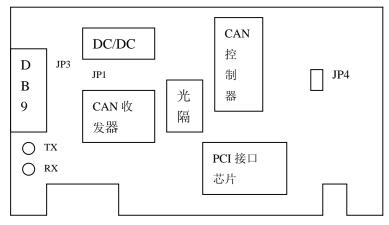
KPCI-8110 光隔非智能 CAN 总线通讯卡使用说明书

1. 概述


KPCI-8110 是适用于 PC/286/386/486/586/及各种工控机,兼容机(PCI 总线)的长距离,高传输速率, 多站点的 CAN 总线通讯板,采用光电隔离技术,使用两根线每路可连接 110 个工作站。

2. 主要技术参数

- 2.1 PCI 局部总线性能:
- 2.1.1 总线宽度 32 位, 同步工作频率可达到 33MHz, 最高传输速率为 132MB / S
- 2.1.2 使用方便,能够实现自动配置,实现设备的即插即用
- 2.1.3 可靠性高,标准中考虑了负载,即使扩展卡超过了负载的最大值系统也能正常工作
- 2.1.4 提供数据和地址奇偶校验功能,保证了数据的完整性和准确性;
- 2.2 CAN 接口 主要技术指标:
- 2.2.1 通讯协议: 2.0B PeliCAN) 兼容 CAN2.0A, 符合 ISO/ISO11898 规范
- 2.2.2 通讯距离: 最长 10Km。
- 2.2.3 传输速率: 最高 1Mbps。
- 2.2.4 电源电压: 5V±10%
- 2.2.5 隔离电压: 1000V。
- 2.2.6 CAN 接口: 孔型 DB9, 符合 CiA 标准
- 2.3 电源功耗: (不使用外部电源)
 - $+5V(\pm 10\%) \leq 400 \text{mA}$
 - $+12V(\pm 10\%) \leq 100 \text{mA}$
 - $-12V(\pm 10\%) \leq 100 \text{mA}$
- 2.4 使用环境要求:
 - 工作温度: 0℃~70℃
 - 相对湿度: 0%~95%(不凝露)
 - 存贮温度: -55℃~+85℃
- 2.5: 外形尺寸: 120mm×60mm.

3. 使用说明

3.1: 布局

3.2: 选择跳线:

JP1: 短接, CAN 总线接口芯片工作在高速方式,为避免射频干扰,建议使用屏蔽电缆。

断开, CAN 总线接口芯片工作在限斜率方式,对于较低速度或较短总线,可使用 非屏蔽双绞线或平行线。

JP3: 短接,选择 120 欧的终端匹配电阻。

JP4: 短接: 选择中断方式。(包括中断发送和中断接收) 断开:选择查询方式。(包括定时发送和查询接收)

注: JP2 用户请勿更改设置。

3.3: 通讯状态指示灯:

TX: 发送数据流时, 灯闪烁。

RX:接收数据流时,灯闪烁。

当指示灯常亮时,表示总线通讯故障,总线复位后重新初始化。

3.4: 电缆连接:

板上有一个9芯孔状D型插头,用于连接通讯电缆,

端口定义: 2 脚: CANH, 3 脚: CANL

4. 安装及使用注意

4.1 安装:

本卡的安装十分简便,只要将主机机壳打开,在关电情况下,将本卡插入主机的任何一个空余 PCI 扩展槽中,再将档板固定螺丝压紧即可。

- 4.2 在安装或用手触摸本卡时,应事先将人体所带静电荷对地放掉,同时应避免直接用手接触 器件管脚,以免损坏器件。
- 4.3 禁止带电插拔本接口卡。设置接口卡跨接套和安装接口带缆均应在关电状态下进行。

5. 驱动程序安装:

- 5. 1 将接口卡插入计算机 PCI 扩展槽中, 启动机器
- 5. 2 当计算机提示发现新硬件并提示需要驱动程序时,指向驱动盘中的驱动程序所在的路径
- 5. 3 安装完成硬件设备后,查看计算机设备列表,外部接口项显示"PCI 扩展板 kpci800"。

6. 动态链接库接口函数说明:

动态链接库 K8110.dll,K8110.lib 适用于 WIN98/ME/2000/XP

6.1: 打开卡函数

BOOL WINAPI CAN_Open(ULONG iIndex //指定设备序号,0对应第一

个设备, iIndex 的定义以下函数同)

注:关于设备序号,兼容机靠近 CPU 的 PCI 插槽为小序号,工控机相反。

6.2: 初始化函数

BOOL WINAPI CAN Init(ULONG iIndex, PUCHAR config)

Config: 指向配置参数缓存区的指针, Config 中的参数用于设定 CAN 控制器的滤波 方式、波特率。

CONFIG 缓存区	参数描述
0: BTR0	总线时序 0
1: BTR1	总线时序 1
2: ACR0	接收验收码
3: ACR1	接收验收码
4: ACR2	接收验收码

5: ACR3	接收验收码
6: AMR0	验收屏蔽码
7: AMR1	验收屏蔽码
8: AMR2	验收屏蔽码
9: AMR3	验收屏蔽码

发送到 CAN 口的报文, 只有当报文标示符的最高 8 位等于验收码(ACR)由验收屏蔽码(AMR) 相关屏蔽的那些位时,报文才于以接收。AMR 为 0 的位对应的 ACR 的位为相关屏蔽位。

详细信息请参阅 SJA1000 数据手册。

6.3: 查询接收一幀数据函数

BOOL WINAPI CAN_Recv(ULONG iIndex, PUCHAR recvbuffer, ULONG rtimeout)

Recvbuffer: 指向接收数据缓存区的指针,

缓存区分配:

Recvbuffer	0	1	2	3	4	5	6	7	8	9
内容	标识符 0	标识符1	D0	D1	D2	D3	D4	D5	D6	D7

Rtimeout:读超时,单位为毫秒

6.4: 发送一幀数据函数

BOOL WINAPI CAN_Trans(ULONG iIndex, PUCHAR transbuffer, ULONG wtimeout)

Transbuffer: 指向发送数据缓存区的指针

数据缓存区分配同接收

wtimeout: 写超时,单位为毫秒

6.5: 读取环形缓冲池的总的有效数据量函数

<u>ULONG CAN ReadDataNum(ULONG mindex)</u>

函数说明:此函数用来读取环形缓冲池的总的有效数据量

参数说明: mindex 板卡号

6.6: 块读环形缓冲池的数据

BOOL CAN_ReadBlockData(ULONG mindex,ULONG num,PUCHAR oByte)

函数说明: 此函数用来块读环形缓冲池的数据

参数说明: mindex: 板卡号

num: 要读取的数据个数(单位为 byte)

oByte: 接收数据的起始地址指针

注意:此函数每次最多允许读 1000 个字节,当程序中设置的要读取的数据个数大于环形缓冲池 的总的有效数据量时,此函数返回值为0,而且不读取数据。

以上两个函数使用背景: KPCI-8110 的驱动程序在内部通过中断来处理大量且速率快的数据, 自动将接收到的大量的数据保存在一个容量为 10000 字节的内存环形缓冲池内,这个过程不需要用 户的干预。用户只需要实时通过函数CAN_ReadDataNum来查询缓冲池内的数据量,在内存缓冲池 数据溢出之前,再通过函数CAN ReadBlockData将数据及时读走就可以做到数据的快速,无丢桢的 通讯。

【以上函数返回值】:

"1"代表成功,"0"代表失败。

【失败可能原因】:

打开卡操作失败	1: 设备驱动是否正确安装			
	2: 设备序号是否正确			
	3: PC 机 PCI 插槽是否正常			
	4; 卡硬件故障			
初始化操作失败	复位后重试仍失败,卡硬件故障			
发送数据失败	1: 正在发送信息			
	2: 错误状态,读取状态寄存器,查看总线状态			
接收数据失败	1: 无可用信息			
	2: 错误状态,读取状态寄存器,查看总线状态			

6.7: CAN 控制器硬件复位函数

VOID WINAPI CAN_Reset(ULONG iIndex)

运行该函数的功能等同于 CAN 控制器重新上电,适用于 CAN 控制器脱离总线状态时。

6.8: 设置 CAN 控制器寄存器函数

VOID WINAPI CAN_Writereg(ULONG iIndex,PUCHAR oreg)

Oreg: 指向寄存器数据缓存区的指针,缓存区分配:

0	寄存器偏移地址
1	寄存器内容

6.9: 读取 CAN 控制器寄存器函数

VOID WINAPI CAN_Readreg(ULONG iIndex, PUCHAR ireg)

Ireg: 指向寄存器数据缓存区的指针,同上

6.10: 关闭卡函数

VOID WINAPI CAN_Close(ULONG iIndex)

用户也可通过对 SJA1000CAN 控制器内部寄存器的操作来完成实时通讯任务。 详细信息请参阅 SJA1000 数据手册。

7. VB 编程示例:

7.1 将 K8110.DLL 拷贝到项目所在目录下, VB 编程示例请参看测试程序源代码。

7.2 VB 中断接收编程方法:

具体使用请参照 VB 示例程序

8 保修

本产品自售出之日起两年内,凡用户遵守贮存、运输及使用要求,而产品质量低于技术指标的, 凭保修单免费维修。因违反操作规定和要求而造成损坏的,需交纳器件和维修费。

9 产品成套性

- 9.1 KPCI-8110 通讯接口卡壹块。
- 9.2 KPCI-8110 使用说明书壹份。
- 9.3 科日新公司产品光盘壹张。

9.4 9 芯 D 型插头壹套。

附录: SJA1000 标准波特率

SJA1000 独立 CAN 控制器的通讯波特率由寄存器 BTR0、BTR1、晶振等参数共同决定, 下表列出了一组推荐的 BTR0、BTR1 设置值(十六进值),标 "*"号的为 CiA 协会推荐的标准值。 K7120CAN 控制器采用 16MHZ 的晶振。

序号	波特率	晶振=16M	HZ	晶振=12MHZ		
	(Kbps)	BTR0	BTR1	BTR0	BTR1	
1	5	BF	FF			
2*	10	31	1C	65	1C	
3*	20	18	1C	52	1C	
4	40	87	FF			
5*	50	09	1C	47	1C	
6	80	83	FF			
7*	100	04	1C	43	1C	
8*	125	03	1C	42	1C	
9	200	81	FA			
10*	250	01	1C	41	1C	
11	400	80	FA			
12*	500	00	1C	40	1C	
13	666	80	B6			
14*	800	00	16	40	16	
15*	1000	00	14	40	14	