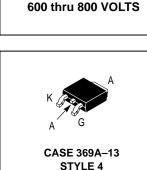
MCR12DSM

MCR12DSN

Motorola Preferred Devices

SCRs 12 AMPERES RMS

Silicon Controlled Rectifiers Reverse Blocking Thyristors


Designed for high volume, low cost, industrial and consumer applications such as motor control; process control; temperature, light and speed control.

- Small Size
- Passivated Die for Reliability and Uniformity
- Low Level Triggering and Holding Characteristics
- Available in Two Package Styles Surface Mount Lead Form — Case 369A Miniature Plastic Package — Straight Leads — Case 369

ORDERING INFORMATION

- To Obtain "DPAK" in Surface Mount Leadform (Case 369A) Shipped in Sleeves — No Suffix, i.e. MCR12DSN Shipped in 16 mm Tape and Reel — Add "T4" Suffix to Device Number, i.e. MCR12DSNT4
- To Obtain "DPAK" in Straight Lead Version (Case 369) Shipped in Sleeves Add "–1" Suffix to Device Number, i.e. MCR12DSN–1

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Rating		Symbol	Value	Unit
Peak Repetitive Off–State Voltage (1) Peak Repetitive Reverse Voltage $(T_J = -40 \text{ to } 110^\circ\text{C}, R_{GK} = 1.0 \text{ K}\Omega)$	MCR12DSM MCR12DSN	Vdrm Vrrm	600 800	Volts
On–State RMS Current (All Conduction Angles; T _C = 75°C)		^I T(RMS)	12	Amps
Average On–State Current (All Conduction Angles; $T_C = 75^{\circ}C$)		IT(AV)	7.6	
Peak Non–Repetitive Surge Current (One Half Cycle, 60 Hz, T _J = 110°C)		ITSM	100	
Circuit Fusing Consideration (t = 8.3 msec)		l ² t	41	A ² sec
Peak Gate Power (Pulse Width ≤ 10 μsec, T _C = 75°C)		P _{GM}	5.0	Watts
Average Gate Power (t = 8.3 msec, T _C = 75°C)		PG(AV)	0.5	
Peak Gate Current (Pulse Width \leq 10 µsec, T _C = 75°C)		IGM	2.0	Amps
Operating Junction Temperature Range		TJ	-40 to 110	°C
Storage Temperature Range		T _{stg}	-40 to 150]

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance — Junction to Case — Junction to Ambient — Junction to Ambient ⁽²⁾	R _θ JC R _θ JA R _θ JA	2.2 88 80	°C/W
Maximum Lead Temperature for Soldering Purposes (3)	TL	260	°C

(1) V_{DRM} for all types can be applied on a continuous basis. Ratings apply for negative gate voltage or R_{GK} = 1.0 KΩ; positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the device are exceeded.

(2) Surface mounted on minimum recommended pad size.

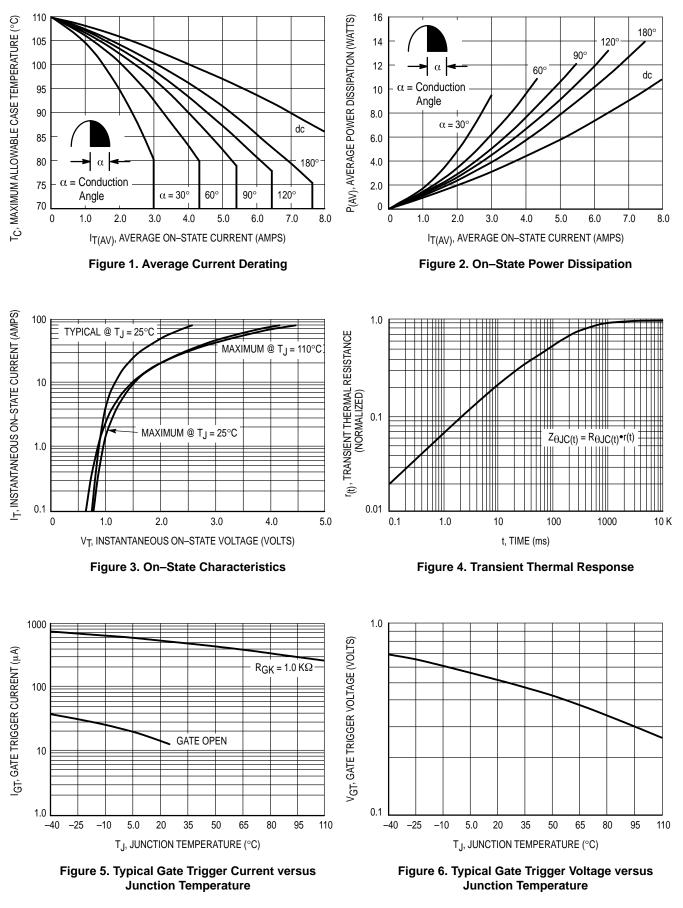
(3) 1/8" from case for 10 seconds.

Preferred devices are Motorola recommended choices for future use and best overall value.

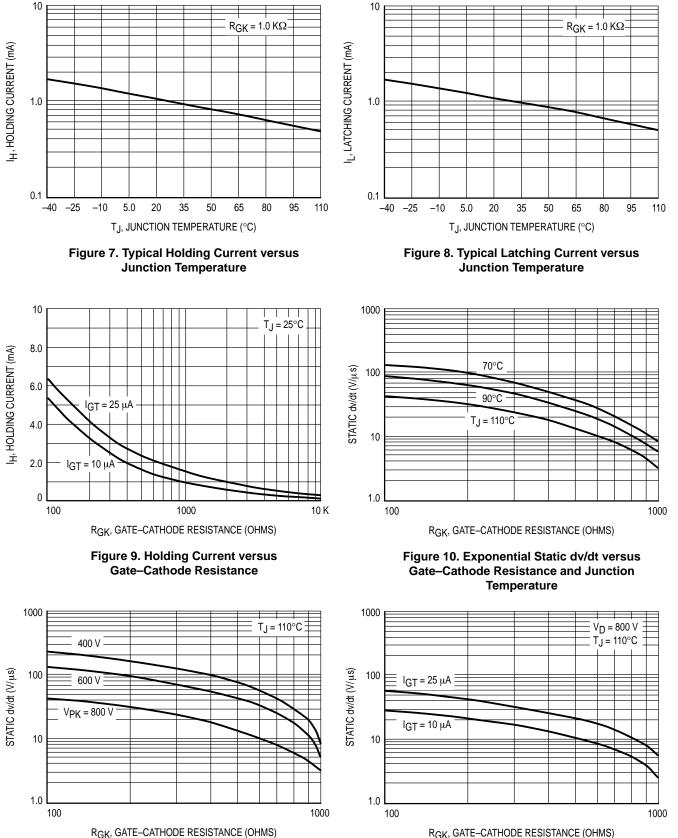
MCR12DSM MCR12DSN

Characteristics	Symbol	Min	Тур	Max	Unit
Peak Reverse Gate Blocking Voltage $(I_{GR} = 10 \ \mu A)$	VGRM	10	12.5	18	Volts
Peak Forward Blocking CurrentPeak Reverse Blocking Current $(V_{AK} = Rated V_{DRM} \text{ or } V_{RRM})$ (1) $T_J = 2$ $T_J = 1$				10 500	μΑ
Peak Reverse Gate Blocking Current (V _{GR} = 10 V)	IRGM	_	_	1.2	μΑ
Peak On–State Voltage ⁽²⁾ (I _{TM} = 24 A)	VTM	_	1.4	2.1	Volts
Gate Trigger Current (Continuous dc) ⁽³⁾ ($V_D = 12 V, R_L = 100 \Omega, T_J = 25^{\circ}C$) ($V_D = 12 V, R_L = 100 \Omega, T_J = -40^{\circ}C$)	IGT	5.0 —	12 —	200 300	μΑ
Gate Trigger Voltage (Continuous dc) $(V_D = 12 \text{ V}, \text{ R}_L = 100 \Omega, \text{ T}_J = 25^{\circ}\text{C})$ $(V_D = 12 \text{ V}, \text{ R}_L = 100 \Omega, \text{ T}_J = -40^{\circ}\text{C})$ $(V_D = 12 \text{ V}, \text{ R}_L = 100 \Omega, \text{ T}_J = 110^{\circ}\text{C})$	V _{GT}	0.45 — 0.2	0.65 — —	1.0 1.5 —	Volts
Holding Current (V _D = 12 V, l(init) = 200 mA, T _J = 25°C) (V _D = 12 V, l(init) = 200 mA, T _J = -40 °C)	Ч	0.5	1.0	6.0 10	mA
Latching Current ($V_D = 12 \text{ V}, \text{ I}_G = 2.0 \text{ mA}, \text{ T}_J = 25^{\circ}\text{C}$) ($V_D = 12 \text{ V}, \text{ I}_G = 2.0 \text{ mA}, \text{ T}_J = -40^{\circ}\text{C}$)	ΙL	0.5 —	1.0	6.0 10	mA

DYNAMIC CHARACTERISTICS


Characteristics	Symbol	Min	Тур	Max	Unit
Total Turn–On Time (Source Voltage = 12 V, R_S = 6.0 K Ω , I_T = 16 A(pk), R_{GK} = 1.0 K Ω) (V _D = Rated V _{DRM} , Rise Time = 20 ns, Pulse Width = 10 µs)	tgt		2.0	5.0	μs
Critical Rate of Rise of Off–State Voltage ($V_D = 0.67 \times Rated V_{DRM}$, Exponential Waveform, $R_{GK} = 1.0 K\Omega$, $T_J = 110^{\circ}C$)	dv/dt	2.0	10	_	V/µs

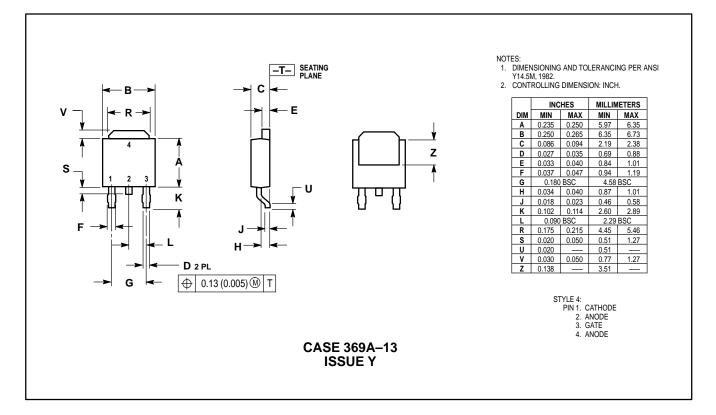
(1) Ratings apply for negative gate voltage or R_{GK} = 1.0 KΩ. Devices shall not have a positive gate voltage concurrently with a negative voltage on the anode. Devices should not be tested with a constant current source for forward and reverse blocking capability such that the voltage applied exceeds the rated blocking voltage.


(2) Pulse Test; Pulse Width \leq 2.0 msec, Duty Cycle \leq 2%.

(3) Does not include R_{GK} current.

MCR12DSM MCR12DSN

MCR12DSM MCR12DSN



RGK, GATE-CATHODE RESISTANCE (OHMS)

Figure 11. Exponential Static dv/dt versus Gate-Cathode Resistance and Peak Voltage

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights or the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola and its edification the design or manufacture of the part. Motorola and *O* are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447 Mfax is a trademark of Motorola, Inc.

P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447 Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609

– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

INTERNET: http://motorola.com/sps

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4-32-1,

Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. 81-3-5487-8488

 \Diamond