV A, C

; Calculation of address(40H*Bank is pulled from address in two high rank bytes.

; Lower address is the state as it is.)

 XCHW AX, DE

 MOVW HL, AX

 MOV A, [HL+1]

 MOV X, A

 MOV A, [HL+2] ; A ... Most higher address, X ... Higher address

 XCHW AX, DE ; A ... Bank, D ... Most higher address,

 ; E ... Higher address

 MOV [HL+2], A ; Sets Storage buffer+2 to Bank.

 MOV X, #0

 ROL A, 1

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 126

 ROL A, 1

 ROL A, 1

 ROL A, 1

 ROL A, 1

 ROLC A, 1

 XCH A, X

 ROLC A, 1 ; AX = 40H*Bank

 XCHW AX, DE

 XCH A, X

 SUB A, E

 XCH A, X

 SUBC A, D

 MOV A, X

 MOV [HL+1], A ; Sets Storage buffer+1 to Calculated address

 ; (higher).

ReturnAddress_end:

; Get flash firmware error information

 MOV A, 0FEE3H ; Sets flash firmware error information to return value

 ; (0FEE3H = B register of Bank 3)

FlashGetInfo50:

 POP DE

 RET

;---

; Function name : _FlashSetInfo

; Input : A = Flash information data

; Output : A = Status

; Destroyed register : A

; Summary : Setting of flash information.

;---

_FlashSetInfo:

; Set infomation processing

 PUSH AX ; Save Flash information data in STACK.

 PUSH PSW ; Save register bank in STACK.

 SEL RB3 ; Sets to register bank 3.

 MOVW AX, SP

 ADDW AX, #2

 MOV [HL+5], A ; Sets entry RAM+5 to higher address of flash

 ; information data secured for stack

 MOV A, X

 MOV [HL+4], A ; Sets entry RAM+4 to lower address of flash

 ; information data secured for stack

 MOV C, #FLASH_SET_INF ; Sets function number to C register

 CALL !8100H ; Calls flash firmware

 POP PSW ; Restores register bank from STACK.

 POP AX

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 127

; Get flash firmware error information

 MOV A, 0FEE3H ; Sets flash firmware error information to return value

 ; (0FEE3H = B register of Bank 3)

 RET

;---

; Function name : _CheckFLMD

; Input : None

; Output : A = Status

; Destroyed register : A

; Summary : Checks voltage level of FLMD pin.

;---

_CheckFLMD:

; Set infomation processing

 PUSH PSW ; Save register bank in STACK.

 SEL RB3 ; Sets to register bank 3.

 MOV C, #FLASH_CHECK_FLMD ; Sets function number to C register

 CALL !8100H ; Calls flash firmware

 POP PSW ; Restores register bank from STACK.

; Get flash firmware error information

 MOV A, 0FEE3H ; Sets flash firmware error information to return value

 ; (0FEE3H = B register of Bank 3)

 RET

;---

; Function name : _EEPROMWrite

; Input : AX = Address of writing beginning address structure

; (Member of structure ...

 Writing starting address

; Bank of writing starting address)

; B = Number of writing data

; HL = Address in writing data buffer

; Output : A = Status

; Destroyed register : AX, C

; Summary : Data on RAM is written in the flash memory.

; 256 bytes or less (Every 4 bytes) are written at a time.

;---

_EEPROMWrite:

 PUSH DE

; Calculate Writing address from writing address and bank.

 CALL !ExchangeAddress ; Writing address is calculated from structure

 ; member's writing address and bank

 ; (Return AX = Writing address)

 BZ $EW_PErr ; It is error if the bank number is outside the range.

; EEPROM write processing

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 128

 PUSH PSW ; Save register bank in STACK.

 PUSH AX

 PUSH BC

 PUSH HL

 SEL RB3 ; Sets to register bank 3.

 POP AX

 MOV [HL+5], A ; Sets entry RAM+5 to higher address in writing data
buffer

 MOV A,X

 MOV [HL+4], A ; Sets entry RAM+4 to lower address in writing data
buffer

 POP AX

 MOV [HL+3], A ; Sets entry RAM+3 to Number of writing data

 MOV A,X

 MOV [HL+0], A ; Sets entry RAM+0 to Writing address lower bytes

 POP AX

 MOV [HL+2], A ; Sets entry RAM+2 to Writing address most higher bytes

 MOV A, X

 MOV [HL+1], A ; Sets entry RAM+1 to Writing address higher bytes

 MOV C, #FLASH_EEPROM_WRITE ; Sets function number to C register

 CALL !8100H ; Calls flash firmware

 POP PSW ; Restores register bank from STACK.

;Get flash firmware error information

 MOV A,0FEE3H ;Sets flash firmware error information to return
value

 ;(0FEE3H = B register of Bank 3)

 BR EEPROMWrite00

; Parameter error

EW_PErr:

 MOV A, #FLASHFIRM_PARAMETER_ERROR ; Sets parameter error to return

 ; value

EEPROMWrite00:

 POP DE

 RET

;---

; Function name : ExchangeBlockNum

; Input : A=Bank

; B = Block number

; Output A = Block number(New)

; B = Bank

; C = Block number(Previous)

; Summary : Block number is converted into the real address from bank

; information.

;---

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 129

ExchangeBlockNum:

; It calculates from 32 to 47 block number.

 XCH A, B

 CMP A, #32

 BC $EBN_end

 CMP A, #48

 BNC $EBN_end

; Calculation of block number(Bank*16 is added to block number.)

 XCH A, B

 MOV C, A ; C ... Bank

 CMP A, #6

 BNC $EBN_error_end

 ROL A, 1

 ROL A, 1

 ROL A, 1

 ROL A, 1 ; A = 16*Bank

 ADD A, B

 XCH A, C

 XCH A, B

 XCH A, C ; A = Block number after it calculates, B = Bank,

 ; C = Block number before it calculates

 BR EBN_end

; Bank error

EBN_error_end:

 MOV A, #BANK_BLC_ERROR ; Return error number

EBN_end:

 CMP A,#BANK_BLC_ERROR ;Bank error ?

 RET

;---

; Function name : ExchangeAddress

; Input : AX = Address of writing beginning address structure

; (Member of structure ... Writing starting address

; Bank of writing starting address)

; Output : AX = Writing starting address(Address in two high rank bytes)

; C = Writing starting address(Lower address)

; Summary : Writing starting address of structure is converted into the

; real address from bank information.

;---

ExchangeAddress:

 PUSH HL

; It calculates from 8000H to BFFFH address.

 MOVW HL, AX

 MOV A, [HL+0] ; Read data from writing beginning address

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 130

 ; structure(=Write address)

 MOV X, A

 MOV A, [HL+1]

 CMPW AX, #8000H

 BC $EA_end

 CMPW AX, #0C000H

 BNC $EA_end

; Calculation of address(Bank*40H is added to address in two high rank bytes.

; Lower address is the state as it is.)

 MOV D, A

 XCH A, X

 MOV C, A

 MOV X, #0

 MOV A, [HL+2] ; Read data from writing beginning address
structure

 ; (=Bank of writing starting address)

 CMP A, #6

 BNC $EA_error_end

 ROL A, 1

 ROL A, 1

 ROL A, 1

 ROL A, 1

 ROL A, 1

 ROLC A, 1

 XCH A, X

 ROLC A, 1 ; AX = 40H*Bank

 XCH A, X

 ADD A, D ; Addition of Higher address

 XCH A, X

 ADDC A, #0 ; Addition of Most higher address

 ; A ... Most higher address after it calculates

 ; X ... higher address after it calculates,

 ; C ... Lower address

 BR EA_normal_end

; Bank error

EA_error_end:

 MOVW AX, #BANK_ADDR_ERROR

 BR EA_normal_end

EA_end:

 XCH A, X

 MOV C, A

 MOV A, #0 ; A ... Most higher address after it calculates

 ; X ... higher address after it calculates,

 ; C...Lower address

EA_normal_end:

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 131

 POP HL

 CMPW AX, #BANK_ADDR_ERROR ; Bank error?

 RET

 END

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 132

A.4 Boot Swap
<boot.asm>
;+++

; System : Sample program that uses self programming library

; (Bootswap)

; File name : boot.asm

; Target CPU : 78K0/Kx2

; Last updated : 2005/04/04

;+++

EXTRN _FlashStart

EXTRN _FlashEnd

EXTRN _FlashEnv

EXTRN _FlashBlockErase

EXTRN _FlashWordWrite

EXTRN _FlashGetInfo

EXTRN _FlashSetInfo

EXTRN _CheckFLMD

;---

; EQU settings

;---

STATE_OF_ABORT EQU 1FH ; State of abort

FLASHFIRM_NORMAL_END EQU 00H ; Normal completion

TRUE EQU 00H ; Normal

FALSE EQU 0FFH ; Abnormal

PARAMETER_ERROR EQU 05H ; Parameter error

BANKNUMBER EQU 0 ; Bank number

BLOCK EQU 32 ; Block number

;---

; Stores stack

;---

DSTACK DSEG AT 0FB00H

 DS 80H ; STACK AREA

STACKINI:

;---

; Sets interrupt vector table

;---

VCTTBL CSEG AT 0000H

 ; addr

 DW MAIN ; 00H

S_RAM1 DSEG AT 0FE20H

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 133

;FlashEnv

 EntryRAM: DS 100

S_RAM2 DSEG AT 0FC00H

; FlashWordWrite

; FlashGetInfo

 DataBuffer: DS 128

S_RAM3 DSEG

; FlashWordWrite

 WordAddr:

 WriteAddress: DS 2

 WriteBank: DS 1

; FlashGetInfo

 GetInfo:

 OptionNumber: DS 1

 FlashGetInfoData: DS 1

; FlashBlockErase

 EraseBlock: DS 1

M_PROG CSEG AT 0400H

;---

; Sample program

;---

MAIN:

 DI

 SEL RB0 ; Sets to register bank 0.

 MOVW AX, #STACKINI

 MOVW SP, AX ; Sets stack pointer

 MOV IMS, #0CCH

 MOV IXS, #00H

 MOV PCC, #00H

 CLR1 MSTOP

 MOV OSTS, #05H

MAIN_00:

 NOP

 BF OSTC.0, $MAIN_00

 CLR1 MCM0

 CLR1 XSEL

MAIN_01:

 NOP

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 134

 BT MCS, $MAIN_01

 CLR1 RSTOP

 MOV LVIM, #00H

 MOV LVIS, #00H

 EI

 CALL !_FlashStart ; FlashStart(Self programming start library)

 ; call processing

;---

;FlashEnv(Initialization library) call processing

;---

 MOVW AX, #EntryRAM

 CALL !_FlashEnv ; Initialization library call

;---

;CheckFLMD(Mode check library) call processing

;---

 CALL !_CheckFLMD ; Mode check library call

 CMP A,#TRUE ; Normal completion?

 BZ $MAIN_02 ; YES

 BR MAIN_09

MAIN_02:

;---

;0000H-0FFFH data is copied to 1000H-1FFFH.

;(Block4-7 is first erased, and 0000H-0FFFH data is written afterwards.)

;---

 MOV A, #4

 MOV !EraseBlock, A

MAIN_03:

; Erase Block4-Block7

 DI

 MOV A, !EraseBlock

 MOV B, A

 MOV A, #0 ; A ... Erase bank, B ... Erase block number

 CALL !_FlashBlockErase ; Erase library call

 EI

 CMP A, #TRUE ; Normal completion?

 BNZ $MAIN_09 ; NO

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 135

 MOV A, !EraseBlock

 INC A

 MOV !EraseBlock,A

 CMP A, #8

 BC $MAIN_03

; Write 0000H-0FFFH data to Block4-Block7

 MOVW AX, #1000H

 MOVW !WriteAddress, AX

 MOV A, #0

 MOV !WriteBank, A

 MOVW HL, #0000H

MAIN_04:

 MOV B, #32*4

 MOVW DE, #DataBuffer

MAIN_05:

 MOV A, [HL]

 MOV [DE], A

 INCW HL

 INCW DE

 DBNZ B, $MAIN_05

 PUSH HL

 DI

 MOV A, #32

 MOV B, A

 MOVW AX, #WordAddr

 MOVW HL, #DataBuffer

 CALL !_FlashWordWrite ; Word write library call

 EI

 CMP A, #TRUE ; Normal completion?

 BNZ $MAIN_09 ; NO

 POP HL

 MOVW AX, !WriteAddress

 ADDW AX, #128

 MOVW !WriteAddress,AX

 CMPW AX, #2000H

 BC $MAIN_04

MAIN_06:

;---

;FlashGetInfo call processing(Boot flag information)

;---

 MOV A, #04H

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 136

 MOV !OptionNumber, A

 MOVW AX, #GetInfo

 MOVW BC, #DataBuffer ; AX ... Address of flash information

 ; acquisition structure,

 ; BC ... The first address in buffer where get data

 ; is stored

 CALL !_FlashGetInfo ; Get information library call

 CMP A, #TRUE ; Normal completion ?

 BNZ $MAIN_09 ; NO

 MOVW HL, #DataBuffer ; Get boot flag information

 MOV A, [HL]

 MOV !FlashGetInfoData, A

MAIN_07:

;---

;FlashSetInfo call processing

;---

 DI

 MOV A, #0FEH

 CALL !_FlashSetInfo ; Set information library call

 EI

 CMP A, #TRUE ; Normal completion ?

 BNZ $MAIN_09 ; NO

MAIN_08:

 CALL !_FlashEnd ; FlashEnd(Self programming end library)

 ; call processing

 ; Normal end

 BR MAIN_LOOP

MAIN_09:

 CALL !_FlashEnd ; FlashEnd(Self programming end library)

 ; call processing

 ; Abnormal end

MAIN_LOOP:

 NOP

 NOP

 BR MAIN_LOOP

 END

APPENDIX A SAMPLE PROGRAM

User’s Manual U17516EJ1V0UM 137

A.5 Compiling the Flash Self Programming Sample Library and
Sample Program

Use the static model sample library and compile options only when using a static model.

Otherwise, use the normal model.

<1> Normal model compile method and options for C

• ra78K0.exe -cF054780 -yC:¥NECTools32¥DEV SelfLibrary_normal.asm

• cc78k0.exe -cF054780 -yC:¥NECTools32¥DEV EEPROMCtrl.c

• cc78k0.exe -cF054780 -yC:¥NECTools32¥DEV Main.c

• lk78K0.exe -yC:¥NECTools32¥DEV -oMain.lmf C:¥NECTools32¥LIB78K0¥s0l.rel -bcl0.lib -s Main.rel

SelfLibrary_normal.rel EEPROMCtrl.rel

• oc78K0.exe -yC:¥NECTools32¥DEV Main.lmf

<2> Static model compile method and options for C

• ra78K0.exe -cF054780 -yC:¥NECTools32¥DEV SelfLibrary_static.asm

• cc78k0.exe -sm0 -cF054780 -yC:¥NECTools32¥DEV EEPROMCtrl.c

• cc78k0.exe -sm0 -cF054780 -yC:¥NECTools32¥DEV Main.c

• lk78K0.exe -yC:¥NECTools32¥DEV -oMain.lmf C:¥NECTools32¥LIB78K0¥s0sml.rel -bcl0sm.lib -s Main.rel

SelfLibrary_static.rel EEPROMCtrl.rel

• oc78K0.exe -yC:¥NECTools32¥DEV Main.lmf

<3> Normal model compile method and options for assembler

• ra78K0.exe -cF054780 -yC:¥NECTools32¥DEV USER_MAIN.asm

• ra78K0.exe -cF054780 -yC:¥NECTools32¥DEV EEPROM.asm

• ra78K0.exe -cF054780 -yC:¥NECTools32¥DEV SelfLibrary_normal.asm

• lk78K0.exe -yC:¥NECTools32¥DEV USER_MAIN.rel EEPROM.rel SelfLibrary_normal.rel

• oc78K0.exe -yC:¥NECTools32¥DEV USER_MAIN.lmf

<4> Static model compile method and options for assembler

• ra78K0.exe -cF054780 -yC:¥NECTools32¥DEV USER_MAIN.asm

• ra78K0.exe -cF054780 -yC:¥NECTools32¥DEV EEPROM.asm

• ra78K0.exe -cF054780 -yC:¥NECTools32¥DEV SelfLibrary_static.asm

• lk78K0.exe -yC:¥NECTools32¥DEV USER_MAIN.rel EEPROM.rel SelfLibrary_static.rel

• oc78K0.exe -yC:¥NECTools32¥DEV USER_MAIN.lmf

User’s Manual U17516EJ1V0UM 138

APPENDIX B INDEX

B

Bank number···14

Block blank check library ·······································47

Block erase library···51

Block number ··14

Block verify library ···60

Boot swap function ··32

D

Data buffer···23

E

EEPROM write library ···76

Entry RAM···22

G

Get information library ···66

H

Hardware environment ··20

I

Initialize library ··43

Interrupt acknowledment ·······································17

Interrupt response time ···27

Interrupt servicing··24

M

Mode check library ··45

O

Overview ···11

P

Processing time···17

S

Self programming end library ································64

Self programming start library ·······························41

Set information library ···72

Software environment ···21

Stack ···23

W

Word write library ··55

	COVER
	INTRODUCTION
	CHAPTER 1 GENERAL
	1.1 Overview
	1.2 Calling Self Programming Library
	1.3 Bank Number and Block Number
	1.4 Processing Time and Acknowledging Interrupt

	CHAPTER 2 PROGRAMMING ENVIRONMENT
	2.1 Hardware Environment
	2.2 Software Environment
	2.2.1 Entry RAM
	2.2.2 Stack and data buffer

	CHAPTER 3 INTERRUPT SERVICING DURING SELF PROGRAMMING
	3.1 Overview
	3.2 Interrupt Response Time
	3.3 Description Example
	3.4 Cautions

	CHAPTER 4 BOOT SWAP FUNCTION
	CHAPTER 5 SELF PROGRAMMING LIBRARY
	5.1 Type of Self Programming Library
	5.2 Explanation of Self Programming Library
	self programming start library
	initialize library
	mode check library
	block blank check library
	block erase library
	word write library
	block verify library
	self programming end library
	get information library
	set information library
	EEPROM write library

	CHAPTER 6 DETAILS OF SELF PROGRAMMING CONTROL
	6.1 Registers That Control Self Programming
	6.1.1 Flash programming mode control register (FLPMC)
	6.1.2 Flash protect command register (PFCMD)
	6.1.3 Flash status register (PFS)
	6.1.4 Self programming control parameters

	APPENDIX A SAMPLE PROGRAM
	A.1 User Program
	A.2 Self Programming Library (Normal Model)
	A.3 Self Programming Library (Static Model)
	A.4 Boot Swap
	A.5 Compiling the Flash Self Programming Sample Library and Sample Program

	APPENDIX B INDEX

