
IBM Event Driven

Field Guide

© Copyright International Business Machines Corporation 2021. US
Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

Download the current version of the IBM
Event Driven Field Guide
https://ibm.biz/ibm-event-driven-field-guide

https://ibm.biz/ibm-event-driven-field-guide

What’s inside?
This field guide provides a high-level overview of IBM’s event-driven
approach.

Build event-driven solutions
A modern digital business works in real time, informing interested
parties of relevant events when they happen, making sense of and
deriving insight from an ever-growing number of sources. An intelligent
business learns and predicts based on real time events.

BY NATURE, BUSINESS IS EVENT-DRIVEN

Build responsive applications. Modern business applications bring
immediate replies and feedback to the end user or system.

Access data in real time. Business teams need access to data to
aggregate, score, and act on them in real time.

Deliver high quality applications. Modern systems need to be
responsive, elastic, resilient, and should deliver consistent quality of
service.

Adopt an asynchronous message-driven backbone. Event-driven
solutions enable loosely coupled components to act together on
data by using computing analytics, applying complex rules, or using
machine-trained models for scoring.

GET STARTED
Tips to start the journey.

LEARN IT
A summary of the concepts.

2

The value of event-driven
solutions
Event-driven architecture addresses the loose coupling requirements of
microservices and avoids complex communication integration.

PROCESS EVENTS AS YOU GET THEM

Mature your adoption of microservices. Adopt reactive programming
coupled with an event backbone that supports the publish/subscribe
protocol and enables long-term distributed data persistence for high
availability and replayability.

Modernize your data pipeline. Adopt real-time data loading, transfor-
mation, and publishing to build continuous data streams, which sup-
port fraud detection, personalization, recommendations, and business
intelligence in near real time.

Use real time analytics and AI. Add components to compute statistics,
aggregate, or preform stateful computations like time windowing busi-
ness logic. Perform prescriptive or predictive scoring or generate new
facts about the data using AI models.

Reactive Systems. Adopt message-driven applications to build elastic,
resilient, and responsive applications that enhance your user’s experi-
ence and system reliability.

LEARN IT

Check out IBM® Event Streams.
https://www.ibm.com/cloud/event-streams

Learn more

https://www.ibm.com/cloud/event-streams

Mature microservices

Data pipeline

Real time analytics
and AI

Reactive
systems

4

IBM’s unique point of view
IBM products support hybrid cloud and integrated open-source
components that act as the foundation of an event-driven system
running on lightweight containers deployed to a Kubernetes platform.

IBM: BEST-OF-CLASS MESSAGING AND MIDDLEWARE PRODUCTS

Support for traditional (MQ) and Apache Kafka pub/sub messaging
styles. The use cases are different but complementary and both styles
of messaging are used in modern, cloud-native architecture.

Adopt message-driven microservices. Decouple services and
enable the continuous visibility of data. Possibilities include real-time
recommendations, customer interaction analysis, next best action, fraud
detection, auditing, real-time stateful operations on a data stream, and
AI applied on each message as events occur.

Use APIs and event streaming in your event-driven microservices.
AsynchAPI, cloud events, and schema registries help define the contract
for message-based interactions.

Use DevOps tools to build and manage your event-driven solution.
DevOps tools deploy event-driven microservices to Red Hat® OpenShift®
with minimum knowledge of Kubernetes.

LEARN IT

Check out the IBM Cloud Pak® for Integration.
https://www.ibm.com/cloud/cloud-pak-for-integration

Learn more

https://www.ibm.com/cloud/cloud-pak-for-integration

IBM Cloud Pak for Integration portfolio with event streaming via Apache
Kafka, APIs, and Kubernetes (Red Hat OpenShift) work together to sup-

port a modern, cloud-native deployment.

6

Architect your solution
The event-driven architecture promotes the production, detection,
consumption of, and reaction to events. It can be extended with new
components to produce or consume existing events in the system.

COMPONENTS OF AN EVENT-DRIVEN ARCHITECTURE

Event sources. Generate events and event streams from sources such as
‘Internet of Things’ devices, web applications, mobile applications, legacy
transactional processing, and microservices.

Event streams & event backbone. Provides an event backbone supporting
publish/subscribe communication, immutable event logs, with stateful
event-stream processing.

IBM Cloud® functions. Provides a simplified programming model to take
action on an event occurrence through a ‘serverless’, function as a service
model.

Streaming analytics. Continuously ingest and process analytics across
multiple event streams. Take action on events or non-events using
business rules.

Event stores. Optimized persistence (data stores) for append logs to be
replicable and replayable.

Event-driven microservices applications. Run as serverless functions or
containerized workloads connected via pub/sub event communication.

LEARN IT

Check out the Event Driven architecture.
https://www.ibm.com/cloud/architecture/architectures/eventDrivenArchitecture/
overview

Learn more

https://www.ibm.com/cloud/architecture/architectures/eventDrivenArchitecture/overview

8

Real-time analytics
Real-time analytics enables your solution to investigate and un-
derstand the events flowing through unbounded, real-time event
streams. Streaming applications process the event flow and apply
data and analytical functions to information in the stream. Streaming
applications are written as multistep flows that are easy to develop
and deploy on demand.

GO THROUGH THE FLOW

Ingest. Gather data from many sources.

Prepare. Transform, filter, correlate, aggregate on some metrics, and
enrich your data using other data sources. Keep enriched data as new
data elements ready to consume by other application.

Detect and predict. Classify and score data, detect patterns and
anomalies, and predict event patterns.

Decide. Apply business rules and business logic.

Act. Execute an action, a process, a decision, send data to an external
system, or publish a notification.

GET STARTED

Check out the Data, Analytics, and AI architecture.
https://www.ibm.com/cloud/architecture/architectures/
dataAIArchitecture/overview

Learn more

https://www.ibm.com/cloud/architecture/architectures/dataAIArchitecture/overview

10

Basic streaming analytics
capabilities
Streaming solutions can be implemented by different technologies,
but they all process unbounded event streams that are based on a
number of capabilities.

LEARN IT

Read the practice on processing event streams.
https://www.ibm.com/cloud/architecture/architecture/practices/
event-driven-event-streams-architecture

Learn more

https://www.ibm.com/cloud/architecture/architectures/edge-computing/reference-architecture

Continuous event ingestion and analysis. Continuously inject data
from heterogenous sources to the event backbone, via a rich, scalable
connector framework, then easily integrate via the Stream API. Differ-
ent delivery semantics can be supported, including fire and forget, at
most one, or exactly once.

Process multiple event streams. Deliver multiple parallel process-
ing apps using a scalable event streaming architecture. Deploy each
app using container orchestration software. Each app consumes
data from streams, processes, and produces new data in a separate
stream. Chaining stream processing enriches and aggregates data
records to deliver business meaning for other apps to consume.

Low latency processing, without storing data. A producer can
generate events with low latency processing from the broker cluster.
Data persists as an append log for a long time. Stateful operations
can persist states in topics in a memory database. Inbound messag-
es from a ‘firehose’ are delivered, not persisted, and focus on low
latency processing. The first level of stream processing computes
aggregates that persist and support exactly once delivery.

Process high-volume, high-velocity streams of data. Tune your
configuration to support high throughput and large records. Apply
patterns to keep or drop large messages or use a long term bucket to
persist larger files and keep metadata as factual, immutable data in
the distributed log within the brokers.

Continuous query and analysis of the feed. Streaming applications
that compute stateful logic and aggregates are continuously queried
using a distributed mechanism. If the query reaches a node with the
expected key, records are returned immediately. If not, the target
URL is returned so records are found in a second call. The knowl-
edge of key distribution supports continuous interactive queries.

12

Microservices: API-driven
Modern microservice-based applications use a combination
of synchronous API-driven and asynchronous event-driven
communication styles.

SYNCHRONOUS API-DRIVEN MICROSERVICES

When a microservice (A) needs to access data from microservice (B),
it calls an endpoint via an HTTP GET, which leads to strong coupling
at the data definition level. This introduces mainenance challenges.

You must assess which microserve implements the join, service A,
B, or a new service (C). Service C implements the join by calling two
API endpoints and reconciling data using primary keys. It is simpler
to use point-to-point synchronous communication; however, as the
number of services grows, coupling creates challenges.

GET STARTED

Read the practice, Event-driven cloud-native applications (microservices).
https://www.ibm.com/cloud/architecture/architecture/practices/event-driven-
cloud-native-apps-architecture

Learn more

https://www.ibm.com/cloud/architecture/architecture/practices/event-driven-cloud-native-apps-architecture

Microservices: Event backbone
Communication is asynchronous using a pub/sub protocol when using
event-driven microservices. With this approach, the microservices are
naturally responsive, elastic, and resilient enhancing the loose coupling
nature of microservices.

EVENT-DRIVEN MICROSERVICES

When adopting Kafka as the event backbone, data sharing occurs via an
event log, which can be kept for a long period, is replayable, and resilient. A
consumer can restart and process messages from the last read, go back in
time, or replay from the last good processed input record.

When using domain-driven design and bounded context for microservices,
microservice A and B produce facts about their business entities to their
respective topic in the event backbone. To support a join, microservice C
consumes those facts to build its own data projection.

14

Reactive systems
Contemporary solutions based on microservices support dynamic
loads and elegantly tolerate failure. The reactive manifesto defines
four characteristics that modern, cloud-native applications must
support.

MESSAGE-DRIVEN. ELASTIC. RESILIENT. RESPONSIVE.

Message-driven. A reactive system architecture is based on an
asynchronous, message-driven backbone. The architecture enables
loose coupling of applications, which minimizes coherency delays
and inter-service communication network latency.

Elastic. Reactive systems remain responsive under varying workloads
by scaling resource utilization depending on the system load.

Resilient. Reactive systems are responsive in the face of failure. This
implies distributed systems and the ability to reload state from the
message bus.

Responsive. Reactive systems deliver a consistent quality of service
to end users or systems. Modern business applications respond even
under heavy workload.

GET STARTED

Read about Reactive systems.
https://ibm-cloud-architecture.github.io/refarch-eda/advantages/
reactive/

Learn more

https://ibm-cloud-architecture.github.io/refarch-eda/advantages/reactive/

Asynchronous communication helps to support scaling, integration,
coupling, and failover. Adopting reactive design and implementation
might look complex at first, but it has become a necessity for scalable
business solutions.

For example, in e-commerce, many monolithic applications have
been redesigned to adopt reactive characteristics that support scaling
business needs and respond to sporadic demands.

16

Eventual data consistency
Adoption of cloud-native applications requires distributed systems,
which can lead to data inconsistency. It is not yet possible to have
consistency, availability, and network partition tolerance. When
a service supports a POST, PUT, or DELETE operation on its main
business entity, the propagation of changes to other microservices
interested in that data will eventually be consistent.

ALL OBSERVERS SHOULD GET THE SAME RESULT

Microservices are distributed. With hundreds of microservice
instances running in parallel in distributed data centers, data
issues and network partitioning occur. There is a trade off between
consistency and availability. For most business applications at the
scale of the internet, availability is the priority.

Eventual data consistency. Event-driven architecture and proven
design patterns like Saga, CQRS, and event sourcing, help to support
availability and facilitate eventual consistency. Reading data can be
performed anywhere. The event backbone is used for data replication
and is the source that builds the eventually consistent data view.

Ensure consistency on the write model. The architecture uses
transactions to ensure consistency between persisting data and
publishing messages to queues.

GET STARTED

Check out the Event Driven architecture.
https://www.ibm.com/cloud/architecture/architectures/
eventDrivenArchitecture/overview

Learn more

https://www.ibm.com/cloud/architecture/architectures/eventDrivenArchitecture/overview

Consistency requirements are different for each
application. The developer has to select the tools they

need to support their requirements.

18

Event sourcing design pattern
Most business applications are state-based, where any update changes
the business entities. The database keeps the last committed update.
Some business applications need to explain how they reached their
current state. Event sourcing persists the state of a business entity,
such as an order, as a sequence of state-changing events or immutable
facts over time in the order of occurrence.

GET STARTED

Explore the event driven patterns.
https://www.ibm.com/cloud/architecture/architectures/
eventDrivenArchitecture/patterns

Learn more

https://www.ibm.com/cloud/architecture/architectures/eventDrivenArchitecture/patterns

CQRS design pattern
When a data model is overburdened by managing complex aggregate
objects, concurrent updates, and numerous cross-cutting views, it must
be refactored. The Command-Query Responsibility Segregation (CRQS)
pattern strictly segregates read operations from write operations that
update data, making data operations more manageable and simpler to
implement. The operations can be developed, optimized, and evolved
independently, enabling better scale, performance, and security.

20

Outbox design pattern
Typically, an event-driven service command must atomically update
database tables and emit events. When transactional queueing
products are not available, insert an event into an ‘event’ table. Then
a change data capture agent gets the records from the table and
publishes them to the event backbone, like Kafka. This is a powerful
solution for new app.

GET STARTED

Explore the event driven patterns.
https://www.ibm.com/cloud/architecture/architectures/
eventDrivenArchitecture/patterns

Learn more

https://www.ibm.com/cloud/architecture/architectures/eventDrivenArchitecture/patterns

Saga design pattern
When using one data source per microservice, it is challenging to support
long-running transactions across microservices. The Saga pattern helps
solve this by breaking up a long-running transaction into a collection of
interwoven sub-transactions. With the Saga Choreography pattern, each
service produces and listens to other services’ events and decides wheth-
er to take action. With the Saga Orchestration pattern, one service is
responsible for driving what each participant does and when.

22

Data pipeline to data
platform
A data pipeline architecture commonly uses an event backbone to
buffer data and sink applications. A data pipeline is a series of steps
or processes that reliably moves data from a source to a destination.
As data moves through the pipeline, it is transformed and enriched
by models. The models are consumed by components acting on the
data. An enriched model is used by the AI workbench to engineer
features and develop a prescriptive scoring model. The pipeline
moves data into a data lake for big data processing.

A data lake is a system or repository that stores raw, transformed
data. A Lambda architecture handles massive quantities of data by
taking advantage of both batch and stream processing methods.

By using Kafka as an event backbone for a data pipeline and a source
of truth, you can enhance the architecture. Batch queries and ‘map
reduce’ can address huge quantities of raw data. Streaming queries
support real time aggregation and analytics. Microservices generate
data and streaming apps aggregate data. Data enrichment and the
data lake provide the source for the AI model and scoring.

GET STARTED

Learn about modern data lake.
https://ibm-cloud-architecture.github.io/refarch-eda/introduction/
reference-architecture/#modern-data-lake

Learn more

https://ibm-cloud-architecture.github.io/refarch-eda/introduction/reference-architecture/#modern-data-lake

24

Mainframe integration
Most mainframe integration uses existing transaction processing to
keep the write model on the mainframe. In a distributed hybrid-cloud
world, you can move the read model to the cloud. Apache Kafka (IBM
Event Streams) and a Change Data Capture (CDC) product can be co-
located on the mainframe to reduce operation and runtime cost, and
complexity.

ARCHITECTURE PATTERN: IBM EVENT STREAMS & CDC

Improve quality of service. Auto-scale and balance between Linux
nodes while maintaining resilience. For the Kafka service, use IBM
Event Streams, the only Kafka variant supported by Linux® on IBM Z®.

Reduce complexity and management cost. Use the architecture
pattern to reduce latency and increase memory speed. Network traffic
is not encrypted, which reduces MIPS by avoiding authentication (TLS)
overhead on IBM z/OS®. Avoid network spend, management, and
maintenance between servers.

Ensure transactional integrity. The CDC server uses the
Kafka Transaction Capture Consumer library to maintain transaction
integrity while publishing to a Kafka topic. Consumer Information
Control System (CICS®) business events are a mechanism for
declaratively emitting events from CICS routines.

GET STARTED

This architecture pattern increases the efficiency of the mainframe and
creates a data pipeline with transactional integrity. Deploy CDC servers

and event stream brokers on Red Hat OpenShift on Linux on Z.

26

Existing system integration
If your existing systems are not designed to submit events, adopt
an event-driven architecture. It introduces new opportunities for
existing systems to include real-time analytics, a data pipeline, an AI-
based scoring agent, and loosely coupled microservices.

MORE DATA STREAMED = AGILITY AND OPPORTUNITIES

Kafka connector framework. Use the Kafka connector framework for
external system integration. The Kafka connector framework uses
long retention topics to keep state of the source or sink connectors,
and supports clustering to scale horizontally.

Kafka cluster. Use the Kafka connector framework to get new events
into a Kafka cluster.

Open source connectors. Connectors are available from the open-
source community and as part of Apache Camel.

GET STARTED

Learn about the IBM Event Driven architecture.
https://www.ibm.com/cloud/architecture/architectures/
eventDrivenArchitecture/overview

Learn more

https://www.ibm.com/cloud/architecture/architectures/eventDrivenArchitecture/overview

28

Integrate, then automate
Event driven solutions need to integrate with existing systems by
using either SOA services, MQ queues as source, REST end points, a
decision service, or a business process.

APPLY BUSINESS RULES TO EVENTS AS THEY HAPPEN

GET STARTED

Check out the Event-driven architecture.
https://www.ibm.com/cloud/architecture/architectures/
eventDrivenArchitecture

Learn more

https://www.ibm.com/cloud/architecture/architectures/eventDrivenArchitecture

For business process applications, BPMN supports the message
construct used to trigger a process, including message consumption,
generation of intermediate messages, and sending a message to a
queue. Most of the business process management products use JMS,
which needs queue to topic integration. This is supported by Kafka
Connectors.

Integration flows deployed in an Enterprise Service Bus can also be
integrated with Kafka and other event backbones in a no code man-
ner. IBM® App Connect supports Kafka integration with simple end
point and security configuration. For a Kafka expert, more advanced
settings make it easy to send or consume messages.

Integrate event and business rules by embedding the rule engine
inside the data streaming processing. Integration with Apache Flink
or Kafka Streams is possible with IBM® Operational Decision Man-
agement so the rule engine can apply business rules on top of events.
Business analysts can edit the rules.

The AsynchAPI function in IBM API management helps to define
metadata about Kafka Topics so consumer applications have visibility
to what is deployed in Kafka and can integrate new events into their
application.

30

Event-driven solutions in
action
Putting event-driven concepts together in a single architecture is
complex. In this example, a business application uses event-driven
microservices, choreography to exchange data, a mobile channel,
real time analytics via streaming apps, and data transformation
and enrichment to a data lake - all integrated with mainframe
transactional applications.

ITS A BIG MAINFRAME EVENT-DRIVEN SOLUTION

GET STARTED

Check out the solution.
https://ibm-cloud-architecture.github.io/refarch-kc/

Learn more

https://ibm-cloud-architecture.github.io/refarch-kc/

32

IBM can help
The IBM GarageTM helps businesses disrupt, innovate, operate, and
motivate like a startup. The Garage can help you create inspiring expe-
riences that produce significant business outcomes faster. IBM brings
deep industry expertise to deliver successful client implementations.

LET IBM HELP YOU

Accelerate your journey with IBM Garage. Focus on innovation and
keep existing resources in place by letting our IBM Garage experts
manage your ongoing integration needs.

Adopt industry solutions. Make use of IBM Global Business Services
industry vertical solutions.

Deploy and manage integration projects. Let IBM help you to deploy
and manage your solutions.

Move forward with help from Expert Labs. Work alongside our experts
to assess your portfolio, implement quick, agile change and set the
course for your integration future.

GET STARTED

Check out the IBM Garage.
https://www.ibm.com/garage

Learn more

https://www.ibm.com/garage
https://www.ibm.com/cloud/garage

IBM is a trusted partner, providing technology and prescriptive guidance to
deliver immediate business value.

Engage IBM experts!

Design
workshops

Plan MVP

Test, pilot,
prove

Measure
outcomes

Learn from
feedback

Success!!

https://www.ibm.com/cloud/garage/services

Notes:

Learn about the IBM Cloud Pak

for Integration

https://www.ibm.com/cloud/cloud-pak-

for-integration

Assess your integration maturity
https://www.ibm.com/account/reg/us-en/signup?formid=urx-48428

https://www.ibm.com/cloud/cloud-pak-for-integration
https://www.ibm.com/account/reg/us-en/signup?formid=urx-48428

Learn more about Red Hat
OpenShift

https://www.openshift.com/

Learn about the IBM Cloud Pak for Automation
https://www.ibm.com/cloud/cloud-pak-for-automation

https://www.openshift.com/
https://www.ibm.com/cloud/cloud-pak-for-automation

Visit an IBM Garagehttps://www.ibm.com/garage

Check out IBM Cloud Paks!!
https://www.ibm.com/cloud/paks

To support best practices and patterns that

demonstrate the value of an event-driven

solution, there are two open source reference

implementations.

https://ibm-cloud-architecture.github.io/refarch-kc/

https://www.ibm.com/garage
https://www.ibm.com/cloud/paks
https://ibm-cloud-architecture.github.io/refarch-kc/

Notices
© Copyright International Business Machines Corporation 2021.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your
local IBM representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM
intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:

The following paragraph does not apply to the United Kingdom or any other country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in certain transactions;
therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available on the web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee
of Linus Torvalds, owner of the mark on a world wide basis.

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Trademarks

EVENT-DRIVEN DEVELOPMENT

© 2021 IBM CORPORATION

https://www.ibm.com/devops/method

