EC5-1690

5.25 英寸工业计算机主板 硬件安装手册

手册版本: V1.0 适用板卡: VA1

地址: 深圳市福田区车公庙天安数码城创新科技广场 B 座 1510 邮编: 518040 电话: (0755) 83439980 83439280 传真: (0755) 83439680 网址: http://www.bsky.com.cn 邮箱: E-mail: <u>market@bsky.com.cn</u>

N. M. Parts R.	
1. 产品概述	1
1.1 简介	
1.2 特性	
1.3 规格	
1.4 附件清单	
↑ 连口介绍	
21 跳帽乃连接哭位置	
2.1 此相及足及册位直 2.2 趾帽乃连接哭简介	
2.2 跳帽没足没带向开	
2.5 此情议直 9 / 接口引期完义	ب ۸
2.7 设口 扪冲定入	+
3. 硬件安装	
3.1 注意事项	
3.2 网络唤醒功能	
3.3 CRT/LVDS LCD 的连接······	
3.4 IT8888 PCI-ISA 桥的设置和 PC/104 接口的使用	
3.5 串口的设置和使用	
3.6 USB 的连接	
3.7 电源输入	
3.9 其它端口的连接	
3.10 常见故障排除	
4. BIOS 设置	
4.1 BIOS 设置	
附录 1: 系统资源(I/O,中断资源占用情况)	
附录 2: 例程	
A 看门狗使用范例····································	
B 板载 DIO 使用范例 ····································	
附录 3: 点屏配线方法	

1. 产品概述

1.1 简介

EC5-1690 是一款在 203mmx146mm 尺寸上开发出来的全功能嵌入式工业计算机主板。该款主板基于英特尔超低 电压移动赛扬处理器,板载 256Mbytes DDR SDRAM,板上集成 CRT/LVDS LCD 接口、2 路 USB2.0 接口、4 个带独立控 制器的 10M/100Mbps 以太网接口、CF 卡座、1 个 EIDE 接口、DIO 接口、2 串一并、内建看门狗定时器以及供扩充用 的 PC/104 接口。

由于主板采用英特尔超低功耗的 BGA 封装的 CM CPU 芯片,无需风扇,彻底解决了由于风扇故障引起可靠性降低的问题,板上的 LCD 接口可以支持 LVDS LCD 屏,分辨率 640×480、800×600、1024×768。

EC5-1690 以其超强的功能,可广泛应用于发 VPN、防火墙、网络终端、工业网络服务器等各种嵌入式领域。

1.2 特性

- ◆ 嵌入式英特尔超低功耗的 CM CPU 微处理器, 主频 600M/800M/900M/1GHz 可选
- ♦ 852GM+ICH4
- ◆ 板载 256Mbytes DDR SDRAM
- ◆ 4个 RealTek RTL8100CL 10/100M 网卡接口
- ◆ 2个USB 接口, USB2.0
- ◆ 一个 40PIN 标准硬盘接口
- ◆ 一个 TYPE I CF 卡接口
- ◆ 2个全功能的串口, COM1、COM2 均支持 RS232/RS485 工作模式,模式切换免跳线
- ◆ 提供标准 ATX 电源接口和 4PIN 硬盘电源接口,电源选择免跳线,可支持单+5V 供电
- ◆ 提供标准 PC/104 接口
- ◆ 可应客户要求, 裁减部分功能, 以满足客户的实际需求

1.3 规格

结构:	嵌入式 5.25″工业计算机主板结构。
处理器:	嵌入式低功耗英特尔超低功耗的 CM 800M CPU 微处理器, 128KB 一级缓存, 主频
	400M/600M/800M/1GHz 可选。
芯片组:	852GM+ICH4。
BIOS:	AWARD BIOS.
内存:	板载 256MBytes SDRAM, 支持 DDR200/266。
显示 :	最高共享内存 64MB 作为显存。集成 2D/3D 图形加速引擎。
	分辨率: CRT 输出最高支持 1600x1200_85 Hz 或者 1920x1440_60 Hz; LVDS LCD 输出最高支
	持 1400x1050_75 Hz
USB 接口:	2个USB设备接口,USB2.0可选,其中两路为标准接口/插针扩展接口可选,两路为插针扩展
	接口。
LAN 接口:	4个 RealTek RTL8100CL 10/100M 网卡接口,标准 RJ-45 接口接口可选。
EIDE 接口:	一个 40PIN 标准硬盘接口和一个 44PIN/2.0mm 标准笔记本硬盘接口,共支持四个 IDE 设备,
	支持 Ultra DMA 100。
LPT 接口:	一个打印接口,支持 SPP/EPP/ECP 模式。
COM 接口:	2 个全功能的串口, COM1、COM2 均支持 RS232/RS485 工作模式,模式切换免跳线,
	COM1/RS232 为标准接口接口,其他为插针接口。
红外线接口:	一个标准 IrDA 接口。
CF 卡座:	1个TYPEI型CF卡座。
DIO 接口:	两个8路DIO,1个8路TTL输入,1个8路TTL输出,可以方便地与单片机接口互连。
<i>曲</i> 舟 / 臼仁	

键盘 / 鼠标: PS/2 键盘、鼠标接口/键鼠二合一接口可选。

RTC:	含在南桥芯片内部,支持数据可保持10年之久。
扬声器/鸣器:	在板蜂鸣器。
机箱面板接口:	提供硬盘指示灯、电源开关、复位按扭、蜂鸣器等接口。
看门狗定时器:	可产生复位,系统可实现65536级可编程计时,定时间隔为1秒或1分。
总线接口:	PC/104 总线。
电源需求:	电源接口,标准 ATX 电源接口和 4PIN 硬盘电源接口,电源选择免跳线,+12V 和+5V 供电。
	<u>+5V@</u> ? A,+12V@0mA (CM800M CPU, 256MB/DDR266 SDRAM)。
CE 设计:	串口、并口、键盘/鼠标接口、VGA 接口、USB、RJ45 接口等均采用防 EMI 设计。
印刷电路板:	8 层, 考虑 EMI。
工作温度:	工业级-20℃~+70℃。
相对湿度:	相对湿度 5%~95%,非凝结。
尺寸:	符合 5.25 " 标准尺寸, 203mmx146mm。

1.4 附件清单

在安装您的CPU卡之前,请确认您是否收到了以下附件:

- 1. 1块EC5-1690工业计算机主板。
- 2. 1块CD驱动程序碟片(含本说明书)。
- 3. 1条80芯IDE扁平电缆。
- 4. 1条44芯IDE扁平电缆。
- 5. 1条2.54MM/1x10转DR9(公头)串口连接电缆。
- 6. 1条2.54MM/2X13转DB25(母头)并口连接电缆。
- 7. 2条2.54MM/2X1带复位按钮线。
- 8. 1条PS/2键盘鼠标二合一转接线。
- 9. 10只2.0MM备用跳线帽。

如附件不全或部分受损,请尽快与我们联系。以上附件仅为标准配置,可根据客户需要选配。

2. 接口介绍

2.1 跳帽及连接器位置

注意: 该图用红色方块标示了所介绍零件的第一引脚。

2.2 跳帽及连接器简介

跳帽位置	功能
JP1	CMOS 清除跳线
JP2	LCD 电压选择跳线

接口位置	功能
CFD1	CF 卡接口
CN1	主 IDE 插座 (40-pin)
CN2	LAN1 标准接口
CN3	LAN2 标准接口
CN4	LAN3 标准接口
CN5	LAN4 标准接口
CN6	标准 DB15 VGA 接口
CN7	LVDS 输出接口
CN8	USB1&2 标准接口
CN9、CN10	PC/104 总线接口
CN11	TTL DIO 接口
CN12	标准风扇接口
CN13	2X13 并口/打印口输出接口
CN14	键盘/鼠标二合一接口

CN15	COM1 标准 RS232 接口
CN16	COM1、COM2 485 输出接口
CN17	COM2 RS232 插针输出接口
CN18	4PIN 电源接口
CN19	标准 ATX 电源接口
CN20	电源开机按钮
CN21	复位按钮
CN30	从 IDE 插座 (44-pin)

2.3 跳帽设置

跳帽设置示意图:

JP1: CMOS 供电清除跳线

设 置	功能
1-2	正常工作 (默认)
2-3	清除 CMOS

注:清除 CMOS 时请断开电源

JP2: LCD 电压选择跳线

设 置	功能
Close1-2	+5V 供电 (默认)
Close2-3	+3.3V 供电

2.4 接口引脚定义

CFD1: CF 卡插座

信号名	引脚	引脚	信号名
GND	1	2	CFDD3
CFDD4	3	4	CFDD5
CFDD6	5	6	CFDD7
-CFDCS1	7	8	GND
GND	9	10	GND
GND	11	12	GND
VCC	13	14	GND
GND	15	16	GND
GND	17	18	CFDA2
CFDA1	19	20	CFDA0
CFDD0	21	22	CFDD1
CFDD2	23	24	NC
GND	25	26	GND
CFDD11	27	28	CFDD12
CFDD13	29	30	CFDD14

CFDD15	31	32	-CFDCS3
NC	33	34	-CFDIOR
-CFDIOW	35	36	VCC+5V
CFREQ	37	38	VCC+5V
CSEL	39	40	NC
CFRST	41	42	CFIORDY
NC	43	44	VCC+5V
-HD_LED2	45	46	SUDMA33-66
CFDD8	47	48	CFDD9
CFDD10	49	50	CND

CN1:主 IDE 接口(40-pin 双排插座)

信号名	引 脚	引 脚	信号名
IDE Reset	1	2	GND
Data 7	3	4	Data 8
Data 6	5	6	Data 9
Data 5	7	8	Data 10
Data 4	9	10	Data 11
Data 3	11	12	Data 12
Data 2	13	14	Data 13
Data 1	15	16	Data 14
Data O	17	18	Data 15
GND	19	20	NC
DRQO	21	22	GND
PD IOW	23	24	GND
PD IOR	25	26	GND
IORDY	27	28	GND
DACKO	29	30	GND
IRQ14	31	32	NC
Address 1	33	34	UDMA33-66
Address 0	35	36	Address 2
CS#1	37	38	CS#3
Active LED	39	40	GND

CN2、CN3、CN4、CN5: LAN1、2、3、4 标准接口

LAN RJ45接口用于CPU 卡上的10/100Mbps 以太网功能,下图给出了此接口的管脚安排以及相应的输入插头。 LILED 和ACTLED 分别为绿色和黄色LED 它们位于RJ45 接口的两边,指示LAN 当前的连线状态及活动状态。各 个LED 状态的功能请参阅下表:

5]脚信亏定义:	言号定义	:
----------	------	---

引 脚	功 能	引 脚	功 能
1	TX+	2	TX-
3	RX+	4	NC
5	NC	6	RX-
7	NC	8	NC

信号名	引脚	引脚	信号名
CRTRED	1	2	CRTGREEN
CRTBLUE	3	4	NC
GND	5	6	GND
GND	7	8	GND
VCC+5V	9	10	GND
NC	11	12	CRTSDA
CRTHSYNC	13	14	CRTVSYNC
CRTSCL	15		

CN6:标准 DB15 VGA 接口

信号名	引脚	引脚	信号名
VLCD	1	2	GND
LVDS_TXLCLK#	3	4	LVDS_TXLCLK
VLCD	5	6	GND
LVDS_TXL0#	7	8	LVDS_TXL0
LVDS_TXL1#	9	10	LVDS_TXL1
LVDS_TXL2#	11	12	LVDS_TXL2
LVDS_TXL3#	13	14	LVDS_TXL3
VLCD	15	16	GND
VLCD	17	18	GND
LVDS_TXU0#	19	20	LVDS_TXU0
LVDS_TXU1#	21	22	LVDS_TXU1
LVDS_TXU2#	23	24	LVDS_TXU2
LVDS_TXU3#	25	26	LVDS_TXU3
VLCD	27	28	GND
LVDS_TXUCLK#	29	30	LVDS_TXUCLK
VLCD	31	32	NC
NC	33	34	NC
NC	35	36	GND
LVDS_DDCPDATA	37	38	LVDS_DDCPCLK
LVDS_BKLEN	39	40	LVDS_BKLCTL

CN7 : LVDS 输出接口

CN8:标准 USB1&2 接口

信号名	引脚	引脚	信号名
VCC+5V	1	5	VCC+5V
USBD1-	2	6	USBD2-
USBD1+	3	7	USBD2+
GND	4	8	GND

CN9、CN10: PC/104 长/短接口

CN6					(CN9	
引脚	信号名	引脚	信号名	引脚	信号名	引脚	信号名
A1	IOCHK	B1	GND				
A2	D7	B2	RESET				
A3	D6	B3	VCC				
A4	D5	B4	IRQ9				
A5	D4	B5	-5V				

A6	D3	B6	DRQ2				
A7	D2	B7	-12V				
A8	D1	B8	ZWS				
A9	DO	B9	+12V	C1	GND	D1	GND
A10	IOCHRDY	B10	GND	C2	SBHE	D2	MEMCS16
A11	AEN	B11	SMEMW	C3	LA23	D3	I0CS16
A12	A19	B12	SMEMR	C4	LA22	D4	IRQ10
A13	A18	B13	IOW	C5	LA21	D5	IRQ11
A14	A17	B14	IOR	C6	LA20	D6	IRQ12
A15	A16	B15	DACK3	C7	LA19	D7	IRQ15
A16	A15	B16	DRQ3	C8	LA18	D8	IRQ14
A17	A14	B17	DACK1	С9	LA17	D9	DACKO
A18	A13	B18	DRQ1	C10	MEMR	D10	DRQO
A19	A12	B19	REFRESH	C11	MEMW	D11	DACK5
A20	A11	B20	CLK	C12	D8	D12	DRQ5
A21	A10	B21	IRQ7	C13	D9	D13	DACK6
A22	A9	B22	IRQ6	C14	D10	D14	DRQ6
A23	A8	B23	IRQ5	C15	D11	D15	DACK7
A24	Α7	B24	IRQ4	C16	D12	D16	DRQ7
A25	A6	B25	IRQ3	C17	D13	D17	VCC
A26	A5	B26	DACK2	C18	D14	D18	MASTER
A27	A4	B27	TC	C19	D15	D19	GND
A28	A3	B28	BALE	C20	KEY PIN	D20	GND
A29	A2	B29	VCC				
A30	A1	B30	OSC				
A31	AO	B31	GND				
A32	GND	B32	GND				

CN11: TTL DIO 接口 (2个8路 DIO 接口,端口译码地址为: 115H)

信号名	引 脚	引脚	信号名
GND	1	2	INO
IN1	3	4	IN2
IN3	5	6	IN4
IN5	7	8	IN6
IN7	9	10	VCC+5V
VCC+5V	11	12	OUT7
OUT6	13	14	OUT5
OUT4	15	16	OUT3
OUT2	17	18	OUT1
OUTO	19	20	GND

CN12: 风扇接口

信号名	引 脚	引 脚	信号名
SENSE	1	2	VCC+12V
GND	3		

此接口作为机箱风扇备用,CM 处理器无需风扇。

CN13: 2X13 并口/打印口 输出接口

信号名	引 脚	引 脚	信号名
PPSTBX	1	2	PPAFDRX
PPD0	3	4	PPERRX
PPD1	5	6	INITRX
PPD2	7	8	PPSLINRX
PPD3	9	10	GND
PPD4	11	12	GND
PPD5	13	14	GND

EC5-1690 硬件安装手册

PPD6	15	16	GND
PPD7	17	18	GND
PPACKX	19	20	GND
PPBUSY	21	22	GND
PPPE	23	24	GND
PPSLCT	25	26	GND

CN14:键盘鼠标二合一接口

注意: 该接口可直接接键盘使用

PS/2 键盘鼠标二合一转接线的另外一端的信号定义为

CN14: 键盘鼠标插针接口

信号名	引 脚	引脚	信号名
KBDATA	1	2	MSDATA
KBCLK	3	4	MSCLK
GND	5	6	GND
VCC+5V	7	8	VCC+5V

CN15: COM1 标准 RS232 输出接口

信号名	引 脚	引 脚	信号名
DCD (Data carrier detect)	1	2	RXD (Incept data)
TXD (Transmit data)	3	4	DTR (Data terminal ready)
GND (Ground)	5	6	DSR (Data set ready)
RTS (Request to send)	7	8	CTS (Clear to send)
RI (Ring indicator)	9		

CN16: COM1&2 RS485 输出接口

信号名	引 脚	引脚	信号名
RS485+/COM1	1	2	RS485-/COM1
RS485+/COM2	3	4	RS485-/COM2

CN17: COM2 RS232 插针输出接口

信号名	引 脚	引 脚	信号名
DCD (Data carrier detect)	1	2	RXD (Incept data)
TXD (Transmit data)	3	4	DTR (Data terminal ready)
GND (Ground)	5	6	DSR (Data set ready)

RTS (Request to send)	7	8	CTS (Clear to send)
RI (Ring indicator)	9	10	NC (No connect)

CN18:4-pin AT 电源接口

信号名	引脚	引 脚	信号名
VCC+5V	1	2	GND
GND	3	4	VCC+12V

CN19:标准 ATX 电源接口

信号名	引 脚	引脚	信号名
+3.3V	1	11	+3.3V
+3.3V	2	12	-12V
GND	3	13	GND
VCC+5V	4	14	PS_ON
GND	5	15	GND
VCC+5V	6	16	GND
GND	7	17	GND
PWROK	8	18	-5V
AUX5V	9	19	VCC+5V
+12V	10	20	VCC+5V

CN20: 电源开机按钮接口

信号名	引 脚	引脚	信号名
POWER_BUTTON#	1	2	GND

CN21: 系统复位按钮接口

信号名	引脚	引脚	信号名
RESET #	1	2	GND

CN30:从 IDE 接口(44-pin 双排插座)

信号名	引脚	引 脚	信号名
IDE Reset	1	2	GND
Data 7	3	4	Data 8
Data 6	5	6	Data 9
Data 5	7	8	Data 10
Data 4	9	10	Data 11
Data 3	11	12	Data 12
Data 2	13	14	Data 13
Data 1	15	16	Data 14
Data O	17	18	Data 15
GND	19	20	NC
DRQO	21	22	GND
PD IOW	23	24	GND
PD IOR	25	26	GND
IORDY	27	28	GND
DACKO	29	30	GND
IRQ14	31	32	NC
Address 1	33	34	UDMA33-66
Address 0	35	36	Address 2
CS#1	37	38	CS#3
Active LED	39	40	GND
VCC	41	42	VCC
GND	43	44	GND

3. 硬件安装

3.1 注意事项

注意:请在断电条件下插拔部件;在连接电源接头到主板前请先确认电源处于关闭状态,以避免瞬间的电源冲击造成敏感元件的损坏。

Caution!

小心:现代电子产品对静电非常敏感,在主板安装前,请将主板放置在防静电垫或防静电袋内; 拿取主板时最好能戴上防静电手环或防静电手套。

使用前请仔细阅读本安装手册,确认主板的跳线配置正确,因不正当使用而造成产品的损坏,厂商概不负责。

3.2 网络唤醒功能

EC5-1690 主板集成 4 个 100M 网口,它们均带独立控制器,为标准 RJ-45 网络接口,连接对应于 CN2、3、4、5。可灵活搭建防火墙、工业网络服务器等多网络应用平台。引接 ATX 电源后,四个网络均支持网络远端唤醒 功能,支持 AMD Magic Packet、Linkchg、微软 Wake-up Frame 软件。

3.3 CRT/LVDS LCD的连接

EC5-1690 主板可同时支持 CRT 和 LVDS 显示屏输出而不相互影响,使用 LVDS 前需在 BIOS 中设置开启"LFP" 显示功能,开启 LFP 显示功能后,CRT 和 LVDS LCD 可以同时接上使用。

使用 LVDS LCD 时,在使用前,请先确认您的 LCD 屏是 3.3V 还是 5V 的屏(这指的是您使用的 LCD 屏里面的 IC 的工作电压是 3.3V 还是 5V。请咨询您的 LCD 屏供应商,市面上大多数屏为 3.3V)。您可以通过设置 JP2 来改 变 CN7 的输出电压。当 JP2 设定为 3.3V 或 5V 时,对应 CN7 的 VCC 脚将会输出 3.3V 或 5V 电压,所以在使用前 务必先设定正确的 LCD 屏工作电压。

不同的 LCD 屏有不一样的接口定义,我们在附件中没有数据线,您需要找您的 LCD 屏供应商根据我 们主板上 LCD 接口定义来为您配置您所使用的 LCD 屏的数据转接线。

3.4 IT8888 PCI-ISA桥的设置和PC/104接口的使用

该款主板采用台湾联阳公司的 IT8888PCI-ISA 桥解决方案,客户可根据应用时所用到的资源,进入 BIOS 设置中断、I/0 地址及内存地址的范围。以 DOS 下测试中断为 IRQ3, I/0 地址为 210 的串口为例:

1. 中断的设置

进入 BIOS 设置,将板载 COM2 关闭,因其已占用中断 3。

2. I/0 地址的设置

客户需要将 IT8888 桥在 210-217 (共 8BYTE) 地址范围打开,以访问 ISA 总线上的此段地址。

- 1) 进入 BIOS 设置菜单同 Motherboard Device Configuration, 子菜单 PCI-ISA Bridge Configuration下, 设置 Positively Decoded IO Space 4选项
- 2) 将 IO SPACE EN/DIS 设为 ENABLE
- 3) 将 DECODING SPEED 设为 MEDIUM SPEED
- 4) 将 IO SPACE SIZE 设为 8 BYTE
- 5) 将 BASE ADDRESS 设为 210

注意:

在设置以上项目时,请参考附录,避开主板设备已占用的资源,以免引起地址冲突。

3.5 串口的设置和使用

该款主板含 2 个串口 COM1、COM2 均支持 RS232/RS485,工作模式切换免跳线,其中 COM1 提供标准 DB9 接

口,并提供插针接口,可通过我们提供的配线转接为标准的 DB9 接口,COM2 可通过我们提供的配线转接为标准 的 DB9 接口。

串口占用中断情况如下:

COM1: IRQ4;

COM2: IRQ3;

注意: 在使用 COM1、COM2 时,在 BIOS 中需要指定其地址。

选择 RS485 模式时,需要软件上切换 RS485 线的收或发的模式。这可以通过控制相应的寄存器的值来使 RTS 信号为高或为低。当 RTS 信号为高电平时,RS485 为接收模式,当 RTS 信号为低电平时,RS485 为发送模式。同时我们提供了 RS485 的流向自动识别的方案供客户选择。

RS485/422 常用在总线型多机通讯网络中,当多机通讯时,且传输距离较远时,位于两端的两台 PC 必须设置终端电阻以实现正确传输。需要时,可通过上 R519、R525 电阻来设置。

3.6 USB的连接

该主板提供 2 路 USB2.0 供客户选择。其中两路由标准 USB 接口 CN8 引出,客户可直接将 USB 设备插入 使用,在使用较宽的 USB 设备时,需要通过 USB 延长线引出标准 USB 接口。

3.7 电源输入

本板提供两个电源接口,一个为标准 ATX 电源接口 CN19,一个为 4PIN 的硬盘电源接口 CN18(支持 AT&ATX 电源)。客户切换这两种电源时无需跳线。支持单+5V 供电!

使用 ATX 电源接口时,按下电源开机按扭(引接 CN20),系统可以自动开机。关机模式有两种: 立刻关机 和四秒延时关机,可以 BIOS 中进行选择。

3.8 系统复位

CN21 引接系统复位按扭,按下按扭,系统重新启动。

3.9 其它端口的连接

IDE 接口: 主 IDE 接口采用标准 40PIN 硬盘接口。 并口: 本板附送的配线直接接入 CN13 即可。 数字 I O 口: 由 CN11 引出, 输入输出地址均为 115H。 PC/104 接口: 需要时可以利用该接口扩展 PC/104 模块。

3.10 常见故障排除

正确接线情况下,系统 BIOS 会执行自检,并显示相关内容。出现故障时请确认:

- 1. 电源是否正确接入。
- 2. 主板是否设置正确。
- 3. 是否有显示。
- 4. BIOS 是否设置正确。
- 5. 操作系统是否工作正常。
- 6. 系统无法启动还是局部功能工作有问题。
- 7. 确认您的应用软件有无问题(使用第三方软件来测试硬件)。

您可以采用替代法,如更换主板、更换电源等方法来推断问题出在哪里;或者,您也可以将上述问题及时 反映给我们,我们一定能给您满意的答复。

4. BIOS 设置

4.1 BI0S设置

BIOS 是电脑软件启动的开始点,BIOS 可以将您的硬件配置成您所需要的设定。本说明书对 BIOS 设置不做 太深的探讨,请直接参考 BIOS 的内容。

附录

附录1:系统资源(I/0,中断资源占用情况)

标准设备的I/0地址表,部分未用或可以通过BIOS禁用,开发扩展卡请尽量避开常用的I/0地址:

地址	设 备
000 - 01F	DMA控制器#1
020 - 03F	中断控制器#1
040 - 05F	定时器
060 - 06F	键盘控制器
070 - 07F	实时时钟NMI
080 - 09F	DMA 页面寄存器
0A0 – 0BF	中断控制器#2
0C0 - 0DF	DMA 控制器#2
0F0 - 0F1	清/复位数学协处理器
110H-111H	看门狗定时器
114H-115H	数字10
170 - 177	硬盘控制器2
1F0 – 1F7	硬盘控制器1
200 - 210	游戏端口
278 - 27F	并口#3(本板未占用)
2E0 - 2EF	串口#6(本板未占用)
2E8 - 2EF	串口#4(本板未占用)
2F8 - 2FF	串口#2
300 - 31F	原型卡/流线型磁带适配器
360 - 36F	PC网络
378 – 3FF	并口2(本板未占用)
380 - 38F	SDLC #2
3A0 - 3AF	SDLC #1
3BC - 3BF	并口1
3C0 - 3CF	EGA卡
3D0 - 3DF	CGA卡
3E0 - 3EF	串口#5(本板未占用)
3E8 - 3EF	串口#3
3F0 - 3F7	软磁盘控制器(CMOS中可关闭)
3F8 - 3FF	串口#1

中断资源

软中断号	硬中断线	描 述	中断向量地址
0x08	IRQO	定时器输出	0x00000: 0x00020
0x09	IRQ1	键盘	0x00000: 0x00024
NOT ACTIVE	IRQ2	中断级联	
0x0B	IRQ3	串口#2	0x00000: 0x0002C
0x0C	IRQ4	串口#1	0x00000: 0x00030
0x0D	IRQ5		0x00000: 0x00034
0x0E	IRQ6		0x00000: 0x00038
0x0F	IRQ7	并口1	0x00000: 0x0003C
0x70	IRQ8	实时时钟	0x00000: 0x001C0
0x71	IRQ9		0x00000: 0x001C4
0x72	IRQ10		0x00000: 0x001C8
0x73	IRQ11	网卡/VGA/USB/看门狗	0x00000: 0x001CC
0x74	IRQ12	鼠标使用	0x00000: 0x001D0
0x75	IRQ13	数学协处理器	0x00000: 0x001D4
0x76	IRQ14	IDE通道1	0x00000: 0x001D8
0x77	IRQ15	IDE通道2	0x00000: 0x001DC

附录2: 例程

A 看门狗使用范例

- 1. 看门狗使用板载 IT8712F 集成功能。
- 2. 使用看门狗有以下三步配置步骤:
 - (1) Enter the MB PnP Mode
 - 往2E口依序填入87,01,55,55
 - (2) Modify the data of configuration registers
 - (3) Exit the MB PnP Mode
 - 往2E口填02
- 1. Watchdog 可以产生 RESET 信号。
- 2. 时间范围软件可设为 0-15 秒,时间间隔 1 秒。
- 3. WATCHDOG 端口 111H:110H 描述:

D15	D14	D13	D12	D11	D10	D9	D8
D7	D6	D5	D4	D3	D2	D1	DO

D15-D8: 0 停止 Watchdog, 即 disable; 8AH 启用 Watchdog, 即 enable; D3-D0:写入定时的秒数;

D7-D4:未用。

编程示例:

.MODEL SMALL .CODE Main: CALL Enter_Configuration_mode CALL Check_Chip mov cl, 7 call Set_Logic_Device ;time setting mov cl, 10 ; 10 Sec dec al Watch_Dog_Setting: ;Timer setting mov al, cl mov cl, 73h call Superio_Set_Reg ;Clear by keyboard or mouse interrupt mov al, 0f0h mov cl, 71h call Superio_Set_Reg ;unit is second. mov al, 0C0H mov cl, 72h call Superio_Set_Reg ; game port enable mov cl, 9

call Set_Logic_Device Initial_OK: CALL Exit Configuration mode MOV AH,4Ch INT 21h Enter_Configuration_Mode PROC NEAR MOV SI, WORD PTR CS: [Offset Cfg_Port] MOV DX,02Eh MOV CX,04h Init 1: MOV AL, BYTE PTR CS:[SI] OUT DX,AL INC SI LOOP Init_1 RET Enter_Configuration_Mode ENDP Exit_Configuration_Mode PROC NEAR MOV AX,0202h CALL Write Configuration Data RET Exit_Configuration_Mode ENDP Check_Chip PROC NEAR MOV AL,20h CALL Read_Configuration_Data CMP AL,87h JNE Not_Initial MOV AL,21h CALL Read_Configuration_Data CMP AL,12h JNE Not Initial Need_Initial: STC RET Not_Initial: CLC RET Check_Chip ENDP Read_Configuration_Data PROC NEAR MOV DX, WORD PTR CS: [Cfg Port+04h] OUT DX,AL MOV DX, WORD PTR CS: [Cfg Port+06h] IN AL, DX RET Read_Configuration_Data ENDP Write_Configuration_Data PROC NEAR MOV DX,WORD PTR CS:[Cfg_Port+04h] OUT DX,AL

XCHG AL,AH MOV DX,WORD PTR CS:[Cfg_Port+06h] OUT DX,AL RET Write_Configuration_Data ENDP Superio_Set_Reg proc near push ax MOV DX, WORD PTR CS: [Cfg_Port+04h] mov al,cl out dx.al pop ax inc dx out dx,al ret Superio_Set_Reg endp.Set_Logic_Device proc near Set_Logic_Device proc near push ax push cx xchg al,cl mov cl,07h call Superio_Set_Reg рор сх pop ax ret Set_Logic_Device endp ;Select 02Eh->Index Port, 02Fh->Data Port Cfg_Port DB 087h,001h,055h,055h

B 板载DIO使用范例

```
用南桥GPI0接口实现DI0功能,输入输出端口地址都为0x801。以下的程序是我们实际测试GPI0使用的测试程序,
请参考,需要源代码请和我们联系。
#include <stdio.h>
#include <conio.h>
main()
{
   unsigned char rd = 0;
   unsigned char sht;
   int myerror = 0;
   long k:
   int i = 0;
   clrscr();
   do
   {
       myerror = 0;
       for(sht=0x01; sht; sht<<=1)
```

```
cprintf( "0:%02X", sht );
        outportb( 0x115, sht );
        rd = inportb(0x115);
        if ( rd != sht )
        {
            textattr( 0x4b );
            myerror = 1;
        }
        else
textattr( 0x07 );
           cprintf( "i:%02X ", rd );
           textattr(0x07);
        }
        if ( myerror )
        {
            textattr( 0x4b );
            cprintf( "FAIL!" );
            textattr( 0x07 );
        }
        else
            cprintf( "PASS!" );
        for ( k=0; k<0x800000L; k++ );
        cprintf(" \ (n'');
        i++;
        if ( i >= 20 )
        {
            clrscr();
            i = 0;
        }
     while( !bioskey(1) || (bioskey(0)!=0x11b) ); 
}
```

{

附录3: 点屏配线方法

下列表格列出各种分辨率的 LVDS 液晶屏的数据线连接方法:

HYUNDAI HT12 x 12-100 LVDS Flat Panel : (XGA 1024X768)

主板	LCD 屏	LCD 屏	主板
VLCD	VDD	VSS	GND
LVDS_TXLCLK#	RCLK-	RCLK+	LVDS_TXLCLK
VLCD	VDD	VSS	GND
LVDS_TXL0#	RINO-	RIN0+	LVDS_TXL0
LVDS_TXL1#	RIN1-	RIN1+	LVDS_TXL1
LVDS_TXL2#	RIN2-	RIN2+	LVDS_TXL2
LVDS_TXL3#			LVDS_TXL3
VLCD	VDD	VSS	GND
VLCD	VDD	VSS	GND
LVDS_TXU0#			LVDS_TXU0
LVDS_TXU1#			LVDS_TXU1
LVDS_TXU2#			LVDS_TXU2
LVDS_TXU3#			LVDS_TXU3
VLCD	VDD	VSS	GND
LVDS_TXUCLK#			LVDS_TXUCLK
VLCD	VDD		NC
NC			NC
NC		VSS	GND
LVDS_DDCPDATA			LVDS_DDCPCLK
LVDS BKLEN			LVDS BKLCTL