National Semiconductor

54F／74F161A • 54F／74F163A Synchronous Presettable Binary Counter

General Description

The＇F161A and＇F163A are high－speed synchronous modu－ lo－16 binary counters．They are synchronously presettable for application in programmable dividers and have two types of Count Enable inputs plus a Terminal Count output for versatility in forming synchronous multi－stage counters．The ＇F161A has an asynchronous Master－Reset input that over－ rides all other inputs and forces the outputs LOW．The ＇F163A has a Synchronous Reset input that overrides counting and parallel loading and allows the outputs to be simultaneously reset on the rising edge of the clock．The ＇F161A and＇F163A are high－speed versions of the＇F161 and＇F163．

Commercial	Military	Package Number	Package Description
74F161APC		N16E	16－Lead（0．300＂Wide）Molded Dual－In－Line
	54F161ADM（Note 2）	J16A	16－Lead Ceramic Dual－In－Line
74F161ASC（Note 1）		M16A	16－Lead（0．150＂Wide）Molded Small Outline，JEDEC
74F161ASJ（Note 1）		M16D	16－Lead（0．300＂Wide）Molded Small Outline，EIAJ
	54F161AFM（Note 2）	W16A	16－Lead Cerpack
	54F161ALM（Note 2）	E20A	20－Lead Ceramic Leadless Chip Carrier，Type C
74F163APC		N16E	16－Lead（0．300＂Wide）Molded Dual－In－Line
	54F163ADM（Note 2）	J16A	16－Lead Ceramic Dual－In－Line
74F163ASC（Note 1）		M16A	16－Lead（0．150＂Wide）Molded Small Outline，JEDEC
74F163ASJ（Note 1）		M16D	16－Lead（0．300＂Wide）Molded Small Outline，EIAJ
	54F163AFM（Note 2）	W16A	16－Lead Cerpack
	54F163ALM（Note 2）	E20A	20－Lead Ceramic Leadless Chip Carrier，Type C

Note 1：Devices also available in $13^{\prime \prime}$ reel．Use suffix $=$ SCX and SJX．
Note 2：Military grade device with environmental and burn－in processing．Use suffix＝DMQB，FMQB and LMQB．

Connection Diagrams

Features

－Synchronous counting and loading
－High－speed synchronous expansion
－Typical count frequency of 120 MHz
■ Guaranteed 4000 V minimum ESD protection

Logic Symbols

TL/F/9486-9

Unit Loading/Fan Out

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $\mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
CEP	Count Enable Parallel Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CET	Count Enable Trickle Input	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$ ('F161A)	Asynchronous Master Reset Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { SR ('F163A) }}$	Synchronous Reset Input (Active LOW)	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{PE}}$	Parallel Enable Input (Active LOW)	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$Q_{0}-Q_{3}$	Flip-Flop Outputs	50/33.3	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$
TC	Terminal Count Output	50/33.3	-1 mA/20 mA

Functional Description

The 'F161A and 'F163A count in modulo-16 binary sequence. From state $15(\mathrm{HHHH})$ they increment to state 0 (LLLL). The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs (except due to Master Reset of the 'F161A) occur as a result of, and synchronous with, the LOW-to-HIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence: asynchronous reset ('F161A), synchronous reset ('F163A), parallel load, count-up and hold. Five control inputs-Master Reset ($\overline{M R}$, 'F161A), Synchronous Reset ($\overline{\mathrm{SR}}$, ' F 163 A), Parallel Enable ($\overline{\mathrm{PE}}$), Count Enable Parallel (CEP) and Count Enable Trickle (CET)-determine the mode of operation, as shown in the Mode Select Table. A LOW signal on MR overrides all other inputs and asynchronously forces all outputs LOW. A LOW signal on $\overline{\mathrm{SR}}$ overrides counting and parallel loading and allows all outputs to go LOW on the next rising edge of CP. A LOW signal on PE overrides counting and allows information on the Parallel Data $\left(P_{n}\right)$ inputs to be loaded into the

Mode Select Table					
$* \overline{\mathbf{S R}}$	$\overline{\text { PE }}$	CET	CEP	Action on the Rising Clock Edge (
L	X	X	X	Reset (Clear)	
H	L	X	X	Load ($\mathrm{P}_{\mathrm{n}} \rightarrow$ Q $_{n}$)	
H	H	H	H	Count (Increment)	
H	H	L	X	No Change (Hold)	
H	H	X	L	No Change (Hold)	

*For 'F163A only
H = HIGH Voltage Leve
L = LOW Voltage Level
X = Immaterial
flip-flops on the next rising edge of CP. With $\overline{P E}$ and $\overline{M R}$ ('F161A) or $\overline{\text { SR }}$ ('F163A) HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting.
The 'F161A and 'F163A use D-type edge triggered flip-flops and changing the $\overline{S R}, \overline{P E}, \mathrm{CEP}$ and CET inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed.
The Terminal Count (TC) output is HIGH when CET is HIGH and the counter is in state 15. To implement synchronous multi-stage counters, the TC outputs can be used with the CEP and CET inputs in two different ways. Please refer to the 'F568 data sheet. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, counters or registers.
Logic Equations: Count Enable $=\mathrm{CEP} \bullet \mathrm{CET} \bullet \overline{\mathrm{PE}}$

$$
\mathrm{TC}=\mathrm{Q}_{0} \bullet \mathrm{Q}_{1} \bullet \mathrm{Q}_{2} \bullet \mathrm{Q}_{3} \bullet \mathrm{CET}
$$

State Diagram

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specif please contact the Nation Office/Distributors for availa	devices are required, Semiconductor Sales ity and specifications.
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature under Bias Plastic	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \end{aligned}$
$V_{C C}$ Pin Potential to Ground Pin	-0.5 V to +7.0 V
Input Voltage (Note 2)	-0.5 V to +7.0 V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE ${ }^{\circledR}$ Output	$\begin{array}{r} -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \end{array}$
Current Applied to Output in LOW State (Max)	twice the rated $\mathrm{IOL}^{(m A)}$
ESD Last Passing Voltage (Min)	4000 V
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.	
Note 2: Either voltage limit or current lim	sufficient to protect inputs.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, Office/Distributors for availability and specifications.

Ambient Temperature under Bias
Junction Temperature under Bias $V_{C C}$ Pin Potential to Ground Pin

Input Curtent (Note
oltage Applied to Output (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
TRI-STATE® Output
urrent Applied to Output

ESD Last Passing Voltage (Min)
4000V
values beyond which the device may
hese conditions is not implied
DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\mathbf{C C}}$	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F 10\% VCC 74F 10\% VCC 74F 5\% VCC	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\mathrm{IOH}=-1 \mathrm{~mA}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\mathrm{IOL}=20 \mathrm{~mA}$
I_{H}	Input HIGH Current	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \\ & \hline \end{aligned}$			$\begin{gathered} 20.0 \\ 5.0 \\ \hline \end{gathered}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$			$\begin{aligned} & 100 \\ & 7.0 \end{aligned}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$			$\begin{gathered} 250 \\ 50 \\ \hline \end{gathered}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
VID	Input Leakage Test	74F	4.75			V	0.0	$\mathrm{l}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
IOD	Output Leakage Circuit Current	74F			3.75	$\mu \mathrm{A}$	0.0	$\begin{aligned} & \mathrm{V}_{\mathrm{IOD}}=150 \mathrm{mV} \\ & \text { All Other Pins Grounded } \end{aligned}$
IIL	Input LOW Current				$\begin{aligned} & -0.6 \\ & -1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$	Max Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\mathrm{CEP}, \mathrm{CP}, \overline{\mathrm{MR}}, \mathrm{P}_{0}-\mathrm{P}_{3}\right) \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\mathrm{CET}, \overline{\mathrm{PE}}, \overline{\mathrm{SR}}) \end{aligned}$
los	Output Short-Circuit	urrent	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICC	Power Supply Curre			37	55	mA	Max	

AC Electrical Characteristics

Symbol	Parameter	74F			54F		74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum Count Frequency	100	120		75		90		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to $Q_{n}(\overline{P E}$ Input HIGH)	$\begin{aligned} & 3.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{gathered} 7.5 \\ 10.0 \\ \hline \end{gathered}$	$\begin{aligned} & 3.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 11.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{gathered} 8.5 \\ 11.0 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to Q_{n} ($\overline{\mathrm{PE}}$ Input LOW)	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to TC	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 14.0 \\ 14.0 \\ \hline \end{array}$	$\begin{array}{r} 5.0 \\ 5.0 \\ \hline \end{array}$	$\begin{aligned} & 16.5 \\ & 15.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 15.0 \\ 15.0 \\ \hline \end{array}$	ns
$t_{\text {PLH }}$ tpHL	Propagation Delay CET to TC	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{MR}}$ to Q_{n} ('F161A)	5.5	9.0	12.0	5.5	14.0	5.5	13.0	ns
${ }_{\text {tPHL }}$	Propagation Delay MR to TC ('F161A)	4.5	8.0	10.5	4.5	12.5	4.5	11.5	ns

AC Operating Requirements

Symbol	Parameter	$\begin{gathered} 74 \mathrm{~F} \\ \hline \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \hline \end{gathered}$		54F		74F		Units
				$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$		
		Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW P_{n} to CP	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW $P_{n} \text { to } C P$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$		
$\begin{array}{r} \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ \hline \end{array}$	Setup Time, HIGH or LOW $\overline{\mathrm{PE}}$ or $\overline{\mathrm{SR}}$ to CP	$\begin{gathered} 11.0 \\ 8.5 \end{gathered}$		$\begin{aligned} & 13.5 \\ & 10.5 \end{aligned}$		$\begin{gathered} 11.5 \\ 9.5 \end{gathered}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\overline{\text { PE }}$ or $\overline{\mathrm{SR}}$ to CP	$\begin{gathered} 2.0 \\ 0 \end{gathered}$		$\begin{gathered} 3.6 \\ 0 \\ \hline \end{gathered}$		$\begin{gathered} 2.0 \\ 0 \\ \hline \end{gathered}$		
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW CEP or CET to CP	$\begin{gathered} 11.0 \\ 5.0 \\ \hline \end{gathered}$		$\begin{gathered} 13.0 \\ 6.0 \end{gathered}$		$\begin{gathered} 11.5 \\ 5.0 \\ \hline \end{gathered}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW CEP or CET to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Clock Pulse Width (Load) HIGH or LOW	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Clock Pulse Width (Count) HIGH or LOW	$\begin{aligned} & 4.0 \\ & 6.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 5.0 \\ & 8.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.0 \\ & 7.0 \\ & \hline \end{aligned}$		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\text { MR Pulse Width, LOW }}$ ('F161A)	5.0		5.0		5.0		ns
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{M R}$ to CP ('F161A)	6.0		6.0		6.0		ns

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters)

54F/74F161A • 54F/74F163A Synchronous Presettable Binary Counter
Physical Dimensions inches (millimeters) (Continued)

DETAIL A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

