
Iterative Delta Debugging (IDD)

Cyrille Artho
Research Center for Information Security (RCIS),

Nat. Inst. of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

c.artho@aist.go.jp

10/28/2008

Debugging

ä Effort to isolate fault in a system.

ä Why does the test fail?

– What part of program contains fault?
– What part of input provokes failure?

ä Manual debugging: inspect test run.

– Goal: small test case to study.

Cyrille Artho, 10/28/2008 1

Delta Debugging [Zeller02]

ä Isolate difference between inputs that causes failure.

bad

OK

good

regression
bug

ä Idea: (Minimal) difference between inputs = reason of failure.

ä Can also be applied to program source code!

Cyrille Artho, 10/28/2008 2

Outline

1. Delta Debugging (DD).

2. When and how to iterate DD.

3. Problems with DD on programs.

4. Experiments.

5. Conclusion.

Cyrille Artho, 10/28/2008 3

DD on program code

bad
234,240d234
< // this code was removed
< // (not relevant for bug)

< // old, correct code
< ...
> // regression bug (new)
> ...
400a398,405
> // new feature (no bug)

345,370c365

DD

patch
minimalgood

ä Use patch between good and bad version.

ä Try to generate a version that is as close to „bad” as possible. . .
while still passing the test.

Cyrille Artho, 10/28/2008 4

How DD’s state space bisection works

“good” part of the change green

entire change set disabled fail

second half of change disabled fail

last two bits disabled pass

bit 5 disabled fail

bit 4 disabled fail

first half of change set disabled fail

. . .

after two more fails pass

final iteration pass

Cyrille Artho, 10/28/2008 5

What if no „good” version is known?

bug

4

fail

5

fail

6

fail

ä Regression bug: New version contains defect.

ä Assumption (or knowledge): older version can handle this case.

ä Which version works is not known.

Try to find an older “good” version.

Cyrille Artho, 10/28/2008 6

What if older version cannot run test?

ä Use delta debugging
to back-port test.

ä Try to find which
changes to apply.

ä DD generates patch.

4

fail

patch

4

fail

3’

(back−port
 bug fix)

DD

bug fix from 4

old bug
(fixed in v4)

new bug

err

3

Cyrille Artho, 10/28/2008 7

Iterated Delta Debugging

12

old bug fixed

but old bug fixed

patch set of
prev. fixes

fail

3’ 2’

fail

1’

pass

new test passed!
new bug persists

ä Current change set (patch) is back-ported to older versions.

ä If new problem encountered, DD is used again.

ä Process is repeated until test passes!

Cyrille Artho, 10/28/2008 8

Back to the present

pass

4’’

pass

5’’

pass

1’ 2’’

pass

3’’

pass

ä We don’t care about how to fix last year’s software!

ä Use same idea to forward-port patch to current version.

ä DD minimizes patch whenever necessary.

Cyrille Artho, 10/28/2008 9

Problem 1: What is correct?

ä Correct version not known (but test result can tell).

ä Incorrect (but not totally flawed) version not well-defined.

ä Easy to exclude obviously broken runs.

ä Small flaws are difficult to avoid!

– Removal of conditional or loop statement.
– Removal of important function calls.

ä Avoid elimination of correct functionality.

Use metrics (memory usage, coverage) to avoid such pruning.

Cyrille Artho, 10/28/2008 10

Problem 2: Wasted test attempts when using
naive DD on program source code

ä Lines of code are not independent!

ä Block structure of program code.

+ #if 0 - static void
+ static int - foo(...)
+ foo(void *data) - {
+ { - int x;
+ int x; - x = ...
+ x = ... - if (x) {
+ } - }
+ #endif - }

Cyrille Artho, 10/28/2008 11

Addressing hierarchical structures:
HDD [Miserghi 2006]

ä Hierarchical Delta Debugging (for XML).

ä Bisection search follows tree structure.

ä Substantially better performance than DD,
with better results. </dataset>

<dataset>
 <element>
 ...
 </element>
 <element>
 ...
 </element>

Patch file structure has similar hierarchy.

Cyrille Artho, 10/28/2008 12

HDD for patches

Line
LineFile

File

File

Hunk
Hunk
Hunk

Line
Line

LinePatch

ä Use „natural” boundaries of patch elements (files, hunks).

ä Often, hunk corresponds to entire code block/function.

ä In these cases, HDD is much better.

Cyrille Artho, 10/28/2008 13

Implementation

patch set

patch
subset

mutant
patch

good bad

DD
Test

diff

Cyrille Artho, 10/28/2008 14

Experiment: JNuke: Jar file parser

 0

 10

 20

 30

 40

 50

 60

 1870 1875 1880 1885 1890 1895

P
at

ch
 s

iz
e

Revision number

JNuke: test jarfile/10

IDD on JNuke
IDD-h on JNuke

ä Java VM for verification, written in C.
– Code written under Linux fails under Mac OS 10.4.
– Success: HDD found two-line explanation for error.

Cyrille Artho, 10/28/2008 15

Experiment: Java PathFinder: Model checker

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 340 360 380 400 420 440 460 480

P
at

ch
 s

iz
e

Revision number

JPF: Infinite loop bug

IDD on JPF
IDD-h on JPF

ä Java model checker, written in Java.
– Complex bug (5 minutes run time, > 1 GB data), more than a year old.
– Good version found, but patch too large, breaks other features.

Cyrille Artho, 10/28/2008 16

Experiment: Uncrustify: Source code formatter

 0

 100

 200

 300

 400

 500

 600

 700

 200 300 400 500 600 700 800

P
at

ch
 s

iz
e

Revision number

Uncrustify: Bug #1691150

IDD on Uncrustify
IDD-h on Uncrustify

ä Program source reformatting tool, written in C++.

ä Test successfully back-ported, but no good version found.

Cyrille Artho, 10/28/2008 17

HDD itself is not good enough for programs

ä Advantageous in some cases; going in the right direction.

Open issues:

1. Changes are usually not line-based!

ä DD tool needs other platform than just diff/patch.

2. Program code is not a tree structure.

ä Bisection search does not address such dependencies.

Cyrille Artho, 10/28/2008 18

Conclusion

ä Replace human effort with automated debugging.

ä Delta Debugging: minimize change between „good” and „bad”.

ä Iterative Delta Debugging: find „good” version if not known!

ä Caveats:

– Current diff/patch tools are too coarse (line-based).
– Tools tailored to program source code needed.

Iterative “mining” of old revisions: a promising approach.

Cyrille Artho, 10/28/2008 19

Observations

ä „Unstable” patches: context information from diff is line-based.

ä Lots of „cruft”→ fragile patches→ more cruft, etc.

ä Tool chain not optimized:

– Freshly obtains source each time (10 – 20 seconds wasted).
– Fresh build each time (almost one minute wasted).
– Many syntactically invalid versions generated!

„Waste”: 90 – 98 %.

ä In reality, hard-to-find bugs are usually committed together with
refactorings and other changes!

ä Worst-case scenario for DD; but only such „bad” commits lead to
hard-to-fix bugs where DD could help.

Cyrille Artho, 10/28/2008 20

