

Tracking Regulator

TLE 4252

Features

- Output tracking tolerance to reference ≤ ±0.2%
- Output voltage adjust down to 1.5 V
- 250 mA output current capability
- Enable function
- Very low current consumption in OFF mode
- Wide operation range: up to 40 V
- Wide temperature range: -40 °C ≤ T_i ≤ 150 °C
- Output protected against short circuit to GND and Battery
- Overtemperature protection
- Reverse polarity proof

Short Functional Description

The **TLE 4252** is a monolithic integrated low-drop voltage tracking regulator in a very small SMD package P-TO252-5-1. It is designed to supply off-board systems, e.g. sensors in engine management systems under the severe conditions of automotive applications. Therefore the device is equipped with additional protection functions against reverse polarity and short circuit to GND and battery.

With supply voltages up to 40 V the output voltage follows a reference voltage applied at the adjust input with high accuracy. The reference voltage applied directly to the adjust input or by an e.g. external resistor divider can be 1.5 V at minimum.

The output is able to drive loads up to 250 mA at minimum while they follow e.g. the 5 V output of a main voltage regulator as reference with high accuracy.

The **TLE 4252** tracker can be switched into stand-by mode to reduce the current consumption to very low values. This feature makes the IC suitable for low power battery applications.

Туре	Ordering Code	Package
TLE 4252 D	Q67006-A9669	P-TO252-5-1

Data Sheet 1 Rev. 1.2, 2004-08-11

Block Diagram

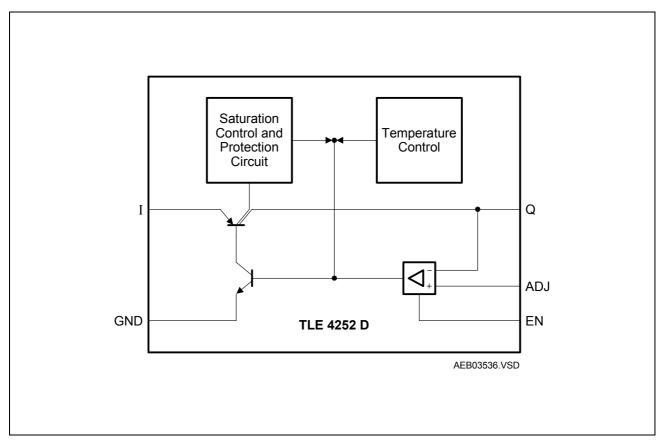


Figure 1 Internal Circuit Blocks

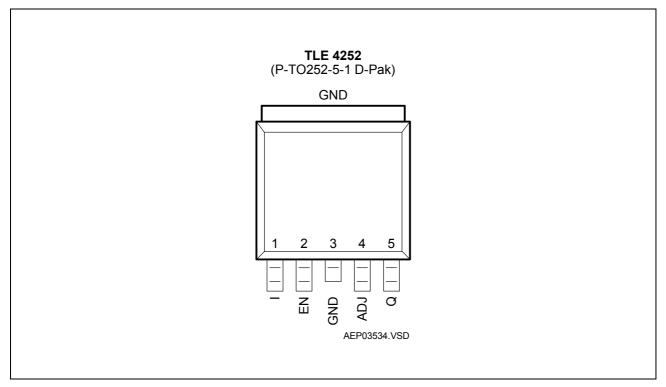


Figure 2 Pin Configuration (Draft, subject to alternation!)

 Table 1
 Pin Definitions and Functions (draft, subject to alternation)

Pin No.	Symbol	Function
1	I	Supply voltage input; Input for battery or a pre-regulated voltage of a e.g. DC to DC converter.
2	EN	Enable input for tracker ; An active high signal turns on the device, with active low the tracker is turned off.
3	GND	Ground; Connected to the heatsink of the package.
4	ADJ	Adjust input for tracker; Input for the reference voltage which can be connected directly or by voltage divider to the reference (see Application Information).
5	Q	Output voltage of tracker; For a stable operation to avoid ringing at the output connect a capacitor of $C_{\rm Q} \ge 10~\mu{\rm F}$ and $0 \le {\rm ESR} \le 5~\Omega$ to GND.

Data Sheet 3 Rev. 1.2, 2004-08-11

 Table 2
 Absolute Maximum Ratings

Parameter	Symbol	Limi	t Values	Unit	Remarks
		Min.	Max.		
Supply Voltage Input	I	·	·		
Voltage	V_{l}	-42	45	V	_
Current	I_{l}	_	_	А	Limited internally
Enable Input EN			<u> </u>		
Voltage	V_{EN}	-42	45	V	_
Current	I_{EN}	_	_	А	Limited internally
Adjust Input ADJ			<u> </u>		
Voltage	V_{ADJ}	-42	45	V	_
Current	I_{ADJ}	_	_	А	Limited internally
Output Q			<u> </u>		
Voltage	V_{Q}	-2	45	V	_
Current	I_{Q}	_	_	Α	Limited internally
Temperature	•		<u> </u>		
Junction temperature	$T_{\rm j}$	-40	150	°C	_
Storage temperature	T_{stg}	-50	150	°C	_
ESD-Protection	•	•	•		•
Voltage	V_{ESD}	-2	2	kV	Human Body Model (HBM)

Note: Maximum ratings are absolute ratings, exceeding one of these values may cause irreversible damage to the integrated circuit!

Table 3 Operating Range

Parameter	Symbol	Limit Values			Unit	Remarks
		Min.	Тур.	Max.		
In- and Output Voltage	ge		1			
Supply voltage	V_{l}	3.5	_	40	V	$V_{I} > V_{ADJ} + V_{dr}$
Enable input voltage	V_{EN}	0	_	40	V	_
Adjust input voltage	V_{ADJ}	1.5	_	40	V	_
Adjust input voltage	V_{ADJ}	0	_	1.5	V	$V_{\rm Q} \leq V_{\rm ADJ} + \Delta V_{\rm Q}$
Error amplifier common mode range	CMR	1.5	_	V _I - 0.5	V	$V_{\rm Q} \leq V_{\rm ADJ}$ + $\Delta V_{\rm Q}$ with $V_{\rm FB}$ = $V_{\rm Q}$
Temperature			1		1	
Junction temperature	T_{j}	-40	_	150	°C	_
Thermal Resistance	P-TO252-	5-1	1		1	
Junction to ambient	$R_{ ext{thj-a}}$	_	_	144	K/W	Footprint only ¹⁾
Junction to ambient	$R_{\text{thj-a}}$	_	_	78	K/W	Heat sink area 300 mm ² 1)
Junction to ambient	$R_{ ext{thj-a}}$	_	_	55	K/W	Heat sink area 600 mm ² 1)
Junction to case	R_{thj-c}	_	_	2	K/W	_

¹⁾ Worst case regarding peak temperature; zero airflow; mounted on FR4; $80 \times 80 \times 1.5$ mm³; $35~\mu$ Cu; $5~\mu$ Sn

Note: Within this operating range the IC is functional. The electrical characteristics, however, are not guaranteed over this full range given above.

Data Sheet 5 Rev. 1.2, 2004-08-11

 Table 4
 Electrical Characteristics

 $V_{\rm I}$ = 13.5 V; 1.5 V $\leq V_{\rm ADJ} \leq V_{\rm I}$ - 0.6 V; -40 °C < $T_{\rm j}$ < 150 °C; unless otherwise specified

arameter	Symbol	Limit Values			Unit	Test Condition	
		Min.	Тур.	Max.			
Regulator Performan	ce, Tracke	er Outp	ut Q				
Output voltage tracking accuracy $\Delta V_{\rm Q} = V_{\rm ADJ}$ - $V_{\rm Q}$	$\Delta V_{ m Q}$	-10	_	10	mV	$4.5 \text{ V} < V_{\text{I}} < 26 \text{ V};$ $1 \text{ mA} < I_{\text{Q}} < 200 \text{ mA};$	
Output voltage tracking accuracy	ΔV_{Q}	-10	_	10	mV	$3.5 \text{ V} < V_{\text{I}} < 32 \text{ V};$ $10 \text{ mA} < I_{\text{Q}} < 100 \text{ mA};$	
$\Delta V_{\rm Q} = V_{\rm ADJ} - V_{\rm Q}$		-25	_	25	mV	$3.5 \text{ V} < V_{\text{I}} < 4.5 \text{ V};$ $1 \text{ mA} < I_{\text{Q}} < 200 \text{ mA};$	
Drop voltage	V_{dr}	_	280	600	mV	$I_{\rm Q}$ = 200 mA; $V_{\rm ADJ}$ > 3.5 V; $V_{\rm EN}$ = $V_{\rm EN, \ on}^{(1)}$	
Output current	I_{Q}	250	350	500	mA	$V_{\rm Q} = 5.0 \ {\rm V}^{2)}$	
Output capacitor	C_{Q}	10	_	_	μF	0 ≤ ESR ≤ 5 Ω at 10 kHz	
Current consumption $I_q = I_l - I_Q$	I_{q}	_	10	25	mA	$I_{\rm Q}$ = 200 mA; $V_{\rm Q}$ = 5 V	
Current consumption $I_{q} = I_{l} - I_{Q}$	I_{q}	_	100	150	μΑ	$I_{\rm Q}$ < 100 μ A; $T_{\rm j}$ < 85 °C; $V_{\rm EN}$ = 5 V	
Quiescent current (stand-by) $I_q = I_l - I_Q$	I_{q}	_	0	2	μΑ	$V_{\rm EN}$ = 0 V; $V_{\rm EN/ADJ}$ = 0 V; $T_{\rm j}$ < 85 °C	
Reverse current	I_{r}	_	0.5	5	mA	$V_{\rm Q} = 16 \text{ V}; \ V_{\rm I} = 0 \text{ V}$	
Load regulation	ΔV_{Q}	_	_	10	mV	1 mA < $I_{\rm Q}$ < 200 mA	
Line regulation	ΔV_{Q}	_	_	10	mV	$5 \text{ V} < V_{\text{I}} < 32 \text{ V};$ $I_{\text{Q}} = 5 \text{ mA}$	
Power supply ripple rejection	PSSR		60	_	dB	$f_{\rm I, \; ripple}$ = 100 Hz; $V_{\rm I, \; ripple}$ = 0.5 Vpp ³⁾	

Table 4 Electrical Characteristics (cont'd)

 $V_{\rm I}$ = 13.5 V; 1.5 V $\leq V_{\rm ADJ} \leq V_{\rm I}$ - 0.6 V; -40 °C $< T_{\rm I} <$ 150 °C; unless otherwise specified

Symbol	Limit Values			Unit	Test Condition
	Min.	Тур.	Max.		
	•	•		•	•
I_{ADJ}	_	0.1	0.5	μΑ	$V_{ADJ} = 5 \; V$
					•
$V_{EN,on}$	2.0	_	40	V	V_{Q} settled
$V_{EN,off}$	0	_	0.8	V	V _Q < 0.1 V
I_{EN}	-1	2	5	μΑ	V_{EN} = 5 V
R_{EN}	_	1.5	_	ΜΩ	_
	I_{ADJ} $V_{EN,on}$ $V_{EN,off}$ I_{EN}	$I_{ m ADJ}$ - $V_{ m EN,on}$ 2.0 $V_{ m EN,off}$ 0 $I_{ m EN}$ -1	Min. Typ. I_{ADJ} - 0.1 $V_{EN, \text{ on}}$ 2.0 - $V_{EN, \text{ off}}$ 0 - I_{EN} -1 2	Min. Typ. Max. I_{ADJ} - 0.1 0.5 $V_{EN, \text{ on}}$ 2.0 - 40 $V_{EN, \text{ off}}$ 0 - 0.8 I_{EN} -1 2 5	Min. Typ. Max. I_{ADJ} - 0.1 0.5 μA $V_{EN, on}$ 2.0 - 40 V $V_{EN, off}$ 0 - 0.8 V I_{EN} -1 2 5 μA

¹⁾ Measured when the output voltage $V_{\rm Q}$ has dropped 100 mV from the nominal value.

Data Sheet 7 Rev. 1.2, 2004-08-11

²⁾ The current limit depends also on the input voltage, see graph output current vs. input voltage in the diagrams section.

³⁾ Specified by design. Not subject to production test.

Application Information

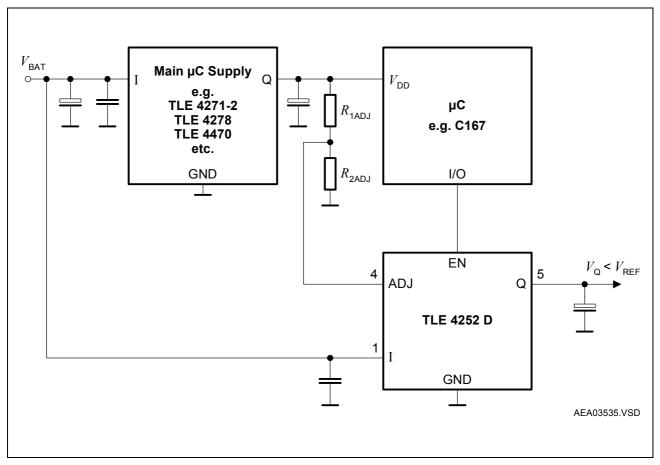
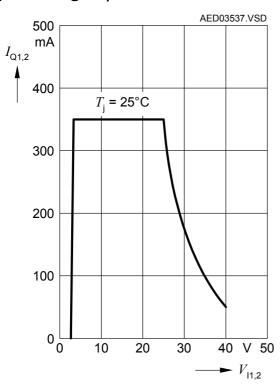


Figure 3 Application Circuit: Output Voltage < Reference Voltage

Figure 3 shows a typical application circuit with $V_{\rm Q}$ < $V_{\rm REF}$. Of course, also $V_{\rm Q}$ = $V_{\rm REF}$ is feasible by directly connecting the reference pin of the TLE 4252 D to the appropriate voltage level without voltage divider.

The output voltage calculates to:


$$V_{\rm Q} = V_{\rm REF} \times \left(\frac{R_{\rm 2ADJ}}{R_{\rm 1ADJ} + R_{\rm 2ADJ}}\right) \tag{1}$$

Data Sheet 8 Rev. 1.2, 2004-08-11

Diagrams

Output Current Limit $I_{\rm Q}$ versus Input Voltage $V_{\rm I}$

Package Outlines

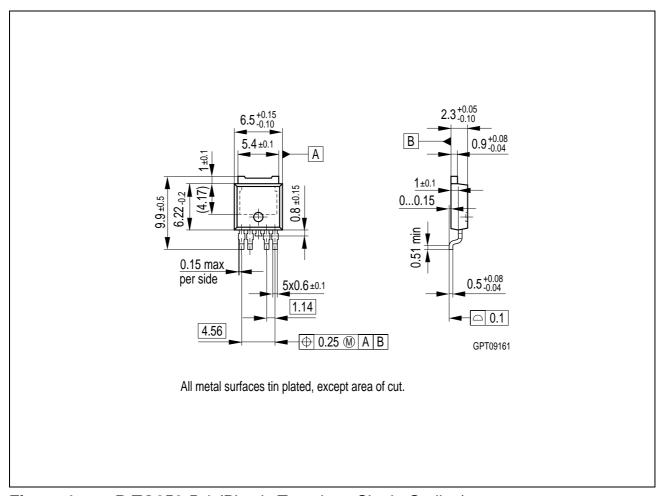


Figure 4 P-TO252-5-1 (Plastic Transistor Single Outline)

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

Edition 2004-08-11

Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany
© Infineon Technologies AG 2004.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.