
Comparing XML and relational
storage: A best practices guide

Storage best practices
March 2005

http://www.ibm.com/us/
http://www.ibm.com/software/data/

Storage best practices
Page 2

Storage best practices
Page 3

When to choose XML storage or a relational model
While there have been years of research into physical and logical database

design in purely relational systems, little definitive work has been done on the

influence of XML on the logical and physical database design of unified XML/

relational systems.

The bulk of the influence of XML on logical and physical database design

is based on fundamental properties of XML that make it different from the

relational model:

• XML is self-describing. A given document contains not only the data, but also

the necessary metadata. As a result, an XML document can be searched or updated

without requiring a static definition of the schema. Relational models, on the other

hand, require more static schema definitions. All the rows of a table must have the

same schema.

• XML is hierarchical. A given document represents not only base information, but

also information about the relationship of data items to each other in the form of

the hierarchy. Relational models require all relationship information to be expressed

either by primary key or foreign key relationships or by representing that information

in other relations.

• XML is sequence-oriented—order is important. Relational models are set-

oriented—order is unimportant.

None of these differences indicate that XML is better or worse than purely

relational models. In fact, XML and relational models are complementary

solutions. Some data is inherently hierarchical while other data is inherently

tabular; some data has more rigid schema while other data has less rigid

schema; some data needs to follow a specific order while other data does not.

 2 When to choose XML storage or a

relational model

 6 Design trade-offs

 7 What is a unified XML/relational

database?

 7 Case 1a: Data has inherent

hierarchical relationships

 10 Case 1b: Data has multiple

inherent hierarchical relationships

 11 Case 2: Data has containment

relationships

 13 Case 3: Data has sparse attributes

or a large number of attributes

 15 Case 4: Schema evolution

 16 Case 5: Highly variable or multiple

schema

 17 Customer usage scenarios

 17 Scenario 1: Persistence and

search of XML messages

 17 Scenario 2: Call center

 18 Scenario 3: Sparse-attribute/

highly volatile schema

 18 Scenario 4: E-forms processing

 19 Summary

Contents

Storage best practices
Page 2

Storage best practices
Page 3

It is important to answer the question of when to use XML and when to use

a purely relational model. While an obvious answer to that question is “use

XML when working with XML data,” that approach is oversimplified and

consequently can be wrong. In many cases, it is advantageous to use an XML

data representation even for non-XML data; similarly, there are times when

using an XML data representation for XML data is not the correct choice.

Situations in which using an XML representation is not correct, even if the data

is in XML form, include the following:

• When downstream processing of the data is relational. Even if data originates

in XML, if subsequent processing of that data depends on the data being stored

in a relational database—for example, when applying relational online analytical

processing (OLAP) to the data in a data warehouse—then storing the data as

relational data instead of in XML form may be the correct choice.

• When the highest possible performance is required. Despite the fact that XML

database processing is relatively fast, some expense is associated with parsing and

interpreting that XML. Applications that cannot tolerate even the small incremental

expense associated with processing XML data should consider storing the data as

relational data instead of XML form.

• When any normalized data components have value outside the XML

representation or the data need not be retained in XML form to have value. In

many ways, XML is hierarchical and the ability to model parent/child relationships

through position in a hierarchy greatly simplifies many data modeling tasks. As a

result, a natural inclination is to model hierarchical data using XML. However, XML

may not be the optimal choice when the children do not need the parents to provide

value. Consider the example of a data mart that needs to perform inventory control

for a retail store. While it is useful to have product-line item information stored

directly within purchase orders, that line item information contains value outside

the purchase orders. Namely, it is not necessary to know who the customers are and

Storage best practices
Page 4

Storage best practices
Page 5

what they purchased in order to control inventory. Conversely, if there is value in

retaining that parent/child relationship—for example, when the inventory control

system is expanded to support product placement and hence needs to know what

products were purchased at a given time—then retaining the data in XML form may

be the better choice.

• When the data is naturally tabular. If the data being modeled is naturally

tabular, it may be better to represent that information as a relation instead of

retaining it in XML form. The storage data model should match, to the greatest

extent possible, the highest value and most critical usage model for that data.

Situations in which an XML representation is beneficial, even if data is not in

XML form, include:

• When schema is volatile. If the schema of the data changes often, then representing

it in relational form may be onerous given the cost and difficulty of changing the

associated relational schema. While some forms of schema modification are relatively

painless in relational databases, such as adding a new column to a table, other forms

are more involved, such as dropping a column or changing the type of a column. Still

other forms of schema modification are downright difficult, such as normalizing one

table into many or denormalizing many tables into one. Any portions of the schema

that are highly volatile can be expressed as a single XML column. The self-describing

nature of XML and its use in XQuery makes schema modification of that data much

simpler.

• When data is inherently hierarchical in nature. Some data is inherently tabular,

while other data is naturally hierarchical. A relational model makes the most

sense for inherently tabular data, whereas XML is often the best representation

for inherently hierarchical data. For example, a bill of materials explosion can be

stored in a relational database and reconstructed using recursive SQL, similar to an

organizational chart. However, it is much more natural to represent such inherently

hierarchical data in a hierarchical structure such as XML.

Storage best practices
Page 4

Storage best practices
Page 5

• When data represents business objects in which the component parts do not

make sense when removed from the context of that business object. If the data

represents a business object and the content makes sense or provides value only in

the context of that business object, it may be best to represent it in XML form. For

example, consider a standard employee and phone number relationship in which

one employee can have multiple phone numbers—one for the office, one for fax, one

for home and one for mobile. If the most frequent usage pattern is to retrieve phone

numbers in the context of the employee, it does not make sense to normalize the data

and introduce a table solely to track the multiplicity of phone numbers associated

with an employee and then further incur the cost of a join to reunite employees with

their phone numbers. A better choice may be to keep those phone numbers in the

employee relation and represent them using XML.

• When applications have sparse attributes. Similarly, some applications have

a large number of possible attributes, most of which are sparse or absent for any

given data value. A classic example is a merchant catalog—the number of different

attributes to track for a given catalog item is huge, including size, color, weight,

material, style, weave, power requirements, thermal requirements, fuel requirements

and a nearly endless list of other considerations. For any given object, only a subset

of these attributes is relevant—the weave of a sweater makes sense but the weave of

a lawn mower is nonsensical. Conversely, the kind of fuel is important for a lawn

mower but not for a rolltop desk.

The typical relational approach to solving this problem is a table of arbitrary

attribute/value pairs associated with the parent to describe the object. The cost of

joining with this table to re-create the characteristics of the object can be high, as

can the complexity of applications that search for objects with a certain complex

expression of properties (for example, a color of red, a weave of herringbone or

a material that does not include wool) Representing such descriptive attribute

information as XML data allows for more natural representation as well as less

complex and expensive searching.

• When low-volume data is highly structured. In many applications, structured

information is critical to the application but it exists in very small quantities. While

that information can be represented in a normal relation, this approach can lead

to massive relational schemas. For example, a complex star-schema topology with

one table per dimension can have hundreds or even thousands of dimensions.

Storage best practices
Page 6

Storage best practices
Page 7

Many of these dimensions have relatively low cardinality (that is, they contain few

rows). For example, a common dimension is the “region” in which an object was

sold. Most companies have fewer than 100 regions, and many have fewer than 20.

While a heavyweight table can be used for each dimension, this approach results

in many small tables that need to be managed. An alternative is to represent many

dimensions using a single table with an XML column, encoding data as XML and

then creating views over that data. This approach enables data to be extracted

for a dimension from within the XML. Instead of using many little tables, a single

larger table with multiple views—one per dimension—is used. This can dramatically

reduce the number of managed objects in a database, and thus can reduce the cost of

ownership.

Design trade-offs
Several trade-offs are enabled by the fundamental differences between XML

and relational schemas.

The principal trade-off is flexibility versus performance. As a self-describing

data structure, XML allows diverse forms of data to be stored in a single

document or row without sacrificing the ability to search or aggregate portions of

that data. However, that flexibility results in greater CPU run time and increased

I/O cost to interpret data.

The relational model, given its more rigid schema, requires significantly less

interpretation and, as such, will generally perform better. However, in some

cases XML will improve performance over relational models precisely because

of its flexibility. Relational models often require data normalization to get

data values to fit well into the model (for example, when splitting logically

interconnected data between tables). Whenever data is normalized, there is a

strong probability that joins will be required to reform that data, and those joins

may cost more than storing the data as XML and retrieving it without requiring

a join.

Storage best practices
Page 6

Storage best practices
Page 7

What is a unified XML/relational database?
Several use cases predicate the use of the XML data model; unfortunately,

most businesses cannot sacrifice performance, so they tend to force XML data

into a large object (LOB) or normalize (shred) and store the XML data within

the relational database. The ideal solution is a database that can combine the

flexibility of the XML model with the performance of the relational model;

that is, support for an XML data type within a relational database. This XML

data type would fully support the XML model, both logically and physically,

yet allow the data to be physically managed by a single database. The following

cases illustrate the use of unified XML/relational databases.

Case 1a: Data has inherent hierarchical relationships

If data values of the child are not logically independent of the parent, XML may

best represent the information instead of normalized tables. For example, line

items in a purchase order are good to represent in an XML document because

they are not logically independent of the parent. A stand-alone line item has

little inherent meaning or value—the value comes from understanding who

has purchased the item or what other items were purchased with it. As a result,

representing line items and purchase orders in different tables does not add

value and may add cost—both performance costs to join the purchase order and

line item tables and operational costs to manage and maintain two different

tables instead of one.

On the other hand, part descriptions based on part numbers may not be best

represented in that same XML purchase order document. It may be better

to normalize part descriptions into another table, because the relationship

between the part numbers and the part descriptions is logically independent of

the purchase orders or line items in which the part numbers are used.

In addition, representations of the part descriptions in different languages may

be better rendered as an XML document because the different descriptions

have little meaning outside the scope of the part.

Storage best practices
Page 8

Storage best practices
Page 9

Consider a relational schema as shown in Figure 1:

Create table PO (PO_NUM int not null primary key, CUST_NUM int);

Create table LineItem (PO_NUM int, PART_NO int, QUANTITY int);

Create table Parts (PART_NO int not null primary key, PRICE

decimal(10,2), TAXABLE char (1));

Create table PartsDesc (PART_NO int, LANGUAGE int, Part_Desc

char(25));

In this example, the table PO must be joined with the LineItem table to get all

the parts, which must then be joined with the Parts and the PartsDesc tables to

get the price and part description, respectively.

…….

A6789987564331

CUST_NUMPO_NUM

Table PO Table Parts

………

Y115.21985

Y2.00A54

TAXABLEPRICEPART_NO

Table LineItem Table PartsDesc

………

1985987564331

12A54987564331

QUANTITYPART_NOPO_NUM

lapiz2A54

Pencils1A54

…………

PART_DESCLANGUAGEPART_NO

'

Figure 1: A four-way join

of all tables is required to

retrieve line item details

Storage best practices
Page 8

Storage best practices
Page 9

A better alternative using XML as a data type may be:

Create table PO (PO_NUM int not null primary key, CUST_NUM int,

PARTS_ORDERED xml);

Create table Parts (PART_NO int not null primary key, PRICE

decimal(10,2), TAXABLE char (1), PART_DESC xml);

Table PO

…

A6789

CUST_NUM

…….

98756433

PARTS_ORDEREDPO_NU

Table Parts

Y

Y

TAXABLE

………

115.21985

20.00A54

PART_DESCPRICEPART_NO

<? xml version= “1.0” ?>
<purchaseOrder = ‘98756433’>
 <customer = “A6789”>
 <name>John Smith Co</name>
 <address>
 <street>1234 W. Main St.</street>
 <city>Toledo</city>
 <state>OH</state>
 <zip>95141</zip>
 </address>
 </customer>
 <itemList>
 <item>
 <partNo>A54</partNo>
 <quantity>12</quantity>
 </item>
 <item>
 <partNo>985</partNo>
 <quantity>1</quantity>
 </item>
 </itemList>
</purchaseOrder>

<partNo = ‘A54’>
 <language>1</language>
 <partDesc = “pencil”/partDesc>
 <language>2</language>
 <partDesc = “lapiz”/partDesc>
</partNo>

Figure 2: By storing the purchase order and parts

description as XML, a four-way join is reduced to a

two-way join to retrieve all information necessary to

re-create the purchase order

Storage best practices
Page 10

Storage best practices
Page 11

In this case, when a PO_NUM is given, all the parts are directly available; they

need to be joined only with Parts to get the price and description, reducing a

four-table join to a two-table join with little loss of generality.

Using XML as a data type is most desirable if access to the children is usually

through the parent. In Figure 2, the reference to the part description for a

given language comes only after finding the part itself—a clear parent/child

relationship is significant not only in terms of the logical data model, but also in

terms of the access patterns.

The result is a clean logical model that is easier to understand. The XML model

contains fewer artifacts than the relational model, so it is easier to manage,

requires fewer join operations and often performs better.

Case 1b: Data has multiple inherent hierarchical relationships

Multiple containment relationships increase the probability for considering

XML rather than normalization.

As the number of containment relationships increases, so does the cost of

normalization. That is because the cost of performing the necessary joins to

put the information into the correct context increases. A single join is enough

for a single-level containment relationship, with one join added per level of

containment. If that same containment is represented in an XML document,

no joins are necessary. This can have significant performance impact as well

as affect the understandability of both the data relationships and application

logic.

For a relational schema like the following:

Create table Employee (EMP_NUM int not null primary key, EMP_NAME

char(25));

Create table Dependent (EMP_NUM int not null, DEPENDENT_NUM int

not null, DEPENDENT_NAME char(25));

Create table DependentSchool (DEPENDENT_NUM int not null,

SCHOOL_NUM int not null, START_DATE date, STOP_DATE date);

Storage best practices
Page 10

Storage best practices
Page 11

A simpler alternative using XML as a data type may be:

Create table Employee (EMP_NUM int not null primary key, EMP_NAME

char(25), DEPENDENT_INFO xml);

A better example is a bill-of-materials case in which the relational schema may

be very simple:

Create table Part (PART_NO int not null primary key, PARENT_PART_

NO int, PART_NAME char (25), DESC char(25));

However, the cost of re-creating the list of parts within a part is an expensive

self-join. A better alternative using XML as a data type may be:

Create table PartAssembly (ASSEMBLY_NO int not null primary key,

DESC xml);

The XML approach does not simplify the schema, but it turns a recursive self-join

to get the full description of an assembly into a single primary key singleton fetch.

Case 2: Data has containment relationships

If high performance is required and data redundancy is tolerable, it may be

best to use XML to avoid join processing. In other words, denormalization—but

denormalization into XML data instead of relational data.

In a traditional database system, this technique is limited by the number of

children in a given row, because there must be a column in the parent per row

per column in the child. Also, the relational approach has practical limits.

Those limits do not exist when using XML, because all the children can appear

to be a single column to the relational engine.

Storage best practices
Page 12

Storage best practices
Page 13

Consider a relational schema such as:

Create table PO (PO_NUM int not null primary key, CUST_NAME

varchar(25));

Create table LineItem (PO_NUM int, PART_NUM int, QUANTITY int);

Create table Item (PART_NUM int not null primary key, PART_NAME

varchar(25));

Because a PO has no upper limit on the number of items, these relational

schemas are typically hard to denormalize and represent in a relational model

without massive data redundancy. As a result, any query to reconstruct the PO

requires at least a two-way join, and often a three-way join or more.

If high amounts of data redundancy can be tolerated, relational modeling can

duplicate the PO information in a single table:

Create table PO (

PO_NUM int not null,

CUST_NAME varchar(25),

PART_NUM int,

QUANTITY int,

PART_NAME varchar(25));

Tables such as these have a large amount of redundant data, particularly as

the number of columns in the PO table increases—for example, to represent

customer address, shipping address, order arrival date and order fulfillment

date. However, this approach reduces a three-way join to an index range scan

on PO_NUM.

Storage best practices
Page 12

Storage best practices
Page 13

With XML, denormalization with reduced redundancy becomes a trivial task:

Create table PO (PO_NUM int not null primary key, CUST_NAME

varchar(25), ITEMS xml);

Here, a unified approach is superior to the purely relational approach because it

avoids data duplication, eliminates join processing and provides the entire PO

using primary key–based selection.

Case 3: Data has sparse attributes or a large number of attributes

For data that includes a very large list of attributes, many that are typically null

(that is, sparse attributes), XML may be a better alternative than a long list of

null columns or a normalized table.

Two typical approaches are taken with non-XML relational systems in this

case. The first approach is simply to represent each attribute as a column. For

example, assume a table that will record employee wage information. Hourly

workers have an hourly wage, salaried workers have a salary, executives have a

salary and bonus and salesmen have a salary and commission.

Create table EmployeeWage (EMP_NO int not null primary key, BASE_

SALARY decimal(10,2), HOURLY_WAGE decimal(5,2), COMMISSION

decimal(5,2), BONUS decimal(10,2));

Most columns are null for any given employee in this scenario. There are also

practical limits for the number of attributes that can be tracked. For large

numbers of attributes, normalization is typically used—either with a specific

Storage best practices
Page 14

Storage best practices
Page 15

set of tables or generic tables. Given the preceding employee example, multiple

tables such as the following could be created:

Create table ExecWage (EMP_NO int not null primary key, SALARY

decimal(10,2), BONUS decimal(10,2));

Create table EmpWage (EMP_NO int not null primary key, HOURLY_

WAGE decimal(5,2));

Create table SalesWage (EMP_NO int not null primary key, SALARY

decimal(10,2), COMMISION decimal(5,2));

Alternatively, a generic table that can assign a given employee multiple entries

could be created as follows:

Create table WageInfo (EMP_NO int not null, WAGE_TYPE char(1) not

null, WAGE_AMOUNT decimal(10,2) not null);

Executives in this case would have two entries: one with a WAGE_TYPE of “S”

representing base salary and another with a WAGE_TYPE of “B” representing

a bonus.

For such sparse-attribute (or numerous-attribute) cases, a corresponding table

with an XML column that could represent all the data would appear as:

Create table EmployeeWage (EMP_NO int not null primary key, WAGE_

INFO xml);

Storage best practices
Page 14

Storage best practices
Page 15

Case 4: Schema evolution

If the schema is evolving fairly quickly, consider XML for the volatile portions

of that schema. Because XML is self-describing, a single column of XML type

can hold vastly different forms of data or different versions of the same type of

data. If the application is aware of the different versions, the physical database

schema need not change at all and no data migration is necessary.

For example, consider a table originally created as:

Create table Person (SSN decimal(9,0) not null primary key, NAME

varchar(25), PHONE decimal(10,0));

To record the person’s birthday, adding an “alter table add column” command

is relatively easy. However, some changes are considerably more difficult.

For example, to record multiple phone numbers, the phone column can be

normalized and moved to another table—perhaps leaving a null phone column

in the person table or performing data migration to remove it. Alternatively,

more columns can be added to hold the different phone numbers. An equally

difficult change would be to represent the name as first name, middle initial

and last name. The problem becomes even more severe when considering that

different cultures do not necessarily place the surname last. The culture then

needs to be recorded in addition to the name to allow correct interpretation of

the name.

A single XML column (assuming applications can handle back-level versions of

data) can solve the preceding cases:

Create table Person (SSN decimal(9,0) not null primary key,

DETAILS xml);

Alternatively, multiple XML columns can be used:

Create table Person (SSN decimal(9,0) not null primary key, NAME

xml, PHONE xml);

Storage best practices
Page 16

Storage best practices
Page 17

Case 5: Highly variable or multiple schema

If an application requires that data be held and processed from multiple

schema, XML may be a good alternative, because it is self-describing and can

hold many forms of data in a single column.

For example, consider the “to do” queue of a call center employee. To represent

all the different forms of data needed by employees to return a call for a trouble

ticket is a daunting task—including, for example, previous call records, scanned

images of forms, a transactional history of payments and basic customer

information. A purely relational schema to hold all that information can be very

complex—with correspondingly complex applications necessary to interpret

that data and translate it into something usable by the employee. Alternatively,

representation of the necessary data can be simplified through the use of binary

large object (BLOB) columns to hold the data. However, this approach either

renders the data unsearchable or requires complex application logic in the form

of user-defined functions to interpret the data.

The same schema in XML can be represented with a table such as:

Create table WorkQueue (EMP_NO int not null primary key, DATA_

ABOUT_CALL xml);

One of the principal advantages of XML is the ability to store different artifact

types in a single column, thus eliminating the need for numerous tables. A

reduction in the number of tables results in a significant reduction in overall

management cost because there are fewer objects to administer.

Storage best practices
Page 16

Storage best practices
Page 17

Customer usage scenarios
While the preceding guidelines are helpful, the question of real-world

functionality must be addressed. Do cases in which XML is preferable to

relational models exist in the marketplace? Following are brief descriptions of

four actual customer usage scenarios.

Scenario 1: Persistence and search of XML messages

A large financial services firm replaced its custom electronic data interchange

(EDI) approach for customer interactions with an architecture that uses digitally

signed Web services. The firm’s goal was both to reduce the cost that its new

customers had to absorb to integrate with the existing EDI environment, and to

make it easier, cheaper and faster to introduce or change services using the Web-

based service approach. The firm’s services include operations such as buying

and selling securities, transferring money or securities between accounts,

opening and closing accounts and inquiring about the state of any operation.

While data about the accounts and securities is maintained in a more

traditional relational system, the financial services firm was interested in

persisting, searching and analyzing the XML Web services interactions to

monitor business processes, perform audits and enhance non-repudiation

capabilities.

Scenario 2: Call center

A large insurance company wanted to re-architect its call center application.

While reviewing system requirements, the company noted that it needed the

capability to handle many different kinds of documents. In addition, it needed

to handle many different versions of the same form because some claims take

longer to resolve than others and forms may change after submission but before

resolution. The company also needed to control the order of work in the call

center queues.

Storage best practices
Page 18

Storage best practices
Page 19

The insurance company decided to represent the call center queue as an

ordered collection of documents, with each document representing a discrete

piece of work for the representative to execute that day. In addition, each

document referenced one or more documents associated with a particular

work item. Each document was in XML form and most documents contained

associated XML schema.

Scenario 3: Sparse-attribute/highly volatile schema

A large travel firm tracked most of its data in a highly structured relational

table while tracking customer profiles as relational BLOBs because the profiles

are highly volatile. For example, each time a new diet becomes popular,

customers request food of that type—more often than not, those fad diets fade

away over time. These BLOBs also have very sparse attributes—that is, most

customers do not have every variation of frequent flier number, frequent driver

number or sleep number; most do not have special medication conditions to

note; and many do not even have preferred travel times. Because the BLOB

representation was fragile, the travel firm elected to use XML instances to

contain the profiles instead.

Scenario 4: E-forms processing

A firm providing XML-based e-forms processing to large government

organizations required a high-performance, high-fidelity form repository to

preserve digital signatures and high scalability to store and search those forms.

Storage best practices
Page 18

Storage best practices
Page 19

Summary
A true native XML data store is more than merely a data store that exposes XML

to its clients—it must represent the XML throughout the entire data engine

stack from client to disk and back out again.

While XML storage may seem best for XML data, and relational storage best

for relational data, in many cases this does not hold true. At times, relational

storage proves best for XML data and XML storage proves best for tabular data.

A unified XML/relational database system offers compelling value to its users—

namely, the ability to mix XML and relational forms in the same repository,

allowing users to select the most effective data model for storing the data.

Unified systems do not mandate that all data be represented as relational data,

nor do they require that all data be in XML—unified systems offer a choice.

© Copyright IBM Corporation 2005

IBM Corporation
IBM Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States
March 2005
All Rights Reserved

IBM and the IBM logo are trademarks or registered
trademarks of International Business Machines
Corporation in the United States, other countries or both.

Other company, product and service names may be
trademarks or service marks of others.

All statements regarding IBM future direction or
intent are subject to change or withdrawal without
notice and represent goals and objectives only. ALL
INFORMATION IS PROVIDED ON AN “AS-IS” BASIS,
WITHOUT ANY WARRANTY OF ANY KIND.

References in this publication to IBM products or
services do not imply that IBM intends to make them
available in all countries in which IBM operates.

The IBM home page on the Internet can be found at
ibm.com

GC34-2497-00

http://www.ibm.com/us/
http://www.ibm.com

