Technosoft MotionChip 用户手册

第一部分

1. Motionchip 总述

- 1.1 Motionchip 概念
- 1.2 特性
- 1.3 在 DMC 使用 Motionchip
- 1.4 编 制 Motionchip 程 序 , **5. Motionchip** 与外部器件的接口 Technosoft 运动语言
- 1.5 使用 Motionchip 建立 DMC 应 用方案的步骤
- 1.6 Motionchip 的开发工具

2. 运动应用结构化

- 2.1 DTC 核心方案
- 2.2 电机方案
- 2.3 功率变换方案
- 2.4 传感器方案
- 2.5 控制器方案
- 2.6 保护方案
- 2.7 参考方案

3. 运动应用方案参数化

- 3.1 RTC 核心参数化
- 3.2 电机参数化
- 3.3 功率变换器参数化
- 3.4 传感器参数化
- 3.5 控制器参数化
- 3.6 保护参数化

4. 运动应用可编程,运动时序

- 4.1 TML 基本概念
- 4.2 运动编程
- 4.3 事件

4.4 判定

- 4.5 TML 中断
- 4.6 算法和逻辑操作
- 4.7 多轴

- 5.1 通讯通道
- 5.2 I/O 接口
- 5.3 外部存储模块

第二部分

6. TML 数据结构

- 6.1 TML 寄存器
- 6.2 TML 参数
- 6.3 TML 内部变量
- 6.4 TML 用户变量
- 7. TML 指令设置
 - 7.1 TML 程序
 - 7.2 TML 指令设置概括
 - 7.3 TML 指令描述

1. 介绍

1.1 Motionchip 概念

Technosoft Motionchip 是一种基于 DSP 结构的高性能通电即可运作的运动控制器,它不需要任何 DSP 代码的开发,其优势在于将所有必要的方案接口集中在一个芯片上。Motionchip 具理想的结构,对各种电机提供快速、经济、全数字的智能驱动方案。

Motionchip 性能:

- 可在单机或作为主机/联机、多轴方案下操作
- 控制 5 种电机类型: DC 有刷、DC 无刷、AC 无刷 (PMSM)、AC 感应电机、 步进电机
- 执行各种命令结构: 开环、扭矩、速度、位置/外环控制、微步
- 使用不同的通讯通道,如 RS-232/RS485 的 SCI、CAN 总线、并行 I/O
- 执行高级运动语言命令和运动时序

为适应大部分基本及复杂的运动应用需要,Motionchip 的特殊优势在于高柔性,主要体现在:

- 运动结构方案(电机技术、控制类型、传感器类型的选择)
- 具高级运动语言命令的运动执行

相对于现有方案, Motionchip 有很多优势:

- 适用于不同的电机技术
- 执行多种运动控制方案,包括 AC 驱动的矢量控制
- 执行全数字控制环,包括电流/扭矩控制
- 强大的运动语言,包括 34 种运动模式、判定结构、功能引入、事驱动、运动升级、中断
- 单击或联机操作
- 对设置方案和使用的要求低
- 易嵌入使用者的硬件结构
- 无需软件(不需编程)
- 对于应用设置,测试和调试有高级开发工具

1.2 特性

由于硬件和软件更高集成,Motionchip 是一种提供数字运动控制结构的理想器件。一方面,芯片的运动控制硬件接受简单的图示工具,除芯片本身,芯片的大部分应用对其他逻辑元件的要求很低。另一方面,高级 TML 语言功能强大,同时也具有极大的柔性,可对运动系统进行多种编程。TML 指令直接产生控制运动,以简单的命令完成复杂和优秀的控制算法。

- 高性能,通电即可动作的 DSP 运动控制器,20MHz,20MIPS
- 单片方案控制: DC 有刷电机、DC 无刷电机、AC 无刷电机(PMSM)、AC 感应电机、步进电机
- 操作模式:单机:执行内部存贮器的运动时序:联机:多轴
- 通讯通道: 串联 RS-232/RS-485; 带外部控制器; CAN 总线; 并行 I/O 接口 (8/16 位)
- 柔性结构允许: 位置控制、速度控制、扭矩控制(针对 AC 电机的场导向)、开环(针对 AC 电机的 V/F)、微步(步进电机)、基于外部信号(温度、压力、流量、等等)的外环电机命令
- 典型取样率: 10KHz 扭矩环、1KHz 速度/位置环
- 反馈信号: 1-3 路电流; 霍尔传感器; 位置由以下地方读取; 增量编码器 (片上接口), 分解器 (外部 R/D 接口), 电位计 (模拟), 脉冲和方向 (一个通道的编码器), 并行口或主机设置联机; 由位置及霍尔信号估算 速度, 从转速表 (模拟) 读取, 并行口或主机在线设置; 2 个温度传感器; 扭矩限制、扭矩反馈、DC 母线电压 (VDC)
- 用 TML 进行高级编程
- 无需 DSP 代码开发
- 41 种运动模式、判定图、功能、算术和逻辑单元
- 带自动舍入校正的精确波形发生器;位置范围;32位;速度/加速范围; 16位整数、16位小数
- 16 种可汇编事件的运动参数与/或模式可快速改变
- 12 种可编程 TML 中断
- 主要输入: 功率驱动错误(中断输入); 使能/禁止(中断输入); 2个限制开关(中断输入); 自引导(俘获输入); 编码索引(俘获输入); 起动

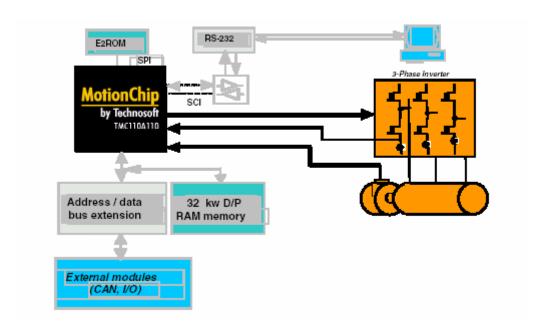
模式;自动/等待命令

- 主要输出: 4-6PWM 命令、刹车晶体管命令、主机中断、待机
- 17 个通用 I/O
- 高级 PWM 命令方式: VDC 变量补偿; 死区时间补偿; 3 次谐波注入; 频率抖动减少 EMI
- 刹车晶体管控制
- 综合保护:过流、过压、欠压、过热(2)、I2t,接地错误、控制错误
- 可用的开发工具:运动工作室包括方案设置,运动时序设置,自动编译器,命令解码器,跟踪变量可视功能。
- 应用文章和参考设计(网页)

1.3 在 DMC 应用中使用 Motionchip

Motionchip 作为将所有方案集中在一个芯片的专门 DMC 控制器,它能轻易的嵌入运动系统结构。由于芯片是通过软件应用在特殊方案中,它可直接与外部元件连接:如传感器、功率放大器等

图 1.1.所示为基于 MotionChip 的 DMC 方案的基本结构。注意:某些元件如外部存储器只在部分方案中使用。


芯片可在两种方案下操作:

单机

- 电压、扭矩速度和位置参考跟踪; 无轨迹发生器
- 执行固定的运动时序,该时序存在外部并行数据存贮器,或通过 SPI 接口存在串行存贮器 E2ROM,包括轨迹发生器

联机

- 执行由 RS-232/485, CAN 或并行 I/O 接口接收的外部立即命令,包括轨迹发生器
- 执行固定运动时序,该时序存贮在并行数据存贮器,或外部串行存贮器,执 行总机控制器发出的立即命令

基于给定电路,可执行不同的操作模式,从开环电压操作到从伺服位置控制环开始的结构都可被执行,表 1-1 所示为该芯片的基本运动模式。

表 1-1 运动模式

Position / external param. (temperature, pressure, etc.)	Speed	Torque	Voltage
Profiles	Profiles		
Contouring	Contouring	Point to point	Point to point
Gearing			
Pulse and direction			
External, analogue	External, analogue	External, analogue	External, analogue
External, on-line	External, on-line	External, on-line	External, on-line
External, 8bits par. port	External, 8bits par. port	External, 8bits par. port	External, 8bits par. port
External, 16bits par.	External, 16bits par.	External, 16bits par.	External, 16bits par.
port	port	port	port

单机: 执行片上预置应用方案

如果 AUTORUM 输入低,且 TML 存贮地址中 4000h 或 8000h 中无 TML 指令 BEGIN 代码,那么 Motionchip 通电后自动进入单机操作模式。以上的两个地址 分别与 SPI-E2ROM 的前两个地址和外部程序存贮器相对应。在这种操作模式中,

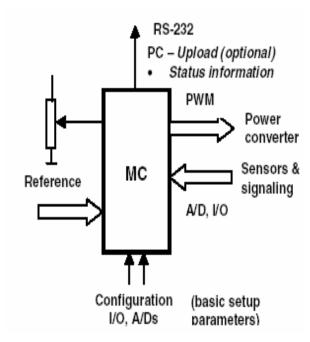
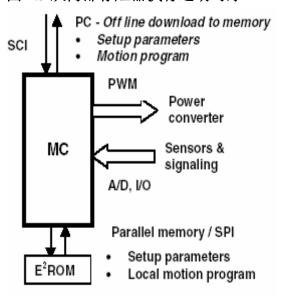



图 1.2 Motionchip 单机方案 单机: 从内部存贮器执行运动时序

Motionchip 自动开始执行烧录 在内部 ROM 中的预设运动方 案,方案的选择和参数的配置 仅通过 Motionchip 的数字和模 拟输入完成。表 9 到表 13 所 示为使用的输入及他们的有 效位,在此模式中,无需外部 存贮器,有一个通讯通道可供 选择。在研发阶段可用来读取 各 Motionchip 参数状态。

图 1.3 从内部存贮器执行运动时序

- 自引导搜索
- 自动检测行程限制
- 执行外部输入触发的各种运动时序
- 对特殊情况产生监视和编程反应: 紧急关断, 功率状态错误, 保护触发, 挖

如果 AUTORUN 输入设为低,且在 TML 地址 4000H 或 8000H 中检测到 TML 指令 BEGIN 代码,Motionchip 在通电后自动进入此操作模式,首先检测的是 4000H。在此操作模式中,自动执行内部存贮器中(SPI 或并行)的用户设置的 TML 程序,TML 的高级性能如事件或中断,可自动汇编如下

制错误,位置环绕,达到限制开关或自引导等。对于每种情况,Motionchip都可编程特殊命令时序来执行。

由这种具内部存贮器的单机方案中,有一通讯通道可选择。当使用时,可用于读取 Motionchip 参数的状态。

联机: 执行主机下达的运动命令

当 AUTORUN 设为高,Motionchip 进入联机操作模式.

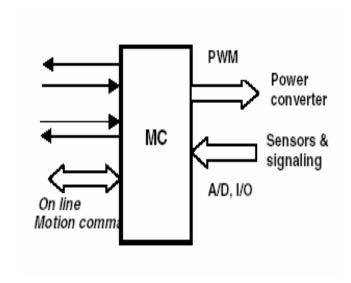


图 1.4.联机方案。执行总机命令

在此操作模式中,Motionchip 通过任一通道: SCI (RS-232 或 RS-485), CAN 总线,并行通讯口, 接收主机控制器的 TML 命令,无需 内部存贮器,参考发生器的工作方 式与在单机方案中相同。例如,在 外形模式中,参考发生器计算位置, 速度和加速轨迹是基于由主机设置 的 3 个简单参数,达到的位置,运 行速度和加速率。

对于多轴方案,Motionchip 包括一个 ID 轴和一个 ID 组。ID 轴就代表一个轴,ID 组是一组 ID 可同时接收主机的命令,这个性能使得各轴能同步。一个主机通过一个 CAN 总线或 RS-485 多点网络最多与 255 个有 Motionchip 的轴联结。

联机: 执行内部存贮器的运动时序和总机下的命令

在这个操作模式中,Motionchip 可执行内部存贮器时序,也可执行任何通讯通道接收的主机控制器的TML命令,由主机下的命令有较高的优先权。当TML程序执行内部存贮器命令时接收到主机命令,那么就会中断原来的操作。

这种操作模式的柔性可适应具分散智能的多轴方案的要求。例如,每个轴 都可在内部存贮器中存贮启动程序,和一组不同的功能性运动时序。当 AUTORUN 设为低,通电后,该轴自动执行启动时序,并等待主机命令,这些可称作"呼叫自引导过程","呼叫运动时序 NO.1"等。一旦下达了命令,联机轴就会执行,Motionchip 有一套强大的多轴指令,通过这些指令,很容易将这些操作联结起来。

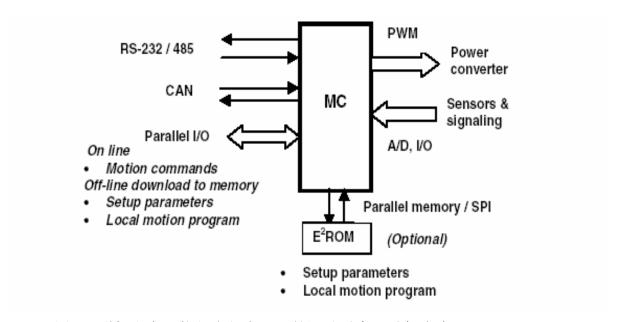


图 1.5 联机方案, 执行内部存贮器的运动时序和总机命令

- 可将 TML 命令从一轴发送到另一轴(或一组轴)
- 可在一个远程轴上写数据或编制 TML 应用程序
- 可从远程轴上取数据

1.4 Motionchip 程序汇编,Technosoft 运动语言

通过 Technosoft 运动语言(TML)可编制 Motionchip 程序,TML 包括高级代码,允许用户对运动芯片进行结构化和参数化,也可参数化及执行特殊运动操作。

TML 可进行:

- 描述系统方案(如电机和传感器类型)
- 执行特殊设置(如电机启动模式、PWM模式、取样率等)
- 设置运动模式(外形、轮廓在多轴结构中传动等)

- 设置系统控制器(电流、速度、位置或外部使用变量)
- 检测特殊处理外部信号,如限制开关俘获
- 自行自引导时序
- 设置/启动预定义的运动时序
- 通过发出组命令将多轴结构同步化等

TML 指令的最终目标是能执行复杂的运动语言,包括运动时序命令。在执行运动时序命令时,软件将执行"运动处理器",保护一些特殊成份,如:程序计算器、堆栈存储器、变量和寄存器

TML 环境允许用户以高级运动语言对独立电机进行结构化和参数化,并将运动语言发送到系统。TML 寄存器、参数和变量都是特殊设置的,用于实现这种方法。

基本而言,运动命令分为两种:

- 直接的运动命令,通过通讯通道发送到运动芯片,或存贮在轴的内部存贮器 运动语言程序部分(如果存在)
- 时序运动命令,只能存在轴的内部存贮器运动语言程序部分(如果存在)

Motionchip 的运动语言的执行属于下列范畴之一:

- 通用方案设置
- 运动操作命令
- 状态命令
- 运动结构图设置
- 时序命令

TML 体系是一种介于类似汇编语言的简单存储器和 C 语言之间的混合体, 以下的 TML 代码为例

MODE PP3; // set position profile mode,

// with speed and current loops active

CACC = 1.5; // command acceleration = 1.5counts/sampling2

CSPD = 20.; // command speed = 20counts/sampling

CPOS = 20000; // command position = 2000counts

CPA; // command position is absolute

UPD; // update - start the motion

注意使用高级开发工具,如: Motion Studio,在很多情况下,可使用**设置和** 运动**魔术师**(setup and motion wizards)自动生成 TML 代码,而无需任何代码。

1.5 用 Motionchip 设置 DMC 应用方案的步骤

用 Motionchip 设置 DMC 应用方案有 2 个基本步骤

第一阶段需要设置应用方案的硬件结构,用户可用Motionchip产品手册上的基本信息和Technosoft提供的专门参考设计,用户可自己设计方案,至少刚开始时,一个较快的选择是用现有的开发工具,如MCSK(Motionchip Starter Kit)。最后可使用功率模块(PW-50、PM-240或PM-750)。

这样在这一阶段中,用户可定义和连接数字控制部分,功率变换和特殊传感器(电流、位置等),还有电机本身连接起来。

第二阶段是Motionchip上运动应用方案的编程。在这里,方案中一些特殊部分需要设置。

- 一个运动应用方案包括两个部分,应用结构(应用结构化和参数化),及应用运动时序。这些元件可用专门 TML 代码设置:
- 应用结构化,要正确配置 Motionchip 寄存器,必须有特定的方案信息,如电机类型、传感器类型、主动控制环、PWM 技术、保护等。虽然这些设置都通过专门的 TML 指令,在 TML 中直接执行。但 Motion Stndio 也可提供另一选择,即 Configuration Wizard,这可帮助用户更好的执行这个方案。只要是有效的方案过程,Configuration Wizard 就自动生成相应的 TML 代码。
- 应用参数化,一旦确定应用方案,用户需要将它参数化,如设定用于正确配置 Motionchip 操作参数与选定方案相关的 TML 参数,这些参数包括:取样率,电机和传感器参数、控制器参数、保护等。所有这些设置都可在初级进入,如果 TML 代码,或用高级 Motion Stndio 性能,即包括在封装中的Parameterization Wizard。后一种情况中,要求用户在操作测量单位中使用方

案元件的高级,真实数据(如范畴参数)。

基于这些值,Parameterization Wizard 可计算出相应刻度 的 TML 参数。另外,Wizard 中还有高级协调工具,用户使用控制环只需简单加入电力性能参数,然后它就可以自动计算相应的控制器参数。

作为一种非常强大的选择,用户可使用自动检测来检查系统各部分的正确操作(传感器、逆变器等)及自动协调控制环(电流、速度和位置。

再有, 当确定参数化过程有效后, Wizard 将自动生成相应的 TML 代码。

● <u>运动时序,</u>一旦应用配置过程完成,用户可设置用户电机的电机命令,Motion stndio允许用户选择以初级描述运动即写TML指令,或选择用专门的Motion wizard,Motion wizard可使用户发出任何TML指令而无需写TML代码。根据产生的命令类型,可打开特定选择和确定对话。

通常,一旦选定应用结构(如选定方案和参数化信息),用户可从设置小测试开始最终组织方案,应尽量进行组合化结构,用子程序、特殊运动时序等可减轻用户负担。

除考虑测试,自动协调时序,设计过程执行及测试 Motionchip 的 DMC 方案的有效性,还考虑特殊实验性能,这种方法十分直接,同时还提供了适应市场要求的选择。

1.6 Motionchip 的开发工具

Motionchip 用户可使用的开发工具范围很广,如基本的评估工具包, Motionchip 启动工具包 (MCSK)。还有几种功率模块 (PM50、PM-240、PM750、 SPM50)。关于软件,用户可用强大的 Motion studio 平台对你的应用进行结构化 参数化设计和编制运动程序。

MCSK包括Motionchip,外部 E_2 ROM和RAM存储器,一个RS-232 接口和处延连接口,用于将Motionchip与外部功率模块与/或外部I/O接口,MCSK工具包可与特殊功率放大器模块结合,这样就组成一个完整的运动结构。用于Motionchip运动方案的评估,关于MCSK工具包的内容和性能的评估见"Motionchip启动工具包使用手册"。

Motion Studio 是针对 Motionchip 应用开发的高级图示窗口环境,用户可使用这种自动产生 TML代码的高级综合工具设计和参数化运动系统(包括协调和控制器的自动协调),还能确定运动时序,内置代码开发工具便得用户可进一步修改或直接汇编、链接和生成可执行代码,并下载到 Motionchip。最后,高级图示工具—如数据记录器、控制板和 TML参数的查看,本寄存器和存储器可用于分析运动系统的行为。关于 Motion Studio 内容和特性详情见 "Motion Studio 使用手册"。