

8-Bit CMOS Microcontrollers with A/D Converter

PIC16LC74B-16/PTL16 Microcontroller Core Features:

- High-performance RISC CPU
- · Specially tested
 - 16MHz @ 3V
- Only 35 single word instructions to learn
- All single cycle instructions except for program branches which are two cycle
- Operating speed: DC 16 MHz clock input DC - 250 ns instruction cycle
- 4K x 14 words of Program Memory, 192 x 8 bytes of Data Memory (RAM)
- · Interrupt capability
- · Eight level deep hardware stack
- · Direct, indirect and relative addressing modes
- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Programmable code-protection
- Power saving SLEEP mode
- · Selectable oscillator options
- Low-power, high-speed CMOS EPROM technology
- Wide operating voltage range: 2.5V to 5.5V
- High Sink/Source Current 25/25 mA
- Commercial, Industrial and Automotive temperature ranges
- Low-power consumption:
 - < 5 mA @ 5V, 4 MHz
 - 23 μA typical @ 3V, 32 kHz
 - < 3 μA typical standby current

Pin Diagram:

Peripheral Features:

- Timer0: 8-bit timer/counter with 8-bit prescaler
- Timer1: 16-bit timer/counter with prescaler can be incremented during sleep via external crystal/clock
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- Capture, Compare, PWM module(s)
 - Capture is 16 bit, max. resolution is 15.6 ns
 - Compare is 16 bit, max. resolution is 250 ns
 - PWM max. resolution is 10 bit
- 8-bit multichannel analog-to-digital converter
- Synchronous Serial Port (SSP) with SPI[™] and I²C[™]
- Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI)
- Parallel Slave Port (PSP), 8-bits wide, with external RD, WR and CS controls
- Brown-out detection circuitry for Brown-out Reset (BOR) Pin Diagrams

Table of Contents

1.0 General Description	3
2.0 Electrical Characteristics	
3.0 DC and AC Characteristics Graphs and Tables	
4.0 Packaging Information	
Index	
On-Line Support	35
Reader Response	36
Product Identification System	37

To Our Valued Customers

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.

Errata

An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (602) 786-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Corrections to this Data Sheet

We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please:

- Fill out and mail in the reader response form in the back of this data sheet.
- E-mail us at webmaster@microchip.com.

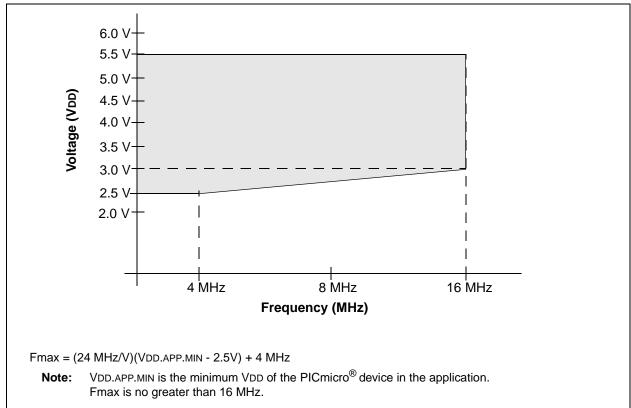
We appreciate your assistance in making this a better document.

1.0 GENERAL DESCRIPTION

This data sheet covers the PIC16LC74B-16/PTL16 device. The functional characteristics of this device are identical to the PIC16LC74B. For electrical specifications, see the electrical specifications contained within this document. For all other information about this device, see the PIC16C63A/65B/73B/74B data sheet (DS30605).

NOTES:

ELECTRICAL CHARACTERISTICS 2.0


Absolute Maximum Ratings (†)

Ambient temperature under bias	55°C to +125°C
Ambient temperature under bias Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	
Voltage on VDD with respect to Vss	0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Voltage on RA4 with respect to Vss	0V to +8.5V
Total power dissipation (Note 1)	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iik (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, lok (Vo < 0 or Vo > VDD)	
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sunk by PORTC and PORTD (combined)	200 mA
Maximum current sourced by PORTC and PORTD (combined)	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VDD-Vd)	OH) $x IOH$ + $\sum (VOI x IOL)$

Note 2: Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of $50-100\Omega$ should be used when applying a "low" level to the \overline{MCLR}/VPP pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device, at those or any other conditions above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

FIGURE 2-1: PIC16LC74B-16/PTL16 VOLTAGE-FREQUENCY GRAPH

2.1 DC Characteristics: PIC16LC74B-16/PTL-04 (Commercial)

DC CHA	RACTE	RISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial							
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions			
D001	VDD	Supply Voltage	2.5 VBOR*	-	5.5 5.5	V	RC, LP, XT, HS osc modes (DC - 4 MHz) BOR enabled (Note 7)			
D002*	VDR	RAM Data Retention Voltage (Note 1)	-	TBD	-	V				
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	-	Vss	-	٧				
D004* D004A*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05 TBD	-		V/mS V/mS	(<u></u> ,			
D005	VBOR	Brown-out Reset voltage trip point	3.65	-	4.35	V	BODEN bit set			
D010	IDD	Supply Current (Note 2, 5)	-	2.0	3.8	mA	XT, RC osc modes FOSC = 4 MHz, VDD = 3.0V (Note 4)			
			-	3.0	6.0	mA	HS oscillator mode Fosc = 16MHz, VDD = 3.0V			
D010A			-	22.5	48	μА	LP osc mode Fosc = 32 kHz, VDD = 3.0V, WDT disabled			
D021	IPD	Power-down Current (Note 3, 5)	-	0.9	5	μΑ	VDD = 3.0V, WDT disabled, 0°C to +70°C			
D022*	ΔIWDT	Module Differential Current (Note 6) Watchdog Timer	-	6.0	20	μА	WDTE bit set, VDD = 4.0V			
D022A*	$\Delta IBOR$	Brown-out Reset	-	350	425	μΑ	BODEN bit set, VDD = 5.0V			

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- **Note 1:** This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD.
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - **4:** For RC osc mode, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
 - 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
 - **6:** The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
 - 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

2.2 DC Characteristics: PIC16LC74B-16/PTL-04 (Commercial)

DC CHA	RACTE	RISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature 0°C ≤ TA ≤ +70°C for commercial Operating voltage VDD range as described in DC spec Section 2.1						
Param No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions		
	VIL	Input Low Voltage I/O ports							
D030 D030A		with TTL buffer	Vss Vss	-	0.15VDD 0.8V	V V	For entire VDD range 4.5V ≤ VDD ≤ 5.5V		
D031		with Schmitt Trigger buffer	Vss	-	0.2VDD	V			
D032		MCLR, OSC1 (in RC mode)	Vss	-	0.2VDD	V			
D033		OSC1 (in XT, HS and LP modes)	Vss	-	0.3VDD	V	Note1		
	ViH	Input High Voltage							
D040		with TTL buffer	2.0	-	VDD	V	4.5V ≤ VDD ≤ 5.5V		
D040A			0.25VDD + 0.8V	-	VDD	V	For entire VDD range		
D041		with Schmitt Trigger buffer	0.8Vdd	-	VDD	V	For entire VDD range		
D042		MCLR	0.8VDD	-	VDD	V			
D042A		OSC1 (XT, HS and LP modes)	0.7VDD	-	VDD	V	Note1		
D043		OSC1 (in RC mode) Input Leakage Current (Notes 2, 3)	0.9VDD	-	VDD	V			
D060	lıL	I/O ports	-	-	±1	μА	Vss ≤ VPIN ≤ VDD, Pin at hi-impedance		
D061		MCLR, RA4/T0CKI	-	-	±5	μΑ	Vss ≤ VPIN ≤ VDD		
D063		OSC1	-	-	±5	μΑ	Vss ≤ VPIN ≤ VDD, XT, HS and LP osc modes		
D070	IPURB	PORTB weak pull-up current	50	250	400	μΑ	VDD = 5V, VPIN = VSS		
D080	Vol	Output Low Voltage I/O ports	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C		
			-	-	0.6	V	IOL = 7.0 mA , VDD = 4.5V , -40°C to $+125^{\circ}\text{C}$		
D083		OSC2/CLKOUT (RC osc mode)	-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C		
			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C		
D090	Vон	Output High Voltage I/O ports (Note 3)	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C		

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the device be driven with external clock in RC mode.

^{2:} The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

^{3:} Negative current is defined as current sourced by the pin.

2.2 <u>DC Characteristics:</u> <u>PIC16LC74B-16/PTL-04 (Commercial)</u> (Cont.'d)

DC CHA	ARACTE	RISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial Operating voltage VDD range as described in DC spec Section 2.						
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
			VDD-0.7	1	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°C to +125°C		
D092		OSC2/CLKOUT (RC osc mode)	VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5 V, -40 °C to $+85$ °C		
			VDD-0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°C to +125°C		
D150*	Vod	Open-Drain High Voltage	-	-	8.5	V	RA4 pin		
D100	Cosc2	Capacitive Loading Specs on Output Pins OSC2 pin	-	-	15	pF	In XT, HS and LP modes when		
							external clock is used to drive OSC1.		
D101	Сю	All I/O pins and OSC2 (in RC mode)	-	-	50	pF			
D102	Cb	SCL, SDA in I ² C mode	-	-	400	pF			

^{*} These parameters are characterized but not tested.

- **Note 1:** In RC oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the device be driven with external clock in RC mode.
 - 2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 - 3: Negative current is defined as current sourced by the pin.

[†] Data in "Typ" column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2.3 AC (Timing) Characteristics

2.3.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created using one of the following formats:

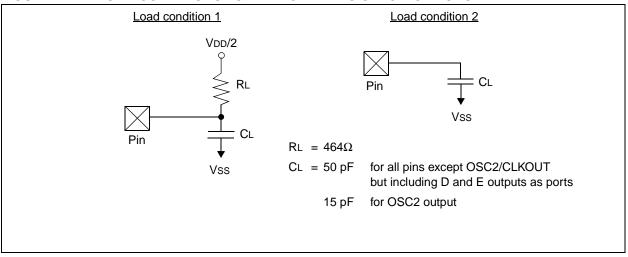
1. TppS2pp	pS	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			(
F	Frequency	Т	Time
Lowerca	se letters (pp) and their meanings:		
рр	-		
СС	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	t0	T0CKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Upperca	se letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
1	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st (I ² C specifications only)		
CC	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

2.3.2 TIMING CONDITIONS

The temperature and voltages specified in Table 2-1 apply to all timing specifications unless otherwise noted. Figure 2-2 specifies the load conditions for the timing specifications.

TABLE 2-1: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

AC CHARACTERISTICS


Standard Operating Conditions (unless otherwise stated)

Operating temperature 0°C ≤ TA ≤ +70°C for commercial

Operating voltage VDD range as described in DC spec Section 2.1.

LC parts operate for commercial/industrial temp's only.

FIGURE 2-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

2.3.3 TIMING DIAGRAMS AND SPECIFICATIONS

FIGURE 2-3: EXTERNAL CLOCK TIMING

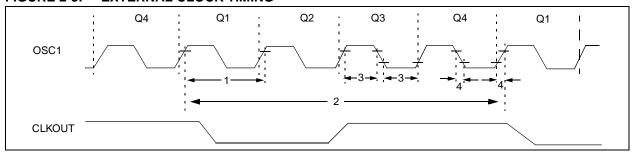


TABLE 2-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym	Characteristic	Min (Note 2)	Тур†	Max (Note 3)	Units	Conditions
1A	Fosc	External CLKIN Frequency	DC	_	4	MHz	RC and XT osc modes
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	20	MHz	HS osc mode
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	_	_	ns	RC and XT osc modes
		(Note 3)	250	_	_	ns	HS osc mode (-04)
			50	_	_	ns	HS osc mode (-20)
			5	_	_	μs	LP osc mode
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 3)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (-04)
			50	_	250	ns	HS osc mode (-20)
			5	_	_	μs	LP osc mode
2	TCY	Instruction Cycle Time (Note 1)	200	_	DC	ns	Tcy = 4/FOSC
3*	TosL,	External Clock in (OSC1) High	100	_	_	ns	XT oscillator
	TosH	or Low Time	2.5	_	_	μs	LP oscillator
			15			ns	HS oscillator
4*	TosR,	External Clock in (OSC1) Rise	_		25	ns	XT oscillator
	TosF	or Fall Time	_		50	ns	LP oscillator
			_		15	ns	HS oscillator

^{*} These parameters are characterized but not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption.

- 2: All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.
- 3: When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 2-4: CLKOUT AND I/O TIMING

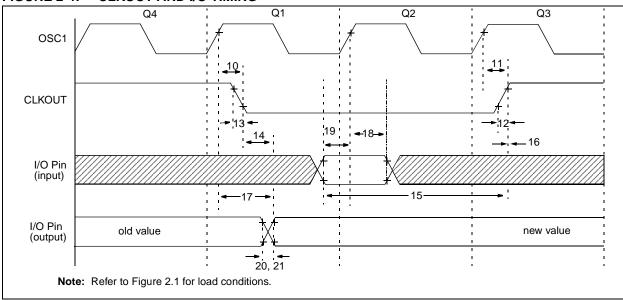


TABLE 2-3: CLKOUT AND I/O TIMING REQUIREMENTS

Param	Sym	Characteristic		Typ†	Max	Units	Conditions
No.							
10*	TosH2ckL	OSC1 [↑] to CLKOUT↓	_	75	200	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑	_	75	200	ns	Note 1
12*	TckR	CLKOUT rise time	_	35	100	ns	Note 1
13*	TckF	CLKOUT fall time	_	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out valid	_	-	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT ↑	Tosc + 200	1	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT ↑	0	-	_	ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid	_	50	150	ns	
18A*	TosH2ioI	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)	200	1	_	ns	
19*	TioV2osH	Port input valid to OSC1↑ (I/O in setup time)	0	-	_	ns	
20A*	TioR	Port output rise time	_	-	80	ns	
21A*	TioF	Port output fall time	_	1	80	ns	
22††*	Tinp	INT pin high or low time	Tcy	_	_	ns	
23††*	Trbp	RB7:RB4 change INT high or low time	Tcy		_	ns	

^{*} These parameters are characterized but not tested.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

[†] Data in "Typ" column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

^{††} These parameters are asynchronous events not related to any internal clock edge.

FIGURE 2-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

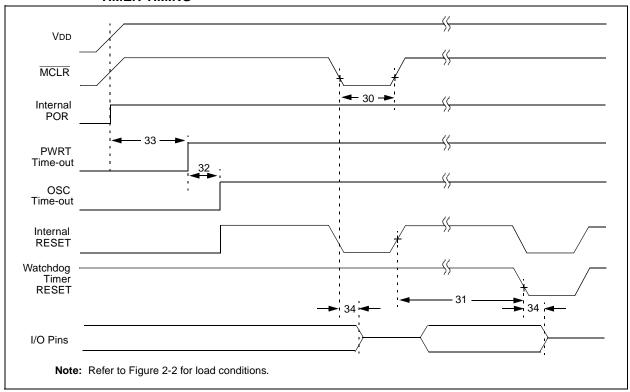


FIGURE 2-6: BROWN-OUT RESET TIMING

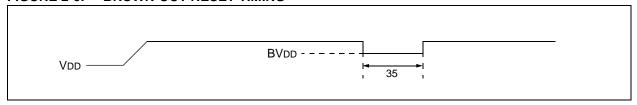


TABLE 2-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
1101							
30	TmcL	MCLR Pulse Width (low)	2	_	_	μs	$VDD = 5V, -40^{\circ}C \text{ to } +125^{\circ}C$
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	_	_	TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	$VDD = 5V, -40^{\circ}C \text{ to } +125^{\circ}C$
34	Tioz	I/O Hi-impedance from MCLR Low or WDT reset	_	_	2.1	μs	
35	TBOR	Brown-out Reset Pulse Width	100	_	_	μs	VDD ≤ BVDD (D005)

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TOCKI

40

41

42

45

46

TMR0 or

TMR1

Note: Refer to Figure 2-2 for load conditions.

FIGURE 2-7: TIMERO AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 2-5: TIMERO AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	(Characteristic		Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse V	Vidth	No Prescaler	0.5Tcy + 20	_	_	ns	Must also meet
				With Prescaler	10	_	_	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse W	/idth	No Prescaler	0.5Tcy + 20	_	_		Must also meet
				With Prescaler	10	_	_	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	_	_	ns	
				With Prescaler	Greater of:	_	_	ns	N = prescale value
					20 or <u>Tcy + 40</u> N				(2, 4,, 256)
45*	Tt1H	3	Synchronous, Prescaler = 1		0.5Tcy + 20	_	_	ns	Must also meet
			Synchronous, Prescaler = 2,4,8		25	_	_	ns	parameter 47
			Asynchronous		50	_	_	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, Prescaler = 1		0.5Tcy + 20	_	_	ns	Must also meet
			Synchronous, Prescaler = 2,4,8		25	_	_	ns	parameter 47
			Asynchronous		50	_	_	ns	
47*	Tt1P	T1CKI input period	Synchronous Asynchronous		<u>Greater of:</u> 50 OR <u>TCY + 40</u> N				N = prescale value (1, 2, 4, 8)
					100	_	_	ns	
	Ft1	Timer1 oscillator inp (oscillator enabled b	out frequency range by setting bit T1OSCEN)		DC	_	200	kHz	
48	TCKEZtmr1	Delay from external	clock edge to tin	ner increment	2Tosc	_	7Tosc	_	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 2-8: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

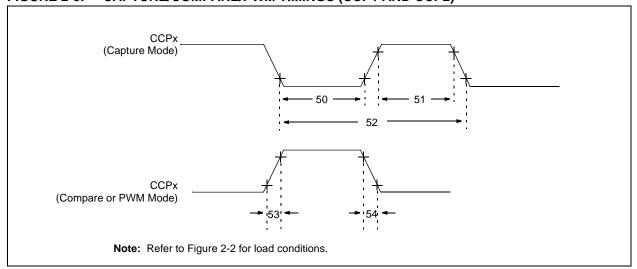


TABLE 2-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Param No.	Sym		Characteristic	Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2	No Prescaler	0.5Tcy + 20	_	_	ns	
		input low time	With Prescaler	20	_	_	ns	
51*	ТссН	CCP1 and CCP2	No Prescaler	0.5Tcy + 20	_	_	ns	
		input high time	With Prescaler	20	_	_	ns	
52*	TccP	CCP1 and CCP2 input period		3Tcy + 40 N	_	_		N = prescale value (1,4 or 16)
53*	TccR	CCP1 and CCP2 o	utput rise time	_	25	45	ns	
54*	TccF	CCP1 and CCP2 o	utput fall time	_	25	45	ns	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested

RE2/CS

RE0/RD

RE1/WR

RD7:RD0

Note: Refer to Figure 2-2 for load conditions.

FIGURE 2-9: PARALLEL SLAVE PORT TIMING (PIC16LC74B-16/PTL16)

TABLE 2-7: PARALLEL SLAVE PORT REQUIREMENTS (PIC16LC74B-16/PTL16)

Parameter No.	Sym	Characteristic		Тур†	Max	Units	Conditions
62*	TdtV2wrH	Data in valid before WR↑ or CS↑ (setup time)	20	_	_	ns	
63*	TwrH2dtl	WR↑ or CS↑ to data–in invalid (hold time)	35	_	_	ns	
64	TrdL2dtV	RD↓ and CS↓ to data–out valid	_	_	80	ns	
65*	TrdH2dtl	RD↑ or CS↑ to data–out invalid	10	_	30	ns	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 2-10: EXAMPLE SPI MASTER MODE TIMING (CKE = 0)

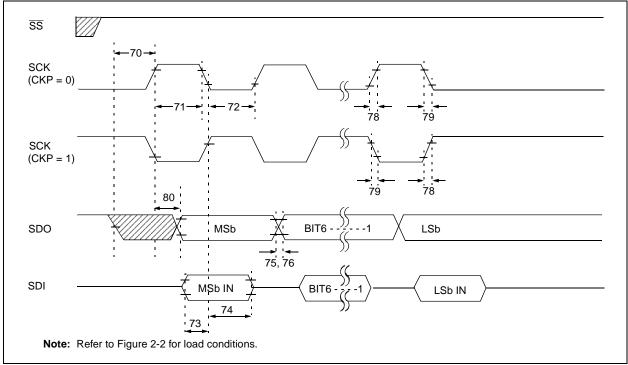


TABLE 2-8: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)

Param. No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input		Tcy	_	_	ns	
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	_	_	ns	
71A		(slave mode)	Single Byte	40	_	_	ns	Note 1
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	_	_	ns	
72A		(slave mode)	Single Byte	40	_	_	ns	Note 1
73	TdiV2scH, TdiV2scL	Setup time of SDI data inp	Setup time of SDI data input to SCK edge		_	_	ns	
73A	Тв2в	Last clock edge of Byte1 to edge of Byte2	the 1st clock	1.5Tcy + 40	_	_	ns	Note 1
74	TscH2diL, TscL2diL	Hold time of SDI data inpu	t to SCK edge	100	_	_	ns	
75	TdoR	SDO data output rise time		_	20	45	ns	
76	TdoF	SDO data output fall time	'		10	25	ns	
78	TscR	SCK output rise time (master mode)		_	20	45	ns	
79	TscF	SCK output fall time (master mode)		_	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid afte	r SCK edge	_		100	ns	

[†] Data in "Typ" column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

SCK (CKP = 0)

-71
-72
-79

SCK (CKP = 1)

SCK (CKP = 1)

BIT6
---1
LSb

Note: Refer to Figure 2.1 for load conditions.

FIGURE 2-11: EXAMPLE SPI MASTER MODE TIMING (CKE = 1)

TABLE 2-9: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characteris	tic	Min	Тур†	Max	Units	Conditions
71	TscH	SCK input high time Continuous		1.25Tcy + 30	_	_	ns	
71A		(slave mode)	Single Byte	40	_	_	ns	Note 1
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	_	_	ns	
72A		(slave mode)	Single Byte	40	_	_	ns	Note 1
73	TdiV2scH, TdiV2scL	Setup time of SDI data in edge	put to SCK	100	_	_	ns	
73A	Тв2в	Last clock edge of Byte1 edge of Byte2	Last clock edge of Byte1 to the 1st clock		_	_	ns	Note 1
74	TscH2diL, TscL2diL	Hold time of SDI data inp	ut to SCK edge	100	_	_	ns	
75	TdoR	SDO data output rise time	Э		20	45	ns	
76	TdoF	SDO data output fall time		_	10	25	ns	
78	TscR	SCK output rise time (ma	ster mode)		20	45	ns	
79	TscF	SCK output fall time (mas	SCK output fall time (master mode)		10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge			_	100	ns	
81	TdoV2scH, TdoV2scL	SDO data output setup to	SCK edge	Tcy	_	_	ns	

[†] Data in "Typ" column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

SCK (CKP = 0)

SCK (CKP = 1)

SCK (CKP = 1)

SDI

MSb IN

MSb

FIGURE 2-12: EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)

TABLE 2-10: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING (CKE = 0)

Param. No.	Symbol	Characteris	tic	Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input		Tcy	_	_	ns	
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	_	_	ns	
71A		(slave mode)	Single Byte	40			ns	Note 1
72	TscL	SCK input low time	Continuous	1.25Tcy + 30			ns	
72A		(slave mode)	Single Byte	40		_	ns	Note 1
73	TdiV2scH, TdiV2scL	Setup time of SDI data inp	out to SCK edge	100	_	_	ns	
73A	Тв2в	Last clock edge of Byte1 t edge of Byte2	Last clock edge of Byte1 to the 1st clock edge of Byte2		_	_	ns	Note 1
74	TscH2diL, TscL2diL	Hold time of SDI data inpu	ut to SCK edge	100	_	_	ns	
75	TdoR	SDO data output rise time			20	45	ns	
76	TdoF	SDO data output fall time		_	10	25	ns	
77	TssH2doZ	SS↑ to SDO output hi-imp	edance	10	_	50	ns	
78	TscR	SCK output rise time (mas	ster mode)		20	45	ns	
79	TscF	SCK output fall time (master mode)		_	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge			_	100	ns	
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40		_	ns	

[†] Data in "Typ" column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

SCK (CKP = 0)

SCK (CKP = 1)

SDO

MSb

BIT6 - - - 1

SDI

MSb IN

BIT6 - - - 1

LSb

Note: Refer to Figure 2-2 for load conditions.

FIGURE 2-13: EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)

TABLE 2-11: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Param. No.	Symbol	Characteris	stic	Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ i	nput	Tcy	_	_	ns	
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	_	_	ns	
71A		(slave mode)	Single Byte	40	_	_	ns	Note 1
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	_	_	ns	
72A		(slave mode)	Single Byte	40	_	_	ns	Note 1
73A	Тв2в	Last clock edge of Byte1 edge of Byte2	ast clock edge of Byte1 to the 1st clock		_	_	ns	Note 1
74	TscH2diL, TscL2diL	Hold time of SDI data in	Hold time of SDI data input to SCK edge		_	_	ns	
75	TdoR	SDO data output rise tim	ne		20	45	ns	
76	TdoF	SDO data output fall time	е	_	10	25	ns	
77	TssH2doZ	SS↑ to SDO output hi-in	npedance	10	_	50	ns	
78	TscR	SCK output rise time (m	aster mode)	_	20	45	ns	
79	TscF	SCK output fall time (ma	ster mode)	_	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge		_	_	100	ns	
82	TssL2doV	SDO data output valid after SS ↓ edge			_	100	ns	
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40	_		ns	

[†] Data in "Typ" column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 2-14: I²C BUS START/STOP BITS TIMING

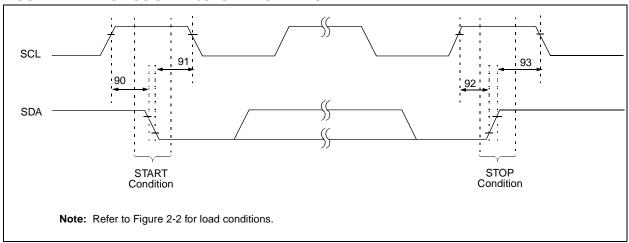


TABLE 2-12: I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Sym	Charact	teristic	Min	Тур	Max	Units	Conditions
90*	Tsu:sta	START condition	100 kHz mode	4700	_	_	ns	Only relevant for repeated START
		Setup time	400 kHz mode	600	_	_	113	condition
91*	THD:STA	START condition	100 kHz mode	4000		_	ns	After this period the first clock
		Hold time	400 kHz mode	600		_	115	pulse is generated
92*	Tsu:sto	STOP condition	100 kHz mode	4700		_	ne	
		Setup time	400 kHz mode	600		_	ns	
93	THD:STO	STOP condition	100 kHz mode	4000		_	ns	
		Hold time	400 kHz mode	600	_		115	

^{*} These parameters are characterized but not tested.

FIGURE 2-15: I²C BUS DATA TIMING

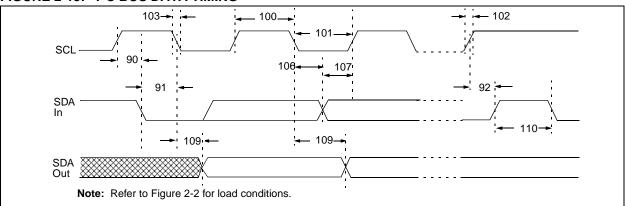
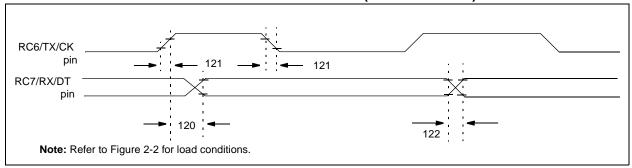



TABLE 2-13: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characte	eristic	Min	Max	Units	Conditions
100*	THIGH	Clock high time	100 kHz mode	4.0	1	μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6		μs	Device must operate at a minimum of 10 MHz
			SSP Module	1.5TcY	_		
101*	TLOW	Clock low time	100 kHz mode	4.7	_	μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μs	Device must operate at a minimum of 10 MHz
			SSP Module	1.5TcY	_		
102*	TR	SDA and SCL rise	100 kHz mode	_	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103*	TF	SDA and SCL fall time	100 kHz mode	_	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90*	Tsu:sta	START condition	100 kHz mode	4.7	_	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	_	μs	START condition
91*	THD:STA	START condition hold	100 kHz mode	4.0	_	μs	After this period the first clock
		time	400 kHz mode	0.6	_	μs	pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	μs	
107*	TSU:DAT	Data input setup time	100 kHz mode	250	_	ns	Note 2
			400 kHz mode	100	-	ns	
92*	Tsu:sto	STOP condition setup	100 kHz mode	4.7	-	μs	
		time	400 kHz mode	0.6	_	μs	
109*	TAA	Output valid from	100 kHz mode	_	3500	ns	Note 1
		clock	400 kHz mode	_	-	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	_	μs	Time the bus must be free
			400 kHz mode	1.3	_	μs	before a new transmission can start
	Cb	Bus capacitive loading		_	400	pF	

- * These parameters are characterized but not tested.
- Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.
 - 2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu; DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

FIGURE 2-16: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 2-14: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
120*	TckH2dtV	SYNC XMIT (MASTER & SLAVE) Clock high to data out valid	_	_	100	ns	
121*	Tckrf	Clock out rise time and fall time (Master Mode)	_	_	50	ns	
122*	Tdtrf	Data out rise time and fall time	_	_	50	ns	

These parameters are characterized but not tested.

FIGURE 2-17: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

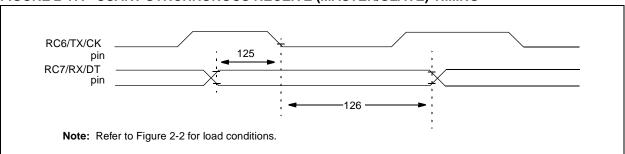


TABLE 2-15: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
125*	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data setup before CK ↓ (DT setup time)	15	_	_	ns	
126*	TckL2dtl	Data hold after CK ↓ (DT hold time)	15	_	_	ns	

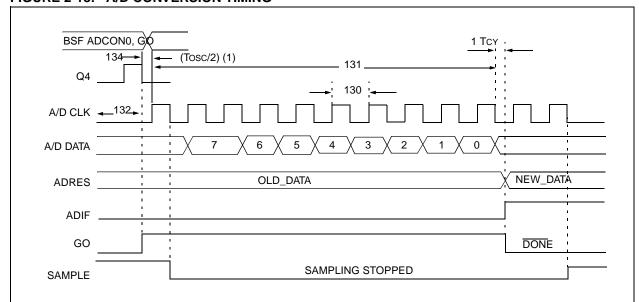
^{*} These parameters are characterized but not tested.

Data in "Typ" column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

[†] Data in "Typ" column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 2-16: A/D CONVERTER CHARACTERISTICS: PIC16LC74B-16/PTL16-04 (COMMERCIAL)

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
A01	NR	Resolution	_		8 bits	bit	VREF = VDD
A02	EABS	Total Absolute error	_	_	< ± 1	LSb	VREF = VDD VSS ≤ VAIN ≤ VREF
A03	EIL	Integral linearity error	_	_	< ± 1	LSb	VREF = VDD VSS ≤ VAIN ≤ VREF
A04	EDL	Differential linearity error	_	_	< ± 1	LSb	VREF = VDD VSS ≤ VAIN ≤ VREF
A05	EFS	Full scale error	_	_	< ± 1	LSb	VREF = VDD VSS ≤ VAIN ≤ VREF
A06	EOFF	Offset error	_	_	< ± 1	LSb	VREF = VDD VSS ≤ VAIN ≤ VREF
A10	_	Monotonicity (Note 3)	_	guaranteed		_	VSS ≤ VAIN ≤ VREF
A20	VREF	Reference voltage	2.5V	_	VDD + 0.3	V	
A25	Vain	Analog input voltage	Vss - 0.3	_	VREF + 0.3	V	
A30	ZAIN	Recommended impedance of analog voltage source	_	_	10.0	kΩ	
A40	IAD	A/D conversion current (VDD)	_	90	_	μА	Average current consumption when A/D is on. (Note 1)
A50	IREF	VREF input current (Note 2)	10	_	1000	μА	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD
			_	_	10	μΑ	During A/D Conversion cycle


^{*} These parameters are characterized but not tested.

- 2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.
- 3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

[†]Data in "Typ" column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

FIGURE 2-18: A/D CONVERSION TIMING

Note 1: If the A/D clock source is selected as RC, a time of TcY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

TABLE 2-17: A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	T	A/D alocal marked	2.0				Tosc based, VREF full range
130	TAD	A/D clock period				μs	,
			3.0	6.0	9.0	μs	A/D RC Mode
131	TCNV	Conversion time (not including S/H time)	11	_	11	TAD	
		(Note 1)	Note 2	16	_	μs	VDD = 3.0V, Temp. = 100 °C,
							$Rs = 10K\Omega$
132	TACQ	Acquisition time	5*			μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D clock start	_	Tosc/2	_	_	If the A/D clock source is selected as RC, a time of Tcy is added before the A/D clock starts. This allows the SLEEP instruction to be executed.
135	Tswc	Switching from convert \rightarrow sample time	1.5 §			TAD	

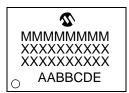
^{*} These parameters are characterized but not tested.

Note 1: ADRES register may be read on the following TcY cycle.

2: See A/D section for minimum requirements.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

3.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES


Graphs and Tables not available at this time.

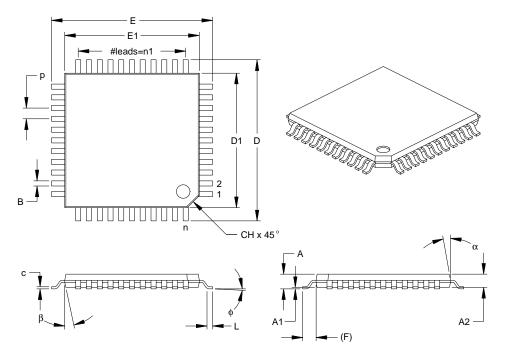
NOTES:

4.0 PACKAGING INFORMATION

4.1 Package Marking Information

44-Lead TQFP

Example



Legend: MM...M Microchip part number information XX...X Customer specific information* AA Year code (last 2 digits of calendar year) BB Week code (week of January 1 is week '01') С Facility code of the plant at which wafer is manufactured O = Outside Vendor C = 5" Line S = 6" Line H = 8" Line D Mask revision number Assembly code of the plant or country of origin in which part was assembled Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

for customer specific information.

44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

	Units		INCHES		М	ILLIMETERS	*
Dimension	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		44			44	
Pitch	р		.031			0.80	
Pins per Side	n1		11			11	
Overall Height	Α	.039	.043	.047	1.00	1.10	1.20
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05
Standoff	A1	.002	.004	.006	0.05	0.10	0.15
Foot Length	L	.018	.024	.030	0.45	0.60	0.75
Footprint (Reference)	(F)		.039		1.00		
Foot Angle	ф	0	3.5	7	0	3.5	7
Overall Width	E	.463	.472	.482	11.75	12.00	12.25
Overall Length	D	.463	.472	.482	11.75	12.00	12.25
Molded Package Width	E1	.390	.394	.398	9.90	10.00	10.10
Molded Package Length	D1	.390	.394	.398	9.90	10.00	10.10
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20
Lead Width	В	.012	.015	.017	0.30	0.38	0.44
Pin 1 Corner Chamfer	СН	.025	.035	.045	0.64	0.89	1.14
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

^{*}Controlling Parameter

Notes:

Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-026

Drawing No. C04-076

APPENDIX A: REVISION HISTORY

Version	Date	Revision Description
Ā	6/99	This is a new data sheet providing the electrical specifications for the 3V, 16 MHz device. For all other information, see the PIC16C63A/65B/73B/74B data sheet (DS30605).

NOTES:

INDEX	
A	
A/D	
Converter Characteristics	25
Timing Diagram	
Absolute Maximum Ratings	5
В	
_	
Brown-out Reset (BOR) Timing Diagram	14
-	. 17
C	
Capture/Compare/PWM (CCP)	
Timing Diagram	16
D	
DC Characteristics	Q
	0
E	
Electrical Characteristics	5
Errata	2
G	
General Description	2
General Description	3
l	
I ² C (SSP Module)	
Timing Diagram, Data	. 23
Timing Diagram, Start/Stop Bits	. 22
P	
Packaging	20
Parallel Slave Port (PSP)	. 29
Timing Diagram	17
Power-on Reset (POR)	
Timing Diagram	14
Product Identification System	
R	
••	
Reset Timing Diagram	11
Revision History	
•	. 01
Т	
Timer0	
Timing Diagram	15
Timer1	
Timing Diagram	
Timing Diagrams and Specifications	
Brown-out Reset (BOR)	
Capture/Compare/PWM (CCP)	
CLKOUT and I/O	
External Clock	
I ² C Bus Data	23
I ² C Bus Start/Stop Bits	
Oscillator Start-up Timer (OST)	14
Parallel Slave Port (PSP)	. 17
Power-up Timer (PWRT)	
Reset Timer0 and Timer1	
USART Synchronous Receive (Master/Slave)	
USART SynchronousTransmission (Master/Slave)	
Watchdog Timer (WDT)	. 14
· · · · · · · · · · · · · · · · · · ·	

J
JSART
Synchronous Master Mode
Timing Diagram, Synchronous Receive 2
Timing Diagram, Synchronous Transmission 2
N
Natchdog Timer (WDT)
Timing Diagram1
WWW, On-Line Support

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked Questions
- · Design Tips
- Device Errata
- · Job Postings
- · Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- · Listing of seminars and events

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits. The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and 1-602-786-7302 for the rest of the world.

981103

Trademarks: The Microchip name, logo, PIC, PICmicro, PICSTART, PICMASTER and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. *Flex*ROM, MPLAB and *fuzzy*-LAB are trademarks and SQTP is a service mark of Microchip in the U.S.A.

All other trademarks mentioned herein are the property of their respective companies.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent			
RE:	Reader Response				
Fron	m: Name				
		-			
	Telephone: ()				
	olication (optional):				
Wou	uld you like a reply?YN				
Devi	rice: PIC16LC74B-16/PTL16 Literature Nu	umber: DS30026A			
Que	estions:				
1.	What are the best features of this document?				
2.	How does this document meet your hardware	and software development needs?			
2	Do you find the averagination of this data should	annu ta fallaw? If not subs?			
3.	Do you find the organization of this data sheet easy to follow? If not, why?				
4	What additions to the data sheet do you think	would appared the structure and subject?			
4.	What additions to the data sheet do you think	would enhance the structure and subject?			
•					
5.	What deletions from the data sheet could be n	nade without affecting the overall usefulness?			
J.	What deletions from the data sheet could be in	lade without affecting the overall declaritiess:			
•					
6	Is there any incorrect or misleading information	n (what and where)?			
0.	is there any incorrect of misleading mormation	(what and where):			
7.	How would you improve this document?				
٠.	riow would you improve this document:				
8.	How would you improve our software, systems	s and silicon products?			
J.	Tiow would you improve our software, systems	, and smooti products:			
•					

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

-XX X /XX L16	Examples: a) PIC16LC74B-16/PTL16 = Commercial temp., TQFP package, 16 MHz, low voltage VDD limits, QTP pattern #301.
PIC16LC7X ⁽¹⁾ , PIC16LC7XT ⁽²⁾ ;VDD range 2.5V to 5.5V	
04 = 4 MHz 16 = 16 MHz 20 = 20 MHz	Note 1: LC = Low Voltage CMOS
blank = 0°C to 70°C (Commercial)	2: T = in tape and reel - PLCC, QFP, TQFF packages only.
PT = TQFP (Thin Quad Flatpack)	
QTP, SQTP, Code or Special Requirements L16 = 3V, 16 MHz	
	requency Temperature Package Pattern Range Range PIC16LC7X ⁽¹⁾ , PIC16LC7XT ⁽²⁾ ; VDD range 2.5V to 5.5V 04 = 4 MHz 16 = 16 MHz 20 = 20 MHz blank = 0°C to 70°C (Commercial) PT = TQFP (Thin Quad Flatpack) QTP, SQTP, Code or Special Requirements

^{*} JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

NOTES:

NOTES:

Note the following details of the code protection feature on PICmicro® MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- · Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELO© code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

2767 S. Albright Road Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338

New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Microchip Technology Consulting (Shanghai)

Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg.

No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521

China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd.

Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051

Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086

Hong Kong

Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office Divvasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea

Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882

Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore

Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850

Taiwan

Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

France

Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - Ier Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany Microchip Technology GmbH Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy

Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02