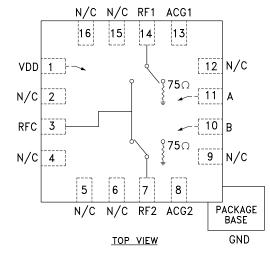


HMC348LP3

GaAs MMIC SPDT NON-REFLECTIVE CATV SWITCH, DC - 2.5 GHz


Typical Applications

The HMC348LP3 is ideal for:

- 75 Ohm Systems CATV Signal Distribution, Cable Modem Headend & DBS IF Switching
- 50 Ohm Systems
 Basestation Infrastructure & Test Equipment

v04.0604

Functional Diagram

Features

High Isolation: >80 dB @ 5 MHz (50 Ohm) >55 dB @ 1 GHz (50 Ohm)

"All Off" Isolation State

Non-Reflective Design, 75 Ohm Terminations

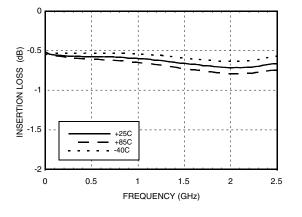
3 mm x 3 mm x 1 mm SMT Package

General Description

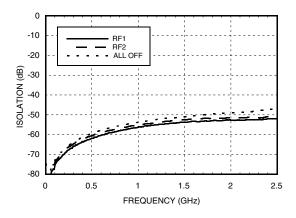
The HMC348LP3 is a non-reflective GaAs MESFET SPDT switch in a low cost leadless QFN surface mount plastic package ideal for CATV applications. Covering DC to 2.5 GHz, the switch offers high isolation, low insertion loss, integrated 75 Ohm terminations and an "all off" state. The switch features >80 dB isolation at 5 MHz and >55 dB isolation up to 1 GHz. The switch operates using complementary positive control voltage logic lines of +5/0V and requires a +5V bias supply (Vdd). This switch offers excellent performance in both 50 Ohm & 75 Ohm systems for either SPDT or SPST functions.

Electrical Specifications, $T_A = +25^{\circ} C$, With 0/+5V Control, 50 Ohm System

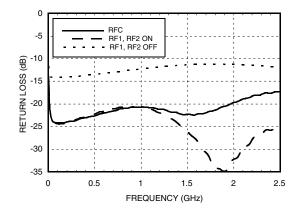
Parameter		Frequency	Min.	Тур.	Max.	Units
Insertion Loss		DC - 1000 MHz DC - 2500 MHz		0.6 0.7	0.9 1.0	dB dB
Isolation		DC - 250 MHz DC - 750 MHz DC - 1000 MHz DC - 2000 MHz DC - 2500 MHz	63 53 50 47 45	68 58 55 52 50		dB dB dB dB dB
Return Loss	"On State"	DC - 2500 MHz	15	20		dB
Return Loss RF1, RF2	"Off State"	DC - 1000 MHz DC - 2500 MHz	9 8	12 11		dB dB
Input Power for 1 dB Compression		50 MHz 1000 MHz	20 25	23 28		dBm dBm
Input Third Order Intercept (Two-Tone Input Power= 0 dBm Each Tone, 6 MHz Tone	e Separation)	50 MHz 1000 MHz 2500 MHz		43 48 51		dBm dBm dBm
Input Second Order Intercept (Two-Tone Input Power= 0 dBm Each Tone, 6 MHz Tone	e Separation)	50 MHz 1000 MHz 2500 MHz		72 89 80		dBm dBm dBm
Switching Characteristics tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)		DC - 2500 MHz		25 600		ns ns


For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 12 Elizabeth Drive, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order Online at www.hittite.com

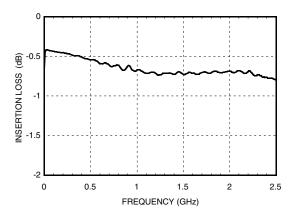
HMC348LP3

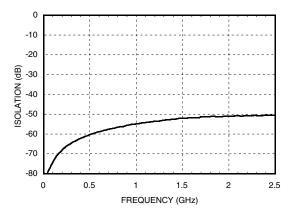

GaAs MMIC SPDT NON-REFLECTIVE CATV SWITCH, DC - 2.5 GHz

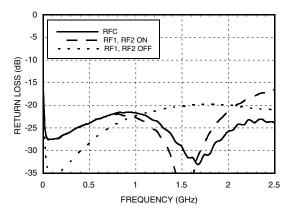
Insertion Loss, 50 Ohm System



v04.0604

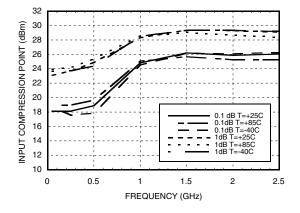

Isolation, 50 Ohm System


Return Loss, 50 Ohm System


Insertion Loss, 75 Ohm System

Isolation, 75 Ohm System

Return Loss, 75 Ohm System


For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 12 Elizabeth Drive, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order Online at www.hittite.com

HMC348LP3

GaAs MMIC SPDT NON-REFLECTIVE CATV SWITCH, DC - 2.5 GHz

Input Compression Point, 50 Ohm System

Absolute Maximum Ratings

Bias Voltage Range (Vdd)	+7.0 Vdc
RF Input Power	+30 dBm
Control Voltage Range (A & B)	+0.5V to Vdd + 1.0 Vdc
Channel Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 4 mW/°C above 85 °C)	0.3 W
Thermal Resistance (Insertion Loss Path)	104 °C/W
Thermal Resistance (Terminated Path)	240 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

Control Voltages

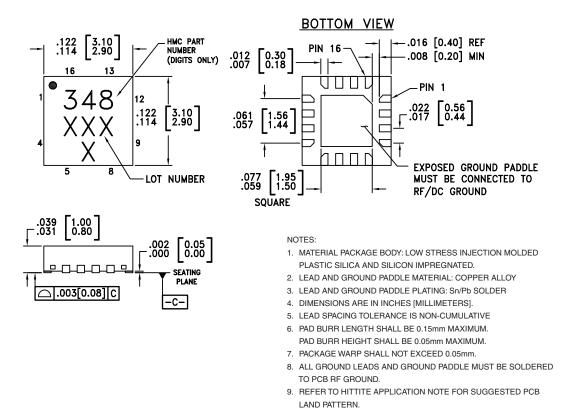
State	Bias Condition
Low	0 to +0.8V @ 5 uA Typical
High	+2.0 to +5.0 Vdc @ 35 uA Typical

Bias Voltage & Current

Vdd Range = +5.0 Vdc ±10%			
Vdd (Vdc)	ldd (Typ.) (mA)	Idd (Max.) (mA)	
+5.0	1.1	2.2	

Truth Table

Control Input		Signal Path State		
А	В	RFC to RF1	RFC to RF2	
High	Low	On	Off	
Low	High	Off	On	
Low	Low	Off	Off	



v04.0604

HMC348LP3

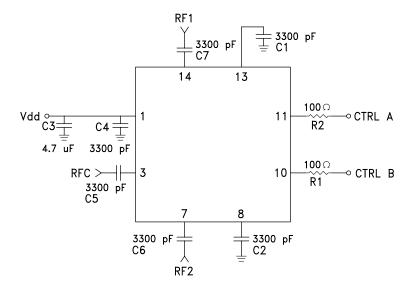
GaAs MMIC SPDT NON-REFLECTIVE CATV SWITCH, DC - 2.5 GHz

Outline Drawing

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	Vdd	Supply Voltage +5V ±10%	
2, 4, 5, 6, 9, 12, 15,16	N/C	These pins should be connected to PCB RF ground to maximize isolation.	
3, 7, 14	RFC, RF1, RF2	These pins are DC coupled and matched to 75 Ohms. Blocking capacitors are required.	
10	В	See truth table and control voltage table.	A, B 0 Vdd
11	A	See truth table and control voltage table.	500 <u>+</u> <u>=</u>
8, 13	ACG1, ACG2	External capacitors to ground are required. Select value for optimal isolation below 500 MHz.	

14


<u>SWITCHES - SN</u>

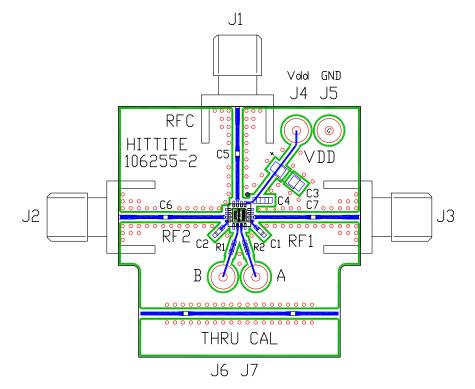
HMC348LP3

GaAs MMIC SPDT NON-REFLECTIVE CATV SWITCH, DC - 2.5 GHz

Application Circuit

v04.0604

The value of capacitors C1 & C2 are critical for low frequency isolation performance below 500 MHz. 3300 pF 0402 size capacitors are recommended for optimal isolation down to 5 MHz. If the frequency of operation is above 500 MHz then 100 pF to 300 pF 0402 capacitors will be sufficient.



v04.0604

HMC348LP3

GaAs MMIC SPDT NON-REFLECTIVE CATV SWITCH, DC - 2.5 GHz

Evaluation PCB (50 Ohms)

List of Material

Item	Description	
J1 - J3	PC Mount SMA RF Connector	
J4 - J7	DC Pin	
R1 - R2	100 Ohm Resistor, 0402 Pkg.	
C1, C2, C4 - C7	3300 pF Capacitor, 0402 Pkg.	
СЗ	4.7 uF Tantalum Capacitor	
U1	HMC348LP3 SPDT Switch	
PCB*	106255 Evaluation PCB	
* Circuit Board Material: Rogers 4350		

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 ohm impedance and the package ground leads and package bottom should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.