A summary of VCE Further Mathematics Units 3 \& 4

\checkmark Core and all modules
\checkmark Summary notes
\checkmark Graduated questions
\checkmark Comprehensive solutions
\checkmark Examination advice

UNCORRECTED SAMPLE PAGES
A+ FURTHER NOTES WITH CASIO CLASSPAD
VCE UNITS $3 \& 4$
1ST EDITION
9780170190794
SEC 7862

- NELSON

CENGAGE Learning-

Customer Service: 1300790853 www.nelsonsecondary.com.au

CONTENTS

Introductioniv
About the authors vi
Core: Data analysis 1
Summary notes 1
Multiple-choice questions 8
Extended-answer questions 23
Module 1: Number patterns 36
Summary notes 36
Multiple-choice questions 39
Extended-answer questions 46
Module 2: Geometry and trigonometry 55
Summary notes 55
Multiple-choice questions 61
Extended-answer questions 71
Module 3: Graphs and relations 84
Summary notes 84
Multiple-choice questions 89
Extended-answer questions 100
Module 4: Business-related mathematics 111Summary notesExtended-answer questions111
Multiple-choice questions 117125
Module 5: Networks and decision mathematics 134
Summary notes 134
Multiple-choice questions 141
Extended-answer questions
Module 6: Matrices166
Summary notes
Multiple-choice questions
Extended-answer questions
Solutions?188
Core: Data analysis 189
Module 1: Number patterns 202
Module 2: Geometry and trigonometry 212
Module 3: Graphsand relations 225
Module 4: Business-related mathematics 234
Module 5: Networks and decision
mathematics 247
Module 6: Matrices 259
Examination advice 272

Univariate data

Types of data

Categorical: A category is recorded when the data is collected. Examples of categorical variables include gender, nationality and occupation. Numerical: When data is collected a number is recorded. Thereare two types:
(i) Discrete: The numbers recorded are distinct values, often whole numbers and usually the data comes from counting. Examples include number of students in a class or number of pages in a book.
(ii) Continuous: Any number on a continuous number line is recorded; usually the data is produced by measuring to any desired level of accuracy. Examples include volume of water consumed and height of a growing tree.

Organising data

Frequency tables: May be used with both categorical and numerical data. Class intervals
are used to group continuous numerical data or to group discrete data when there is a large range of values.
Stem-and-leaf plots (or stemplots): Display the distribution of numerical data (both discrete and continuous) as well as the actual data values. Statistics including median, interquartile range and range can be determined from an ordered stemplot.

Graphs

Bar chart: Categorical data.

For 'bell-shaped' (normal) distributions:

- 68% of the data will have values within one standard deviation of the mean
- 95% of the data will have values within two standard deviations of the mean
- 99.7% of the data will have values within three standard deviations of the mean.
z scores are used to compare values from different distributions. A raw score, x, from a data set will have a z-score of $\frac{x-\bar{x}}{s}$ where \bar{x} is the mean of the data set and s is the standard deviation.

The closer the z-score is to zero, the closer the raw score is to the mean.

Boxplot

(or box-and-whisker plot)

A boxplot illustrates the five-number summary [minimum, lower quartile $\left(Q_{1}\right)$, median $\left(Q_{2}\right)$, upper quartile $\left(Q_{3}\right)$, maximum] of a univariate numerical data set and is often used as a visual comparison of similar data sets. The statistics of median, IQR and range can readily be observed from a boxplot.
Outliers are identified using the boundaries $\mathrm{Q}_{1}-(1.5 \times \mathrm{IQR})$ and $\mathrm{Q}_{3}+(1.5 \times \mathrm{IQR})$. Any data values outside these boundaries are marked with an asterisk on the boxplot.

Calculator:

Finding summary statistics and drawing a boxplat.
Choose Statistics $\frac{\text { siteticice }}{\text { statics }}$ from the Menu. Key the datainto list 1.

Tap Calc, One-Variable. Complete the screen as shown. Tap OK.

Stat Calculation:

Tap OK, SetGraph and Setting. Complete the screen as shown. Tap Set.

Tap on the graph icon to display the boxplot. Tap Analysis in the menu bar, select Trace then use the cursor key to view the values of the five-number summary displayed on the graph.

Bivariate data

- Identify dependent and independent variables: Answer the question: 'Which of the two variables is likely to depend on the other?'
- Back-to-back stemplots: Used to display a relationship between a numerical variable and a two-valued categorical variable. Example: Comparison of weight (numerical variable) of boys and girls (the alternatives of a two-valued categorical variable, gender) in a primary class.
- Parallel boxplots: Used to display a relationship between a numerical variable and a two or more level categorical variable. Example: Comparison of the results of three classes on a statistics test. (Categorical variable is class and numerical variable is result on test.)
- Tables (two-way frequency tables) and segmented bar charts (percentage): Used to display the relationship between two categorical variables. Example: Comparison of male and female attitudes to Sunday trading. (Categorical variables are gender and attitude.)
- Scatterplots: Used to display the relationship between two numerical variables. Example: The relationship between income (dependent variable) and age (independent variable).
- Description of scatterplots
- Direction: Either positive, negative or random.
- Form: Either linear or non-linear.
- Strength: Either weak, moderate or strong
- Outliers: Any points that are separated from the general body of points.
Example on calculator:
The data is the fat content, in grams (independent variable), and energy, in kilojoules (dependent variable) of nine foods.
To draw a scatterplot on screen. Key the data into list 1 and list 2.

Tap SetGraph and go into Setting. Complete the screen as shown. Tap Set.

W Edit calc setor aph 図
 (ist1 list2 list3

Tap on the graph icon to display the scatterplot. Tap Analysis in the menu bar, select Trace then use the cursor key to view the values.

The scatterplot indicates moderate, positive, linear correlation between the variables energy and fat content with no outliers. As the fat content increases the energy also increases.

- Pearson's correlation coefficient (r) is a measure of the strength of the linear relationship between two variables. The value of r is between -1 (perfect negative linear relationship) and 1 (perfect positive linear relationship). The key assumption when using Pearson's r is that the data is linear.
- Interpretation of r values. Ignoring the positive or negative sign:
- 0.75 to 1 is normally regarded as a strong correlation
- 0.5 to 0.74 is normally regarded as a moderate correlation
- 0.25 to 0.49 is normally regarded as a weak correlation
- 0 to 0.24 is normally regarded as very little or no correlation.
Note: Correlation between two variables does not imply that a change in one variable causes a change in the other variable.
Example on calculator (to find r for the fat content and energy data):
Tap on Calc and choose Linear Reg. Complete the Set Calculation screen as shown. Tap OK to obtain the statistics.

An r value of 0.6923 confirms the moderate, positive correlation between the variables as observed from the scatterplot.

- Coefficient of determination $\left(r^{2}\right)$: The square of Pearson's correlation coefficient.
For the fat content and energy data above, the calculator screen shows an r^{2} value of 0.4793. ($0.6923^{2} \approx 0.4793$) This statistic shows that 47.93% of the variation in energy can be explained by the variation in the fat content.

Regression

- Regression: Fitting a straight line (often called a linear model) to a scatterplot of bivariate numerical data is called linear regression.

Three methods of regression

(i) Fitting a line 'by eye': Using your judgement for the placement of the line. Used when the graph, but perhaps not the data, is available.
(ii) The three-median regression line is found usually by a graphical technique but the equation can also be found using the calculator if the data is available. It is preferable to use a three-median regression line when there are possible outliers in the data.
(iii) The least-squares regression line is found using the calculator (data mustrbe available) and is a universally accepted method for applying a linear regression line. It should only be used when the graphed data appears to be linear and without outliers. The regression lines can be used to predict either outside the given data range (extrapolation) or within the given datarange (interpolation).

Finding the equation of a

 regression line drawn on a scatterplotChoose two points on the line $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. Use $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ for the gradient.
If the y-intercept (c) can be read directly from the line (if the x-scale starts at zero), then use $y=m x+c$ for the equation.
Otherwise, use the gradient and one point, $\left(x_{1}, y_{1}\right)$, in $y-y_{1}=m\left(x-x_{1}\right)$ for the equation.
Calculator: The equation of the least-squares regression line can be found on the Linear Reg screen. Using the previous example of fat content
and energy, ' a ' is the gradient (slope) and ' b ' is the intercept. The equation in this case is:
Energy $=35.04 \times$ fat content +745.4
or
Energy $=745.4+35.04 \times$ fat content
(Statistical equations are often written in this form.)
Tap on Calc and choose Linear Reg. Change
Copy Formula to y1. Tap OK to obtain the statistics. Then tap OK again.

Tap on the graph icon, tiin to display the scatterplot and linear regression line.

- Interpretation of the gradient or slope (35.04 in the example): For each increase of one gram of fat, the energy increases by 35.04 kilojoules.
- Interpretation of intercept: The energy in a food that contains zero grams of fat is 745 kilojoules. If the intercept value is impractical then the regression equation is not suitable for predicting with low values.
- Residuals:

$$
\text { Residual }=\underset{\text { value }}{\text { actual data }} \quad \underset{\text { predicted data }}{\text { value }}
$$

A residual plot tests the quality of fit of a model. If the points on a residual plot are randomly scattered then the linear model is appropriate for the data.

Calculator:

Tap on Calc and choose
Linear Reg. Change Copy
Residual to list 3.

Tap OK to obtain the statistics. Then tap OK again. The residuals fill list 3.

* Edit Calc SetGraph			
	1	list2	list3
1	15	1250	21
${ }_{3}^{2}$	12 5	8883	-182.8
	8	1146	120.27
5	23	1689	137.67
6	20 14		-152.2
	18	1005	-371. 1
10	19	1638	226.83

To plot the residuals:

Tap SetGraph and go into Settings. Turn Off graph 1. Tap on graph 2 and complete the settings as shown.
Tap Set.

Tap on the graph icon to obtain the residuals plot.

The points are randoml scattered around the zero line, so the linear model is a good fit. If the residual plot shows a systematic pattern then this suggests that a non-linear model is more appropriate. A transformation can be made to one of the axes scales.

- Estimation of the equation of the least-

 squares regression line: The equation is of the formly $=m x+c$ where $m=\frac{r S_{y}}{S_{x}}$ and $c=\bar{y}-m \bar{x}$. \bar{x} and \bar{y} are the means of x and y respectively. s_{x} and s_{y} are the standard deviations of x and y respectively.r is Pearson's correlation coefficient.

- Transformations: When a linear model is not appropriate then a set of data can be transformed to linear data by applying a transformation to one of the axes.

The transformation(s) to make the data linear will depend on the underlying shape of the points on the original scatterplot:

- x^{2} stretches the x-scale

- $\log x$ compresses the x-scale

- $\frac{1}{x}$ compresses the large $x y$ yalues and stretchesthe small x values

- $\log y$ compresses the y-scale

- $\frac{1}{y}$ compresses the large y values and stretches the small y values.

Time series

If time is the independent variable and data is collected over successive intervals of time then the data is called time series data. A line graph

Graphs of first-order difference equations

 (Use Sequence sene ine on the calculator Menu.) Arithmetic sequences:Points on the graph are in a straight line.

Geometric sequences:

Points on the graph are not in a straight line.

Sequences that are neither arithmetic nor geometric (examples):

Points on the graphs are not in a straight line.

The Fibonacci sequence:

Fibonacci's sequence is generated from the difference equation $t_{n+2}=t_{n+1}+t_{n}$, where $t_{1}=t_{2}=1$. This should be read as: 'Each new term from the third term onwards is the sum of the two previous terms. The first two terms are both one.' So Fibonacci's sequence is: $1,1,2,3,5,8,13,21 \ldots$ Fibonacci's sequence is an example of a secondorder linear difference equation. These equations have the form $t_{n+2}+a t_{n+1}+b t_{n}=c$, where a, b and are constants. To find the terms of a second-orden difference equation, two starting values are needed.
Second-order linear difference equations cant generate sequences that are arithuetic, geometric or neither.
Examples:
(i) $t_{n+2}=6 t_{n+1}-9 t_{n}$, where $t_{1}=1$ and
$t_{2}=3$ will generate the sequence $1,3,9,27$, $81, \ldots$ which is a geometric sequence with first term 1 and common ratio of 3 .
(ii) $t_{n+2}=2 t_{n+1}-t_{n}$ where $t_{1}=2$ and $t_{2}=4$ will generate the sequence $2,4,6,8,10$, 12 which is an arithmetic sequence with first term 2 and common difference of 2 . (iii) $t_{n+2}=3 t_{n+1}+2 t_{n^{\prime}}$ where $t_{1}=1$ and $t_{2}=2$, will generate the sequence $1,2,8,28,100, \ldots$ which is neither arithmetic nor geometric.
On the calculator:

Module 1: Number patterns
 Multiple-choice questions: 55 questions

Arithmetic and geometric sequences:
35 questions.
Solutions to this section start on page 202.

QUESTION 916

An arithmetic sequence has a first term of 32 and a common difference of $\frac{1}{2}$. The sum of the first five terms of this sequence is:
A 22
B 62
C 64
D 155
E 165

QUESTION 928

Which of the following is a geometric sequence with $r>0$?
A $-2,4,-8,16, \ldots$
B $\frac{1}{2}, \frac{1}{6}, \frac{1}{8}, \frac{1}{16}, \ldots$
C $1000,100,10,1, \ldots$
D 14, 11, 8, 5, ...
E $2,6,24,120, \ldots$

QUESTION 936

Which of the following is not a term in the geom
B $\frac{1}{8}$
C $\frac{1}{16}$ 2
D

64
256

QUESTION 94\%

An arithmetic sequence is defined by $t_{n}=2 n+1$.
Values for the first term and the common
difference, respectively, of the sequence are:
A $a=2$ and $d=1$
B $a=3$ and $d=1$
C $a=3$ and $d=2$
D $a=1$ and $d=2$
D -2 and 10
E $a=2$ and $d=3$
A 2 and 8
B 3 and 7
C 1 and 16
E -1 and -4

QUESTION 95\%

Two different sequences are shown in list 1 and list 2 of the calculator screen dump below. Each is to be categorised as arithmetic, geometric or neither,

These two sequencessare respectively:
A arithmetic and anthmetic
B arithinetic and geometric
C arithmetic and neither
D geometric and neither
E neither and neither

QUESTION 968

The first five terms of a sequence are plotted on the graph below.

This sequence could be:
A an arithmetic sequence with $d=-2$
B an arithmetic sequence with $d=2$
C a geometric sequence with $r=-2$
D a geometric sequence with $r=\frac{1}{2}$
E a geometric sequence with $r=2$

QUESTION 97@

A sequence has its first three terms as: $a, 4, b$. If this sequence is arithmetic, values of a and b, respectively, for this sequence could be:

Example:

Malcolm invests \$5000 at 7.5\% per annum compounding monthly. Each month, immediately after the interest is calculated, he deposits $\$ 400$. Determine the value of the investment after 2 years.
$P=5000$

$n=2 \times 12=24$

$$
Q=400
$$

$A=5000 \times 1.00625^{24}+\frac{400\left(1.00625^{24}-1\right)}{1.00625-1}$
$A=\$ 16129.15$
On the calculator, the sign of the present value and the payment must both be the same. In this case, the original investment and the payments are considered to be 'outgoings' and so have negative signs. (See page 115 for an explanation of symbols.)
Tap on Financial Calculations and choose Compound Interest. Complete the screen as shown and then tap on the $\mathbf{F V}$ box to find the value of the investment after 2 years.

Perpetuities

A perpetuity is an investment that provides aregular payment (interest) on an indefinite basis without affecting the original value of the investment. The perpetuity is the interest earned by the principal in the specified time period. The most likely use of a perpetuity is as a pension which a retired person will receive for the remainder of his or her life.

Formula:

$P=\frac{100 Q}{r}$
P : The initial principal invested
Q: Perpetuity paid per time period
r : Percentage interest rate per time period

Example:

Albert invests \$500 000 at 4.9% per annum. Determine the fortnightly perpetuity he will receive.
$P=500000 \quad r=\frac{4.9}{26}=0.188462$

Reducing balance loans and annuities

Characteristics of a reducing balance loan:

- regular payments are made throughout the term of the loan
- the interest is calculated for each time period on the reduced balance owing
- with each repayment, the proportion of interest and reduction to principle varies, with more interest being paid early in the loan.

Formula:

$A=P R^{n}-\frac{Q\left(R^{n}-1\right)}{R-1}$, where $R=1+\frac{r}{100}$
A: The amount owing
P : The initial amount borrowed
R : The multiplying factor
r : Percentage interest rate per time period
n : Number of time periods
Q: Amount of the regular repayment
If the repayment figure, Q, is unknown, the formula can be transposed:
$Q=\frac{\left(P R^{n}-A\right)(R-1)}{\left(R^{n}-1\right)}$

Use of the TVM solver on the calculator

While an understanding of the formula is very helpful, on most occasions answers can be determined directly from the calculator. Explanation of the various terms on the following screen is best done by way of example.

Tap on the 2×2 matrix symbol［回］and a 2×2 matrix will appear on the screen．

If you want a 3×2 matrix，tap once on $[\square]$ and this will produce another row．

Tap on［■］to produce another column．Tap on the first element in the matrix and tap the number on the keyboard，or use the number keys，to enter the first element shown ont the screen below．Use the cursor key arrows to move to the next element and continue entering the elements to match the matrix on the screen below．
To save the matrix，tap outside the matrix and save \Rightarrow the matrix as a variable（tap $V A R$ ），A in this case．
Tap EXE and the matrix is saved as A ．

Operations on the calculator：

Once you enter and save your new matrices \mathbf{A} and \mathbf{B} ，make sure you use the variables A and B in each calculation and then tap Ex日．
（i）Addition．

（ii）Multiplication by a scalar and calculation of expressions．

V Edit Action Interactive 縕

（iii）Multiplication．

Powers of a matrix

Powers of a square matrix： $\mathbf{A}^{2}=\mathbf{A} \times \mathbf{A}$ ；
$\mathbf{A}^{3}=\mathbf{A} \times \mathbf{A} \times \mathbf{A}=A^{\wedge} 3$ on the calculator，etc．The calculator can be used to find powers of a matrix． Make sure you are using the variable A ．

Inverse matrices

If \mathbf{A} is a square matrix，its inverse matrix is denoted by \mathbf{A}^{-1} ．
\mathbf{A}^{-1} is the matrix such that $\mathbf{A}^{-1} \mathbf{A}=\mathbf{A A}^{-1}=\mathbf{I}$ ， where \mathbf{I} is the identity matrix．This property of inverse matrices makes it possible to solve matrix equations．

