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Abstract
The goal of Multi-task Bayesian Optimization (MBO) is to
minimize the number of queries required to accurately opti-
mize a target black-box function, given access to offline evalu-
ations of other auxiliary functions. When offline datasets are
large, the scalability of prior approaches comes at the expense
of expressivity and inference quality. We propose JUMBO, an
MBO algorithm that sidesteps these limitations by querying
additional data based on a combination of acquisition signals
derived from training two Gaussian Processes (GP): a cold-GP
operating directly in the input domain and a warm-GP that op-
erates in the feature space of a deep neural network pretrained
using the offline data. Such a decomposition can dynamically
control the reliability of information derived from the online
and offline data and the use of pretrained neural networks
permits scalability to large offline datasets. Theoretically, we
derive regret bounds for JUMBO and show that it achieves
no-regret under conditions analogous to GP-UCB [29]. Empir-
ically, we demonstrate significant performance improvements
over existing approaches on two real-world optimization prob-
lems: hyper-parameter optimization and automated circuit
design.

Introduction
Many domains in science and engineering involve the opti-
mization of an unknown black-box function. Such functions
can be expensive to evaluate, due to costs such as time and
money. Bayesian optimization (BO) is a popular framework
for such problems as it seeks to minimize the number of
function evaluations required for optimizing a target black-
box function [25, 8]. In real-world scenarios however, we
often have access to offline evaluations of one or more aux-
iliary black-box functions related to the target function. For
example, one might be interested in finding the optimal hyper-
parameters of a machine learning model for a given problem
and may have access to an offline dataset from previous runs
of training the same model on a different dataset for various
configurations. Multi-task Bayesian optimization (MBO) is
an optimization paradigm that extends BO to exploit such
additional sources of information from related black-box
functions for efficient optimization [30].

Early works in MBO employ multi-task Gaussian Pro-
cesses (GP) with inter-task kernels to capture the correlations
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between the auxiliary and target function [30, 33, 21]. Multi-
task GPs however fail to scale to large offline datasets. More
recent works have proposed combining neural networks (NN)
with probabilistic models to improve scalability. For example,
MT-BOHAMIANN [28] uses Bayesian NNs (BNN) [17]
as surrogate models for MBO. The performance however,
depends on the quality of the inference procedure. In con-
trast, MT-ABLR [18] uses a deterministic NN followed by
a Bayesian Linear Regression (BLR) layer at the output to
achieve scalability while permitting exact inference. How-
ever, the use of a linear kernel can limit the expressiveness of
the posterior.

We propose JUMBO, an MBO algorithm that sidesteps the
limitations in expressivity and tractability of prior approaches.
In JUMBO, we first train a NN on the auxiliary data to learn
a feature space, akin to MT-ABLR but without the BLR
restriction on the output layer. Thereafter, we train two GPs
simultaneously for online data acquisition via BO: a warm-
GP on the feature space learned by the NN and a cold-GP
on the raw input space. The acquisition function in JUMBO
combines the individual acquisition functions of both the
GPs. It uses the warm-GP to reduce the search space by
filtering out poor points. The remaining candidates are scored
by the acquisition function for the cold-GP to account for
imperfections in learning the feature space of the warm-GP.
The use of GPs in the entire framework ensures tractability
in posterior inference and updates.

Theoretically, we show that JUMBO is a no-regret algo-
rithm under conditions analogous to those used for analyzing
GP-UCB [29]. In practice, we observe significant improve-
ments over the closest baseline on two real-world applica-
tions: transferring prior knowledge in hyper-parameter opti-
mization and automated circuit design.

Background
We are interested in maximizing a target black-box function
f : χ → R defined over a discrete or compact set χ ⊆ Rd.
We assume only query access to f . For every query point x,
we receive a noisy observation y = f(x)+ε. Here, we assume
ε is standard Gaussian noise, i.e., ε ∼ N (0, σ2

n) where σn
is the noise standard deviation. Our strategy for optimizing
f will be to learn a probabilistic model for regressing the
inputs x to y using the available data and using that model
to guide the acquisition of additional data for updating the



model. In particular, we will be interested in using Gaussian
Process regression models within a Bayesian Optimization
framework, as described below.

Gaussian Process (GP) Regression
A Gaussian Process (GP) is defined as a set of random vari-
ables such that any finite subset of them follows a multi-
variate normal distribution. A GP can be used to define
a prior distribution over the unknown function f , which
can be converted to a posterior distribution once we ob-
serve additional data. Formally, a GP prior is defined by
a mean function µ0 : χ → R and a valid kernel function
κ : χ×χ→ R. A kernel function κ is valid if it is symmetric
and the Gram matrix K is positive semi-definite. Intuitively,
the entries of the kernel matrix Ki,j = κ(xi, xj) measure the
similarity between any two points xi and xj . Given points
X = {x1, x2, . . . , xn}, the distribution of the function evalu-
ations f = [f(x1), f(x2), . . . f(xn)] in a GP prior follows a
normal distribution, such that f |X ∼ N (µ0(X),K(X,X))
where µ0(X) = [µ0(x1), µ0(x2), . . . µ0(xn)] and K(X,X)
is a covariance matrix. For simplicity, we will henceforth
assume µ0 to be a zero mean function.

Given a training dataset D, let XD and yD denote the
inputs and their noisy observations. Since the observation
model is also assumed to be Gaussian, the posterior over f
at a test set of points X∗ will follow a multivariate normal
distribution with the following mean and covariance:

µ(f∗|D, X∗) = K(X∗, XD)T K̃−1
D yD,

Σ(f∗|D, X∗) = K(X∗, X∗)−K(X∗, XD)T K̃−1
D K(X∗, XD),

where K̃D = K(XD, XD) + σ2
nI.

Due to the inverse operation during posterior computa-
tion, standard GPs can be computationally prohibitive for
modeling large datasets. We direct the reader to [23] for an
overview on GPs.

Bayesian Optimization (BO)
Bayesian Optimization (BO) is a class of sequential algo-
rithms for sample-efficient optimization of expensive black-
box functions [8, 25]. A BO algorithm typically runs for a
fixed number of rounds. At every round t, the algorithm se-
lects a query point xt and observes a noisy function value
yt. To select xt, the algorithm first infers the posterior distri-
bution over functions p(f |{(xi, yi)}t−1i=1) via a probabilistic
model (e.g., Gaussian Processes). Thereafter, xt is chosen
to optimize an uncertainty-aware acquisition function that
balances exploration and exploitation. For example, a popular
acquisition function is the Upper Confidence Bound (UCB)
which prefers points that have high expected value (exploita-
tion) and high uncertainty (exploration). With the new point
(xt, yt), the posterior distribution can be updated and the
whole process is repeated in the next round.

At round t, we define the instantaneous regret as rt =
f(x∗) − f(xt) where x∗ is the global optima and xt maxi-
mizes the acquisition function. Similarly, we can define the
cumulative regret at round T as the sum of instantaneous

regrets RT =
∑T
t=1 rt. A desired property of any BO al-

gorithms is to be no-regret where the cumulative regret is
sub-linear in T as T →∞, i.e., limT→∞ RT/T = 0.

Multi-task Bayesian Optimization (MBO)
Our focus setting in this work is a variant of BO, called Multi-
Task Bayesian Optimization (MBO). Here, we assumeK > 0
auxiliary real-valued black-box functions {f1, . . . , fK}, each
having the same domain χ as the target function f [30, 28].
For each function fk, we have an offline dataset D(k) consist-
ing of pairs of input points x and the corresponding function
evaluations fk(x). If these auxiliary functions are related to
the target function, then we can transfer knowledge from
the offline data Daux = D(1) ∪ · · · ∪ D(K) to improve the
sample-efficiency for optimizing f . In certain applications,
we might also have access to offline data from f itself. How-
ever, in practice, f is typically expensive to query and its
offline dataset Df will be very small.

We discuss some prominent works in MBO that are most
closely related to our proposed approach below. See Sec-
tion 12 for further discussion about other relevant work.

Multi-task BO [30] is an early approach that employs a
custom kernel within a multi-task GP [33] to model the rela-
tionship between the auxiliary and target functions. Similar
to standard GPs, multi-task GPs fail to scale for large offline
datasets.

On the other hand, parametric models such as neural net-
works (NN), can effectively scale to larger datasets but do
not defacto quantify uncertainty. Hybrid methods such as
DNGO [27] achieve scalability for (single task) BO through
the use of a feed forward deep NN followed by Bayesian Lin-
ear Regression (BLR) [2]. The NN is trained on the existing
data via a simple regression loss (e.g, mean squared error).
Once trained, the NN parameters are frozen and the output
layer is replaced by BLR for the BO routine. For BLR, the
computational complexity of posterior updates scales linearly
with the size of the dataset. This step can be understood as
applying a GP to the output features of the NN with a linear
kernel (i.e. κ(xi, xj) = hφ(xi)

Thφ(xj) where h is the NN
function with parameters φ). For BLR, the computational
complexity of posterior inference is linear w.r.t. the num-
ber of data points and thus DNGO can scale to large offline
datasets.

MT-ABLR [18] extends DNGO to multi task settings
by training a single NN to learn a shared representa-
tion hφ(x) followed by task-specific BLR layers (i.e.
predicting f1(x), ..., fK(x), and f(x) based on inputs).
The learning objective corresponds to the maximization
of sum of the marginal log-likelihoods for each task:∑K+1
t=1 p(yt|wt, hφ(Xt), σt). The main task is included in

the last index,wt is the Bayesian Linear layer weights for task
t with prior p(wt) = N (0, σ2

wt
I), σt and σwt are the hyper-

prior parameters, and (Xt,yt) is the observed data from task
t. Learning hφ(x) by directly maximizing the marginal likeli-
hood improves the performance of DNGO while maintaining
the computational scalability of its posterior inference in case
of large offline data. However, both DNGO and ABLR have
implicit assumptions on the existence of a feature space under



Figure 1: JUMBO. During the pretraining phase, we learn a NN
mapping hφ∗ (orange) for the warm-GP. The next query based on
αt (purple) will be the point that has a high score based on the
acquisition function of both warm and cold GP (blue).

which the target function can be expressed as a linear combi-
nation. This can be a restrictive assumption and furthermore,
there is no guarantee that given finite data such feature space
can be learned.

MT-BOHAMIANN [28] addresses the limited expressiv-
ity of prior approaches by employing Bayesian NNs to spec-
ify the posterior over f and feed the NN with input x and
additional learned task-specific embeddings ψ(t) for task t.
While allowing for a principled treatment of uncertainties,
fully Bayesian NNs are computationally expensive to train
and their performance depends on the approximation qual-
ity of stochastic gradient HMC methods used for posterior
inference.

Scalable MBO via JUMBO
In the previous section, we observed that prior MBO algo-
rithms make trade-offs in either posterior expressivity or
inference quality in order to scale to large offline datasets.
Our goal is to show that these trade-offs can be signifi-
cantly mitigated and consequently, the design of our pro-
posed MBO framework, which we refer to as JUMBO, will
be guided by the following desiderata: (1) Scalability to large
offline datasets (e.g., via NNs) (2) Exact and computationally
tractable posterior updates (e.g., via GPs) (3) Flexible and
expressive posteriors (e.g., via non-linear kernels).

Regression Model
The regression model in JUMBO is composed of two GPs:
a warm-GP and a cold-GP denoted by GPwarm(0, κw) and
GPcold(0, κc), respectively. As shown in Figure 1, both GPs
are trained to model the target function f but operate in
different input spaces, as we describe next.
GPwarm (with hyperparameters θw) operates on a feature

representation of the input space hφ(x) derived from the
offline dataset Daux. To learn this feature space, we train a
multi-headed feed-forward NN to minimize the mean squared
error for each auxiliary task, akin to DNGO [27]. Thereafter,
in contrast to both DNGO and ABLR, we do not train sep-
arate output BLR modules. Rather, we will directly train
GPwarm on the output of the NN using the data acquired from
the target function f . Note that for training GPwarm, we can
use any non-linear kernel, which results in an expressive

posterior that allows for exact and tractable inference using
closed-form expressions.

Additionally, we can encounter scenarios where some of
the auxiliary functions are insufficient in reducing the un-
certainty in inferring the target function. In such scenarios,
relying solely on GPwarm can significantly hurt performance.
Therefore, we additionally initialize GPcold (with hyperpa-
rameters θc) directly on the input space χ.

If we also have access to offline data from f (i.e. Df ),
the hyperparameters of the warm and cold GPs can also be
pre-trained jointly along with the neural network parameters.
The overall pre-training objective is then given by:

L(φ, θw, θc) = LMSE(φ|Daux) + LGP(θw|Df ) + LGP(θc|Df ) (1)

where LGP(·|Df ) denotes the negative marginal log-
likelihood for the corresponding GP on Df .

Acquisition Procedure
Post the offline pre-training of the JUMBO’s regression
model, we can use it for online data acquisition in a standard
BO loop. The key design choice here is the acquisition func-
tion, which we describe next. At round t, let αwarm

t (x) and
αcold
t (x) be the single task acquisition function (e.g. UCB)

of the warm and cold GPs, after observing t− 1 data points,
respectively.

Our guiding intuition for the acquisition function in
JUMBO is that we are most interested in querying points
which are scored highly by both acquisition functions. Ide-
ally, we want to first sort points based on αwarm scores and
then from the top choices select the ones with highest αcold

score. To realize this acquisition function on a continuous
input domain, we define it as a convex combination of the
individual acquisition functions by employing a dynamic
interpolation coefficient λt(x) ∈ [0, 1]. Formally,

αt(x) = λt(x)αcold
t (x) + (1− λt(x))αwarm

t (x). (2)

In Eq. 2, By choosing λt(x) to be close to 1 for points
with αwarm

t (x) ≈ maxx α
warm
t (x), we can ensure to acquire

points that have high acquisition scores as per both αcold
t (x)

and αwarm
t (x). Next, we will discuss some theoretical results

that shed more light on the design of λt(x).

Theoretical Analysis
Here, we will formally derive the regret bound for JUMBO
and provide insights on the conditions under which JUMBO
outperforms GP-UCB [29]. For this analysis, we will use
Upper Confidence Bound (UCB) as our acquisition function
for the warm and cold GPs. To do so, we utilize the notion of
Maximum Information Gain (MIG).
Definition 1 (Maximum Information Gain [29]). Let f ∼
GP(0, κ), κ : Rd × Rd → R. Consider any χ ⊂ Rd and
let χ̃ = {x1, ..., xn} ⊂ χ be a finite subset. Let yχ̃ ∈ Rn
be n noisy observations such that (yχ̃)i = (fχ̃)i + εi, εi ∼
N (0, σ2

n). Let I denote the Shannon mutual information.
The MIG Ψn(χ) of set χ after n evaluations is the max-

imum mutual information between the function values and
observations among all choices of n points in χ. Formally,



Figure 2: The effect of the pre-trained NN hφ∗(x) on χ. In the
desirable case, χ̄g gets significantly compressed to Z̄g .

Ψn(χ) = max
χ̃⊂χ,|χ̃|=n

I(yχ̃; fχ̃)

This quantity depends on kernel parameters and the set χ,
and also serves as an important tool for characterizing the
difficulty of a GP-bandit. For a given kernel, it can be shown
that Ψn(χ) ∝ Π(χ) where Π(χ) = |χ| for discrete and
Vol(χ) for the continuous case [29]. For example for Radial
Basis kernel Ψn([0, 1]d) ∈ O(log(n)d+1). For brevity, we
focus on settings where χ is discrete. Further results and
analysis for the continuous case are deferred to Appendix ??.

For GP-UCB [29], it has been shown that for any δ ∈
(0, 1), if f ∼ GP(0, κ) (i.e., the GP assigns non-zero prob-
ability to the target function f ), then the cumulative regret
RT after T rounds will be bounded with probability at least
1− δ:

Pr{RT ≤
√
CTβTΨT (χ),∀T ≥ 1} ≥ 1− δ (3)

with C = 8
log(1+σ−2

n )
and βT = 2 log

(
|χ|π2T 2

6δ

)
.

Recall that hφ : χ→ Z is a mapping from input space χ
to the feature space Z . We will further make the following
modeling assumptions to ensure that the target black-box
function f is a sample from both the cold and warm GPs.

Assumption 1. f ∼ GPcold(0, κc).

Assumption 2. Let φ∗ denote the NN parameters obtained
via pretraining (Eq. 1).Then, there exists a function g ∼
GPwarm(0, κw) such that f = g ◦ hφ∗ .

Theorem 1. Let χg ⊂ χ and χ̄g = χ \χg be some arbitrary
partitioning of the input domain χ. Define the interpolation
coefficient as an indicator λt(x) = 1(x ∈ χg). Then under
Assumptions 1 and 2, JUMBO is no-regret.

Specifically, let s be the number of rounds such that the
JUMBO queries for points xt ∈ χ̄g. Then, for any δ ∈
(0, 1), running JUMBO for T iterations results in a sequence
of candidates (xt)

t=T
t=1 for which the following holds with

probability at least 1− δ:

RT <
√
CTβT {ΨT−s(χg) + Ψs(Z̄g)},∀T ≥ 1 (4)

where C = 8

log(1+σ−2
n )

, βt = 2 log
(
|χ|π2t2

3δ

)
, and Z̄g =

{hφ∗(x)|x ∈ χ̄g} is the set of output features for χ̄g .

Based on the regret bound in Eq. 4, we can conclude that
if the partitioning χg is chosen such that Π(Z̄g) � Π(χ̄g)
and Π(χg)� Π(χ), then JUMBO has a tighter bound than
GP-UCB. The first condition implies that the second term
in Eq. 4 is negligible and intuitively means that GPwarm will
only need a few samples to infer the posterior of f defined on
χ̄g , making BO more sample efficient. The second condition
implies that the ΨT−s(χg) � ΨT (χ) which in turn makes
the regret bound of JUMBO tighter than GP-UCB. Note that
χg cannot be made arbitrarily small, since χ̄g (and therefore
Z̄g) will get larger which conflicts with the first condition.

Figure 2 provides an illustrative example. If the learned
feature space hφ∗(x) compresses set χ̄g to a smaller set
Z̄g, then GPwarm can infer the posterior of g(hφ∗(x)) with
only a few samples in χ̄g (because MIG is lower). Such
hφ∗(x) will likely emerge when tasks share high-level fea-
tures with one another. In the appendix, we have included an
empirical analysis to show that GPwarmis indeed operating
on a compressed space Z . Consequently, if χg is reflective
of promising regions consisting of near-optimal points i.e.
χg = {x ∈ χ | f(x∗) − f(x) ≤ lf} for some lf > 0, BO
will be able to quickly discard points from subset χ̄g and
acquire most of its points from χg .

Choice of interpolation coefficient λt(x)

The above discussion suggests that the partitioning χg should
ideally consist of near-optimal points. In practice, we do
not know f and hence, we rely on our surrogate model to
define χ(t)

g = {x ∈ χ | αwarm∗
t − αwarm

t (x) ≤ lα}. Here,
αwarm∗
t is the optimal value of αwarm

t (x) and the acquisition
threshold lα > 0 is a hyper-parameter used for defining near-
optimal points w.r.t. αwarm

t (x). At one extreme, lα → ∞
corresponds to the case where αt(x) = αcold

t (x) (i.e. the GP-
UCB routine) and the other extreme lα → 0 corresponds to
case with αt(x) = αwarm

t (x).
Figure 3 illustrates a synthetic 1D example on how

JUMBO obtains the next query point. Figure 3a shows the
main objective f(x) (red) and the auxiliary task f1(x) (blue).
They share a periodic structure but have different optimums.
Figure 3b shows the correlation between the two.

Applying GP-UCB [29] will require a considerable amount
of samples to learn the periodic structure and the optimal
solution. However in JUMBO, as shown in Figure 3c, the
warm-GP, trained on (hφ∗(x), y) samples, can learn the pe-
riodic structure using only 6 samples, while the posterior of
the cold-GP has not yet learned this structure.

It can also be noted from Figure 3c that JUMBO’s acquisi-
tion function is αcold

t (x) when the value of αwarm
t (x) is close

to αwarm∗
t . Therefore, the next query point (marked with a

star) has a high score based on both acquisition functions.
We summarize JUMBO in Algorithm 1.

Experiments
We are interested in investigating the following questions:
(1) How does JUMBO perform on benchmark real-world
black-box optimization problems relative to baselines? (2)
How does the choice of threshold lα impact the performance
of JUMBO? (3) Is it necessary to have a non-linear mapping



(a) Target (red) and auxiliary (blue) task (b) Correlation between target and auxiliary tasks

(c) Posterior of GPwarm, GPcold, their UCB and JUMBO’s acquisition function

Figure 3: Dynamics of JUMBO after observing 6 data points (a) The two functions have different optimums (b) The tasks are related (c)
Iteration 4 of the BO with our proposed model, from top to bottom: (1) GP modeling input to objective using (x, hφ∗(x), y) samples (2)
GP modeling input to objective using (x, y) samples (3) UCB acquisition function for GPwarm(4) UCB acquisition function for GPcold(5)
JUMBO’s acquisition function that compromises between the optimum of the two.

on the features learned from the offline dataset or a BLR
layer is sufficient?

Our codebase is based on BoTorch [1] and is provided
in the Supplementary Materials with additional details in
Appendix ??.

Application: Hyperparameter optimization
Datasets. We consider the task of optimizing hyperparam-
eters for fully-connected NN architectures on 4 regression
benchmarks from HPOBench [15]: Protein Structure [22],
Parkinsons Telemonitoring [31], Naval Propulsion [4], and
Slice Localization [10]. HPOBench provides a look-up-table-
based API for querying the validation error of all possible
hyper-parameter configurations for a given regression task.
These configurations are specified via 9 hyperparameters, that
include continuous, categorical, and integer valued variables.

The objective we wish to minimize is the validation error
of a regression task after 100 epochs of training. For this
purpose, we consider an offline dataset that consists of vali-
dation errors for some randomly chosen configurations after
3 epochs on a given dataset. The target task is to optimize
this error after 100 epochs. In [15], the authors show that
this problem is non-trivial as there is small correlation be-
tween epochs 3 and 100 for top-1% configurations across all
datasets of interest.
Evaluation protocol. We validate the performance of

JUMBO against the following baselines with a UCB acquisi-
tion function [29]:
• GP-UCB [29] (i.e. cold-GP only) trains a GP from scratch dis-

regarding Daux completely. Equivalently, it can be interpreted
as JUMBO with λt(x) = 1 ∀x, t ≥ 1 in Eq. 2 and α(x) =
αUCB(x).

• MT-BOHAMIANN [28] trains a BNN on all tasks jointly via
SGHMC (Section ).

• MT-ABLR [18] trains a shared NN followed by task-specific
BLR layers (Section ).

• GCP [24] uses Gaussian Copula Processes to jointly model the
offline and online data.

• MF-GP-UCB [13] extends the GP-UCB baseline to a multi-
fidelity setting where the source task can be interpreted as a
low-fidelity proxy for the target task.

• Offline DKL (i.e. warm-GP only) is our proposed extension to
Deep Kernel Learning, where we train a single GP online in
the latent space of a NN pretrained on Daux (See Section 12
for details). Equivalently, it can be interpreted as JUMBO with
λt(x) = 0 in Eq. 2.

Results. We run JUMBO (with lα = 0.1) on all baselines for
50 rounds and 5 random seeds each and measure the simple
regret per iteration. The regret curves are shown in Figure 4.
We find that JUMBO achieves lower regret than the previous
state-of-the-art algorithms for MBO in almost all cases. We
believe the slightly worse performance on the slice dataset
relative to other baselines is due to the extremely low top-1%



Figure 4: The regret of MBO algorithms on Protein, Parkinsons, Naval, and Slice datasets. Standard errors are measured across 20 random
seeds.

Algorithm 1: JUMBO
Input: Offline auxiliary dataset Daux , Offline target

dataset Df0 (optional; default: empty set),
Threshold lα

Output: Sequence of solution candidates {xt}Tt=1
maximizing target function f

1 Initialize NN hφ(x), GPcold, GPwarm.
2 Pretrain NN params jointly with GPcold and GPwarm

hyper-params using Daux and Df0 as per Eq. 1.;
3 Initialize Dcold

0 = {}, Dwarm
0 = {}.

4 for round t = 1 to T do
5 Set αwarm∗

t = argmaxx∈χ α
warm
t (x).

6 Set λt(x) = 1(αwarm∗
t − αwarm

t (x) ≤ lα).
7 Set

αt(x) = λt(x)αcold
t (x) + (1− λt(x))αwarm

t (x)
8 Pick xt = argmaxx∈χ αt(x).
9 Obtain noisy observation yt for xt.

10 Update Dcold
t ← Dcold

t−1 ∪ {(xt, yt)} and GPcold.
11 Update Dwarm

t ← Dwarm
t−1 ∪ {(hφ∗(xi), yi)} and

GPwarm.
12 end

correlation between epoch 3 and epoch 100 on this dataset
as compared to others (See Figure 10 in [15]), which could
result in a suboptimal search space partitioning obtained via
the warm-GP. For all other datasets, we find JUMBO to be
the best performing method. Notably, on the Protein dataset,
JUMBO is always able to find the global optimum, unlike
the other approaches.

Application: Automated Circuit Design
Next, we consider a real-world use case in optimizing cir-
cuit design configurations for a suitable performance metric,
e.g., power, noise, etc. In practice, designers are interested
in performing layout simulations for measuring the perfor-
mance metric on any design configuration. These simulations
are however expensive to run; designers instead often turn
to schematic simulations which return inexpensive proxy
metrics correlated with the target metric.

In this problem, the circuit configurations are represented
by an 8 dimensional vector, with elements taking continu-
ous values between 0 and 1. The offline dataset consists of
1000 pairs of circuit configurations and 3 auxiliary signals
including a scalar goodness score based on the schematic
simulations. We consider the same baselines as before. We
also consider BOX-GP-UCB [19] which confines the search
space to a hyper-cube over the promising region based on
all auxiliary tasks in the offline data. Unlike the considered
HPO problems, the offline circuit dataset contains data from
more than just one auxiliary task, allowing us to consider
BOX-GP-UCB as a viable baseline. MF-GP-UCB was ran
with the schematic score as the lower fidelity approximation
of the target function. We ran each algorithm with lα = 0.1
for 100 iterations and measured simple regret against itera-
tion. As reflected in the regret curves in Figure 5a, JUMBO
outperforms other algorithms.

Ablations
Effect of auxiliary tasks. It is important to analyze how
learning on other tasks affects the performance. To this end,
we considered the circuit design problem with 1 and 3 aux-
iliary offline tasks. In Figure 5b, task 1 (yellow) is the most
correlated and task 3 (red) is the least correlated task with
the objective function. The regret curves suggest that the per-



(a) (b) (c)

Figure 5: (a) Circuit Design results (b) JUMBO with 3 aux. tasks is better than JUMBO with each individual aux. tasks. (c) The Non-linear
mapping is a crucial piece of JUMBO’s algorithm.

formance would be poor if the correlation between tasks is
low. Moreover, the features pre-trained on the combination
of all three tasks provide more information to the warm-GP
than those pre-trained only on one of the tasks.

BLR with JUMBO’s acquisition function. A key differ-
ence between JUMBO and ABLR [18] is replacing the BLR
layer with a GP. To show the merits of having a GP, we ran
an experiment on Protein dataset and replaced the GP with a
BLR in JUMBO’s procedure. Figure 5c shows that JUMBO
with GPwarmsignificantly outperforms JUMBO with a BLR
layer.

Related Work
Transfer Learning in Bayesian Optimization: Utilizing
prior information for applying transfer learning to improve
Bayesian optimization has been explored in several prior pa-
pers. Early work of [30] focuses on the design of multi-task
kernels for modeling task correlations [21]. These models
tend to suffer from lack of scalability; [35, 6] show that this
challenge can be partially mitigated by training an ensemble
of task-specific GPs that scale linearly with the number of
tasks but still suffer from cubic complexity in the number of
observations for each task. To address scalability and robust
treatment of uncertainty, several prior works have been sug-
gested [24, 28, 18]. [24] employs a Gaussian Copula to learn
a joint prior on hyper-parameters based on offline tasks, and
then utilizes a GP on the online task for adapt to the target
function. [28] uses a BNN as surrogates for MBO; however,
since training BNNs is computationally intensive [18] pro-
poses to use a deterministic NN followed by a BLR layer at
the output to achieve scalability.

Some other prior work exploit certain assumptions be-
tween the source and target data. For example [26, 9] assume
an ordering of the tasks and use this information to train GPs
to model residuals between the target and auxiliary tasks.
[7, 34] assume existence of a similarity measure between
prior and target data which may not be easy to define for
problems other than hyper-parameter optimization. A sim-
pler idea is to use prior data to confine the search space
to promising regions [19]. However, this highly relies on
whether the confined region includes the optimal solution to

the target task. Another line of work studies utilizing prior
optimization runs to meta-learn acquisition functions [32].
This idea can be utilized in addition to our method and is not
a competing direction.

Multi-fidelity Black-box Optimization (MFBO): In
multi-fidelity scenarios we can query for noisy approxima-
tions to the target function relatively cheaply. For example, in
hyperparameter optimization, we can query for cheap proxies
to the performance of a configuration on a smaller subset of
the training data [20], early stopping [16], or by predicting
learning curves [5, 14]. We direct the reader to Section 1.4 in
[12] for a comprehensive survey on MBFO. Such methods,
similar to MF-GP-UCB [13] (section 12), are typically con-
strained to scenarios where such low fidelities are explicitly
available and make strong continuity assumptions between
the low fidelities and the target function.

Deep Kernel Learning (DKL): Commonly used GP ker-
nels (e.g. RBF, Matern) can only capture simple correlations
between points a priori. DKL [11, 3] addresses this issue by
learning a latent representation via NN that can be fed to a
standard kernel at the output. [27] employs linear kernels at
the output of a pre-trained NN while [11] extends it to use
non-linear kernels. The warm-GP in JUMBO can be under-
stood as a DKL surrogate model trained using offline data
from auxiliary tasks.

Conclusion
We proposed JUMBO, a no-regret algorithm that employs
a careful hybrid of neural networks and Gaussian Pro-
cesses and a novel acquisition procedure for scalable and
sample-efficient Multi-task Bayesian Optimization. We de-
rived JUMBO’s theoretical regret bound and empirically
showed it outperforms other competing approaches on set of
real-world optimization problems.
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